# we are going to build recipes to do the processing and splitting of the args function _add_defaults!(d::KW, plt::Plot, sp::Subplot, commandIndex::Int) pkg = plt.backend globalIndex = d[:series_plotindex] # add default values to our dictionary, being careful not to delete what we just added! for (k,v) in _series_defaults slice_arg!(d, d, k, v, commandIndex, remove_pair = false) end # this is how many series belong to this subplot plotIndex = count(series -> series.d[:subplot] === sp && series.d[:primary], plt.series_list) if get(d, :primary, true) plotIndex += 1 end aliasesAndAutopick(d, :linestyle, _styleAliases, supportedStyles(pkg), plotIndex) aliasesAndAutopick(d, :markershape, _markerAliases, supportedMarkers(pkg), plotIndex) # update color d[:seriescolor] = getSeriesRGBColor(d[:seriescolor], sp, plotIndex) # update colors for csym in (:linecolor, :markercolor, :fillcolor) d[csym] = if d[csym] == :match if has_black_border_for_default(d[:seriestype]) && csym == :linecolor :black else d[:seriescolor] end else getSeriesRGBColor(d[csym], sp, plotIndex) end end # update markerstrokecolor c = d[:markerstrokecolor] c = if c == :match sp[:foreground_color_subplot] else getSeriesRGBColor(c, sp, plotIndex) end d[:markerstrokecolor] = c # update alphas for asym in (:linealpha, :markeralpha, :markerstrokealpha, :fillalpha) if d[asym] == nothing d[asym] = d[:seriesalpha] end end # scatter plots don't have a line, but must have a shape if d[:seriestype] in (:scatter, :scatter3d) d[:linewidth] = 0 if d[:markershape] == :none d[:markershape] = :ellipse end end # set label label = d[:label] label = (label == "AUTO" ? "y$globalIndex" : label) d[:label] = label _replace_linewidth(d) d end # ------------------------------------------------------------------- # ------------------------------------------------------------------- # instead of process_inputs: # ensure we dispatch to the slicer immutable SliceIt end # the catch-all recipes @recipe function f(::Type{SliceIt}, x, y, z) # @show "HERE", typeof((x,y,z)) xs, _ = convertToAnyVector(x, d) ys, _ = convertToAnyVector(y, d) zs, _ = convertToAnyVector(z, d) fr = pop!(d, :fillrange, nothing) fillranges, _ = if typeof(fr) <: Number ([fr],nothing) else convertToAnyVector(fr, d) end mf = length(fillranges) # @show zs mx = length(xs) my = length(ys) mz = length(zs) # ret = Any[] for i in 1:max(mx, my, mz) # add a new series di = copy(d) xi, yi, zi = xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)] # @show i, typeof((xi, yi, zi)) di[:x], di[:y], di[:z] = compute_xyz(xi, yi, zi) # @show i, typeof((di[:x], di[:y], di[:z])) # handle fillrange fr = fillranges[mod1(i,mf)] di[:fillrange] = isa(fr, Function) ? map(fr, di[:x]) : fr # @show i, di[:x], di[:y], di[:z] push!(series_list, RecipeData(di, ())) end nothing # don't add a series for the main block end # pass these through to the slicer @recipe f(x, y, z) = SliceIt, x, y, z @recipe f(x, y) = SliceIt, x, y, nothing @recipe f(y) = SliceIt, nothing, y, nothing # # -------------------------------------------------------------------- # # 1 argument # # -------------------------------------------------------------------- @recipe f(n::Integer) = n, n, n # return a surface if this is a 3d plot, otherwise let it be sliced up @recipe function f{T<:Number}(mat::AMat{T}) if all3D(d) n,m = size(mat) SliceIt, 1:m, 1:n, Surface(mat) else SliceIt, nothing, mat, nothing end end # # images - grays @recipe function f{T<:Gray}(mat::AMat{T}) if nativeImagesSupported() seriestype := :image n, m = size(mat) SliceIt, 1:m, 1:n, Surface(mat) else seriestype := :heatmap yflip --> true fillcolor --> ColorGradient([:black, :white]) SliceIt, 1:m, 1:n, Surface(convert(Matrix{Float64}, mat)) end end # # images - colors @recipe function f{T<:Colorant}(mat::AMat{T}) if nativeImagesSupported() seriestype := :image n, m = size(mat) SliceIt, 1:m, 1:n, Surface(mat) else seriestype := :heatmap yflip --> true z, d[:fillcolor] = replace_image_with_heatmap(mat) SliceIt, 1:m, 1:n, Surface(z) end end # # # plotting arbitrary shapes/polygons @recipe function f(shape::Shape) seriestype := :shape shape_coords(shape) end @recipe function f(shapes::AVec{Shape}) seriestype := :shape shape_coords(shapes) end @recipe function f(shapes::AMat{Shape}) for j in 1:size(shapes,2) # create one series for each column # @series shape_coords(vec(shapes[:,j])) di = copy(d) push!(series_list, RecipeData(di, shape_coords(vec(shapes[:,j])))) end nothing # don't create a series for the main block end # # # # function without range... use the current range of the x-axis @recipe function f(f::FuncOrFuncs) plt = d[:plot_object] f, xmin(plt), xmax(plt) end # # # -------------------------------------------------------------------- # # 2 arguments # # -------------------------------------------------------------------- # # # # if functions come first, just swap the order (not to be confused with parametric functions... # # as there would be more than one function passed in) @recipe function f(f::FuncOrFuncs, x) @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here x, f end # # # -------------------------------------------------------------------- # # 3 arguments # # -------------------------------------------------------------------- # # # # 3d line or scatter @recipe function f(x::AVec, y::AVec, z::AVec) st = get(d, :seriestype, :none) if st == :scatter d[:seriestype] = :scatter3d elseif !is3d(st) d[:seriestype] = :path3d end SliceIt, x, y, z end @recipe function f(x::AMat, y::AMat, z::AMat) st = get(d, :seriestype, :none) if size(x) == size(y) == size(z) if !is3d(st) seriestype := :path3d end end SliceIt, x, y, z end # # # surface-like... function @recipe function f(x::AVec, y::AVec, zf::Function) # x = X <: Number ? sort(x) : x # y = Y <: Number ? sort(y) : y SliceIt, x, y, Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported end # # # surface-like... matrix grid @recipe function f(x::AVec, y::AVec, z::AMat) if !like_surface(get(d, :seriestype, :none)) d[:seriestype] = :contour end SliceIt, x, y, Surface(z) end # # # # -------------------------------------------------------------------- # # Parametric functions # # -------------------------------------------------------------------- # # # special handling... xmin/xmax with parametric function(s) @recipe f(f::FuncOrFuncs, xmin::Number, xmax::Number) = linspace(xmin, xmax, 100), f @recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec) = mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u) @recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, n = 200) = fx, fy, linspace(umin, umax, n) # # # special handling... 3D parametric function(s) @recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec) mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u) end @recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPointsn = 200) fx, fy, fz, linspace(umin, umax, numPoints) end # # # # -------------------------------------------------------------------- # # Lists of tuples and FixedSizeArrays # # -------------------------------------------------------------------- # # # if we get an unhandled tuple, just splat it in @recipe f(tup::Tuple) = tup # # # (x,y) tuples @recipe f{R1<:Number,R2<:Number}(xy::AVec{Tuple{R1,R2}}) = unzip(xy) @recipe f{R1<:Number,R2<:Number}(xy::Tuple{R1,R2}) = [xy[1]], [xy[2]] # # # (x,y,z) tuples @recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::AVec{Tuple{R1,R2,R3}}) = unzip(xyz) @recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::Tuple{R1,R2,R3}) = [xyz[1]], [xyz[2]], [xyz[3]] # these might be points+velocity, or OHLC or something else @recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::AVec{Tuple{R1,R2,R3,R4}}) = get(d,:seriestype,:path)==:ohlc ? OHLC[OHLC(t...) for t in xyuv] : unzip(xyuv) @recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::Tuple{R1,R2,R3,R4}) = [xyuv[1]], [xyuv[2]], [xyuv[3]], [xyuv[4]] # # # 2D FixedSizeArrays @recipe f{T<:Number}(xy::AVec{FixedSizeArrays.Vec{2,T}}) = unzip(xy) @recipe f{T<:Number}(xy::FixedSizeArrays.Vec{2,T}) = [xy[1]], [xy[2]] # # # 3D FixedSizeArrays @recipe f{T<:Number}(xyz::AVec{FixedSizeArrays.Vec{3,T}}) = unzip(xyz) @recipe f{T<:Number}(xyz::FixedSizeArrays.Vec{3,T}) = [xyz[1]], [xyz[2]], [xyz[3]] # # # -------------------------------------------------------------------- # # handle grouping # # -------------------------------------------------------------------- @recipe function f(groupby::GroupBy, args...) for (i,glab) in enumerate(groupby.groupLabels) # create a new series, with the label of the group, and an idxfilter (to be applied in slice_and_dice) # TODO: use @series instead di = copy(d) get!(di, :label, string(glab)) get!(di, :idxfilter, groupby.groupIds[i]) push!(series_list, RecipeData(di, args)) end nothing end