working on series reorg

This commit is contained in:
Thomas Breloff 2016-03-17 15:07:07 -04:00
parent eecb5c3754
commit 175ce3613a
7 changed files with 209 additions and 148 deletions

View File

@ -40,8 +40,9 @@ const _allTypes = vcat([
:polygon => :shape, :polygon => :shape,
) )
ishistlike(lt::Symbol) = lt in (:hist, :density) like_histogram(linetype::Symbol) = linetype in (:hist, :density)
islinelike(lt::Symbol) = lt in (:line, :path, :steppre, :steppost) like_line(linetype::Symbol) = linetype in (:line, :path, :steppre, :steppost)
like_surface(linetype::Symbol) = linetype in (:contour, :heatmap, :surface, :wireframe)
const _allStyles = [:auto, :solid, :dash, :dot, :dashdot, :dashdotdot] const _allStyles = [:auto, :solid, :dash, :dot, :dashdot, :dashdotdot]

View File

@ -347,7 +347,7 @@ function _add_series(pkg::PyPlotBackend, plt::Plot; kw...)
# NOTE: this is unsupported because it does the wrong thing... it shifts the whole axis # NOTE: this is unsupported because it does the wrong thing... it shifts the whole axis
# extra_kwargs[:bottom] = d[:fill] # extra_kwargs[:bottom] = d[:fill]
if ishistlike(lt) if like_histogram(lt)
extra_kwargs[:bins] = d[:nbins] extra_kwargs[:bins] = d[:nbins]
extra_kwargs[:normed] = lt == :density extra_kwargs[:normed] = lt == :density
else else
@ -434,7 +434,7 @@ function _add_series(pkg::PyPlotBackend, plt::Plot; kw...)
end end
# do the plot # do the plot
d[:serieshandle] = if ishistlike(lt) d[:serieshandle] = if like_histogram(lt)
plotfunc(d[:y]; extra_kwargs...)[1] plotfunc(d[:y]; extra_kwargs...)[1]
elseif lt == :contour elseif lt == :contour

View File

@ -6,6 +6,23 @@ end
get_xs(shape::Shape) = Float64[v[1] for v in shape.vertices] get_xs(shape::Shape) = Float64[v[1] for v in shape.vertices]
get_ys(shape::Shape) = Float64[v[2] for v in shape.vertices] get_ys(shape::Shape) = Float64[v[2] for v in shape.vertices]
function shape_coords(shape::Shape)
unzip(shape.vertices)
end
function shape_coords(shapes::AVec{Shape})
length(shapes) == 0 && return zeros(0), zeros(0)
xs = map(get_xs, shapes)
ys = map(get_ys, shapes)
x, y = unzip(shapes[1].vertices)
for shape in shapes[2:end]
tmpx, tmpy = unzip(shape.vertices)
x = vcat(x, NaN, tmpx)
y = vcat(y, NaN, tmpy)
end
x, y
end
"get an array of tuples of points on a circle with radius `r`" "get an array of tuples of points on a circle with radius `r`"
function partialcircle(start_θ, end_θ, n = 20, r=1) function partialcircle(start_θ, end_θ, n = 20, r=1)
@compat(Tuple{Float64,Float64})[(r*cos(u),r*sin(u)) for u in linspace(start_θ, end_θ, n)] @compat(Tuple{Float64,Float64})[(r*cos(u),r*sin(u)) for u in linspace(start_θ, end_θ, n)]
@ -235,8 +252,10 @@ end
# ----------------------------------------------------------------------- # -----------------------------------------------------------------------
abstract AbstractSurface
"represents a contour or surface mesh" "represents a contour or surface mesh"
immutable Surface{M<:AMat} immutable Surface{M<:AMat} <: AbstractSurface
# x::AVec # x::AVec
# y::AVec # y::AVec
surf::M surf::M
@ -251,6 +270,12 @@ for f in (:length, :size)
end end
Base.copy(surf::Surface) = Surface(copy(surf.surf)) Base.copy(surf::Surface) = Surface(copy(surf.surf))
"For the case of representing a surface as a function of x/y... can possibly avoid allocations."
immutable SurfaceFunction <: AbstractSurface
f::Function
end
# ----------------------------------------------------------------------- # -----------------------------------------------------------------------
type OHLC{T<:Real} type OHLC{T<:Real}

View File

@ -88,7 +88,12 @@ function plot!(plt::Plot, args...; kw...)
_before_add_series(plt) _before_add_series(plt)
# get the list of dictionaries, one per series # get the list of dictionaries, one per series
seriesArgList, xmeta, ymeta = build_series_args(plt, groupargs..., args...; d...) @show groupargs args
dumpdict(d, "before process_inputs")
process_inputs(plt, d, groupargs..., args...)
dumpdict(d, "after process_inputs")
seriesArgList, xmeta, ymeta = build_series_args(plt, d)
# seriesArgList, xmeta, ymeta = build_series_args(plt, groupargs..., args...; d...)
# if we were able to extract guide information from the series inputs, then update the plot # if we were able to extract guide information from the series inputs, then update the plot
# @show xmeta, ymeta # @show xmeta, ymeta

View File

@ -77,8 +77,9 @@ compute_x(x::Void, y, z) = 1:size(y,1)
compute_x(x::Function, y, z) = map(x, y) compute_x(x::Function, y, z) = map(x, y)
compute_x(x, y, z) = x compute_x(x, y, z) = x
compute_y(x::Void, y::Function, z) = error()
compute_y(x::Void, y::Void, z) = 1:size(z,2) compute_y(x::Void, y::Void, z) = 1:size(z,2)
compute_y(x::Void, y, z) = 1:size(x,1) # compute_y(x::Void, y, z) = 1:size(z,2)
compute_y(x, y::Function, z) = map(y, x) compute_y(x, y::Function, z) = map(y, x)
compute_y(x, y, z) = y compute_y(x, y, z) = y
@ -120,10 +121,14 @@ function build_series_args(plt::AbstractPlot, kw::KW)
# build the series arg dict # build the series arg dict
numUncounted = pop!(d, :numUncounted, 0) numUncounted = pop!(d, :numUncounted, 0)
n = plt.n + i + numUncounted n = plt.n + i + numUncounted
dumpdict(d, "before getSeriesArgs") dumpdict(d, "before getSeriesArgs")
d = getSeriesArgs(plt.backend, getplotargs(plt, n), d, i + numUncounted, convertSeriesIndex(plt, n), n) d = getSeriesArgs(plt.backend, getplotargs(plt, n), d, i + numUncounted, convertSeriesIndex(plt, n), n)
dumpdict(d, "after getSeriesArgs") dumpdict(d, "after getSeriesArgs")
@show xs[mod1(i,mx)] ys[mod1(i,my)] zs[mod1(i,mz)]
d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)]) d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
@show d[:x] d[:y] d[:z]
# # NOTE: this should be handled by the time it gets here # # NOTE: this should be handled by the time it gets here
# lt = d[:linetype] # lt = d[:linetype]
@ -172,10 +177,21 @@ function build_series_args(plt::AbstractPlot, kw::KW)
end end
# --------------------------------------------------------------------
# process_inputs
# --------------------------------------------------------------------
# These methods take a plot and the keyword arguments, and processes the input
# arguments (x/y/z, group, etc), populating the KW dict with appropriate values.
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# 0 arguments # 0 arguments
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# don't do anything
function process_inputs(plt::AbstractPlot, d::KW)
end
# # TODO: all methods should probably do this... check for (and pop!) x/y/z values if they exist # # TODO: all methods should probably do this... check for (and pop!) x/y/z values if they exist
# #
# function build_series_args(plt::AbstractPlot, d::KW) # function build_series_args(plt::AbstractPlot, d::KW)
@ -205,118 +221,109 @@ end
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# no special handling... assume x and z are nothing # no special handling... assume x and z are nothing
function build_series_args(plt::AbstractPlot, d::KW, y) function process_inputs(plt::AbstractPlot, d::KW, y)
build_series_args(plt, d, nothing, y, nothing) d[:y] = y
end end
# matrix... is it z or y? # matrix... is it z or y?
function build_series_args{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T}) function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
if all3D(d) if all3D(d)
n,m = size(mat) n,m = size(mat)
build_series_args(plt, d, 1:n, 1:m, mat) d[:x], d[:y], d[:z] = 1:n, 1:m, mat
else else
build_series_args(plt, d, nothing, mat, nothing) d[:y] = mat
end end
end end
# plotting arbitrary shapes/polygons # plotting arbitrary shapes/polygons
function build_series_args(plt::AbstractPlot, d::KW, shape::Shape) function process_inputs(plt::AbstractPlot, d::KW, shape::Shape)
x, y = unzip(shape.vertices) d[:x], d[:y] = shape_coords(shape)
build_series_args(plt, d, x, y; linetype = :shape) d[:linetype] = :shape
end end
function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
function shape_coords(shapes::AVec{Shape}) d[:x], d[:y] = shape_coords(shapes)
xs = map(get_xs, shapes) d[:linetype] = :shape
ys = map(get_ys, shapes)
x, y = unzip(shapes[1].vertices)
for shape in shapes[2:end]
tmpx, tmpy = unzip(shape.vertices)
x = vcat(x, NaN, tmpx)
y = vcat(y, NaN, tmpy)
end
x, y
end end
function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
function build_series_args(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
x, y = shape_coords(shapes)
build_series_args(plt, d, x, y; linetype = :shape)
end
function build_series_args(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
x, y = [], [] x, y = [], []
for j in 1:size(shapes, 2) for j in 1:size(shapes, 2)
tmpx, tmpy = shape_coords(vec(shapes[:,j])) tmpx, tmpy = shape_coords(vec(shapes[:,j]))
push!(x, tmpx) push!(x, tmpx)
push!(y, tmpy) push!(y, tmpy)
end end
build_series_args(plt, d, x, y; linetype = :shape) d[:x], d[:y] = x, y
d[:linetype] = :shape
end end
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
build_series_args(plt, d, f, xmin(plt), xmax(plt)) # function without range... use the current range of the x-axis
function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
process_inputs(plt, d, f, xmin(plt), xmax(plt))
end end
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# 2 arguments # 2 arguments
# -------------------------------------------------------------------- # --------------------------------------------------------------------
function build_series_args(plt::AbstractPlot, d::KW, x, y) function process_inputs(plt::AbstractPlot, d::KW, x, y)
build_series_args(plt, d, x, y, nothing) d[:x], d[:y] = x, y
end end
# list of functions # if functions come first, just swap the order (not to be confused with parametric functions...
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x) # as there would be more than one function passed in)
function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
build_series_args(plt, d, x, f) process_inputs(plt, d, x, f)
end end
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# 3 arguments # 3 arguments
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# no special handling... just pass them through
function process_inputs(plt::AbstractPlot, d::KW, x, y, z)
d[:x], d[:y], d[:z] = x, y, z
end
# 3d line or scatter # 3d line or scatter
function build_series_args(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec) function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
d = KW(kw) # default to path3d if we haven't set a 3d linetype
if !(get(d, :linetype, :none) in _3dTypes) if !(get(d, :linetype, :none) in _3dTypes)
d[:linetype] = :path3d d[:linetype] = :path3d
end end
build_series_args(plt, d, x, y; z=zvec, d...) d[:x], d[:y], d[:z] = x, y, z
end end
# contours or surfaces... function grid # surface-like... function
function build_series_args(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zf::Function) function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zf::Function)
# only allow sorted x/y for now x, y = sort(x), sort(y)
# TODO: auto sort x/y/z properly d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
@assert x == sort(x) d[:x], d[:y] = x, y
@assert y == sort(y)
surface = Float64[zf(xi, yi) for xi in x, yi in y]
build_series_args(plt, d, x, y, surface) # passes it to the zmat version
end end
# contours or surfaces... matrix grid # surface-like... matrix grid
function build_series_args{T<:Number}(plt::AbstractPlot, x::AVec, y::AVec, zmat::AMat{T}) function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zmat::AMat{T})
# only allow sorted x/y for now
# TODO: auto sort x/y/z properly
@assert x == sort(x)
@assert y == sort(y)
@assert size(zmat) == (length(x), length(y)) @assert size(zmat) == (length(x), length(y))
d = KW(kw) if !issorted(x) || !issorted(y)
d[:z] = Surface(convert(Matrix{Float64}, zmat)) x_idx = sortperm(x)
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe)) y_idx = sortperm(y)
x, y = x[x_idx], y[y_idx]
zmat = z[x_idx, y_idx]
end
d[:x], d[:y], d[:z] = x, y, Surface{Matrix{Float64}}(zmat)
if !like_surface(get(d, :linetype, :none))
d[:linetype] = :contour d[:linetype] = :contour
end end
build_series_args(plt, d, x, y; d...) #, z = surf)
end end
# contours or surfaces... general x, y grid # surfaces-like... general x, y grid
function build_series_args{T<:Number}(plt::AbstractPlot, x::AMat{T}, y::AMat{T}, zmat::AMat{T}) function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
@assert size(zmat) == size(x) == size(y) @assert size(zmat) == size(x) == size(y)
surf = Surface(convert(Matrix{Float64}, zmat)) d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat)
d = KW(kw) if !like_surface(get(d, :linetype, :none))
d[:z] = Surface(convert(Matrix{Float64}, zmat))
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe))
d[:linetype] = :contour d[:linetype] = :contour
end end
build_series_args(plt, d, Any[x], Any[y]; d...) #kw..., z = surf, linetype = :contour)
end end
@ -325,57 +332,74 @@ end
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# special handling... xmin/xmax with function(s) # special handling... xmin/xmax with function(s)
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number) function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
width = get(plt.plotargs, :size, (100,))[1] width = get(plt.plotargs, :size, (100,))[1]
x = collect(linspace(xmin, xmax, width)) # we don't need more than the width x = linspace(xmin, xmax, width)
build_series_args(plt, d, x, f) process_inputs(plt, d, x, f)
end end
# special handling... xmin/xmax with parametric function(s) # special handling... xmin/xmax with parametric function(s)
build_series_args{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)) process_inputs{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
build_series_args{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)) process_inputs{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
build_series_args(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = build_series_args(plt, d, fx, fy, linspace(umin, umax, numPoints)) process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints))
# special handling... 3D parametric function(s) # special handling... 3D parametric function(s)
build_series_args{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)) process_inputs{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
build_series_args{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)) process_inputs{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
build_series_args(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = build_series_args(plt, d, fx, fy, fz, linspace(umin, umax, numPoints)) process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# Lists of tuples and FixedSizeArrays # Lists of tuples and FixedSizeArrays
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# if we get an unhandled tuple, just splat it in
function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple)
process_inputs(plt, d, tup...)
end
# (x,y) tuples # (x,y) tuples
function build_series_args{R1<:Number,R2<:Number}(plt::AbstractPlot, xy::AVec{Tuple{R1,R2}}) function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}})
build_series_args(plt, d, unzip(xy)...) process_inputs(plt, d, unzip(xy)...)
end end
function build_series_args{R1<:Number,R2<:Number}(plt::AbstractPlot, xy::Tuple{R1,R2}) function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2})
build_series_args(plt, d, [xy[1]], [xy[2]]) process_inputs(plt, d, [xy[1]], [xy[2]])
end end
# (x,y,z) tuples
unzip{T}(x::AVec{FixedSizeArrays.Vec{2,T}}) = T[xi[1] for xi in x], T[xi[2] for xi in x] function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}})
unzip{T}(x::FixedSizeArrays.Vec{2,T}) = T[x[1]], T[x[2]] process_inputs(plt, d, unzip(xyz)...)
end
function build_series_args{T<:Number}(plt::AbstractPlot, xy::AVec{FixedSizeArrays.Vec{2,T}}) function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3})
build_series_args(plt, d, unzip(xy)...) process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
end end
function build_series_args{T<:Number}(plt::AbstractPlot, xy::FixedSizeArrays.Vec{2,T}) # 2D FixedSizeArrays
build_series_args(plt, d, [xy[1]], [xy[2]]) function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}})
process_inputs(plt, d, unzip(xy)...)
end
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T})
process_inputs(plt, d, [xy[1]], [xy[2]])
end
# 3D FixedSizeArrays
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}})
process_inputs(plt, d, unzip(xyz)...)
end
function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T})
process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
end end
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# handle grouping # handle grouping
# -------------------------------------------------------------------- # --------------------------------------------------------------------
function build_series_args(plt::AbstractPlot, d::KW, groupby::GroupBy, args...) function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
ret = Any[] ret = Any[]
error("unfinished after series reorg")
for (i,glab) in enumerate(groupby.groupLabels) for (i,glab) in enumerate(groupby.groupLabels)
# TODO: don't automatically overwrite labels # TODO: don't automatically overwrite labels
kwlist, xmeta, ymeta = build_series_args(plt, d, args..., kwlist, xmeta, ymeta = process_inputs(plt, d, args...,
idxfilter = groupby.groupIds[i], idxfilter = groupby.groupIds[i],
label = string(glab), label = string(glab),
numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
@ -391,8 +415,13 @@ end
function setup_dataframes() function setup_dataframes()
@require DataFrames begin @require DataFrames begin
function build_series_args(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...) # function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
build_series_args(plt, d, args..., dataframe = df) # process_inputs(plt, d, args..., dataframe = df)
# end
function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
d[:dataframe] = df
process_inputs(plt, d, args...)
end end
# expecting the column name of a dataframe that was passed in... anything else should error # expecting the column name of a dataframe that was passed in... anything else should error

View File

@ -209,8 +209,9 @@ function subplot!(subplt::Subplot, args...; kw...)
delete!(d, :group) delete!(d, :group)
end end
process_inputs(subplt, d, groupargs..., args...)
kwList, xmeta, ymeta = build_series_args(subplt, groupargs..., args...; d...) kwList, xmeta, ymeta = build_series_args(subplt, d)
# kwList, xmeta, ymeta = build_series_args(subplt, groupargs..., args...; d...)
# TODO: something useful with meta info? # TODO: something useful with meta info?

View File

@ -121,19 +121,24 @@ nop() = nothing
get_mod(v::AVec, idx::Int) = v[mod1(idx, length(v))] get_mod(v::AVec, idx::Int) = v[mod1(idx, length(v))]
get_mod(v::AMat, idx::Int) = size(v,1) == 1 ? v[1, mod1(idx, size(v,2))] : v[:, mod1(idx, size(v,2))] get_mod(v::AMat, idx::Int) = size(v,1) == 1 ? v[1, mod1(idx, size(v,2))] : v[:, mod1(idx, size(v,2))]
get_mod(v, idx::Int) = v get_mod(v, idx::Int) = v
makevec(v::AVec) = v makevec(v::AVec) = v
makevec{T}(v::T) = T[v] makevec{T}(v::T) = T[v]
"duplicate a single value, or pass the 2-tuple through" "duplicate a single value, or pass the 2-tuple through"
maketuple(x::Real) = (x,x) maketuple(x::Real) = (x,x)
maketuple{T,S}(x::@compat(Tuple{T,S})) = x maketuple{T,S}(x::@compat(Tuple{T,S})) = x
mapFuncOrFuncs(f::Function, u::AVec) = map(f, u) mapFuncOrFuncs(f::Function, u::AVec) = map(f, u)
mapFuncOrFuncs(fs::AVec{Function}, u::AVec) = [map(f, u) for f in fs] mapFuncOrFuncs(fs::AVec{Function}, u::AVec) = [map(f, u) for f in fs]
unzip{T,S}(v::AVec{@compat(Tuple{T,S})}) = [vi[1] for vi in v], [vi[2] for vi in v] unzip{T,S}(xy::AVec{Tuple{T,S}}) = [x[1] for x in xy], [y[2] for y in xy]
unzip{T,S,R}(xyz::AVec{Tuple{T,S,R}}) = [x[1] for x in xyz], [y[2] for y in xyz], [z[3] for z in xyz]
unzip{T}(xy::AVec{FixedSizeArrays.Vec{2,T}}) = T[x[1] for x in xy], T[y[2] for y in xy]
unzip{T}(xy::FixedSizeArrays.Vec{2,T}) = T[xy[1]], T[xy[2]]
unzip{T}(xyz::AVec{FixedSizeArrays.Vec{3,T}}) = T[x[1] for x in xyz], T[y[2] for y in xyz], T[z[3] for z in xyz]
unzip{T}(xyz::FixedSizeArrays.Vec{3,T}) = T[xyz[1]], T[xyz[2]], T[xyz[3]]
# given 2-element lims and a vector of data x, widen lims to account for the extrema of x # given 2-element lims and a vector of data x, widen lims to account for the extrema of x
function _expand_limits(lims, x) function _expand_limits(lims, x)
@ -203,29 +208,29 @@ isijulia() = isdefined(Main, :IJulia) && Main.IJulia.inited
isatom() = isdefined(Main, :Atom) && Atom.isconnected() isatom() = isdefined(Main, :Atom) && Atom.isconnected()
istuple(::Tuple) = true istuple(::Tuple) = true
istuple(::Any) = false istuple(::Any) = false
isvector(::AVec) = true isvector(::AVec) = true
isvector(::Any) = false isvector(::Any) = false
ismatrix(::AMat) = true ismatrix(::AMat) = true
ismatrix(::Any) = false ismatrix(::Any) = false
isscalar(::Real) = true isscalar(::Real) = true
isscalar(::Any) = false isscalar(::Any) = false
# ticksType{T<:Real,S<:Real}(ticks::@compat(Tuple{T,S})) = :limits # ticksType{T<:Real,S<:Real}(ticks::@compat(Tuple{T,S})) = :limits
ticksType{T<:Real}(ticks::AVec{T}) = :ticks ticksType{T<:Real}(ticks::AVec{T}) = :ticks
ticksType{T<:AbstractString}(ticks::AVec{T}) = :labels ticksType{T<:AbstractString}(ticks::AVec{T}) = :labels
ticksType{T<:AVec,S<:AVec}(ticks::@compat(Tuple{T,S})) = :ticks_and_labels ticksType{T<:AVec,S<:AVec}(ticks::@compat(Tuple{T,S})) = :ticks_and_labels
ticksType(ticks) = :invalid ticksType(ticks) = :invalid
limsType{T<:Real,S<:Real}(lims::@compat(Tuple{T,S})) = :limits limsType{T<:Real,S<:Real}(lims::@compat(Tuple{T,S})) = :limits
limsType(lims::Symbol) = lims == :auto ? :auto : :invalid limsType(lims::Symbol) = lims == :auto ? :auto : :invalid
limsType(lims) = :invalid limsType(lims) = :invalid
Base.convert{T<:Real}(::Type{Vector{T}}, rng::Range{T}) = T[x for x in rng] Base.convert{T<:Real}(::Type{Vector{T}}, rng::Range{T}) = T[x for x in rng]
Base.convert{T<:Real,S<:Real}(::Type{Vector{T}}, rng::Range{S}) = T[x for x in rng] Base.convert{T<:Real,S<:Real}(::Type{Vector{T}}, rng::Range{S}) = T[x for x in rng]
Base.merge(a::AbstractVector, b::AbstractVector) = sort(unique(vcat(a,b))) Base.merge(a::AbstractVector, b::AbstractVector) = sort(unique(vcat(a,b)))
@ -238,14 +243,14 @@ wraptuple(x) = (x,)
trueOrAllTrue(f::Function, x::AbstractArray) = all(f, x) trueOrAllTrue(f::Function, x::AbstractArray) = all(f, x)
trueOrAllTrue(f::Function, x) = f(x) trueOrAllTrue(f::Function, x) = f(x)
allLineTypes(arg) = trueOrAllTrue(a -> get(_typeAliases, a, a) in _allTypes, arg) allLineTypes(arg) = trueOrAllTrue(a -> get(_typeAliases, a, a) in _allTypes, arg)
allStyles(arg) = trueOrAllTrue(a -> get(_styleAliases, a, a) in _allStyles, arg) allStyles(arg) = trueOrAllTrue(a -> get(_styleAliases, a, a) in _allStyles, arg)
allShapes(arg) = trueOrAllTrue(a -> get(_markerAliases, a, a) in _allMarkers, arg) || allShapes(arg) = trueOrAllTrue(a -> get(_markerAliases, a, a) in _allMarkers, arg) ||
trueOrAllTrue(a -> isa(a, Shape), arg) trueOrAllTrue(a -> isa(a, Shape), arg)
allAlphas(arg) = trueOrAllTrue(a -> (typeof(a) <: Real && a > 0 && a < 1) || allAlphas(arg) = trueOrAllTrue(a -> (typeof(a) <: Real && a > 0 && a < 1) ||
(typeof(a) <: AbstractFloat && (a == zero(typeof(a)) || a == one(typeof(a)))), arg) (typeof(a) <: AbstractFloat && (a == zero(typeof(a)) || a == one(typeof(a)))), arg)
allReals(arg) = trueOrAllTrue(a -> typeof(a) <: Real, arg) allReals(arg) = trueOrAllTrue(a -> typeof(a) <: Real, arg)
allFunctions(arg) = trueOrAllTrue(a -> isa(a, Function), arg) allFunctions(arg) = trueOrAllTrue(a -> isa(a, Function), arg)
# --------------------------------------------------------------- # ---------------------------------------------------------------
@ -429,11 +434,11 @@ end
# used in updating an existing series # used in updating an existing series
extendSeriesByOne(v::UnitRange{Int}, n::Int = 1) = isempty(v) ? (1:n) : (minimum(v):maximum(v)+n) extendSeriesByOne(v::UnitRange{Int}, n::Int = 1) = isempty(v) ? (1:n) : (minimum(v):maximum(v)+n)
extendSeriesByOne(v::AVec, n::Integer = 1) = isempty(v) ? (1:n) : vcat(v, (1:n) + maximum(v)) extendSeriesByOne(v::AVec, n::Integer = 1) = isempty(v) ? (1:n) : vcat(v, (1:n) + maximum(v))
extendSeriesData{T}(v::Range{T}, z::Real) = extendSeriesData(float(collect(v)), z) extendSeriesData{T}(v::Range{T}, z::Real) = extendSeriesData(float(collect(v)), z)
extendSeriesData{T}(v::Range{T}, z::AVec) = extendSeriesData(float(collect(v)), z) extendSeriesData{T}(v::Range{T}, z::AVec) = extendSeriesData(float(collect(v)), z)
extendSeriesData{T}(v::AVec{T}, z::Real) = (push!(v, convert(T, z)); v) extendSeriesData{T}(v::AVec{T}, z::Real) = (push!(v, convert(T, z)); v)
extendSeriesData{T}(v::AVec{T}, z::AVec) = (append!(v, convert(Vector{T}, z)); v) extendSeriesData{T}(v::AVec{T}, z::AVec) = (append!(v, convert(Vector{T}, z)); v)
# --------------------------------------------------------------- # ---------------------------------------------------------------
@ -453,22 +458,15 @@ function supportGraph(allvals, func)
end end
end end
n = length(vals) n = length(vals)
scatter(x, y, m=:rect, ms=10, size=(300,100+18*n), leg=false)
scatter(x,y,
m=:rect,
ms=10,
size=(300,100+18*n),
# xticks=(collect(1:length(bs)), bs),
leg=false
)
end end
supportGraphArgs() = supportGraph(_allArgs, supportedArgs) supportGraphArgs() = supportGraph(_allArgs, supportedArgs)
supportGraphTypes() = supportGraph(_allTypes, supportedTypes) supportGraphTypes() = supportGraph(_allTypes, supportedTypes)
supportGraphStyles() = supportGraph(_allStyles, supportedStyles) supportGraphStyles() = supportGraph(_allStyles, supportedStyles)
supportGraphMarkers() = supportGraph(_allMarkers, supportedMarkers) supportGraphMarkers() = supportGraph(_allMarkers, supportedMarkers)
supportGraphScales() = supportGraph(_allScales, supportedScales) supportGraphScales() = supportGraph(_allScales, supportedScales)
supportGraphAxes() = supportGraph(_allAxes, supportedAxes) supportGraphAxes() = supportGraph(_allAxes, supportedAxes)
function dumpSupportGraphs() function dumpSupportGraphs()
for func in (supportGraphArgs, supportGraphTypes, supportGraphStyles, for func in (supportGraphArgs, supportGraphTypes, supportGraphStyles,
@ -483,16 +481,18 @@ end
# Some conversion functions # Some conversion functions
# note: I borrowed these conversion constants from Compose.jl's Measure # note: I borrowed these conversion constants from Compose.jl's Measure
const PX_PER_INCH = 100
const DPI = PX_PER_INCH const PX_PER_INCH = 100
const MM_PER_INCH = 25.4 const DPI = PX_PER_INCH
const MM_PER_PX = MM_PER_INCH / PX_PER_INCH const MM_PER_INCH = 25.4
inch2px(inches::Real) = float(inches * PX_PER_INCH) const MM_PER_PX = MM_PER_INCH / PX_PER_INCH
px2inch(px::Real) = float(px / PX_PER_INCH)
inch2mm(inches::Real) = float(inches * MM_PER_INCH) inch2px(inches::Real) = float(inches * PX_PER_INCH)
mm2inch(mm::Real) = float(mm / MM_PER_INCH) px2inch(px::Real) = float(px / PX_PER_INCH)
px2mm(px::Real) = float(px * MM_PER_PX) inch2mm(inches::Real) = float(inches * MM_PER_INCH)
mm2px(mm::Real) = float(px / MM_PER_PX) mm2inch(mm::Real) = float(mm / MM_PER_INCH)
px2mm(px::Real) = float(px * MM_PER_PX)
mm2px(mm::Real) = float(px / MM_PER_PX)
"Smallest x in plot" "Smallest x in plot"