Plots.jl/src/series_args.jl
2016-04-28 12:51:08 -04:00

467 lines
17 KiB
Julia

# create a new "build_series_args" which converts all inputs into xs = Any[xitems], ys = Any[yitems].
# Special handling for: no args, xmin/xmax, parametric, dataframes
# Then once inputs have been converted, build the series args, map functions, etc.
# This should cut down on boilerplate code and allow more focused dispatch on type
# note: returns meta information... mainly for use with automatic labeling from DataFrames for now
typealias FuncOrFuncs @compat(Union{Function, AVec{Function}})
all3D(d::KW) = trueOrAllTrue(lt -> lt in (:contour, :heatmap, :surface, :wireframe, :contour3d), get(d, :linetype, :none))
# missing
convertToAnyVector(v::@compat(Void), d::KW) = Any[nothing], nothing
# fixed number of blank series
convertToAnyVector(n::Integer, d::KW) = Any[zeros(0) for i in 1:n], nothing
# numeric vector
convertToAnyVector{T<:Number}(v::AVec{T}, d::KW) = Any[v], nothing
# string vector
convertToAnyVector{T<:@compat(AbstractString)}(v::AVec{T}, d::KW) = Any[v], nothing
# numeric matrix
function convertToAnyVector{T<:Number}(v::AMat{T}, d::KW)
if all3D(d)
Any[Surface(v)]
else
Any[v[:,i] for i in 1:size(v,2)]
end, nothing
end
# other matrix... vector of columns
function convertToAnyVector(m::AMat, d::KW)
Any[begin
v = vec(m[:,i])
length(v) == 1 ? v[1] : v
end for i=1:size(m,2)], nothing
end
# function
convertToAnyVector(f::Function, d::KW) = Any[f], nothing
# surface
convertToAnyVector(s::Surface, d::KW) = Any[s], nothing
# vector of OHLC
convertToAnyVector(v::AVec{OHLC}, d::KW) = Any[v], nothing
# dates
convertToAnyVector{D<:Union{Date,DateTime}}(dts::AVec{D}, d::KW) = Any[dts], nothing
# list of things (maybe other vectors, functions, or something else)
function convertToAnyVector(v::AVec, d::KW)
if all(x -> typeof(x) <: Number, v)
# all real numbers wrap the whole vector as one item
Any[convert(Vector{Float64}, v)], nothing
else
# something else... treat each element as an item
vcat(Any[convertToAnyVector(vi, d)[1] for vi in v]...), nothing
# Any[vi for vi in v], nothing
end
end
# --------------------------------------------------------------------
# TODO: can we avoid the copy here? one error that crops up is that mapping functions over the same array
# result in that array being shared. push!, etc will add too many items to that array
compute_x(x::Void, y::Void, z) = 1:size(z,1)
compute_x(x::Void, y, z) = 1:size(y,1)
compute_x(x::Function, y, z) = map(x, y)
compute_x(x, y, z) = copy(x)
# compute_y(x::Void, y::Function, z) = error()
compute_y(x::Void, y::Void, z) = 1:size(z,2)
compute_y(x, y::Function, z) = map(y, x)
compute_y(x, y, z) = copy(y)
compute_z(x, y, z::Function) = map(z, x, y)
compute_z(x, y, z::AbstractMatrix) = Surface(z)
compute_z(x, y, z::Void) = nothing
compute_z(x, y, z) = copy(z)
@noinline function compute_xyz(x, y, z)
x = compute_x(x,y,z)
y = compute_y(x,y,z)
z = compute_z(x,y,z)
x, y, z
end
# not allowed
compute_xyz(x::Void, y::FuncOrFuncs, z) = error("If you want to plot the function `$y`, you need to define the x values!")
compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the function `$z`, you need to define x and y values!")
compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!")
# --------------------------------------------------------------------
# create n=max(mx,my) series arguments. the shorter list is cycled through
# note: everything should flow through this
function build_series_args(plt::AbstractPlot, kw::KW) #, idxfilter)
x, y, z = map(sym -> pop!(kw, sym, nothing), (:x, :y, :z))
if nothing == x == y == z
return [], nothing, nothing
end
xs, xmeta = convertToAnyVector(x, kw)
ys, ymeta = convertToAnyVector(y, kw)
zs, zmeta = convertToAnyVector(z, kw)
fr = pop!(kw, :fillrange, nothing)
fillranges, _ = if typeof(fr) <: Number
([fr],nothing)
else
convertToAnyVector(fr, kw)
end
mx = length(xs)
my = length(ys)
mz = length(zs)
ret = Any[]
for i in 1:max(mx, my, mz)
# try to set labels using ymeta
d = copy(kw)
if !haskey(d, :label) && ymeta != nothing
if isa(ymeta, Symbol)
d[:label] = string(ymeta)
elseif isa(ymeta, AVec{Symbol})
d[:label] = string(ymeta[mod1(i,length(ymeta))])
end
end
# build the series arg dict
numUncounted = pop!(d, :numUncounted, 0)
commandIndex = i + numUncounted
n = plt.n + i
dumpdict(d, "before getSeriesArgs")
d = getSeriesArgs(plt.backend, getplotargs(plt, n), d, commandIndex, convertSeriesIndex(plt, n), n)
dumpdict(d, "after getSeriesArgs")
d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
lt = d[:linetype]
# for linetype `line`, need to sort by x values
if lt == :line
# order by x
indices = sortperm(d[:x])
d[:x] = d[:x][indices]
d[:y] = d[:y][indices]
d[:linetype] = :path
end
# special handling for missing x in box plot... all the same category
if lt == :box && xs[mod1(i,mx)] == nothing
d[:x] = ones(Int, length(d[:y]))
end
# map functions to vectors
if isa(d[:marker_z], Function)
d[:marker_z] = map(d[:marker_z], d[:x])
end
# @show fillranges
d[:fillrange] = fillranges[mod1(i,length(fillranges))]
if isa(d[:fillrange], Function)
d[:fillrange] = map(d[:fillrange], d[:x])
end
# handle error bars
for esym in (:xerror, :yerror)
if get(d, esym, nothing) != nothing
# we make a copy of the KW and apply an errorbar recipe
append!(ret, apply_series_recipe(copy(d), Val{esym}))
end
end
# handle ribbons
if get(d, :ribbon, nothing) != nothing
rib = d[:ribbon]
d[:fillrange] = (d[:y] - rib, d[:y] + rib)
end
# handle quiver plots
if lt == :quiver
d[:linetype] = lt = :path
d[:linewidth] = 0
end
if get(d, :quiver, nothing) != nothing
append!(ret, apply_series_recipe(copy(d), Val{:quiver}))
end
# now that we've processed a given series... optionally split into
# multiple dicts through a recipe (for example, a box plot is split into component
# parts... polygons, lines, and scatters)
# note: we pass in a Val type (i.e. Val{:box}) so that we can dispatch on the linetype
kwlist = apply_series_recipe(d, Val{lt})
append!(ret, kwlist)
# # add it to our series list
# push!(ret, d)
end
ret, xmeta, ymeta
end
# --------------------------------------------------------------------
# process_inputs
# --------------------------------------------------------------------
# These methods take a plot and the keyword arguments, and processes the input
# arguments (x/y/z, group, etc), populating the KW dict with appropriate values.
# --------------------------------------------------------------------
# 0 arguments
# --------------------------------------------------------------------
# don't do anything
function process_inputs(plt::AbstractPlot, d::KW)
end
# --------------------------------------------------------------------
# 1 argument
# --------------------------------------------------------------------
function process_inputs(plt::AbstractPlot, d::KW, n::Integer)
d[:x], d[:y], d[:z] = zeros(0), zeros(0), zeros(0)
end
# no special handling... assume x and z are nothing
function process_inputs(plt::AbstractPlot, d::KW, y)
d[:y] = y
end
# matrix... is it z or y?
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
if all3D(d)
n,m = size(mat)
d[:x], d[:y], d[:z] = 1:n, 1:m, mat
else
d[:y] = mat
end
end
# plotting arbitrary shapes/polygons
function process_inputs(plt::AbstractPlot, d::KW, shape::Shape)
d[:x], d[:y] = shape_coords(shape)
d[:linetype] = :shape
end
function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
d[:x], d[:y] = shape_coords(shapes)
d[:linetype] = :shape
end
function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
x, y = [], []
for j in 1:size(shapes, 2)
tmpx, tmpy = shape_coords(vec(shapes[:,j]))
push!(x, tmpx)
push!(y, tmpy)
end
d[:x], d[:y] = x, y
d[:linetype] = :shape
end
# function without range... use the current range of the x-axis
function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
process_inputs(plt, d, f, xmin(plt), xmax(plt))
end
# --------------------------------------------------------------------
# 2 arguments
# --------------------------------------------------------------------
function process_inputs(plt::AbstractPlot, d::KW, x, y)
d[:x], d[:y] = x, y
end
# if functions come first, just swap the order (not to be confused with parametric functions...
# as there would be more than one function passed in)
function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
process_inputs(plt, d, x, f)
end
# --------------------------------------------------------------------
# 3 arguments
# --------------------------------------------------------------------
# no special handling... just pass them through
function process_inputs(plt::AbstractPlot, d::KW, x, y, z)
d[:x], d[:y], d[:z] = x, y, z
end
# 3d line or scatter
function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
# default to path3d if we haven't set a 3d linetype
lt = get(d, :linetype, :none)
if lt == :scatter
d[:linetype] = :scatter3d
elseif !(lt in _3dTypes)
d[:linetype] = :path3d
end
d[:x], d[:y], d[:z] = x, y, zvec
end
# surface-like... function
function process_inputs{TX,TY}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zf::Function)
x = TX <: Number ? sort(x) : x
y = TY <: Number ? sort(y) : y
# x, y = sort(x), sort(y)
d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
d[:x], d[:y] = x, y
end
# surface-like... matrix grid
function process_inputs{TX,TY,TZ}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zmat::AMat{TZ})
@assert size(zmat) == (length(x), length(y))
if TX <: Number && !issorted(x)
idx = sortperm(x)
x, zmat = x[idx], zmat[idx, :]
end
if TY <: Number && !issorted(y)
idx = sortperm(y)
y, zmat = y[idx], zmat[:, idx]
end
d[:x], d[:y], d[:z] = x, y, Surface{Matrix{TZ}}(zmat)
if !like_surface(get(d, :linetype, :none))
d[:linetype] = :contour
end
end
# surfaces-like... general x, y grid
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
@assert size(zmat) == size(x) == size(y)
# d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat)
d[:x], d[:y], d[:z] = map(Surface{Matrix{Float64}}, (x, y, zmat))
if !like_surface(get(d, :linetype, :none))
d[:linetype] = :contour
end
end
# --------------------------------------------------------------------
# Parametric functions
# --------------------------------------------------------------------
# special handling... xmin/xmax with function(s)
function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
width = get(plt.plotargs, :size, (100,))[1]
x = linspace(xmin, xmax, width)
process_inputs(plt, d, x, f)
end
# special handling... xmin/xmax with parametric function(s)
process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints))
# special handling... 3D parametric function(s)
process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
# --------------------------------------------------------------------
# Lists of tuples and FixedSizeArrays
# --------------------------------------------------------------------
# if we get an unhandled tuple, just splat it in
function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple)
process_inputs(plt, d, tup...)
end
# (x,y) tuples
function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}})
process_inputs(plt, d, unzip(xy)...)
end
function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2})
process_inputs(plt, d, [xy[1]], [xy[2]])
end
# (x,y,z) tuples
function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}})
process_inputs(plt, d, unzip(xyz)...)
end
function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3})
process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
end
# 2D FixedSizeArrays
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}})
process_inputs(plt, d, unzip(xy)...)
end
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T})
process_inputs(plt, d, [xy[1]], [xy[2]])
end
# 3D FixedSizeArrays
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}})
process_inputs(plt, d, unzip(xyz)...)
end
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T})
process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
end
# --------------------------------------------------------------------
# handle grouping
# --------------------------------------------------------------------
# function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
# ret = Any[]
# error("unfinished after series reorg")
# for (i,glab) in enumerate(groupby.groupLabels)
# # TODO: don't automatically overwrite labels
# kwlist, xmeta, ymeta = process_inputs(plt, d, args...,
# idxfilter = groupby.groupIds[i],
# label = string(glab),
# numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
# append!(ret, kwlist)
# end
# ret, nothing, nothing # TODO: handle passing meta through
# end
# --------------------------------------------------------------------
# For DataFrame support. Imports DataFrames and defines the necessary methods which support them.
# --------------------------------------------------------------------
function setup_dataframes()
@require DataFrames begin
get_data(df::DataFrames.AbstractDataFrame, arg::Symbol) = df[arg]
get_data(df::DataFrames.AbstractDataFrame, arg) = arg
function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
# d[:dataframe] = df
process_inputs(plt, d, map(arg -> get_data(df, arg), args)...)
end
# expecting the column name of a dataframe that was passed in... anything else should error
function extractGroupArgs(s::Symbol, df::DataFrames.AbstractDataFrame, args...)
if haskey(df, s)
return extractGroupArgs(df[s])
else
error("Got a symbol, and expected that to be a key in d[:dataframe]. s=$s d=$d")
end
end
# function getDataFrameFromKW(d::KW)
# get(d, :dataframe) do
# error("Missing dataframe argument!")
# end
# end
# # the conversion functions for when we pass symbols or vectors of symbols to reference dataframes
# convertToAnyVector(s::Symbol, d::KW) = Any[getDataFrameFromKW(d)[s]], s
# convertToAnyVector(v::AVec{Symbol}, d::KW) = (df = getDataFrameFromKW(d); Any[df[s] for s in v]), v
end
end