started series reorg

This commit is contained in:
Thomas Breloff 2016-03-17 13:38:22 -04:00
parent b34360901f
commit eecb5c3754
17 changed files with 270 additions and 220 deletions

View File

@ -713,7 +713,7 @@ convertLegendValue(val::Bool) = val ? :best : :none
# build the argument dictionary for the plot
function getPlotArgs(pkg::AbstractBackend, kw, idx::Int; set_defaults = true)
kwdict = Dict(kw)
kwdict = KW(kw)
d = Dict()
# add defaults?
@ -750,7 +750,7 @@ end
# build the argument dictionary for a series
function getSeriesArgs(pkg::AbstractBackend, plotargs::Dict, kw, commandIndex::Int, plotIndex::Int, globalIndex::Int) # TODO, pass in plotargs, not plt
kwdict = Dict(kw)
kwdict = KW(kw)
d = Dict()
# add defaults?

View File

@ -65,7 +65,7 @@ end
# ---------------------------------------------------------------------------
function _create_plot(pkg::BokehBackend; kw...)
d = Dict(kw)
d = KW(kw)
# dumpdict(d, "plot", true)
@ -89,7 +89,7 @@ end
function _add_series(::BokehBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
# dumpdict(d, "plot!", true)

View File

@ -508,7 +508,7 @@ end
# create a blank Gadfly.Plot object
function _create_plot(pkg::GadflyBackend; kw...)
d = Dict(kw)
d = KW(kw)
gplt = createGadflyPlotObject(d)
Plot(gplt, pkg, 0, d, Dict[])
end
@ -522,7 +522,7 @@ function _add_series(::GadflyBackend, plt::Plot; kw...)
gplt.layers = gplt.layers[2:end]
end
d = Dict(kw)
d = KW(kw)
addGadflySeries!(plt, d)
push!(plt.seriesargs, d)
plt

View File

@ -16,7 +16,7 @@ immutable GLScreenWrapper
end
function _create_plot(pkg::GLVisualizeBackend; kw...)
d = Dict(kw)
d = KW(kw)
# TODO: create the window/canvas/context that is the plot within the backend (call it `o`)
# TODO: initialize the plot... title, xlabel, bgcolor, etc
@ -28,7 +28,7 @@ end
function _add_series(::GLVisualizeBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
# TODO: add one series to the underlying package
push!(plt.seriesargs, d)
# TODO: this should be moved to the display method?

View File

@ -702,12 +702,12 @@ function gr_display(subplt::Subplot{GRBackend})
end
function _create_plot(pkg::GRBackend; kw...)
d = Dict(kw)
d = KW(kw)
Plot(nothing, pkg, 0, d, Dict[])
end
function _add_series(::GRBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
push!(plt.seriesargs, d)
plt
end

View File

@ -20,7 +20,7 @@ end
# create a blank Gadfly.Plot object
function _create_plot(pkg::ImmerseBackend; kw...)
d = Dict(kw)
d = KW(kw)
# create the underlying Gadfly.Plot object
gplt = createGadflyPlotObject(d)
@ -32,7 +32,7 @@ end
# plot one data series
function _add_series(::ImmerseBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
addGadflySeries!(plt, d)
push!(plt.seriesargs, d)
plt

View File

@ -20,7 +20,7 @@ end
# ---------------------------------------------------------------------------
function _create_plot(pkg::PlotlyJSBackend; kw...)
d = Dict(kw)
d = KW(kw)
# TODO: create the window/canvas/context that is the plot within the backend (call it `o`)
# TODO: initialize the plot... title, xlabel, bgcolor, etc
# o = PlotlyJS.Plot(PlotlyJS.GenericTrace[], PlotlyJS.Layout(),
@ -34,7 +34,7 @@ end
function _add_series(::PlotlyJSBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
syncplot = plt.o
# dumpdict(d, "addseries", true)

View File

@ -269,7 +269,7 @@ end
function _create_plot(pkg::PyPlotBackend; kw...)
# create the figure
d = Dict(kw)
d = KW(kw)
# standalone plots will create a figure, but not if part of a subplot (do it later)
if haskey(d, :subplot)
@ -290,7 +290,7 @@ end
function _add_series(pkg::PyPlotBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
# 3D plots have a different underlying Axes object in PyPlot
lt = d[:linetype]

View File

@ -39,7 +39,7 @@ function replaceQwtAliases(d, s)
end
function adjustQwtKeywords(plt::Plot{QwtBackend}, iscreating::Bool; kw...)
d = Dict(kw)
d = KW(kw)
lt = d[:linetype]
if lt == :scatter
d[:linetype] = :none
@ -78,7 +78,7 @@ function adjustQwtKeywords(plt::Plot{QwtBackend}, iscreating::Bool; kw...)
end
function _create_plot(pkg::QwtBackend; kw...)
d = Dict(kw)
d = KW(kw)
fixcolors(d)
dumpdict(d,"\n\n!!! plot")
o = Qwt.plot(zeros(0,0); d..., show=false)

View File

@ -15,7 +15,7 @@ end
# ---------------------------------------------------------------------------
function _create_plot(pkg::[PkgName]AbstractBackend; kw...)
d = Dict(kw)
d = KW(kw)
# TODO: create the window/canvas/context that is the plot within the backend (call it `o`)
# TODO: initialize the plot... title, xlabel, bgcolor, etc
Plot(nothing, pkg, 0, d, Dict[])
@ -23,7 +23,7 @@ end
function _add_series(::[PkgName]AbstractBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
# TODO: add one series to the underlying package
push!(plt.seriesargs, d)
plt

View File

@ -120,7 +120,7 @@ end
function _create_plot(pkg::UnicodePlotsBackend; kw...)
plt = Plot(nothing, pkg, 0, Dict(kw), Dict[])
plt = Plot(nothing, pkg, 0, KW(kw), Dict[])
# do we want to give a new default size?
if !haskey(plt.plotargs, :size) || plt.plotargs[:size] == _plotDefaults[:size]
@ -131,7 +131,7 @@ function _create_plot(pkg::UnicodePlotsBackend; kw...)
end
function _add_series(::UnicodePlotsBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
if d[:linetype] in (:sticks, :bar)
d = barHack(; d...)
elseif d[:linetype] == :hist

View File

@ -41,7 +41,7 @@ end
function _create_plot(pkg::WinstonBackend; kw...)
d = Dict(kw)
d = KW(kw)
wplt = Winston.FramedPlot(title = d[:title], xlabel = d[:xlabel], ylabel = d[:ylabel])
Plot(wplt, pkg, 0, d, Dict[])
@ -65,7 +65,7 @@ function getWinstonItems(plt::Plot)
end
function _add_series(::WinstonBackend, plt::Plot; kw...)
d = Dict(kw)
d = KW(kw)
window, canvas, wplt = getWinstonItems(plt)

View File

@ -44,7 +44,7 @@ When you pass in matrices, it splits by columns. See the documentation for more
# this creates a new plot with args/kw and sets it to be the current plot
function plot(args...; kw...)
pkg = backend()
d = Dict(kw)
d = KW(kw)
preprocessArgs!(d)
dumpdict(d, "After plot preprocessing")
@ -71,7 +71,7 @@ end
# this adds to a specific plot... most plot commands will flow through here
function plot!(plt::Plot, args...; kw...)
d = Dict(kw)
d = KW(kw)
preprocessArgs!(d)
# for plotting recipes, swap out the args and update the parameter dictionary

View File

@ -16,13 +16,13 @@ convertToAnyVector(v::@compat(Void), d::Dict) = Any[nothing], nothing
convertToAnyVector(n::Integer, d::Dict) = Any[zeros(0) for i in 1:n], nothing
# numeric vector
convertToAnyVector{T<:Real}(v::AVec{T}, d::Dict) = Any[v], nothing
convertToAnyVector{T<:Number}(v::AVec{T}, d::Dict) = Any[v], nothing
# string vector
convertToAnyVector{T<:@compat(AbstractString)}(v::AVec{T}, d::Dict) = Any[v], nothing
# numeric matrix
function convertToAnyVector{T<:Real}(v::AMat{T}, d::Dict)
function convertToAnyVector{T<:Number}(v::AMat{T}, d::Dict)
if all3D(d)
Any[Surface(v)]
else
@ -44,7 +44,7 @@ convertToAnyVector{D<:Union{Date,DateTime}}(dts::AVec{D}, d::Dict) = Any[dts], n
# list of things (maybe other vectors, functions, or something else)
function convertToAnyVector(v::AVec, d::Dict)
if all(x -> typeof(x) <: Real, v)
if all(x -> typeof(x) <: Number, v)
# all real numbers wrap the whole vector as one item
Any[convert(Vector{Float64}, v)], nothing
else
@ -57,38 +57,58 @@ end
# --------------------------------------------------------------------
# in computeXandY, we take in any of the possible items, convert into proper x/y vectors, then return.
# this is also where all the "set x to 1:length(y)" happens, and also where we assert on lengths.
computeX(x::@compat(Void), y) = 1:size(y,1)
computeX(x, y) = copy(x)
computeY(x, y::Function) = map(y, x)
computeY(x, y) = copy(y)
function computeXandY(x, y)
if x == nothing && isa(y, Function)
error("If you want to plot the function `$y`, you need to define the x values somehow!")
end
x, y = computeX(x,y), computeY(x,y)
# @assert length(x) == length(y)
x, y
end
# # in computeXandY, we take in any of the possible items, convert into proper x/y vectors, then return.
# # this is also where all the "set x to 1:length(y)" happens, and also where we assert on lengths.
# computeX(x::@compat(Void), y) = 1:size(y,1)
# computeX(x, y) = copy(x)
# computeY(x, y::Function) = map(y, x)
# computeY(x, y) = copy(y)
# function computeXandY(x, y)
# if x == nothing && isa(y, Function)
# error("If you want to plot the function `$y`, you need to define the x values somehow!")
# end
# x, y = computeX(x,y), computeY(x,y)
# # @assert length(x) == length(y)
# x, y
# end
compute_x(x::Void, y::Void, z) = 1:size(z,1)
compute_x(x::Void, y, z) = 1:size(y,1)
compute_x(x::Function, y, z) = map(x, y)
compute_x(x, y, z) = x
compute_y(x::Void, y::Void, z) = 1:size(z,2)
compute_y(x::Void, y, z) = 1:size(x,1)
compute_y(x, y::Function, z) = map(y, x)
compute_y(x, y, z) = y
compute_z(x, y, z::Function) = map(z, x, y)
compute_z(x, y, z) = Surface(z)
compute_xyz(x, y, z) = compute_x(x,y,z), compute_y(x,y,z), compute_z(x,y,z)
# not allowed
compute_xyz(x::Void, y::FuncOrFuncs, z) = error("If you want to plot the function `$y`, you need to define the x values!")
compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the function `$z`, you need to define x and y values!")
compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!")
# --------------------------------------------------------------------
# create n=max(mx,my) series arguments. the shorter list is cycled through
# note: everything should flow through this
function build_series_args(plt::AbstractPlot, x, y; kw...)
kwdict = Dict(kw)
xs, xmeta = convertToAnyVector(x, kwdict)
ys, ymeta = convertToAnyVector(y, kwdict)
function build_series_args(plt::AbstractPlot, kw::KW)
xs, xmeta = convertToAnyVector(pop!(kw, :x, nothing), kw)
ys, ymeta = convertToAnyVector(pop!(kw, :y, nothing), kw)
zs, zmeta = convertToAnyVector(pop!(kw, :z, nothing), kw)
mx = length(xs)
my = length(ys)
mz = length(zs)
ret = Any[]
for i in 1:max(mx, my)
for i in 1:max(mx, my, mz)
# try to set labels using ymeta
d = copy(kwdict)
d = copy(kw)
if !haskey(d, :label) && ymeta != nothing
if isa(ymeta, Symbol)
d[:label] = string(ymeta)
@ -98,25 +118,27 @@ function build_series_args(plt::AbstractPlot, x, y; kw...)
end
# build the series arg dict
numUncounted = get(d, :numUncounted, 0)
numUncounted = pop!(d, :numUncounted, 0)
n = plt.n + i + numUncounted
dumpdict(d, "before getSeriesArgs")
d = getSeriesArgs(plt.backend, getplotargs(plt, n), d, i + numUncounted, convertSeriesIndex(plt, n), n)
dumpdict(d, "after getSeriesArgs")
d[:x], d[:y] = computeXandY(xs[mod1(i,mx)], ys[mod1(i,my)])
d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
lt = d[:linetype]
if isa(d[:y], Surface)
if lt in (:contour, :heatmap, :surface, :wireframe)
z = d[:y]
d[:y] = 1:size(z,2)
d[:z] = z
end
end
# # NOTE: this should be handled by the time it gets here
# lt = d[:linetype]
# if isa(d[:y], Surface)
# if lt in (:contour, :heatmap, :surface, :wireframe)
# z = d[:y]
# d[:y] = 1:size(z,2)
# d[:z] = z
# end
# end
if haskey(d, :idxfilter)
d[:x] = d[:x][d[:idxfilter]]
d[:y] = d[:y][d[:idxfilter]]
idxfilter = pop!(d, :idxfilter)
d[:x] = d[:x][idxfilter]
d[:y] = d[:y][idxfilter]
end
# for linetype `line`, need to sort by x values
@ -137,9 +159,10 @@ function build_series_args(plt::AbstractPlot, x, y; kw...)
end
# cleanup those fields that were used only for generating kw args
for k in (:idxfilter, :numUncounted, :dataframe)
delete!(d, k)
end
delete!(d, :dataframe)
# for k in (:idxfilter, :numUncounted, :dataframe)
# delete!(d, k)
# end
# add it to our series list
push!(ret, d)
@ -148,90 +171,58 @@ function build_series_args(plt::AbstractPlot, x, y; kw...)
ret, xmeta, ymeta
end
# handle grouping
function build_series_args(plt::AbstractPlot, groupby::GroupBy, args...; kw...)
ret = Any[]
for (i,glab) in enumerate(groupby.groupLabels)
# TODO: don't automatically overwrite labels
kwlist, xmeta, ymeta = build_series_args(plt, args...; kw...,
idxfilter = groupby.groupIds[i],
label = string(glab),
numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
append!(ret, kwlist)
end
ret, nothing, nothing # TODO: handle passing meta through
# --------------------------------------------------------------------
# 0 arguments
# --------------------------------------------------------------------
# # TODO: all methods should probably do this... check for (and pop!) x/y/z values if they exist
#
# function build_series_args(plt::AbstractPlot, d::KW)
#
# build_series_args(plt, d, pop!(d, :x, nothing),
# pop!(d, :y, nothing),
# pop!(d, :z, nothing); d...)
# end
# d = KW(kw)
# if !haskey(d, :y)
# # assume we just want to create an empty plot object which can be added to later
# return [], nothing, nothing
# # error("Called plot/subplot without args... must set y in the keyword args. Example: plot(; y=rand(10))")
# end
#
# if haskey(d, :x)
# return build_series_args(plt, d, d[:x], d[:y])
# else
# return build_series_args(plt, d, d[:y])
# end
# end
# --------------------------------------------------------------------
# 1 argument
# --------------------------------------------------------------------
# no special handling... assume x and z are nothing
function build_series_args(plt::AbstractPlot, d::KW, y)
build_series_args(plt, d, nothing, y, nothing)
end
# pass it off to the x/y version
function build_series_args(plt::AbstractPlot, y; kw...)
build_series_args(plt, nothing, y; kw...)
end
# 3d line or scatter
function build_series_args(plt::AbstractPlot, x::AVec, y::AVec, zvec::AVec; kw...)
d = Dict(kw)
if !(get(d, :linetype, :none) in _3dTypes)
d[:linetype] = :path3d
end
build_series_args(plt, x, y; z=zvec, d...)
end
function build_series_args{T<:Real}(plt::AbstractPlot, z::AMat{T}; kw...)
d = Dict(kw)
# matrix... is it z or y?
function build_series_args{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
if all3D(d)
n,m = size(z)
build_series_args(plt, 1:n, 1:m, z; kw...)
n,m = size(mat)
build_series_args(plt, d, 1:n, 1:m, mat)
else
build_series_args(plt, nothing, z; kw...)
build_series_args(plt, d, nothing, mat, nothing)
end
end
# contours or surfaces... function grid
function build_series_args(plt::AbstractPlot, x::AVec, y::AVec, zf::Function; kw...)
# only allow sorted x/y for now
# TODO: auto sort x/y/z properly
@assert x == sort(x)
@assert y == sort(y)
surface = Float64[zf(xi, yi) for xi in x, yi in y]
build_series_args(plt, x, y, surface; kw...) # passes it to the zmat version
end
# contours or surfaces... matrix grid
function build_series_args{T<:Real}(plt::AbstractPlot, x::AVec, y::AVec, zmat::AMat{T}; kw...)
# only allow sorted x/y for now
# TODO: auto sort x/y/z properly
@assert x == sort(x)
@assert y == sort(y)
@assert size(zmat) == (length(x), length(y))
# surf = Surface(convert(Matrix{Float64}, zmat))
# surf = Array(Any,1,1)
# surf[1,1] = convert(Matrix{Float64}, zmat)
d = Dict(kw)
d[:z] = Surface(convert(Matrix{Float64}, zmat))
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe))
d[:linetype] = :contour
end
build_series_args(plt, x, y; d...) #, z = surf)
end
# contours or surfaces... general x, y grid
function build_series_args{T<:Real}(plt::AbstractPlot, x::AMat{T}, y::AMat{T}, zmat::AMat{T}; kw...)
@assert size(zmat) == size(x) == size(y)
surf = Surface(convert(Matrix{Float64}, zmat))
# surf = Array(Any,1,1)
# surf[1,1] = convert(Matrix{Float64}, zmat)
d = Dict(kw)
d[:z] = Surface(convert(Matrix{Float64}, zmat))
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe))
d[:linetype] = :contour
end
build_series_args(plt, Any[x], Any[y]; d...) #kw..., z = surf, linetype = :contour)
end
# plotting arbitrary shapes/polygons
function build_series_args(plt::AbstractPlot, shape::Shape; kw...)
function build_series_args(plt::AbstractPlot, d::KW, shape::Shape)
x, y = unzip(shape.vertices)
build_series_args(plt, x, y; linetype = :shape, kw...)
build_series_args(plt, d, x, y; linetype = :shape)
end
function shape_coords(shapes::AVec{Shape})
@ -246,106 +237,162 @@ function shape_coords(shapes::AVec{Shape})
x, y
end
function build_series_args(plt::AbstractPlot, shapes::AVec{Shape}; kw...)
function build_series_args(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
x, y = shape_coords(shapes)
build_series_args(plt, x, y; linetype = :shape, kw...)
build_series_args(plt, d, x, y; linetype = :shape)
end
function build_series_args(plt::AbstractPlot, shapes::AMat{Shape}; kw...)
function build_series_args(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
x, y = [], []
for j in 1:size(shapes, 2)
tmpx, tmpy = shape_coords(vec(shapes[:,j]))
push!(x, tmpx)
push!(y, tmpy)
end
build_series_args(plt, x, y; linetype = :shape, kw...)
build_series_args(plt, d, x, y; linetype = :shape)
end
function build_series_args(plt::AbstractPlot, surf::Surface; kw...)
build_series_args(plt, 1:size(surf.surf,1), 1:size(surf.surf,2), convert(Matrix{Float64}, surf.surf); kw...)
end
function build_series_args(plt::AbstractPlot, x::AVec, y::AVec, surf::Surface; kw...)
build_series_args(plt, x, y, convert(Matrix{Float64}, surf.surf); kw...)
end
function build_series_args(plt::AbstractPlot, f::FuncOrFuncs; kw...)
build_series_args(plt, f, xmin(plt), xmax(plt); kw...)
end
# list of functions
function build_series_args(plt::AbstractPlot, f::FuncOrFuncs, x; kw...)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
build_series_args(plt, x, f; kw...)
end
# special handling... xmin/xmax with function(s)
function build_series_args(plt::AbstractPlot, f::FuncOrFuncs, xmin::Real, xmax::Real; kw...)
width = get(plt.plotargs, :size, (100,))[1]
x = collect(linspace(xmin, xmax, width)) # we don't need more than the width
build_series_args(plt, x, f; kw...)
end
mapFuncOrFuncs(f::Function, u::AVec) = map(f, u)
mapFuncOrFuncs(fs::AVec{Function}, u::AVec) = [map(f, u) for f in fs]
# special handling... xmin/xmax with parametric function(s)
build_series_args{T<:Real}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}; kw...) = build_series_args(plt, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u); kw...)
build_series_args{T<:Real}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs; kw...) = build_series_args(plt, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u); kw...)
build_series_args(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Real, umax::Real, numPoints::Int = 1000; kw...) = build_series_args(plt, fx, fy, linspace(umin, umax, numPoints); kw...)
# special handling... 3D parametric function(s)
build_series_args{T<:Real}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}; kw...) = build_series_args(plt, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u); kw...)
build_series_args{T<:Real}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs; kw...) = build_series_args(plt, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u); kw...)
build_series_args(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Real, umax::Real, numPoints::Int = 1000; kw...) = build_series_args(plt, fx, fy, fz, linspace(umin, umax, numPoints); kw...)
# (x,y) tuples
function build_series_args{R1<:Real,R2<:Real}(plt::AbstractPlot, xy::AVec{Tuple{R1,R2}}; kw...)
build_series_args(plt, unzip(xy)...; kw...)
end
function build_series_args{R1<:Real,R2<:Real}(plt::AbstractPlot, xy::Tuple{R1,R2}; kw...)
build_series_args(plt, [xy[1]], [xy[2]]; kw...)
end
# special handling... no args... 1 series
function build_series_args(plt::AbstractPlot; kw...)
d = Dict(kw)
if !haskey(d, :y)
# assume we just want to create an empty plot object which can be added to later
return [], nothing, nothing
# error("Called plot/subplot without args... must set y in the keyword args. Example: plot(; y=rand(10))")
end
if haskey(d, :x)
return build_series_args(plt, d[:x], d[:y]; kw...)
else
return build_series_args(plt, d[:y]; kw...)
end
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
build_series_args(plt, d, f, xmin(plt), xmax(plt))
end
# --------------------------------------------------------------------
# 2 arguments
# --------------------------------------------------------------------
function build_series_args(plt::AbstractPlot, d::KW, x, y)
build_series_args(plt, d, x, y, nothing)
end
# list of functions
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
build_series_args(plt, d, x, f)
end
# --------------------------------------------------------------------
# 3 arguments
# --------------------------------------------------------------------
# 3d line or scatter
function build_series_args(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
d = KW(kw)
if !(get(d, :linetype, :none) in _3dTypes)
d[:linetype] = :path3d
end
build_series_args(plt, d, x, y; z=zvec, d...)
end
# contours or surfaces... function grid
function build_series_args(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zf::Function)
# only allow sorted x/y for now
# TODO: auto sort x/y/z properly
@assert x == sort(x)
@assert y == sort(y)
surface = Float64[zf(xi, yi) for xi in x, yi in y]
build_series_args(plt, d, x, y, surface) # passes it to the zmat version
end
# contours or surfaces... matrix grid
function build_series_args{T<:Number}(plt::AbstractPlot, x::AVec, y::AVec, zmat::AMat{T})
# only allow sorted x/y for now
# TODO: auto sort x/y/z properly
@assert x == sort(x)
@assert y == sort(y)
@assert size(zmat) == (length(x), length(y))
d = KW(kw)
d[:z] = Surface(convert(Matrix{Float64}, zmat))
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe))
d[:linetype] = :contour
end
build_series_args(plt, d, x, y; d...) #, z = surf)
end
# contours or surfaces... general x, y grid
function build_series_args{T<:Number}(plt::AbstractPlot, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
@assert size(zmat) == size(x) == size(y)
surf = Surface(convert(Matrix{Float64}, zmat))
d = KW(kw)
d[:z] = Surface(convert(Matrix{Float64}, zmat))
if !(get(d, :linetype, :none) in (:contour, :heatmap, :surface, :wireframe))
d[:linetype] = :contour
end
build_series_args(plt, d, Any[x], Any[y]; d...) #kw..., z = surf, linetype = :contour)
end
# --------------------------------------------------------------------
# Parametric functions
# --------------------------------------------------------------------
# special handling... xmin/xmax with function(s)
function build_series_args(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
width = get(plt.plotargs, :size, (100,))[1]
x = collect(linspace(xmin, xmax, width)) # we don't need more than the width
build_series_args(plt, d, x, f)
end
# special handling... xmin/xmax with parametric function(s)
build_series_args{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
build_series_args{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
build_series_args(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = build_series_args(plt, d, fx, fy, linspace(umin, umax, numPoints))
# special handling... 3D parametric function(s)
build_series_args{T<:Number}(plt::AbstractPlot, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
build_series_args{T<:Number}(plt::AbstractPlot, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = build_series_args(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
build_series_args(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = build_series_args(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
# --------------------------------------------------------------------
# Lists of tuples and FixedSizeArrays
# --------------------------------------------------------------------
# (x,y) tuples
function build_series_args{R1<:Number,R2<:Number}(plt::AbstractPlot, xy::AVec{Tuple{R1,R2}})
build_series_args(plt, d, unzip(xy)...)
end
function build_series_args{R1<:Number,R2<:Number}(plt::AbstractPlot, xy::Tuple{R1,R2})
build_series_args(plt, d, [xy[1]], [xy[2]])
end
unzip{T}(x::AVec{FixedSizeArrays.Vec{2,T}}) = T[xi[1] for xi in x], T[xi[2] for xi in x]
unzip{T}(x::FixedSizeArrays.Vec{2,T}) = T[x[1]], T[x[2]]
function build_series_args{T<:Real}(plt::AbstractPlot, xy::AVec{FixedSizeArrays.Vec{2,T}}; kw...)
build_series_args(plt, unzip(xy)...; kw...)
function build_series_args{T<:Number}(plt::AbstractPlot, xy::AVec{FixedSizeArrays.Vec{2,T}})
build_series_args(plt, d, unzip(xy)...)
end
function build_series_args{T<:Real}(plt::AbstractPlot, xy::FixedSizeArrays.Vec{2,T}; kw...)
build_series_args(plt, [xy[1]], [xy[2]]; kw...)
function build_series_args{T<:Number}(plt::AbstractPlot, xy::FixedSizeArrays.Vec{2,T})
build_series_args(plt, d, [xy[1]], [xy[2]])
end
# --------------------------------------------------------------------
# handle grouping
# --------------------------------------------------------------------
function build_series_args(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
ret = Any[]
for (i,glab) in enumerate(groupby.groupLabels)
# TODO: don't automatically overwrite labels
kwlist, xmeta, ymeta = build_series_args(plt, d, args...,
idxfilter = groupby.groupIds[i],
label = string(glab),
numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
append!(ret, kwlist)
end
ret, nothing, nothing # TODO: handle passing meta through
end
# --------------------------------------------------------------------
# For DataFrame support. Imports DataFrames and defines the necessary methods which support them.
# --------------------------------------------------------------------
function setup_dataframes()
@require DataFrames begin
function build_series_args(plt::AbstractPlot, df::DataFrames.AbstractDataFrame, args...; kw...)
build_series_args(plt, args...; kw..., dataframe = df)
function build_series_args(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
build_series_args(plt, d, args..., dataframe = df)
end
# expecting the column name of a dataframe that was passed in... anything else should error

View File

@ -39,7 +39,7 @@ Create a series of plots:
"""
function subplot(args...; kw...)
validateSubplotSupported()
d = Dict(kw)
d = KW(kw)
preprocessArgs!(d)
# for plotting recipes, swap out the args and update the parameter dictionary
@ -80,7 +80,7 @@ end
# grid layout
function subplot{P}(plt1::Plot{P}, plts::Plot{P}...; kw...)
d = Dict(kw)
d = KW(kw)
layout = subplotlayout(length(plts)+1, get(d, :nr, -1), get(d, :nc, -1))
subplot(vcat(plt1, plts...), layout, d)
end
@ -88,7 +88,7 @@ end
# explicit layout
function subplot{P,I<:Integer}(pltsPerRow::AVec{I}, plt1::Plot{P}, plts::Plot{P}...; kw...)
layout = subplotlayout(pltsPerRow)
subplot(vcat(plt1, plts...), layout, Dict(kw))
subplot(vcat(plt1, plts...), layout, KW(kw))
end
# this will be called internally
@ -189,7 +189,7 @@ end
function subplot!(subplt::Subplot, args...; kw...)
# validateSubplotSupported()
d = Dict(kw)
d = KW(kw)
args = _preprocess_subplot(subplt, d, args)
# create the underlying object (each backend will do this differently)
@ -251,7 +251,7 @@ end
function _add_series_subplot(plt::Plot, args...; kw...)
d = Dict(kw)
d = KW(kw)
setTicksFromStringVector(d, d, :x, :xticks)
setTicksFromStringVector(d, d, :y, :yticks)

View File

@ -7,6 +7,7 @@ immutable PlotsDisplay <: Display end
abstract AbstractBackend
abstract AbstractPlot{T<:AbstractBackend}
typealias KW Dict{Symbol,Any}
# -----------------------------------------------------------
# Plot
# -----------------------------------------------------------

View File

@ -19,7 +19,7 @@ A hacky replacement for a histogram when the backend doesn't support histograms
Convert it into a bar chart with the appropriate x/y values.
"""
function histogramHack(; kw...)
d = Dict(kw)
d = KW(kw)
# we assume that the y kwarg is set with the data to be binned, and nbins is also defined
edges, midpoints, buckets, counts = binData(d[:y], d[:nbins])
@ -35,7 +35,7 @@ A hacky replacement for a bar graph when the backend doesn't support bars direct
Convert it into a line chart with fillrange set.
"""
function barHack(; kw...)
d = Dict(kw)
d = KW(kw)
midpoints = d[:x]
heights = d[:y]
fillrange = d[:fillrange] == nothing ? 0.0 : d[:fillrange]
@ -75,7 +75,7 @@ A hacky replacement for a sticks graph when the backend doesn't support sticks d
Convert it into a line chart that traces the sticks, and a scatter that sets markers at the points.
"""
function sticksHack(; kw...)
dLine = Dict(kw)
dLine = KW(kw)
dScatter = copy(dLine)
# these are the line vertices
@ -130,6 +130,8 @@ makevec{T}(v::T) = T[v]
maketuple(x::Real) = (x,x)
maketuple{T,S}(x::@compat(Tuple{T,S})) = x
mapFuncOrFuncs(f::Function, u::AVec) = map(f, u)
mapFuncOrFuncs(fs::AVec{Function}, u::AVec) = [map(f, u) for f in fs]
unzip{T,S}(v::AVec{@compat(Tuple{T,S})}) = [vi[1] for vi in v], [vi[2] for vi in v]
@ -260,7 +262,7 @@ end
function with(f::Function, args...; kw...)
# dict to store old and new keyword args for anything that changes
newdefs = Dict(kw)
newdefs = KW(kw)
olddefs = Dict()
for k in keys(newdefs)
olddefs[k] = default(k)