Plots.jl/src/series_new.jl

336 lines
9.7 KiB
Julia

# we are going to build recipes to do the processing and splitting of the args
function _add_defaults!(d::KW, plt::Plot, sp::Subplot, commandIndex::Int)
pkg = plt.backend
globalIndex = d[:series_plotindex]
# add default values to our dictionary, being careful not to delete what we just added!
for (k,v) in _series_defaults
slice_arg!(d, d, k, v, commandIndex, remove_pair = false)
end
# this is how many series belong to this subplot
plotIndex = count(series -> series.d[:subplot] === sp && series.d[:primary], plt.series_list)
if get(d, :primary, true)
plotIndex += 1
end
aliasesAndAutopick(d, :linestyle, _styleAliases, supportedStyles(pkg), plotIndex)
aliasesAndAutopick(d, :markershape, _markerAliases, supportedMarkers(pkg), plotIndex)
# update color
d[:seriescolor] = getSeriesRGBColor(d[:seriescolor], sp, plotIndex)
# update colors
for csym in (:linecolor, :markercolor, :fillcolor)
d[csym] = if d[csym] == :match
if has_black_border_for_default(d[:seriestype]) && csym == :linecolor
:black
else
d[:seriescolor]
end
else
getSeriesRGBColor(d[csym], sp, plotIndex)
end
end
# update markerstrokecolor
c = d[:markerstrokecolor]
c = if c == :match
sp[:foreground_color_subplot]
else
getSeriesRGBColor(c, sp, plotIndex)
end
d[:markerstrokecolor] = c
# update alphas
for asym in (:linealpha, :markeralpha, :markerstrokealpha, :fillalpha)
if d[asym] == nothing
d[asym] = d[:seriesalpha]
end
end
# scatter plots don't have a line, but must have a shape
if d[:seriestype] in (:scatter, :scatter3d)
d[:linewidth] = 0
if d[:markershape] == :none
d[:markershape] = :ellipse
end
end
# set label
label = d[:label]
label = (label == "AUTO" ? "y$globalIndex" : label)
d[:label] = label
_replace_linewidth(d)
d
end
# -------------------------------------------------------------------
# -------------------------------------------------------------------
# instead of process_inputs:
# ensure we dispatch to the slicer
immutable SliceIt end
# the catch-all recipes
@recipe function f(::Type{SliceIt}, x, y, z)
# @show "HERE", typeof((x,y,z))
xs, _ = convertToAnyVector(x, d)
ys, _ = convertToAnyVector(y, d)
zs, _ = convertToAnyVector(z, d)
fr = pop!(d, :fillrange, nothing)
fillranges, _ = if typeof(fr) <: Number
([fr],nothing)
else
convertToAnyVector(fr, d)
end
mf = length(fillranges)
# @show zs
mx = length(xs)
my = length(ys)
mz = length(zs)
# ret = Any[]
for i in 1:max(mx, my, mz)
# add a new series
di = copy(d)
xi, yi, zi = xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)]
# @show i, typeof((xi, yi, zi))
di[:x], di[:y], di[:z] = compute_xyz(xi, yi, zi)
# @show i, typeof((di[:x], di[:y], di[:z]))
# handle fillrange
fr = fillranges[mod1(i,mf)]
di[:fillrange] = isa(fr, Function) ? map(fr, di[:x]) : fr
# @show i, di[:x], di[:y], di[:z]
push!(series_list, RecipeData(di, ()))
end
nothing # don't add a series for the main block
end
# pass these through to the slicer
@recipe f(x, y, z) = SliceIt, x, y, z
@recipe f(x, y) = SliceIt, x, y, nothing
@recipe f(y) = SliceIt, nothing, y, nothing
# # --------------------------------------------------------------------
# # 1 argument
# # --------------------------------------------------------------------
@recipe f(n::Integer) = n, n, n
# return a surface if this is a 3d plot, otherwise let it be sliced up
@recipe function f{T<:Number}(mat::AMat{T})
if all3D(d)
n,m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
SliceIt, nothing, mat, nothing
end
end
# # images - grays
@recipe function f{T<:Gray}(mat::AMat{T})
if nativeImagesSupported()
seriestype := :image
n, m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
seriestype := :heatmap
yflip --> true
fillcolor --> ColorGradient([:black, :white])
SliceIt, 1:m, 1:n, Surface(convert(Matrix{Float64}, mat))
end
end
# # images - colors
@recipe function f{T<:Colorant}(mat::AMat{T})
if nativeImagesSupported()
seriestype := :image
n, m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
seriestype := :heatmap
yflip --> true
z, d[:fillcolor] = replace_image_with_heatmap(mat)
SliceIt, 1:m, 1:n, Surface(z)
end
end
#
# # plotting arbitrary shapes/polygons
@recipe function f(shape::Shape)
seriestype := :shape
shape_coords(shape)
end
@recipe function f(shapes::AVec{Shape})
seriestype := :shape
shape_coords(shapes)
end
@recipe function f(shapes::AMat{Shape})
for j in 1:size(shapes,2)
# create one series for each column
# @series shape_coords(vec(shapes[:,j]))
di = copy(d)
push!(series_list, RecipeData(di, shape_coords(vec(shapes[:,j]))))
end
nothing # don't create a series for the main block
end
#
#
# # function without range... use the current range of the x-axis
@recipe function f(f::FuncOrFuncs)
plt = d[:plot_object]
f, xmin(plt), xmax(plt)
end
#
# # --------------------------------------------------------------------
# # 2 arguments
# # --------------------------------------------------------------------
#
#
# # if functions come first, just swap the order (not to be confused with parametric functions...
# # as there would be more than one function passed in)
@recipe function f(f::FuncOrFuncs, x)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
x, f
end
#
# # --------------------------------------------------------------------
# # 3 arguments
# # --------------------------------------------------------------------
#
#
# # 3d line or scatter
@recipe function f(x::AVec, y::AVec, z::AVec)
st = get(d, :seriestype, :none)
if st == :scatter
d[:seriestype] = :scatter3d
elseif !is3d(st)
d[:seriestype] = :path3d
end
SliceIt, x, y, z
end
@recipe function f(x::AMat, y::AMat, z::AMat)
st = get(d, :seriestype, :none)
if size(x) == size(y) == size(z)
if !is3d(st)
seriestype := :path3d
end
end
SliceIt, x, y, z
end
#
# # surface-like... function
@recipe function f(x::AVec, y::AVec, zf::Function)
# x = X <: Number ? sort(x) : x
# y = Y <: Number ? sort(y) : y
SliceIt, x, y, Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
end
#
# # surface-like... matrix grid
@recipe function f(x::AVec, y::AVec, z::AMat)
if !like_surface(get(d, :seriestype, :none))
d[:seriestype] = :contour
end
SliceIt, x, y, Surface(z)
end
#
#
# # --------------------------------------------------------------------
# # Parametric functions
# # --------------------------------------------------------------------
#
# # special handling... xmin/xmax with parametric function(s)
@recipe f(f::FuncOrFuncs, xmin::Number, xmax::Number) = linspace(xmin, xmax, 100), f
@recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec) = mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)
@recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, n = 200) = fx, fy, linspace(umin, umax, n)
#
# # special handling... 3D parametric function(s)
@recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec)
mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)
end
@recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPointsn = 200)
fx, fy, fz, linspace(umin, umax, numPoints)
end
#
#
# # --------------------------------------------------------------------
# # Lists of tuples and FixedSizeArrays
# # --------------------------------------------------------------------
#
# # if we get an unhandled tuple, just splat it in
@recipe f(tup::Tuple) = tup
#
# # (x,y) tuples
@recipe f{R1<:Number,R2<:Number}(xy::AVec{Tuple{R1,R2}}) = unzip(xy)
@recipe f{R1<:Number,R2<:Number}(xy::Tuple{R1,R2}) = [xy[1]], [xy[2]]
#
# # (x,y,z) tuples
@recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::AVec{Tuple{R1,R2,R3}}) = unzip(xyz)
@recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::Tuple{R1,R2,R3}) = [xyz[1]], [xyz[2]], [xyz[3]]
# these might be points+velocity, or OHLC or something else
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::AVec{Tuple{R1,R2,R3,R4}}) = get(d,:seriestype,:path)==:ohlc ? OHLC[OHLC(t...) for t in xyuv] : unzip(xyuv)
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::Tuple{R1,R2,R3,R4}) = [xyuv[1]], [xyuv[2]], [xyuv[3]], [xyuv[4]]
#
# # 2D FixedSizeArrays
@recipe f{T<:Number}(xy::AVec{FixedSizeArrays.Vec{2,T}}) = unzip(xy)
@recipe f{T<:Number}(xy::FixedSizeArrays.Vec{2,T}) = [xy[1]], [xy[2]]
#
# # 3D FixedSizeArrays
@recipe f{T<:Number}(xyz::AVec{FixedSizeArrays.Vec{3,T}}) = unzip(xyz)
@recipe f{T<:Number}(xyz::FixedSizeArrays.Vec{3,T}) = [xyz[1]], [xyz[2]], [xyz[3]]
#
# # --------------------------------------------------------------------
# # handle grouping
# # --------------------------------------------------------------------
@recipe function f(groupby::GroupBy, args...)
for (i,glab) in enumerate(groupby.groupLabels)
# create a new series, with the label of the group, and an idxfilter (to be applied in slice_and_dice)
# TODO: use @series instead
di = copy(d)
get!(di, :label, string(glab))
get!(di, :idxfilter, groupby.groupIds[i])
push!(series_list, RecipeData(di, args))
end
nothing
end