# create a new "build_series_args" which converts all inputs into xs = Any[xitems], ys = Any[yitems]. # Special handling for: no args, xmin/xmax, parametric, dataframes # Then once inputs have been converted, build the series args, map functions, etc. # This should cut down on boilerplate code and allow more focused dispatch on type # note: returns meta information... mainly for use with automatic labeling from DataFrames for now typealias FuncOrFuncs @compat(Union{Function, AVec{Function}}) all3D(d::KW) = trueOrAllTrue(lt -> lt in (:contour, :heatmap, :surface, :wireframe, :contour3d), get(d, :linetype, :none)) # missing convertToAnyVector(v::@compat(Void), d::KW) = Any[nothing], nothing # fixed number of blank series convertToAnyVector(n::Integer, d::KW) = Any[zeros(0) for i in 1:n], nothing # numeric vector convertToAnyVector{T<:Number}(v::AVec{T}, d::KW) = Any[v], nothing # string vector convertToAnyVector{T<:@compat(AbstractString)}(v::AVec{T}, d::KW) = Any[v], nothing # numeric matrix function convertToAnyVector{T<:Number}(v::AMat{T}, d::KW) if all3D(d) Any[Surface(v)] else Any[v[:,i] for i in 1:size(v,2)] end, nothing end # other matrix... vector of columns function convertToAnyVector(m::AMat, d::KW) Any[begin v = vec(m[:,i]) length(v) == 1 ? v[1] : v end for i=1:size(m,2)], nothing end # function convertToAnyVector(f::Function, d::KW) = Any[f], nothing # surface convertToAnyVector(s::Surface, d::KW) = Any[s], nothing # vector of OHLC convertToAnyVector(v::AVec{OHLC}, d::KW) = Any[v], nothing # dates convertToAnyVector{D<:Union{Date,DateTime}}(dts::AVec{D}, d::KW) = Any[dts], nothing # list of things (maybe other vectors, functions, or something else) function convertToAnyVector(v::AVec, d::KW) if all(x -> typeof(x) <: Number, v) # all real numbers wrap the whole vector as one item Any[convert(Vector{Float64}, v)], nothing else # something else... treat each element as an item vcat(Any[convertToAnyVector(vi, d)[1] for vi in v]...), nothing # Any[vi for vi in v], nothing end end # -------------------------------------------------------------------- # TODO: can we avoid the copy here? one error that crops up is that mapping functions over the same array # result in that array being shared. push!, etc will add too many items to that array compute_x(x::Void, y::Void, z) = 1:size(z,1) compute_x(x::Void, y, z) = 1:size(y,1) compute_x(x::Function, y, z) = map(x, y) compute_x(x, y, z) = copy(x) # compute_y(x::Void, y::Function, z) = error() compute_y(x::Void, y::Void, z) = 1:size(z,2) compute_y(x, y::Function, z) = map(y, x) compute_y(x, y, z) = copy(y) compute_z(x, y, z::Function) = map(z, x, y) compute_z(x, y, z::AbstractMatrix) = Surface(z) compute_z(x, y, z::Void) = nothing compute_z(x, y, z) = copy(z) @noinline function compute_xyz(x, y, z) x = compute_x(x,y,z) y = compute_y(x,y,z) z = compute_z(x,y,z) x, y, z end # not allowed compute_xyz(x::Void, y::FuncOrFuncs, z) = error("If you want to plot the function `$y`, you need to define the x values!") compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the function `$z`, you need to define x and y values!") compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!") # -------------------------------------------------------------------- # create n=max(mx,my) series arguments. the shorter list is cycled through # note: everything should flow through this function build_series_args(plt::AbstractPlot, kw::KW) #, idxfilter) x, y, z = map(sym -> pop!(kw, sym, nothing), (:x, :y, :z)) if nothing == x == y == z return [], nothing, nothing end xs, xmeta = convertToAnyVector(x, kw) ys, ymeta = convertToAnyVector(y, kw) zs, zmeta = convertToAnyVector(z, kw) fr = pop!(kw, :fillrange, nothing) fillranges, _ = if typeof(fr) <: Number ([fr],nothing) else convertToAnyVector(fr, kw) end mx = length(xs) my = length(ys) mz = length(zs) ret = Any[] for i in 1:max(mx, my, mz) # try to set labels using ymeta d = copy(kw) if !haskey(d, :label) && ymeta != nothing if isa(ymeta, Symbol) d[:label] = string(ymeta) elseif isa(ymeta, AVec{Symbol}) d[:label] = string(ymeta[mod1(i,length(ymeta))]) end end # build the series arg dict numUncounted = pop!(d, :numUncounted, 0) commandIndex = i + numUncounted n = plt.n + i dumpdict(d, "before getSeriesArgs") d = getSeriesArgs(plt.backend, getplotargs(plt, n), d, commandIndex, convertSeriesIndex(plt, n), n) dumpdict(d, "after getSeriesArgs") d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)]) lt = d[:linetype] # for linetype `line`, need to sort by x values if lt == :line # order by x indices = sortperm(d[:x]) d[:x] = d[:x][indices] d[:y] = d[:y][indices] d[:linetype] = :path end # special handling for missing x in box plot... all the same category if lt == :box && xs[mod1(i,mx)] == nothing d[:x] = ones(Int, length(d[:y])) end # map functions to vectors if isa(d[:marker_z], Function) d[:marker_z] = map(d[:marker_z], d[:x]) end # @show fillranges d[:fillrange] = fillranges[mod1(i,length(fillranges))] if isa(d[:fillrange], Function) d[:fillrange] = map(d[:fillrange], d[:x]) end # handle error bars for esym in (:xerror, :yerror) if get(d, esym, nothing) != nothing # we make a copy of the KW and apply an errorbar recipe append!(ret, apply_series_recipe(copy(d), Val{esym})) end end # handle ribbons if get(d, :ribbon, nothing) != nothing rib = d[:ribbon] d[:fillrange] = (d[:y] - rib, d[:y] + rib) end # handle quiver plots if lt == :quiver d[:linetype] = lt = :path d[:linewidth] = 0 end if get(d, :quiver, nothing) != nothing append!(ret, apply_series_recipe(copy(d), Val{:quiver})) end # now that we've processed a given series... optionally split into # multiple dicts through a recipe (for example, a box plot is split into component # parts... polygons, lines, and scatters) # note: we pass in a Val type (i.e. Val{:box}) so that we can dispatch on the linetype kwlist = apply_series_recipe(d, Val{lt}) append!(ret, kwlist) # # add it to our series list # push!(ret, d) end ret, xmeta, ymeta end # -------------------------------------------------------------------- # process_inputs # -------------------------------------------------------------------- # These methods take a plot and the keyword arguments, and processes the input # arguments (x/y/z, group, etc), populating the KW dict with appropriate values. # -------------------------------------------------------------------- # 0 arguments # -------------------------------------------------------------------- # don't do anything function process_inputs(plt::AbstractPlot, d::KW) end # -------------------------------------------------------------------- # 1 argument # -------------------------------------------------------------------- function process_inputs(plt::AbstractPlot, d::KW, n::Integer) d[:x], d[:y], d[:z] = zeros(0), zeros(0), zeros(0) end # no special handling... assume x and z are nothing function process_inputs(plt::AbstractPlot, d::KW, y) d[:y] = y end # matrix... is it z or y? function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T}) if all3D(d) n,m = size(mat) d[:x], d[:y], d[:z] = 1:n, 1:m, mat else d[:y] = mat end end # plotting arbitrary shapes/polygons function process_inputs(plt::AbstractPlot, d::KW, shape::Shape) d[:x], d[:y] = shape_coords(shape) d[:linetype] = :shape end function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape}) d[:x], d[:y] = shape_coords(shapes) d[:linetype] = :shape end function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape}) x, y = [], [] for j in 1:size(shapes, 2) tmpx, tmpy = shape_coords(vec(shapes[:,j])) push!(x, tmpx) push!(y, tmpy) end d[:x], d[:y] = x, y d[:linetype] = :shape end # function without range... use the current range of the x-axis function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs) process_inputs(plt, d, f, xmin(plt), xmax(plt)) end # -------------------------------------------------------------------- # 2 arguments # -------------------------------------------------------------------- function process_inputs(plt::AbstractPlot, d::KW, x, y) d[:x], d[:y] = x, y end # if functions come first, just swap the order (not to be confused with parametric functions... # as there would be more than one function passed in) function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x) @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here process_inputs(plt, d, x, f) end # -------------------------------------------------------------------- # 3 arguments # -------------------------------------------------------------------- # no special handling... just pass them through function process_inputs(plt::AbstractPlot, d::KW, x, y, z) d[:x], d[:y], d[:z] = x, y, z end # 3d line or scatter function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec) # default to path3d if we haven't set a 3d linetype lt = get(d, :linetype, :none) if lt == :scatter d[:linetype] = :scatter3d elseif !(lt in _3dTypes) d[:linetype] = :path3d end d[:x], d[:y], d[:z] = x, y, zvec end # surface-like... function function process_inputs{TX,TY}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zf::Function) x = TX <: Number ? sort(x) : x y = TY <: Number ? sort(y) : y # x, y = sort(x), sort(y) d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported d[:x], d[:y] = x, y end # surface-like... matrix grid function process_inputs{TX,TY,TZ}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zmat::AMat{TZ}) @assert size(zmat) == (length(x), length(y)) if TX <: Number && !issorted(x) idx = sortperm(x) x, zmat = x[idx], zmat[idx, :] end if TY <: Number && !issorted(y) idx = sortperm(y) y, zmat = y[idx], zmat[:, idx] end d[:x], d[:y], d[:z] = x, y, Surface{Matrix{TZ}}(zmat) if !like_surface(get(d, :linetype, :none)) d[:linetype] = :contour end end # surfaces-like... general x, y grid function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T}) @assert size(zmat) == size(x) == size(y) # d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat) d[:x], d[:y], d[:z] = map(Surface{Matrix{Float64}}, (x, y, zmat)) if !like_surface(get(d, :linetype, :none)) d[:linetype] = :contour end end # -------------------------------------------------------------------- # Parametric functions # -------------------------------------------------------------------- # special handling... xmin/xmax with function(s) function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number) width = get(plt.plotargs, :size, (100,))[1] x = linspace(xmin, xmax, width) process_inputs(plt, d, x, f) end # special handling... xmin/xmax with parametric function(s) process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)) process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)) process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints)) # special handling... 3D parametric function(s) process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)) process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)) process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints)) # -------------------------------------------------------------------- # Lists of tuples and FixedSizeArrays # -------------------------------------------------------------------- # if we get an unhandled tuple, just splat it in function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple) process_inputs(plt, d, tup...) end # (x,y) tuples function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}}) process_inputs(plt, d, unzip(xy)...) end function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2}) process_inputs(plt, d, [xy[1]], [xy[2]]) end # (x,y,z) tuples function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}}) process_inputs(plt, d, unzip(xyz)...) end function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3}) process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]]) end # 2D FixedSizeArrays function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}}) process_inputs(plt, d, unzip(xy)...) end function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T}) process_inputs(plt, d, [xy[1]], [xy[2]]) end # 3D FixedSizeArrays function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}}) process_inputs(plt, d, unzip(xyz)...) end function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T}) process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]]) end # -------------------------------------------------------------------- # handle grouping # -------------------------------------------------------------------- # function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...) # ret = Any[] # error("unfinished after series reorg") # for (i,glab) in enumerate(groupby.groupLabels) # # TODO: don't automatically overwrite labels # kwlist, xmeta, ymeta = process_inputs(plt, d, args..., # idxfilter = groupby.groupIds[i], # label = string(glab), # numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i # append!(ret, kwlist) # end # ret, nothing, nothing # TODO: handle passing meta through # end # -------------------------------------------------------------------- # For DataFrame support. Imports DataFrames and defines the necessary methods which support them. # -------------------------------------------------------------------- function setup_dataframes() @require DataFrames begin get_data(df::DataFrames.AbstractDataFrame, arg::Symbol) = df[arg] get_data(df::DataFrames.AbstractDataFrame, arg) = arg function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...) # d[:dataframe] = df process_inputs(plt, d, map(arg -> get_data(df, arg), args)...) end # expecting the column name of a dataframe that was passed in... anything else should error function extractGroupArgs(s::Symbol, df::DataFrames.AbstractDataFrame, args...) if haskey(df, s) return extractGroupArgs(df[s]) else error("Got a symbol, and expected that to be a key in d[:dataframe]. s=$s d=$d") end end # function getDataFrameFromKW(d::KW) # get(d, :dataframe) do # error("Missing dataframe argument!") # end # end # # the conversion functions for when we pass symbols or vectors of symbols to reference dataframes # convertToAnyVector(s::Symbol, d::KW) = Any[getDataFrameFromKW(d)[s]], s # convertToAnyVector(v::AVec{Symbol}, d::KW) = (df = getDataFrameFromKW(d); Any[df[s] for s in v]), v end end