Compare commits

...

154 Commits

Author SHA1 Message Date
mantaohuang
ea8b71898b fix stuff 2022-03-26 18:55:18 -04:00
mantaohuang
4bdee5f6af testing out 2022-03-26 18:37:03 -04:00
mantaohuang
bbbd899c19 testing out 2022-03-26 18:33:43 -04:00
mantaohuang
abcb73b70f Use raw expressions for xlabel, ylabels etc 2022-03-26 18:27:20 -04:00
Giorgio Calderone
9001d5f385 Minor changes in preparation of v1.4.1 2022-01-04 12:06:01 +01:00
Giorgio Calderone
919068e797 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 13:34:33 +01:00
gcalderone
23c3d663e8
Merge pull request #51 from wentasah/stdout-via-pipe
Don't run gnuplot process connected to stdout
2022-01-03 13:34:25 +01:00
Giorgio Calderone
3f40e38d72 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 12:41:12 +01:00
gcalderone
443ef0edf7
Merge pull request #49 from wentasah/hist-bounds
Fix BoundsErrors in hist()
2022-01-03 12:40:40 +01:00
gcalderone
ab927d0622
Merge pull request #52 from wentasah/escape-output
Allow using single quotes in output file names
2022-01-03 10:45:19 +01:00
Giorgio Calderone
622597c589 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 10:39:40 +01:00
Michal Sojka
ce00617796 Allow using single quotes in output file names
Gnuplot single-quoted strings have to escape single-quote characters
by doubling them.
2021-12-13 18:58:24 +01:00
Giorgio Calderone
e70c30dd13 Handle the case where an implicit recipe returns a Vector{PlotElement} 2021-12-05 15:59:48 +01:00
Michal Sojka
799154f53c Add doctest of dumb terminal
This serves two purposes:

1. It demonstrates the functionality of the dumb terminal.
2. It checks that the previous commit works.
2021-12-05 11:53:30 +01:00
Michal Sojka
d02c211e99 Don't run gnuplot process connected to stdout
This change fixes incompatibility of Gnuplot.jl with Documenter.jl
versions 0.27.0 and above. Without this change, Gnuplot.jl has at
least these problems:

1. When building Gnuplot.jl documentation, the process blocks and
   never finishes.

2. When using Gnuplot.jl in docstrings in other code, running
   `doctest` blocks and never finishes.

The reason is that Documenter uses a new version of IOCapture.jl,
which contains this commit:
6cb4cdff34.

Documenter evaluates code snippets from the documentation with
`stdout` redirected to a pipe to show the command's output. The
mentioned commit changes the behavior so that now capturing waits
until the pipe is closed. The problem with Gnuplot.jl is that when the
gnuplot process is started as a part of the execution of documentation
code snippet, its `stdout` is bound to Documenter's pipe. The pipe is
not closed until the gnuplot process exits, which does not happen
unless the code snippet calls `Gnuplot.quit` explicitly. Therefore
Documenter blocks indefinitely.

This can be demonstrated by storing the following code in `test.jl`

    module GnuplotDocTest
    """
    ```jldoctest; setup = :(using Gnuplot)
    julia> @gp rand(100)

    ```
    """
    test() = nothing
    end

    using Documenter
    doctest(pwd(), [GnuplotDocTest])

and running `julia test.jl`.

To fix this problem, we run the gnuplot process with stdout redirected
to a pipe and create an asynchronous task, which reads the gnuplot's
stdout and writes it to Julia's current stdout.

Correctness of this approach can be verified by running:

    using Gnuplot
    Gnuplot.options.term = "dumb"
    @gp "plot sin(x)"

Dumb terminal prints to stdout and the above command shows the graph
on Julia's stdout too. In the next commit, we add the above code as a
doctest.
2021-12-05 11:51:29 +01:00
Michal Sojka
67c8781f2b Fix another hist BoundsError
This fixes the error with `hist([1,1,1], bs=1)`:

    ERROR: BoundsError: attempt to access 0-element Vector{Int64} at index [0]
    Stacktrace:
     [1] getindex
       @ ./array.jl:801 [inlined]
     [2] hist(v::Vector{Int64}; range::Vector{Float64}, bs::Int64, nbins::Int64, pad::Bool)
       @ Gnuplot ~/.julia/dev/Gnuplot/src/Gnuplot.jl:1864
     [3] top-level scope
       @ REPL[50]:1
2021-09-06 16:53:40 +02:00
Michal Sojka
db8dcfc433 Fix bounds error in hist recipe
When running hist([1,2,3], bs=2), the following error is produced:

ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
Stacktrace:
 [1] getindex
   @ ./array.jl:801 [inlined]
 [2] hist(v::Vector{Int64}; range::Vector{Float64}, bs::Int64, nbins::Int64, pad::Bool)
   @ Gnuplot ~/.julia/dev/Gnuplot/src/Gnuplot.jl:1873
 [3] top-level scope
   @ REPL[25]:1
2021-09-06 16:53:40 +02:00
gcalderone
04484adc22
Merge pull request #44 from wentasah/requires-jl
docs: Suggest using Requires.jl for automatic settings of package options
2021-05-25 16:04:11 +02:00
Michal Sojka
658e5f422c docs: Suggest using Requires.jl for automatic settings of package options
Using the @gnuplotrc macro for collecting user's preferred setup works
well, but it is a bit annoying when Julia needs to be restarted
often (e.g. due to crashes). Using Requires.jl allows the user to
forget about calling @gnuplotrc; the initialization happens
automatically, whenever the Gnuplot package is loaded.
2021-05-25 15:01:45 +02:00
Giorgio Calderone
9327492aa1 Updated 2021-05-06 00:14:01 +02:00
Giorgio Calderone
0567acc60e Bump version to 1.4.0 (to meet automerge guidelines) 2021-05-05 23:48:11 +02:00
Giorgio Calderone
74e195f290 Updated 2021-05-05 12:19:04 +02:00
Giorgio Calderone
875773fd3d Docs updated 2021-05-05 12:03:13 +02:00
Giorgio Calderone
53159f89e1 Bugfix; Allow missing as input to hist(); Updated version() 2021-05-05 11:59:15 +02:00
Giorgio Calderone
54db30cc32 Bump version 2021-05-05 00:58:14 +02:00
Giorgio Calderone
364e5281bd Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2021-05-05 00:53:09 +02:00
Giorgio Calderone
e8a6b21df6 Updated dependencies; Accept missing values on input arrays (if eltype <: AbstractFloat) 2021-05-05 00:52:56 +02:00
gcalderone
6c6b889df6
Merge pull request #43 from wentasah/vscode
VS Code support
2021-04-08 17:40:36 +02:00
Giorgio Calderone
5c46e35fea Updated DataStructures dependency 2021-04-01 14:04:40 +02:00
Michal Sojka
34af493921 Make the figures in VS Code bigger
Without this change, the figures in VS Code are too small.
2021-03-30 20:11:05 +02:00
Michal Sojka
f2ef5373b0 Show plots in internal VS Code plot pane
With this change, when Gnuplot.jl is used within VSCode, the plot
shows in VSCode plot pane instead of in a separate Gnuplot window.

Note that when compared to IJulia and Juno, we do not test for active
VS Code connection. I don't think it is necessary, but if it turns out
to be needed later, it can be done with

    isopen(VSCodeServer.conn_endpoint[])
2021-03-30 19:43:27 +02:00
Giorgio Calderone
bc74aa0db4 Accept AbstractArrays which can be converted to actual arrays 2021-01-02 00:15:39 +01:00
Giorgio Calderone
b7a15290d3 Bugfix 2020-10-06 10:21:46 +02:00
Giorgio Calderone
f62b569560 Fix #28 and similar issues 2020-10-05 01:14:18 +02:00
gcalderone
584144e2ec
Merge pull request #30 from PallHaraldsson/patch-1
Juno and Jypyther in docs
2020-10-05 00:00:36 +02:00
gcalderone
03953c0ad6
Merge pull request #35 from jarvist/master
Add check for Pluto.jl interactive notebook.
2020-10-04 23:55:14 +02:00
Jarvist Moore Frost
084dd63059 Add check for Pluto.jl interactive notebook. 2020-09-21 21:02:08 +01:00
Páll Haraldsson
50141d1b0e
Juno and Jypyther in docs
[ci skip]
2020-07-13 11:38:23 +00:00
Giorgio Calderone
83c59ae682 Set utf8 encoding on gnuplot start 2020-05-05 11:44:08 +02:00
gcalderone
1877deef7f
Merge pull request #26 from lyon-fnal/master
Fix the string indexing error and problems with multiplot on JupyterLab
2020-05-05 00:59:08 +02:00
Adam Lyon
67a5583c29 Fixes #25 2020-05-04 15:59:21 -05:00
Adam Lyon
69644f99ba Fix #24 2020-05-04 15:58:59 -05:00
Giorgio Calderone
2713f8517e Updated 2020-04-29 12:24:46 +02:00
Giorgio Calderone
2c2c74e448 Added dgrid3d function 2020-04-29 12:12:52 +02:00
Giorgio Calderone
6bf1b80058 Bump version (1.3.0) 2020-04-28 19:26:23 +02:00
Giorgio Calderone
671efccc17 Updated 2020-04-28 19:09:39 +02:00
Giorgio Calderone
bdeb0e45ab Updated 2020-04-28 18:56:04 +02:00
Giorgio Calderone
3e03aa27f7 Updated 2020-04-28 18:50:40 +02:00
Giorgio Calderone
dab424bfec Updated 2020-04-28 18:42:58 +02:00
Giorgio Calderone
92380bc468 Added smooth keyword to palette; Updated docstrings 2020-04-28 14:14:25 +02:00
Giorgio Calderone
4d1768e15e Added contourlines method accepting top fractions 2020-04-27 18:37:59 +02:00
Giorgio Calderone
8e140ee998 Updated 2020-04-25 20:52:19 +02:00
Giorgio Calderone
6df834bb88 Docs updated 2020-04-25 20:41:09 +02:00
Giorgio Calderone
c9fa96c9eb Docs updated 2020-04-25 20:20:09 +02:00
Giorgio Calderone
d74715f156 Fixed initialization in Juno 2020-04-25 19:28:57 +02:00
Giorgio Calderone
2fb581b3a3 Defined and implemented the display behaviour (based on options/gpviewer) 2020-04-25 18:37:17 +02:00
Giorgio Calderone
190562a322 Use AbstractVector and AbstractMatrix argument types in contourlines 2020-04-23 09:57:16 +02:00
Giorgio Calderone
c5d64f5d76 Enable show mechanism, regardless of Juno/IJulia 2020-04-22 20:00:51 +02:00
Giorgio Calderone
184206946b Fix CI 2020-04-22 19:15:03 +02:00
Giorgio Calderone
4405daf088 Bugfix 2020-04-22 19:09:47 +02:00
Giorgio Calderone
e3d9d6035e Fix CI 2020-04-22 18:26:47 +02:00
Giorgio Calderone
e11d93d807 Fix CI 2020-04-22 18:17:23 +02:00
Giorgio Calderone
6996c98d40 Fix CI 2020-04-22 18:09:54 +02:00
Giorgio Calderone
02e15543cd Merge branch 'StdoutPassThrough' 2020-04-22 17:58:39 +02:00
Giorgio Calderone
8f737205a1 Improved readTask and capture protocol 2020-04-22 17:56:50 +02:00
Giorgio Calderone
deee2693df Disable show mechanism 2020-04-22 14:46:29 +02:00
Giorgio Calderone
a47705be6b Test updated 2020-04-22 14:46:11 +02:00
Giorgio Calderone
8a8ce1f533 Stdout is no longer filtered 2020-04-22 14:39:52 +02:00
Giorgio Calderone
e687bb3716 Stdout is no longer filtered 2020-04-22 14:26:53 +02:00
Giorgio Calderone
00ef33a8a6 Stdout is no longer filtered 2020-04-22 14:26:06 +02:00
Giorgio Calderone
3238bcea80 Updated default terminals 2020-04-22 10:02:35 +02:00
Giorgio Calderone
993633886a Test 2020-04-22 09:52:09 +02:00
Giorgio Calderone
e33b74bf6d Updated 2020-04-22 01:43:48 +02:00
Giorgio Calderone
7e3aa2b384 Merge branch 'testCanvasTerminal' 2020-04-22 01:42:56 +02:00
Giorgio Calderone
c5890b6819 Implemented save() and show() based on Options.mime dictionary 2020-04-22 01:42:38 +02:00
Giorgio Calderone
be273493eb Updated 2020-04-21 10:49:18 +02:00
Giorgio Calderone
b79228d7b1 Implemented show(io::IO, ::MIME"text/html" method 2020-04-21 10:33:29 +02:00
Giorgio Calderone
bad5e12681 Updated 2020-04-20 19:27:12 +02:00
Giorgio Calderone
703f0bf618 Updated for v1.2.0 2020-04-20 18:51:36 +02:00
Giorgio Calderone
96874bcdae Release v1.2.0 2020-04-20 18:43:27 +02:00
Giorgio Calderone
f7bf0040fa Fix CI 2020-04-20 18:15:47 +02:00
Giorgio Calderone
739255330b Test coverage: 69% 2020-04-20 18:11:57 +02:00
Giorgio Calderone
e264b27119 Comments updated 2020-04-19 16:49:19 +02:00
Giorgio Calderone
5b858670d6 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-19 16:35:15 +02:00
gcalderone
da0bd71007
Update README.md 2020-04-19 16:07:26 +02:00
Giorgio Calderone
45e97e4535 Minor changes 2020-04-19 10:48:02 +02:00
Giorgio Calderone
90d43be2fb Updated 2020-04-18 23:00:30 +02:00
Giorgio Calderone
62931851b5 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-18 20:32:51 +02:00
Giorgio Calderone
7f1bb7eb64 Updated 2020-04-18 20:32:39 +02:00
gcalderone
ecce0ace9f
Merge pull request #20 from PallHaraldsson/patch-1
Grammar
2020-04-18 20:32:17 +02:00
Páll Haraldsson
7cbaf19002
Grammar
[skip ci]
2020-04-18 16:11:35 +00:00
Giorgio Calderone
0a8c652e71 Docs updated 2020-04-18 15:10:19 +02:00
Giorgio Calderone
79ebe5d8ee Added recipe for IsoContourLines; contourlines now accepts a Histogram2D object 2020-04-18 13:24:12 +02:00
gcalderone
3e053c440f
Fix ci (#18)
* Updated

* Updated

* Updated

* Updated

* Updated

* Fix CI
2020-04-18 00:17:08 +02:00
Giorgio Calderone
31b60d61f2 Bugfix 2020-04-17 20:11:36 +02:00
Giorgio Calderone
7b0955e12a Updated svg default terminal (white bkg and dynamic) 2020-04-17 19:46:48 +02:00
Giorgio Calderone
7fccfa2ae1 Updated 2020-04-17 19:07:37 +02:00
Giorgio Calderone
05d887ac9d Send .term command at reset (to override .gnuplotrc) 2020-04-17 17:56:54 +02:00
Giorgio Calderone
7bff6fc9a7 Added term, term_png and term_svg fields in Options 2020-04-17 16:13:57 +02:00
Giorgio Calderone
d94e491522 Implemented show() interface for Juno, Jupyter, etc. 2020-04-17 14:57:16 +02:00
Giorgio Calderone
7759d0fd9e Updated 2020-04-17 14:56:10 +02:00
Giorgio Calderone
c65c9d5db7 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-17 14:37:44 +02:00
gcalderone
6798c8115e
Merge pull request #17 from fredrikekre/fe/show
WIP: Implement Julia's show machinery.
2020-04-17 14:37:04 +02:00
Giorgio Calderone
cd788c8f48 Added Github stars badge 2020-04-17 13:20:29 +02:00
Giorgio Calderone
45dbec8db8 Updated 2020-04-17 11:55:29 +02:00
Giorgio Calderone
3a094601b5 Updated 2020-04-16 22:56:22 +02:00
Giorgio Calderone
cb3bdb60ea Docs updated 2020-04-16 22:53:47 +02:00
Giorgio Calderone
4a0b6201c5 Bugfix 2020-04-16 20:32:23 +02:00
Giorgio Calderone
379cfdc806 Docs updated; delayed parsing of keyword 2020-04-16 20:18:42 +02:00
Giorgio Calderone
97069d4305 Docs updated 2020-04-16 18:49:35 +02:00
Giorgio Calderone
52e2227c08 Margin keyword now accepts a NamedTuple (such as the one returned by gmargins() 2020-04-16 18:43:24 +02:00
Giorgio Calderone
ad624bebf1 Docs updated 2020-04-16 14:24:34 +02:00
Giorgio Calderone
6a04709525 Updated 2020-04-16 14:24:05 +02:00
Giorgio Calderone
519731e4dd Docs updated 2020-04-16 14:16:01 +02:00
Giorgio Calderone
70e12809c4 Docs updated 2020-04-16 14:01:54 +02:00
Giorgio Calderone
2bb942c80a Updated image recipes 2020-04-16 14:00:52 +02:00
Giorgio Calderone
b8e03fa477 Drop duplicated using clause 2020-04-16 13:23:15 +02:00
Giorgio Calderone
530bde6bc8 Docstrings updated 2020-04-16 11:22:29 +02:00
Giorgio Calderone
a0f3b71493 Added gpmargins and gpranges function 2020-04-16 11:06:42 +02:00
Giorgio Calderone
4fe3b81a8b Minor changes 2020-04-16 03:03:09 +02:00
Giorgio Calderone
43138ac47b Minor changes 2020-04-16 03:00:46 +02:00
Giorgio Calderone
79a5bfc12f Fixed writing of Matrices (follows Julia order) 2020-04-16 02:23:22 +02:00
Giorgio Calderone
47a988246d Accept Dataset in arguments 2020-04-16 00:30:23 +02:00
Giorgio Calderone
3c06aba985 Docs updated 2020-04-15 23:19:30 +02:00
Giorgio Calderone
83084913e8 Docs updated 2020-04-15 23:18:47 +02:00
Giorgio Calderone
ca17be8db3 Use binary files to send Vararg{AbstractVector, N} 2020-04-15 19:45:13 +02:00
Fredrik Ekre
611019f2df WIP: Implement Julia's show machinery. 2020-04-15 14:06:19 +02:00
Giorgio Calderone
29cdaaa8e5 Dropped Dataset as acceptable input; implemented gpvars() 2020-04-15 11:20:49 +02:00
Giorgio Calderone
44a7ea2ecd Refactored parsing of input arguments 2020-04-15 01:37:54 +02:00
Giorgio Calderone
0e147f8c13 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-14 12:21:53 +02:00
Giorgio Calderone
821b00d682 Docs updated 2020-04-14 12:21:46 +02:00
Giorgio Calderone
f8d239d9c2 Fixed recipe interface; DatasetBin methods for images are now implemented as recipes 2020-04-14 12:21:34 +02:00
gcalderone
28b1ee2898
Merge pull request #16 from carlobaldassi/cb/typos
Fix docs typos
2020-04-14 11:45:18 +02:00
Carlo Baldassi
c8521d60c1 Fix docs typos 2020-04-14 11:25:30 +02:00
Giorgio Calderone
7a647f08e1 Docs updated 2020-04-13 20:34:36 +02:00
Giorgio Calderone
308c89d356 Fixed autocompletion for gnuplot REPL 2020-04-13 20:34:06 +02:00
Giorgio Calderone
d854443fc2 Docs updated 2020-04-13 19:25:07 +02:00
Giorgio Calderone
21bc959570 Updated 2020-04-13 19:24:45 +02:00
Giorgio Calderone
ef99fe5e4a gnuplot repl no longer requires a global state to print returned strings 2020-04-13 19:09:27 +02:00
Giorgio Calderone
5482b64f71 Added Options.reset; Added lw, ps, dashed keywords to linetypes() 2020-04-13 18:53:36 +02:00
Giorgio Calderone
f12bf94249 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-13 01:35:31 +02:00
Giorgio Calderone
0e44232adc v1.2.0 features added 2020-04-13 01:35:05 +02:00
gcalderone
e846ba7974
Update README.md 2020-04-12 17:17:53 +02:00
gcalderone
b00b9014c2
Updated after #15 2020-04-12 17:17:17 +02:00
Giorgio Calderone
983b9d6fb3 Added ChangeLog.md 2020-04-12 01:43:40 +02:00
Giorgio Calderone
feaf286abc Bump version (1.2.0) 2020-04-12 01:43:04 +02:00
Giorgio Calderone
f2d5200b06 Allow for customized data input 2020-04-12 01:40:59 +02:00
Giorgio Calderone
02740b9eed Minor changes 2020-04-12 00:53:52 +02:00
Giorgio Calderone
29ad51fe9f Fixed writing output in gnuplot repl mode 2020-04-12 00:49:02 +02:00
Giorgio Calderone
2d9537edc4 Minor changes 2020-04-12 00:39:21 +02:00
Giorgio Calderone
41d7cb991a Minor changes 2020-04-12 00:36:11 +02:00
Giorgio Calderone
3505403499 Added repl_init; Added gpreadline to cope with pager output and repl 2020-04-11 23:40:19 +02:00
Giorgio Calderone
9bb35931b6 Bugfix: add second black line to separate iso-contour lines; Make a copy input Vector{String} datasets 2020-04-11 15:22:41 +02:00
Giorgio Calderone
c2dbb2a946 Docs updated 2020-04-11 09:58:38 +02:00
20 changed files with 2054 additions and 654 deletions

View File

@ -6,15 +6,15 @@ os:
# - osx
julia:
- 1.2
- nightly
- 1.5
# - nightly
notifications:
email: false
matrix:
allow_failures:
- julia: nightly
#matrix:
# allow_failures:
# - julia: nightly
addons:
apt:

121
ChangeLog.md Normal file
View File

@ -0,0 +1,121 @@
# Version 1.4.1 (released on: )
- New features:
* Implicit recipes can now returns a `Vector{PlotElement}`;
* Allow using single quotes in output file names (#52);
* New function: `palette_levels()` can be used to modify palette levels before passing them to gnuplot;
- Bugfix:
* Fixed `BoundsErrors` in `hist()` (#49);
* Fixed problem when generating documentation (#51);
# Version 1.4.0 (released on: May 5, 2021)
- New features:
* Missing values are accepted if the input arrays have `eltype <:
AbstractFloat`;
* Missing values are also accepted in calls to `hist`;
* VSCode and Pluto sessions are now properly handled (#35 and #43);
- Bugfix:
* Multiplot were not displayed in Jupyter (#25);
* `gpvars()` fails if gnuplot character encoding is utf8
(#24);
# Version 1.3.0 (released on: Apr. 29, 2020)
- New features:
* The new `dgrid3d()` allows to interpolate scattered 2D data on a
2D regular grid;
* The `Options` structure features a new `mime` field containing a
dictionary to map a MIME type to gnuplot terminals;
* The `Options` structure features a new `gpviewer` field allowing
to choose the display behaviour (using either gnuplot
interactive terminals or anexternal viewer such as Jupyter or
Juno);
* The `save()` function now accepts a `MIME` argument in place of
the `term=` keyword. The actual terminal is retrieved from the
`Options.mime` dictionary;
* The `contourlines()` function now accepts `AbstractVector` and
`AbstractMatrix` as arguments, rather than `Vector` and
`Matrix`;
* The `contourlines()` function now accepts a `fractions` input to
generate contours encompassing given fractions of the total
counts in a 2D histogram;
* The `palette()` function now accept a boolean `smooth` keyword,
allowing to interpolate a discrete palette into a continuous one.
- Breaking changes:
* The `Options` structure no longer provides the `term_svg` and
`term_png` fields. They have been replaced by the `mime`
dictionary.
# Version 1.2.0 (released on: Apr. 20, 2020)
- New features:
* REPL mode: a new `Gnuplot.repl_init()` function is available to
install a gnuplot REPL;
* Implemented the "recipe" mechanism: the `recipe()` function can
now be extended to register new implicit recipes to display
data;
* `@gp` and `@gsp` now accepts a `Gnuplot.PlotElements` object,
containing commands, data and plot specifications in a single
argument;
* The `linetypes` function now accept the `lw`, `ps` (to set the
line width and point size respectively), and the `dashed` (to
use dashed patterns in place of solid lines) keywords;
* The new `Gnuplot.options.term::String` field allows to set the
default terminal for interactive sessions;
* New functions: `gpvars()` to retrieve all gnuplot variables,
`gpmargins()` to retrieve current plot margins (in screen
coordinates, `gpranges()` to retrieve current plot axis ranges;
* New keywords accepted by `@gp` and `@gsp`: `lmargin`, `rmargin`,
`bmargin`, `tmargin`, `margins`, to set plot margins;
* Implemented new implicit recipes to display histograms (as
returned by `hist()`), contour lines (as returned by
`contourlines()`) and images;
* Implemented automatic display of plots in both Jupyter and Juno;
* Documentation updated;
- Breaking changes:
* The 2D matrix are now sent to gnuplot in a column-major order,
to comply with Julia array layout;
- Bugfix:
* When a `Vector{String}` is passed to `driver()` it used to be
modified, and couldn't be used again in a second call. Now the
original is preserved;
* `contourlines()` used to return a single blanck line to
distinguish iso-contour lines, and this may cause problems in 3D
plot. Now two blanck lines are returned;
# Version 1.1.0 (released on: Apr. 09, 2020)
- First production ready version;
- Completed documentation and example gallery;

View File

@ -1,22 +1,24 @@
name = "Gnuplot"
uuid = "dc211083-a33a-5b79-959f-2ff34033469d"
version = "1.1.0"
version = "1.4.1"
[deps]
ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
ColorTypes = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
ReplMaker = "b873ce64-0db9-51f5-a568-4457d8e49576"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StructC14N = "d2514e9c-36c4-5b8e-97e2-51e7675c221c"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
julia = "^1.2"
ColorSchemes = "^3.5"
ColorTypes = "^0.10"
ColorSchemes = "^3.12"
ColorTypes = "^0.11"
Colors = "^0.12"
DataStructures = "^0.17"
DataStructures = "^0.18"
ReplMaker = "^0.2"
StatsBase = "^0.33"
StructC14N = "^0.3"
julia = "^1.6"

View File

@ -1,12 +1,12 @@
# Gnuplot.jl
## A Julia interface to Gnuplot.
## A Julia interface to gnuplot.
[![Build Status](https://travis-ci.org/gcalderone/Gnuplot.jl.svg?branch=master)](https://travis-ci.org/gcalderone/Gnuplot.jl)
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md)
[![DocumentationStatus](https://img.shields.io/badge/docs-latest-blue.svg?style=flat)](https://gcalderone.github.io/Gnuplot.jl/v1.1.0/)
[![DocumentationStatus](https://img.shields.io/badge/docs-stable-blue.svg?style=flat)](https://gcalderone.github.io/Gnuplot.jl/v1.4.0/index.html)
**Gnuplot.jl** is a simple package able to send both data and commands from Julia to an underlying [gnuplot](http://gnuplot.sourceforge.net/) process. Its main purpose it to provide a fast and powerful data visualization framework, using an extremely concise Julia syntax.
**Gnuplot.jl** is a simple package able to send both data and commands from Julia to an underlying [gnuplot](http://gnuplot.sourceforge.net/) process. Its main purpose it to provide a fast and powerful data visualization framework, using an extremely concise Julia syntax. It also has automatic display of plots in Jupyter, Juno and VS Code.
## Installation
@ -17,6 +17,16 @@ Install with:
```
A working [gnuplot](http://gnuplot.sourceforge.net/) package must be installed on your platform.
You may check the installed **Gnuplot.jl** version with:
```julia
]st Gnuplot
```
If the displayed version is not v1.4.0 you are probably having a dependency conflict. In this case try forcing installation of the latest version with:
```julia
]add Gnuplot@1.4.0
```
and check which package is causing the conflict.
Test package:
```julia
@ -24,18 +34,17 @@ using Gnuplot
println(Gnuplot.gpversion())
test_terminal()
```
The latest version of **Gnuplot.jl** is 1.1.0.
## Quick start
The following examples are supposed to be self-explaining. See [documentation](https://gcalderone.github.io/Gnuplot.jl/v1.1.0/) for further informations.
The following examples are supposed to be self-explaining. See [documentation](https://gcalderone.github.io/Gnuplot.jl/v1.4.0/) for further informations.
### A simple parabola
```julia
x = 1.:20
@gp x x.^2 "with lines title 'Parabola'"
save(term="pngcairo size 480,360", output="examples/ex1.png")
save("parabola.gp") # => save a script file with both data and command to re-create the plot.
save("parabola.gp") # => save a script file with both data and command to re-create the plot.
```
![ex1.png](examples/ex1.png)
@ -44,9 +53,9 @@ save("parabola.gp") # => save a script file with both data and command to re-cr
```julia
x = -2pi:0.1:2pi
approx = fill(0., length(x));
@gp t="Polynomial approximation of sin(x)" key="opaque" linetypes(:Blues_3)
@gp :- "set encoding utf8" raw"""set xtics ('-π' -pi, 'π/2' -pi/2, 0, 'π/2' pi/2, 'π' pi)"""
@gp :- xr=3.8.*[-1, 1] yr=[-1.5,1.5] "set grid"
@gp tit="Polynomial approximation of sin(x)" key="opaque" linetypes(:Blues_4)
@gp :- "set encoding utf8" raw"""set xtics ('-π' -pi, '-π/2' -pi/2, 0, 'π/2' pi/2, 'π' pi)"""
@gp :- xr=3.8.*[-1, 1] yr=[-1.5,1.5] "set grid front"
@gp :- x sin.(x) approx .+= x "w filledcurve t 'n=0' lt 1"
@gp :- x sin.(x) approx .+= -x.^3/6 "w filledcurve t 'n=1' lt 2"
@gp :- x sin.(x) approx .+= x.^5/120 "w filledcurve t 'n=2' lt 3"
@ -64,7 +73,7 @@ y = randn(10_000)
h = hist(x, y, bs1=0.25, nbins2=20)
@gp "set multiplot layout 1,2"
@gp :- 1 key="outside top center box horizontal" "set size ratio -1" h
clines = contourlines(h.bins1, h.bins2, h.counts, cntrparam="levels discrete 10, 30, 60, 90");
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i lc rgb 'gray'" :-
end

View File

@ -1,4 +1,5 @@
using Documenter, Gnuplot
empty!(Gnuplot.options.mime)
makedocs(sitename="Gnuplot.jl",
authors = "Giorgio Calderone",
@ -9,8 +10,10 @@ makedocs(sitename="Gnuplot.jl",
"Installation" => "install.md",
"Basic usage" => "basic.md",
"Advanced usage" => "advanced.md",
"Package options" => "options.md",
"Style guide" => "style.md",
"Gnuplot terminals" => "terminals.md",
"Plot recipes" => "recipes.md",
"Examples" => "examples.md",
"API" => "api.md"
])

View File

@ -1,17 +1,17 @@
# Advanced usage
Here we will show a few advanced techniques for data visualization using **Gnuplot.jl**.
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
saveas(file) = save(term="pngcairo size 480,360 fontscale 0.8", output="assets/$(file).png")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
gpexec("set term unknown")
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Advanced usage
Here we will show a few advanced techniques for data visualization using **Gnuplot.jl**.
## Named datasets
@ -27,9 +27,9 @@ x = range(-2pi, stop=2pi, length=100);
y = sin.(x)
name = "\$MyDataSet1"
@gp name=>(x, y) "plot $name w l lc rgb 'black'" "pl $name u 1:(1.5*\$2) w l lc rgb 'red'"
saveas("ex010") # hide
saveas("advanced010") # hide
```
![](assets/ex010.png)
![](assets/advanced010.png)
Both curves use the same input data, but the red curve has the second column (`\$2`, corresponding to the *y* value) multiplied by a factor 1.5.
@ -50,32 +50,36 @@ name = "\$MyDataSet1"
The parameter best fit values can be retrieved as follows:
```@example abc
vars = gpvars();
@info("Best fit values:",
a = gpexec("print a"),
b = gpexec("print b"),
c = gpexec("print c"))
a = vars.a,
b = vars.b,
c = vars.c)
```
A named dataset is available until the session is reset, i.e. as long as `:-` is used as first argument to `@gp`.
## Multiplot
**Gnuplot.jl** can draw multiple plots in the same figure by exploiting the `multiplot` command. Each plot is identified by a positive integer number, which can be used as argument to `@gp` to redirect commands to the appropriate plot.
Continuing with the previous example we can plot both data and best fit model (in plot `1`) and residuals (in plot `2`):
Recycling data from the previous example we can plot both data and best fit model (in plot `1`) and residuals (in plot `2`):
```@example abc
@gp "f(x) = a * sin(b + c*x)"
@gp :- "a=$(vars.a)" "b=$(vars.b)" "c=$(vars.c)"
@gp :- name=>(x, y, err)
@gp :- "set multiplot layout 2,1"
@gp :- 1 "p $name w errorbars t 'Data'"
@gp :- "p $name u 1:(f(\$1)) w l t 'Best fit model'"
@gp :- 2 "p $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars t 'Resid. [{/Symbol s}]'"
@gp :- [extrema(x)...] [0,0] "w l notit dt 2 lc rgb 'black'" # reference line
saveas("ex011") # hide
saveas("advanced011") # hide
```
![](assets/ex011.png)
![](assets/advanced011.png)
Note that the order of the plots is not relevant, i.e. we would get the same results with:
```julia
@gp "f(x) = a * sin(b + c*x)"
@gp :- "a=$(vars.a)" "b=$(vars.b)" "c=$(vars.c)"
@gp :- name=>(x, y, err)
@gp :- "set multiplot layout 2,1"
@gp :- 2 "p $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars t 'Resid. [{/Symbol s}]'"
@gp :- [extrema(x)...] [0,0] "w l notit dt 2 lc rgb 'black'" # reference line
@ -83,6 +87,52 @@ Note that the order of the plots is not relevant, i.e. we would get the same res
@gp :- "p $name u 1:(f(\$1)) w l t 'Best fit model'"
```
## Customized layout
It is also possible to customize the plot layout using the margin keywords (see [Histograms](@ref) for further info on how to generate andi display histograms):
```@example abc
# Generate random numbers
x = randn(1000);
y = randn(1000);
# Overall plot margins (normalized in the range 0:1)
margins = (l=0.08, r=0.98, b=0.13, t=0.98)
# Right and top margins of main plot
right, top = 0.8, 0.75
# Gap between main plot and histograms
gap = 0.015
# Main plot
@gp "set multiplot"
@gp :- 1 ma=margins rma=right tma=top :-
@gp :- x y "w p notit" xlab="X" ylab="Y"
xr = gpranges().x # save current X range
yr = gpranges().y # save current Y range
# Histogram on X
h = hist(x, nbins=10)
@gp :- 2 ma=margins bma=top+gap rma=right :-
@gp :- "set xtics format ''" "set ytics format ''" xlab="" ylab="" :-
bs = fill(h.binsize, length(h.bins));
@gp :- xr=xr h.bins h.counts./2 bs./2 h.counts./2 "w boxxy notit fs solid 0.4" :-
# Histogram on Y
h = hist(y, nbins=10)
@gp :- 3 ma=margins lma=right+gap tma=top :-
@gp :- "unset xrange" :-
bs = fill(h.binsize, length(h.bins));
@gp :- yr=yr h.counts./2 h.bins h.counts./2 bs./2 "w boxxy notit fs solid 0.4" :-
@gp
saveas("advanced011b") # hide
```
![](assets/advanced011b.png)
### Mixing 2D and 3D plots
A multiplot can also mix 2D and 3D plots:
@ -97,9 +147,9 @@ x = y = -10:0.33:10
sinc2d(x,y) = sin.(sqrt.(x.^2 + y.^2))./sqrt.(x.^2+y.^2)
fxy = [sinc2d(x,y) for x in x, y in y]
@gsp :- 2 x y fxy "w pm3d notit"
saveas("ex012") # hide
saveas("advanced012") # hide
```
![](assets/ex012.png)
![](assets/advanced012.png)
## Multiple sessions
@ -112,7 +162,7 @@ In order to redirect commands to a specific session simply insert a symbol into
@gp :GP2 "plot sin(x)" # opens secondo window
@gp :- :GP1 "plot cos(x)" # add a plot on first window
```
The session ID can appear in every position in the argument list, but only one ID can be present in each call. If the session ID is not specified the `:default` session is considered.
The session ID can appear in every position in the argument list, but only one ID can be present in each call. If the session ID is not specified the `:default` session is used.
The names of all current sessions can be retrieved with [`session_names()`](@ref):
```@repl abc
@ -128,69 +178,145 @@ The output value is the exit status of the underlying gnuplot process.
You may also quit all active sessions at once with [`Gnuplot.quitall()`](@ref):
```@repl abc
Gnuplot.quitall()
gpexec("set term unknown") # hide
```
## Histograms
**Gnuplot.jl** provides facilities to compute and display histograms, through the [`hist()`](@ref) function. E.g., to quickly preview an histogram:
**Gnuplot.jl** provides facilities to compute and display histograms, e.g.:
```@example abc
x = randn(1000);
@gp hist(x)
saveas("ex013a") # hide
saveas("advanced013a") # hide
```
![](assets/ex013a.png)
![](assets/advanced013a.png)
A finer control on the output is achieved by setting the range to consider (`range=` keyword) and either the bin size (`bs=`) or the total number of bins (`nbins=`) in the histogram. See [`hist()`](@ref) documentation for further information.
Moreover, the [`hist()`](@ref) return a [`Gnuplot.Histogram1D`](@ref) structure, whose content can be exploited to customize histogram appearence, e.g.:
The [`hist()`](@ref) function also accept keywords to set the range to consider (`range=` keyword) and either the bin size (`bs=`) or the total number of bins (`nbins=`) in the histogram. A finer control on the output is achieved by exploiting the fields of the returned ([`Gnuplot.Histogram1D`](@ref)) structure, e.g.:
```@example abc
x = randn(1000);
h = hist(x, range=3 .* [-1,1], bs=0.5)
@gp h.bins h.counts "w histep t 'Data' lc rgb 'red'"
saveas("ex013b") # hide
saveas("advanced013b") # hide
```
![](assets/ex013b.png)
![](assets/advanced013b.png)
**Gnuplot.jl** also allows to compute 2D histograms by passing two vectors (with the same lengths) to [`hist()`](@ref). A quick preview is simply obtained by:
The [`hist()`](@ref) function compute also 2D histograms by passing two vectors (with the same lengths), e.g.:
```@example abc
x = randn(10_000)
y = randn(10_000)
@gp "set size ratio -1" hist(x, y)
saveas("ex014a") # hide
h = hist(x, y)
@gp h
saveas("advanced014a") # hide
```
![](assets/ex014a.png)
![](assets/advanced014a.png)
Again, a finer control can be achieved by specifying ranges, bin size or number of bins (along both dimensions) and by explicitly using the content of the returned [`Gnuplot.Histogram2D`](@ref) structure:
```@example abc
x = randn(10_000)
y = randn(10_000)
h = hist(x, y, bs1=0.25, nbins2=20, range1=[-3,3], range2=[-3,3])
@gp "set size ratio -1" h.bins1 h.bins2 h.counts "w image notit"
saveas("ex014b") # hide
saveas("advanced014b") # hide
```
![](assets/ex014b.png)
![](assets/advanced014b.png)
Alternatively, 2D histograms may be displayed using the `boxxyerror` plot style which allows more flexibility in, e.g., handling transparencies and drawing the histogram grid. In this case the data can be prepared using the [`boxxyerror()`](@ref) function, as follows:
Alternatively, 2D histograms may be displayed using the `boxxyerror` plot style which allows more flexibility in, e.g., handling transparencies and drawing the histogram grid. In this case the data can be prepared using the [`boxxy()`](@ref) function, as follows:
```@example abc
box = boxxyerror(h.bins1, h.bins2, cartesian=true)
@gp "set size ratio -1" "set style fill solid 0.5 border lc rgb 'gray'" :-
@gp :- box... h.counts "w boxxyerror notit lc pal"
saveas("ex014c") # hide
@gp :- boxxy(h) "w boxxy notit lc pal"
saveas("advanced014c") # hide
```
![](assets/ex014c.png)
![](assets/advanced014c.png)
## Contour lines
Although gnuplot already handles contours by itself (with the `set contour` command), **Gnuplot.jl** provides a way to calculate contour lines paths before displaying them, using the [`contourlines()`](@ref) function. We may use it for, e.g., plot contour lines with customized widths and palette, according to their z level. Continuing with the previous example:
Although gnuplot already handles contours by itself (with the `set contour` command), **Gnuplot.jl** provides a way to calculate contour lines paths before displaying them, using the [`contourlines()`](@ref) function. We may preview such lines with:
```@example abc
clines = contourlines(h.bins1, h.bins2, h.counts, cntrparam="levels discrete 10, 30, 60, 90");
x = randn(10_000)
y = randn(10_000)
h = hist(x, y)
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
@gp clines
saveas("advanced014d") # hide
```
![](assets/advanced014d.png)
By exploiting the fields of the [`Gnuplot.IsoContourLines`](@ref) structure we may also customize line widths, colors and dashed pattern according to their z level, and plot them on top of the 2D histogram:
```@example abc
@gp "set size ratio -1" "set style fill solid 0.5 border lc rgb 'gray'" :-
@gp :- boxxy(h) "w boxxy notit lc pal"
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i lc pal" :-
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i dt $i lc pal" :-
end
@gp :- key="outside top center box horizontal"
saveas("ex014d") # hide
saveas("advanced014e") # hide
```
![](assets/ex014d.png)
![](assets/advanced014e.png)
The [`contourlines()`](@ref) function also allows to calculate the contour lines encompassing a given fraction of the total counts of a 2D histogram. E.g. to plot the contours corresponding to 1, 2, and 3 $\sigma$ of a 2D Gaussian distribution:
```@example abc
x = randn(10^5);
y = randn(10^5);
h = hist(x, y, nbins1=20, nbins2=20);
# Calculate probability within 0 < r < σ
p(σ) = round(1 - exp(-(σ^2) / 2), sigdigits=3)
# Draw contour lines at 1, 2 and 3 σ
clines = contourlines(h, p.(1:3));
@gp palette(:beach, smooth=true, rev=true) "set grid front" "set size ratio -1" h clines
saveas("advanced014f") # hide
```
![](assets/advanced014f.png)
## Interpolation of 2D scattered data
The `dgrid3d()` function allows to interpolate 2D scattered data onto a 2D regular grid, e.g.:
```@example abc
x = (rand(200) .- 0.5) .* 3;
y = (rand(200) .- 0.5) .* 3;
z = exp.(-(x.^2 .+ y.^2));
# Interpolate on a 20x30 regular grid with splines
gx, gy, gz = dgrid3d(x, y, z, "20,30 splines")
@gsp "set size ratio -1" "set xyplane at 0" xlab="X" ylab="Y" :-
@gsp :- x y z "w p t 'Scattered data' lc pal"
@gsp :- gx gy gz "w l t 'Interpolation on a grid' lc pal"
saveas("advanced015a") # hide
```
![](assets/advanced015a.png)
!!! warn
The `splines` algorithm may be very slow on large datasets. An alternative option is to use a smoothing kernel, such as `gauss`.
The interpolated data in scarcely sampled regions are poorly constrained, i.e. they are actually *extrapolated values*. By using the `extra=false` keyword all extrapolated values are set to `NaN`:
```@example abc
x = randn(2000) .* 0.5;
y = randn(2000) .* 0.5;
rsq = x.^2 + y.^2;
z = exp.(-rsq) .* sin.(y) .* cos.(2 * rsq);
@gsp "set size ratio -1" palette(:balance, smooth=true) "set view map" "set pm3d" :-
@gsp :- "set multiplot layout 1,3" xr=[-2,2] yr=[-2,2] :-
@gsp :- 1 tit="Scattered data" x y z "w p notit lc pal"
# Show extrapolated values
gx, gy, gz = dgrid3d(x, y, z, "40,40 gauss 0.1,0.1")
@gsp :- 2 tit="Interpolation on a grid\\n(extrapolated values are shown)" gx gy gz "w l notit lc pal"
# Hide exrapolated values
gx, gy, gz = dgrid3d(x, y, z, "40,40 gauss 0.1,0.1", extra=false)
@gsp :- 3 tit="Interpolation on a grid\\n(extrapolated values are hidden)" gx gy gz "w l notit lc pal"
save(term="pngcairo size 1000,400 fontscale 1.0", output="assets/advanced015b.png") # hide
```
![](assets/advanced015b.png)
## Animations
@ -218,63 +344,31 @@ save(term="gif animate size 480,360 delay 5", output="assets/animation.gif")
## Direct command execution
When gnuplot commands are passed to `@gp` or `@gsp` they are stored in a session for future use, or to be saved in [Gnuplot scripts](@ref). If you simply wish to execute a command, without storing it in the session, use [`gpexec`](@ref). E.g. if you wish to temporarily change the current terminal:
```@repl abc
gpexec("set term wxt");
```
The gnuplot process replies are returned as a string, e.g.:
When gnuplot commands are passed to `@gp` or `@gsp` they are stored in a session for future use, or to be saved in [Gnuplot scripts](@ref). If you simply wish to execute a command without storing it in the session, and possibly retrieve a value, use [`gpexec`](@ref). E.g., to retrieve the value of a gnuplot variable:
```@repl abc
gpexec("print GPVAL_TERM")
gpexec("set term unknown") #hide
```
You may also provide a session ID as first argument (see [Multiple sessions](@ref)) to redirect the command to a specific session.
Alternatively you may start the [The gnuplot REPL](@ref) to type commands directly from the Julia prompt.
## The gnuplot REPL
The **Gnuplot.jl** package comes with a built-in REPL mode to directly send commands to the underlying gnuplot process. Since the REPL is a global resource, the gnuplot mode is not enabled by default. You can start it with:
```julia
Gnuplot.repl_init(start_key='>')
```
The customizable `start_key` character is the key which triggers activation of the REPL mode. To quit the gnuplot REPL mode hit the `backspace` key.
## Dry sessions
A "*dry session*" is a session with no underlying gnuplot process. To enable dry sessions type:
```@repl abc
```julia
Gnuplot.options.dry = true;
Gnuplot.options.dry = false #hide
```
before starting a session (see also [Options](@ref)). Note that the `dry` option is a global one, i.e. it affects all sessions started after setting the option.
Clearly, no plot can be generated in dry sessions. Still, they are useful to run **Gnuplot.jl** code without raising errors (no attempt will be made to communicate with the underlying process). Moreover, [Gnuplot scripts](@ref) can also be generated in a dry session, without the additional overhead of sending data to the gnuplot process.
If a gnuplot process can not be started the package will print a warning, and automatically enable dry sessions.
## Options
Thepackage options are stored in a global structure available in Julia as `Gnuplot.option` (the type of the structure is [`Gnuplot.Options`](@ref)). The most important settings are as follows:
- `dry::Bool`: if true all new sessions will be started [Dry sessions](@ref). Default is `false`, but if the package is not able to start a gnuplot it will automatically switch to `false`;
- `init::Vector{String}`: This vector can be used to `push!` initialization commands to be executed when a new session is started. Default is an empty vector. It can be used to, e.g., set a custom terminal for all new sessions:
```@repl abc
push!(Gnuplot.options.init, "set term sixelgd");
```
Note that this is a global option, i.e. it will affect all new sessions. Also note that the commands in `Gnuplot.options.init` are not saved in [Gnuplot scripts](@ref);
- `verbose::Bool`: a flag to set verbosity of the package. In particular if it is `true` all communication with the underlying process will be printed on stdout. E.g.:
```@repl abc
gpexec("set term wxt") #hide
Gnuplot.options.verbose = true;
x = 1.:10;
@gp x x.^2 "w l t 'Parabola'"
save(term="pngcairo size 480,360 fontscale 0.8", output="output.png")
```
Each line reports the package name (`GNUPLOT`), the session name (`default`), the command or string being sent to gnuplot process, and the returned response (line starting with `->`). Default value is `false`;
```@setup abc
Gnuplot.options.verbose = false
gpexec("set term unknown")
```
- `cmd::String`: command to start the gnuplot process, default value is `"gnuplot"`. If you need to specify a custom path to the gnuplot executable you may change this value;
- `default::Symbol`: default session name, i.e. the session that will be used when no session name is provided;
- `preferred_format::Symbol`: preferred format to send data to gnuplot. Value must be one of:
- `bin`: provides best performances for large datasets, but uses temporary files;
- `text`: may be slow for large datasets, but no temporary file is involved;
- `auto` (default) automatically choose the best strategy.

View File

@ -10,14 +10,20 @@ The list of **Gnuplot.jl** exported symbols is as follows:
```@docs
@gp
@gsp
boxxyerror
boxxy
contourlines
dataset_names
dgrid3d
gpexec
gpmargins
gpranges
gpvars
hist
linetypes
palette
palette_levels
palette_names
recipe
save
session_names
stats
@ -33,13 +39,19 @@ The following functions are not exported by the **Gnuplot.jl** package since the
In order to call these functions you should add the `Gnuplot.` prefix to the function name.
```@docs
Gnuplot.Dataset
Gnuplot.DatasetEmpty
Gnuplot.DatasetText
Gnuplot.DatasetBin
Gnuplot.Histogram1D
Gnuplot.Histogram2D
Gnuplot.IsoContourLines
Gnuplot.Options
Gnuplot.Path2d
Gnuplot.PlotElement
Gnuplot.gpversion
Gnuplot.quit
Gnuplot.quitall
Gnuplot.repl_init
Gnuplot.version
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -3,9 +3,10 @@ using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.splash("assets/logo.png")
saveas(file) = save(term="pngcairo size 480,360 fontscale 0.8", output="assets/$(file).png")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
gpexec("set term unknown")
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Basic usage
@ -14,13 +15,16 @@ The main purpose of the **Gnuplot.jl** package is to send data and commands to t
The most important symbols exported by the package are the [`@gp`](@ref) (for 2D plots) and [`@gsp`](@ref) (for 3D plots) macros. The simplemost example is as follows:
```@example abc
using Gnuplot
@gp 1:20
saveas("ex000") # hide
saveas("basic000") # hide
```
![](assets/ex000.png)
![](assets/basic000.png)
The plots are displayed either in an interactive window (if running in the Julia REPL), as an inline image (if running in Jupyter) or in the plot pane (if running in Juno). See [Display options](@ref) for further informations.
Both macros accept any number of arguments, whose meaning is interpreted as follows:
Both the [`@gp`](@ref) and [`@gsp`](@ref) macros accept any number of arguments, whose meaning is interpreted as follows:
- one, or a group of consecutive, array(s) build up a dataset. The different arrays are accessible as columns 1, 2, etc. from the gnuplot process. The number of required input arrays depends on the chosen plot style (see gnuplot documentation);
@ -53,17 +57,17 @@ before running the examples.
#### Plot a sinusoid:
```@example abc
@gp "plot sin(x)"
saveas("ex001") # hide
saveas("basic001") # hide
```
![](assets/ex001.png)
![](assets/basic001.png)
---
#### Plot two curves:
```@example abc
@gp "set key left" "plot sin(x)" "pl cos(x)"
saveas("ex002") # hide
saveas("basic002") # hide
```
![](assets/ex002.png)
![](assets/basic002.png)
!!! note
Note that all gnuplot commands can be abbreviated as long as the resulting string is not ambiguous. In the example above we used `pl` in place of `plot`.
@ -74,9 +78,9 @@ saveas("ex002") # hide
@gp "set grid" :-
@gp :- "p sin(x)" :-
@gp :- "plo cos(x)"
saveas("ex003") # hide
saveas("basic003") # hide
```
![](assets/ex003.png)
![](assets/basic003.png)
!!! note
The trailing `:-` symbol means the plot will not be updated until the last statement.
@ -86,9 +90,9 @@ saveas("ex003") # hide
#### Plot a parabola
```@example abc
@gp (1:20).^2
saveas("ex004") # hide
saveas("basic004") # hide
```
![](assets/ex004.png)
![](assets/basic004.png)
---
@ -96,9 +100,9 @@ saveas("ex004") # hide
```@example abc
x = 1:20
@gp "set key left" x ./ 20 x.^2 "with lines tit 'Parabola'"
saveas("ex005") # hide
saveas("basic005") # hide
```
![](assets/ex005.png)
![](assets/basic005.png)
---
#### Multiple datasets, logarithmic axis, labels and colors, etc.
@ -109,9 +113,9 @@ x = 1:0.1:10
@gp :- x x.^0.5 "w l tit 'Pow 0.5' dt 2 lw 2 lc rgb 'red'"
@gp :- x x "w l tit 'Pow 1' dt 1 lw 3 lc rgb 'blue'"
@gp :- x x.^2 "w l tit 'Pow 2' dt 3 lw 2 lc rgb 'purple'"
saveas("ex006") # hide
saveas("basic006") # hide
```
![](assets/ex006.png)
![](assets/basic006.png)
!!! note
The above example lacks the trailing `:-` symbol. This means the plot will be updated at each command, adding one curve at a time.
@ -132,6 +136,11 @@ In order to avoid typing long, and very frequently used gnuplot commands, **Gnup
- `xlog=true` => `set logscale x`;
- `ylog=true` => `set logscale y`;
- `zlog=true` => `set logscale z`;
- `margins=...` => `set margins ...`;
- `lmargin=...` => `set lmargin ...`;
- `rmargin=...` => `set rmargin ...`;
- `bmargin=...` => `set bmargin ...`;
- `tmargin=...` => `set tmargin ...`;
All such keywords can be abbreviated to unambiguous names.
@ -148,39 +157,31 @@ can be replaced with a shorter version:
where `NaN` in the `xrange` keyword means using axis autoscaling.
## Plot images
## Plot matrix as images
**Gnuplot.jl** can also display images, i.e. 2D arrays:
**Gnuplot.jl** can display a 2D matrix as an image:
```@example abc
img = randn(Float64, 30, 50)
img[10,:] .= -5
img = randn(Float64, 8, 5)
img[2,:] .= -5
@gp img "w image notit"
saveas("ex007a") # hide
saveas("basic007a") # hide
```
![](assets/ex007a.png)
![](assets/basic007a.png)
Note that the first index in the `img` matrix corresponds to the `x` coordinate when the image is displayed.
Note that the first index in the `img` matrix corresponds to the rows in the displayed image.
If the orientation is not the correct one you may adjust it with the gnuplot `rotate=` keyword (the following example requires the `TestImages` package to be installed):
A simple way to remember the convention is to compare how a matrix is displayed in the REPL:
```@example abc
using TestImages
img = testimage("lighthouse");
@gp "set size square" "set autoscale fix" img "rotate=-90deg with rgbimage notit"
saveas("ex007b") # hide
img = reshape(1:15, 5, 3)
```
![](assets/ex007b.png)
To display a gray image use `with image` in place of `with rgbimage`, e.g.:
and its image representation, which is essentially upside down (since the Y coordinates increase upwards):
```@example abc
img = testimage("walkbridge");
@gp palette(:viridis) "set size square" "set autoscale fix" img "rotate=-0.5pi with image notit"
saveas("ex007c") # hide
@gp img "w image notit"
saveas("basic007b") # hide
```
![](assets/ex007c.png)
Note that we used a custom palette (`:lapaz`, see [Palettes and line types](@ref)) and the rotation angle has been expressed in radians (`-0.5pi`).
![](assets/basic007b.png)
Also note that the `img[1,1]` pixel is shown at coordinates x=0, y=0. See [Image recipes](@ref) for further info.
## [3D plots](@id plots3d)
@ -189,10 +190,10 @@ Note that we used a custom palette (`:lapaz`, see [Palettes and line types](@ref
E.g., to plot a spiral increasing in size along the `X` direction:
```@example abc
x = 0:0.1:10pi
@gsp cbr=[-1,1].*30 x sin.(x) .* x cos.(x) .* x x./20 "w p pt 7 ps var lc pal"
saveas("ex008") # hide
@gsp cbr=[-1,1].*30 x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008") # hide
```
![](assets/ex008.png)
![](assets/basic008.png)
Note that the fourth array in the dataset, `x./20`, is used as by gnuplot as point size (`ps var`). Also note that all the keywords discussed above can also be used in 3D plots.
@ -204,22 +205,20 @@ A gnuplot-compliant palette can be retrieved with [`palette()`](@ref), and used
```@example abc
x = 0:0.1:10pi
@gsp palette(:viridis) cbr=[-1,1].*30 :-
@gsp :- x sin.(x) .* x cos.(x) .* x x./20 "w p pt 7 ps var lc pal"
saveas("ex008a") # hide
@gsp :- x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008a") # hide
```
![](assets/ex008a.png)
![](assets/basic008a.png)
The [ColorSchemes](https://juliagraphics.github.io/ColorSchemes.jl/stable/basics/#Pre-defined-schemes-1) palettes can also be used to generate line types (actually just line colors), by means of the [`linetypes()`](@ref) function, e.g.
The palette levels may be easily stretched by using the [`palette_levels()`](@ref) and modifying the numeric levels, e.g.:
```@example abc
@gp linetypes(:deepsea)
x = 1:0.1:4pi
for i in 1:5
@gp :- x i.* sin.(x) "w l notit lw 5"
end
saveas("ex009") # hide
x = 0:0.1:10pi
v, l, n = palette_levels(:viridis)
@gsp palette(v.^0.25, l, n) cbr=[-1,1].*30 :-
@gsp :- x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008b") # hide
```
![](assets/ex009.png)
![](assets/basic008b.png)
The list of all available palette can be retrieved with [`palette_names()`](@ref):
```@repl abc
@ -227,9 +226,38 @@ palette_names()
```
The [ColorSchemes](https://juliagraphics.github.io/ColorSchemes.jl/stable/basics/#Pre-defined-schemes-1) palettes can also be used to generate line type colors, and optionally the line width, point size and dashed pattern, by means of the [`linetypes()`](@ref) function, e.g.
```@example abc
@gp key="left" linetypes(:Set1_5, lw=2)
for i in 1:10
@gp :- i .* (0:10) "w lp t '$i'"
end
saveas("basic009a") # hide
```
![](assets/basic009a.png)
```@example abc
@gp key="left" linetypes(:Set1_5, dashed=true, ps=2)
for i in 1:10
@gp :- i .* (0:10) "w lp t '$i'"
end
saveas("basic009b") # hide
```
![](assets/basic009b.png)
The first plot features the `:Set1_5` palette, with solid lines whose width is 2 times the default. The second plot shows the same palette but default line widths are 1, default point size is 2 (for the first N line types, where N is the number of discrete colors in the palette), and the dashed pattern is automatically changed.
As discussed in [Options](@ref), you may set a default line types for all plots with:
```julia
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
```
All plot in this documentation were generated with these settings.
## Exporting plots to files
**Gnuplot.jl** to export all plots (as well as multiplots, see [Multiplot](@ref)) to an external file using one of the many available gnuplot terminals. To check which terminals are available in your platform type:
**Gnuplot.jl** can export all plots (as well as multiplots, see [Multiplot](@ref)) to an external file using one of the many available gnuplot terminals. To check which terminals are available in your platform type:
```@repl abc
terminals()
```
@ -237,13 +265,13 @@ terminals()
Once you choose the proper terminal (i.e. format of the exported file), use the [`save()`](@ref) function to export. As an example, all the plots in this page have been saved with:
```julia
save(term="pngcairo size 480,360 fontscale 0.8", output="assets/output.png")
save(term="pngcairo size 550,350 fontscale 0.8", output="assets/output.png")
```
Note that you can pass both the terminal name and its options via the `term=` keyword. See [Gnuplot terminals](@ref) for further info on the terminals.
## Gnuplot scripts
Besides exporting plots in a file **Gnuplot.jl** can also save a *script*, i.e. a file containing the minimum set of data and commands required to re-create a figure using just gnuplot.
Besides exporting plots in image files, **Gnuplot.jl** can also save a *script*, i.e. a file containing the minimum set of data and commands required to re-create a figure using just gnuplot.
The script allows a complete decoupling of plot data and aethetics, from the Julia code used to generate them. With scripts you can:
- modify all aesthetic details of a plot without re-running the (possibly complex and time-consuming) code used to generate it;
@ -257,7 +285,7 @@ after the plot has been displayed. Note that when images or large datasets are
E.g., the following code:
```julia
```@example abc
x = 1:10
@gp x x.^2 "w l"
save("script1.gp")
@ -283,24 +311,25 @@ set output
```
While the following:
```julia
img = testimage("lighthouse");
@gp "set size square" "set autoscale fix" img "rotate=-90deg with rgbimage notit"
```@example abc
img = randn(100, 300);
@gp "set size ratio -1" "set autoscale fix" img "flipy with image notit"
save("script2.gp")
```
will produce:
```
reset session
set size square
set size ratio -1
set autoscale fix
plot \
'./script2_data/jl_vH8X4k' binary array=(512, 768) rotate=-90deg with rgbimage notit
'./script2_data/jl_OQrt9A' binary array=(300, 100) flipy with image notit
set output
```
The above scripts can be loaded into a pure gnuplot session (Julia is no longer needed) as follows:
```
gunplot> load 'script1.gp'
gunplot> load 'script2.gp'
```
to generate a plot identical to the original one.

View File

@ -1,5 +1,7 @@
# Gnuplot.jl
## A Julia interface to gnuplot.
[![Stars](https://img.shields.io/github/stars/gcalderone/Gnuplot.jl?style=social)](https://github.com/gcalderone/Gnuplot.jl)
The **Gnuplot.jl** package allows easy and fast use of [gnuplot](http://gnuplot.info/) as a data visualization tool in Julia. Have a look at [Basic usage](@ref) and [Examples](@ref) for a quick overview. The package main features are:
@ -19,11 +21,16 @@ The **Gnuplot.jl** package allows easy and fast use of [gnuplot](http://gnuplot.
- enhanced support for contour plots;
- 2D interpolation of scattered data on a regular grid;
- export to a huge number of formats such as `pdf`, `png`, `gif`, ``\LaTeX``, `svg`, etc. (actually all those supported by gnuplot);
- compatibility with Jupyter and Juno;
- save sessions into gnuplot scripts, to enable easy plot customization and reproducibility.
If you're unfamiliar with gnuplot have a look at:
- [Main gnuplot site](http://gnuplot.info/)
- [gnuplot FAQ](http://gnuplot.info/faq/index.html)
@ -33,6 +40,7 @@ If you're unfamiliar with gnuplot have a look at:
A powerful plotting framework is among the most important tool in the toolbox of any modern scientist and engineer. As such, it is hard to find a single package to fit all needs, and many solutions are indeed available in the Julia [ecosystem](https://github.com/JuliaPlots).
**Gnuplot.jl** package fills the niche of users who needs:
1. publication-quality plots, by exploiting the capabilities of a widely used tool such as gnuplot, and its many output formats available;
1. a well-documented framework, by taking advantage of all the gnuplot documentation, tutorials and examples available on the web;
1. a fast response, by relying on an external program (rather than on a large Julia code base);
@ -46,13 +54,18 @@ The **Gnuplot.jl** package development follows a minimalistic approach: it is es
The functionalities 1, 2 and 3 listed above are similar to those provided by the [Gaston](https://github.com/mbaz/Gaston.jl) package. **Gnuplot.jl** also provides features 4 and 5, as well as the minimalistic approach.
## Do Gnuplot.jl suits my needs?
## Does Gnuplot.jl suit my needs?
Any modern plotting package is able to produce a simple scatter plot, with custom symbols, line styles, colors and axis labels. Indeed, this is exactly the example that is reported in every package documentation (also here: see [2D plots](@ref plots2d)). Still, producing complex and publication-quality plots is not an easy task. As a consequence is also not easy to determine whether a package can cope with the most difficult cases (unless you actually try it out) and a reasonable choice is typically to rely on the size of the user base, the availability of documentation / tutorials, and the possibility to preview complex examples.
Any modern plotting framework is able to produce a simple scatter plot, with custom symbols, line styles, colors and axis labels. Indeed, this is exactly the example that is reported in every package documentation (also here: see [2D plots](@ref plots2d)). Still, producing complex and publication-quality plots is not an easy task. As a consequence is also hard to tell whether a package can cope with the most difficult cases, unless you actually try it out. A reasonable choice, then, is to rely on the size of the user base, the availability of documentation / tutorials, and the possibility to preview complex examples.
**Gnuplot.jl** aims to be ready for even the most challenging plots by relying on the widely used gnuplot application, and by allowing each native feature (both present and future ones) to be immediately available in the Julia language. Moreover, **Gnuplot.jl** provides a unique syntax specifically aimed to increase productivity while performing interactive data exploration.
By allowing transparent access to the underlying gnuplot process, the **Gnuplot.jl** package immediately exposes all capabilities of the backend and allows to take advantage of the many resources available online. The minimalistic approach allows to value the widely spread knowledge of gnuplot syntax, and ensures a shallow learning curve for the package. Finally, its extremely concise syntax makes it ideal for interactive data exploration.
Last but not least, have a look at the **Gnuplot.jl** [Examples](@ref) page.
As a final remark, note that the **Gnuplot.jl** features directly maps onto the different stages of production of a plot:
- syntax conciseness, interactivity, [Plot recipes](@ref) => preliminary data exploration;
- access to all gnuplot capabilities, allowing to tweak even the smallest detail of a plot => plot preparation;
- [Gnuplot scripts](@ref) => post-production.
Before continuing, have a look at the [Examples](@ref) page!
## Notation
@ -63,5 +76,5 @@ In this documentation:
## Table of Contents
```@contents
Pages = ["index.md", "install.md", "basic.md", "advanced.md", "tips.md", "examples.md", "api.md"]
Pages = ["index.md", "install.md", "basic.md", "advanced.md", "options.md", "style.md", "terminals.md", "recipes.md", "examples.md", "api.md"]
```

View File

@ -10,14 +10,32 @@ In the Julia REPL type:
```julia-repl
julia> ]add Gnuplot
```
Then hit backspace key to return to Julia REPL.
The `]` character starts the Julia [package manager](https://julialang.github.io/Pkg.jl/v1/getting-started.html#Basic-Usage-1). Hit backspace key to return to Julia prompt.
## Check installation
Check **Gnuplot.jl** version with:
```julia-repl
julia> ]st Gnuplot
Status `~/.julia/environments/v1.4/Project.toml`
[dc211083] Gnuplot v1.4.1
```
If the displayed version is not `v1.4.1` you are probably having a dependency conflict. In this case try forcing installation of the latest version with:
```julia-repl
julia> ]add Gnuplot@1.4.1
```
and check which package is causing the conflict.
Check execution and version of the underlying `gnuplot` process:
```@repl
using Gnuplot
Gnuplot.gpversion()
```
The minimum required version is `v5.0`.
Generate the first plot:
```julia-repl

114
docs/src/options.md Normal file
View File

@ -0,0 +1,114 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Display options
The display behaviour of **Gnuplot.jl** depends on the value of the `Gnuplot.options.gpviewer` flag:
- if `true` the plot is displayed in a gnuplot window, using one of the interactive terminals such as `wxt`, `qt` or `aqua`. This is the default setting when running a Julia REPL session; The terminal options can be customized using `Gnuplot.options.term`;
- if `false` the plot is displayed through the Julia [multimedia interface](https://docs.julialang.org/en/v1/base/io-network/#Multimedia-I/O-1), i.e. it is exported as either a `png`, `svg` or `html` file, and displayed in an external viewer. This is the default setting when running a Jupyter, JupyterLab or Juno session. The terminal options can be customized using the `Gnuplot.options.mime` dictionary.
The `Gnuplot.options.gpviewer` flag is automatically set when the package is first loaded according to the runtime environment, however the user can change its value at any time to fit specific needs. Further informations and examples for both options are available in this Jupyter [notebook](https://github.com/gcalderone/Gnuplot.jl/blob/gh-pages/v1.3.0/options/display.ipynb).
# Package options and initialization
## Options
The package options are stored in a global structure available in Julia as `Gnuplot.option` (the type of the structure is [`Gnuplot.Options`](@ref)). The most important settings are as follows:
- `dry::Bool`: if true all new sessions will be started as [Dry sessions](@ref). Default is `false`, but if the package is not able to start a gnuplot process it will automatically switch to `true`;
- `cmd::String`: command to start the gnuplot process, default value is `"gnuplot"`. Use this field to specify a custom path to the gnuplot executable;
- `gpviewer::Bool`: use a gnuplot terminal as main plotting device (if `true`) or an external viewer (if `false`);
- `term::String`: default terminal for interactive use (default is an empty string, i.e. use gnuplot settings). A custom terminal can be set with, e.g.:
```@repl abc
Gnuplot.options.term = "wxt size 700,400";
```
- `mime::Dict{MIME, String}`: dictionary of MIME types and corresponding gnuplot terminals. Used to export images with either [`save()`](@ref) or `show()` (see [Display options](@ref)). Default values are:
- `MIME"application/pdf" => "pdfcairo enhanced"`
- `MIME"image/jpeg" => "jpeg enhanced"`
- `MIME"image/png" => "pngcairo enhanced"`
- `MIME"image/svg+xml" => "svg enhanced mouse standalone dynamic background rgb 'white'"`
- `MIME"text/html" => "svg enhanced mouse standalone dynamic"`
- `MIME"text/plain" => "dumb enhanced ansi"`
- `init::Vector{String}`: commands to initialize the session when it is created or reset. It can be used to, e.g., set a custom linetypes or palette:
```@repl abc
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5));
```
Note that this option affect all the sessions, and that all inserted commands are saved in [Gnuplot scripts](@ref);
- `verbose::Bool`: a flag to set verbosity of the package. If `true` all communication with the underlying process will be printed on stdout. E.g.:
```@repl abc
empty!(Gnuplot.options.init); # hide
gpexec("set term wxt"); # hide
Gnuplot.options.verbose = true;
x = 1.:10;
@gp x x.^2 "w l t 'Parabola'"
save(term="pngcairo size 480,360 fontscale 0.8", output="output.png")
Gnuplot.options.verbose = false # hide
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5)); # hide
gpexec("set term unknown"); # hide
```
Each line reports the package name (`GNUPLOT`), the session name (`default`), the command or string being sent to gnuplot process, and the returned response (line starting with `->`). Default value is `false`;
## Package initialization
If you use **Gnuplot.jl** frequently you may find convenient to automatically apply the package settings ([Options](@ref)) whenever the package is loaded. A possibility is to use [Requires.jl](https://github.com/JuliaPackaging/Requires.jl) and put the following code in the `~/.julia/config/startup.jl` initialization file (further info [here](https://docs.julialang.org/en/v1/stdlib/REPL/)):
```julia
using Requires
@require Gnuplot="dc211083-a33a-5b79-959f-2ff34033469d" begin
@info "Custom Gnuplot initialization"
# Uncomment the following if you don't have the gnuplot
# executable installed on your platform:
#Gnuplot.options.dry = true;
# Set the proper path if the gnuplot executable is not
# available in your $PATH
#Gnuplot.options.cmd = "/path/to/gnuplot";
# Force a specific display behaviour (see documentation). If
# not given explicit Gnuplot.jl will choose the best option
# according to your runtime environment.
#Gnuplot.options.gpviewer = true
# Set the default terminal for interacitve use
Gnuplot.options.term = "wxt size 700,400";
# Set the terminal options for the exported MIME types:
#Gnuplot.options.mime[MIME"image/png"] = "";
#Gnuplot.options.mime[MIME"image/svg+xml"] = "svg enhanced standalone dynamic";
#Gnuplot.options.mime[MIME"text/html"] = "svg enhanced standalone mouse dynamic";
# Set the terminal to plot in a terminal emulator:
# (try with `save(MIME"text/plain")`):
#Gnuplot.options.mime[MIME"text/plain"] = "sixelgd enhanced"; # requires vt340 emulation
# Set the default linetypes
empty!(Gnuplot.options.init);
push!(Gnuplot.options.init, Gnuplot.linetypes(:Set1_5, lw=1.5, ps=1.5));
# Initialize the gnuplot REPL using the provided `start_key`.
if Gnuplot.options.gpviewer;
Gnuplot.repl_init(start_key='>');
end;
end
```
The above code will be automatically when you first load the package with `using Gnuplot`.

136
docs/src/recipes.md Normal file
View File

@ -0,0 +1,136 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Plot recipes
A plot *recipe* is a quicklook visualization procedure aimed at reducing the amount of repetitive code to generate a plot. More specifically, a recipe is a function that convert data from the "Julia world" into a form suitable to be ingested in **Gnuplot.jl**, namely a scalar (or a vector of) [`Gnuplot.PlotElement`](@ref) object(s). The latter contain informations on how to create a plot, or a part of it, and can be used directly as arguments in a `@gp` or `@gsp` call.
There are two kinds of recipes:
- *explicit* recipe: a function which is explicitly invoked by the user. It can have any name and accept any number of arguments and keywords. It is typically used when the visualization of a data type requires some extra information, beside data itself (e.g. to plot data from a `DataFrame` object, see [Explicit recipe (example)](@ref));
- *implicit* recipe: a function which is automatically called by **Gnuplot.jl**. It must extend the [`recipe()`](@ref) function, and accept exactly one mandatory argument. It is typically used when the visualization is completely determined by the data type itself (e.g. the visualization of a `Matrix{ColorTypes.RGB}` object as an image, see [Image recipes](@ref));
An implicit recipe is invoked whenever the data type of an argument to `@gp` or `@gsp` is not among the allowed ones (see [`@gp()`](@ref) documentation). If a suitable recipe do not exists an error is raised. On the other hand, an explicit recipe needs to be invoked by the user, and the output passed directly to `@gp` or `@gsp`.
Although recipes provides very efficient tools for data exploration, their use typically hide the details of plot generation. As a consequence they provide less flexibility than the approaches described in [Basic usage](@ref) and [Advanced usage](@ref).
Currently, the **Gnuplot.jl** package provides no built-in explicit recipe. The implicit recipes are implemented in [recipes.jl](https://github.com/gcalderone/Gnuplot.jl/blob/master/src/recipes.jl).
## Explicit recipe (example)
To generate a plot using the data contained in a `DataFrame` object we need, beside the data itself, the name of the columns to use for the X and Y coordinates. The following example shows how to implement an explicit recipe to plot a `DataFrame` object:
```@example abc
using RDatasets, DataFrames, Gnuplot
import Gnuplot: PlotElement, DatasetText
function plotdf(df::DataFrame, colx::Symbol, coly::Symbol; group=nothing)
if isnothing(group)
return PlotElement(data=DatasetText(df[:, colx], df[:, coly]),
plot="w p notit",
xlab=string(colx), ylab=string(coly))
end
out = Vector{Gnuplot.PlotElement}()
push!(out, PlotElement(;xlab=string(colx), ylab=string(coly)))
for g in sort(unique(df[:, group]))
i = findall(df[:, group] .== g)
if length(i) > 0
push!(out, PlotElement(data=DatasetText(df[i, colx], df[i, coly]),
plot="w p t '$g'"))
end
end
return out
end
# Load a DataFrame and convert it to a PlotElement
iris = dataset("datasets", "iris")
@gp plotdf(iris, :SepalLength, :SepalWidth, group=:Species)
saveas("recipes001") # hide
```
![](assets/recipes001.png)
## Histogram recipes
The object returned by the [`hist()`](@ref) function can be readily visualized by means of implicit recipes defined on the `Gnuplot.Histogram1D` and `Gnuplot.Histogram2D` types:
```@example abc
x = randn(1000);
@gp hist(x)
saveas("recipes002") # hide
```
![](assets/recipes002.png)
```@example abc
x = randn(10_000);
y = randn(10_000);
@gp hist(x, y)
saveas("recipes002a") # hide
```
![](assets/recipes002a.png)
## Contour lines recipes
The object returned by the [`contourlines()`](@ref) function can be readily visualized by means of implicit recipes defined on the `Gnuplot.IsoContourLines` types:
```@example abc
x = randn(10_000);
y = randn(10_000);
h = hist(x, y)
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
@gp clines
saveas("recipes002b") # hide
```
![](assets/recipes002b.png)
## Image recipes
The **Gnuplot.jl** package provides implicit recipes to display images in the following formats:
- `Matrix{ColorTypes.RGB{T}}`;
- `Matrix{ColorTypes.RGBA{T}}`
- `Matrix{ColorTypes.Gray{T}}`;
- `Matrix{ColorTypes.GrayA{T}}`;
To use these recipes simply pass an image to `@gp`, e.g.:
```@example abc
using TestImages
img = testimage("lighthouse");
@gp img
saveas("recipes007b") # hide
```
![](assets/recipes007b.png)
All such recipes are defined as:
```julia
function recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy")
...
end
```
with only one mandatory argument. In order to exploit the optional keyword we can explicitly invoke the recipe as follows:
```@example abc
img = testimage("walkbridge");
@gp palette(:gray1) recipe(img, "flipy rot=15deg")
saveas("recipes007c") # hide
```
![](assets/recipes007c.png)
Note that we used both a palette (`:gray`, see [Palettes and line types](@ref)) and a custom rotation angle.
The `flipy` option is necessary for proper visualization (see discussion in [Plot matrix as images](@ref)).

View File

@ -1,6 +1,6 @@
# Style Guide
The **Gnuplot.jl** loose syntax allows to create a plot using very different approaches. While this was one of the initial purposes for the package, it may lead to decreased code readability if not used judiciously.
The **Gnuplot.jl** loose syntax allows to create a plot using very different approaches. While this was one of the initial purposes for the package, it may lead to a reduced code readability if not used judiciously.
Here I will summarize a few, non-mandatory, guidelines which allows to maintain a neat syntax and a high readability:

View File

@ -2,13 +2,9 @@
Gnuplot provides dozens of terminals to display plots or export them into files (see [`terminals()`](@ref) to get a list of enabled terminals on your platform). This section discuss a few tips on how to use the most common terminals.
To use a specific terminal for interactive use you may either add it as initialization command for all new session with (see [Options](@ref)):
To use a specific terminal for interactive use you may either set it as initialization command for all new session with (see [Options](@ref)):
```julia
push!(Gnuplot.options.init, "set term wxt")
```
or directly send the command to a specific session (see [Direct command execution](@ref))
```julia
gpexec("set term wxt")
Gnuplot.options.term = "wxt"
```
See official [gnuplot documentation](http://gnuplot.sourceforge.net/documentation.html) for further info on terminals and their options.
@ -16,13 +12,13 @@ See official [gnuplot documentation](http://gnuplot.sourceforge.net/documentatio
## Interactive terminals (`wxt` and `qt`)
The multiplatform `wxt` and `qt` terminals are among the most widely used ones for their nicely looking outputs on display and for their interactive capabilities.
You may set them as terminal with:
You may use such terminals with:
```
"set term wxt size 800,600"
Gnuplot.options.term = "wxt size 800,600"
```
or
```
"set term qt size 800,600"
Gnuplot.options.term = "qt size 800,600"
```
(the `size 800,600` is optional and can be omitted).
@ -30,13 +26,35 @@ Press the `h` key on the window to display an help message with all available ke
## Plot in a terminal application (`dumb`, `sixel` and `sixelgd`)
Gnuplot supports plotting in a terminal application, with no need for X11 or other GUI support, via the `dumb`, `sixel` and `sixelgd` terminals. These are extremely useful when you run Julia on a remote shell through `ssh`, with no X11 forwarding. You may set these terminals with one of the following command:
Gnuplot supports plotting in a terminal application, with no need for X11 or other GUI support, via the `dumb`, `sixel` and `sixelgd` terminals. These are extremely useful when you run Julia on a remote shell through `ssh`, with no X11 forwarding. The `dumb` terminal uses ASCII characters to draw a plot, while `sixel` and `sixelgd` actually use bitmaps (but require Sixel support to be enabled in the terminal, e.g. `xterm -ti vt340`).
Dumb terminal can be used as follows:
```jldoctest; setup = :(using Gnuplot)
julia> origterm = Gnuplot.options.term;
julia> Gnuplot.options.term = "dumb size 60,15";
julia> @gp "plot sin(x)"
1 +-------------------------------------------------+
0.8 |-+ *+ * + ** ** + * * +-|
0.6 |-+ * ** * * sin(x) *******-|
0.4 |*+ * * * * * *+-|
0.2 |*+ * * * * * *-|
0 |*+ * * * * * *-|
| * * * * * * *|
-0.2 |-* * * * * * +*|
-0.4 |-+* * * * * * +*|
-0.6 |-+* * * * ** * +-|
-0.8 |-+ * * + ** ** + * * +-|
-1 +-------------------------------------------------+
-10 -5 0 5 10
julia> Gnuplot.options.term = origterm;
```
"set term dumb"
"set term sixel"
"set term sixelgd"
```
The `dumb` terminal uses ASCII characters to draw a plot, while `sixel` and `sixelgd` actually use bitmaps (but require Sixel support to be enabled in the terminal, e.g. `xterm -ti vt340`). A sixel plot on `xterm` looks as follows:
A sixel plot on `xterm` looks as follows:
![](assets/sixelgd.png)
The above terminals are available if gnuplot has been compiled with the `--with-bitmap-terminals` option enabled and Libgd (only for `sixelgd`).
@ -45,7 +63,7 @@ The above terminals are available if gnuplot has been compiled with the `--with-
## Export to image files
Gnuplot provides dozens of terminals able to export on files. Examples are:
- `cairopng` to export PNG files;
- `pngcairo` to export PNG files;
- `pdfcairo` for PDF;
- `jpeg` for JPG;
- `gif` for GIF (see [Animations](@ref)).
@ -62,7 +80,7 @@ Gnuplot is also able to export vector (i.e. non-raster) plots through the `svg`
The `cairolatex` terminal allows to produce high quality plots by splitting the output into a PDF file (containing a rasterized image of a plot) and a `.tex` file (containing all the text as ``\LaTeX`` code). The following example shows how to write plot tics and an equation in ``\LaTeX``:
```julia
x = LinRange(-2pi, 2pi, 1000)
@gp t="Polynomial approximation of sin(x)" "set style fill transparent solid 0.6 noborder"
@gp tit="Polynomial approximation of sin(x)" "set style fill transparent solid 0.6 noborder"
@gp :- raw"""set xtics ('$-\pi$' -pi, '$-\pi/2$' -pi/2, 0, '$\pi/2$' pi/2, '$\pi$' pi)"""
@gp :- xr=3.8.*[-1, 1] yr=[-1.5,1.5] key="box opaque left horiz" linetypes(:Blues_3) "set grid front"
latex = raw"""\begin{minipage}[c]{\textwidth}\begin{equation*}""" *
@ -78,7 +96,7 @@ approx = fill(0., length(x));
save(term="cairolatex pdf input color dashed size 5in,3.3in", output="test.tex")
```
!!! warning
If you add a path in the `output=` keyword this will also be copied in the the `.tex` file. I suggest to use just filenames, with no path, in order to avoid possible errors when compiling ``\LaTeX`` code.
If you add a path in the `output=` keyword this will also be copied in the the `.tex` file, and may generate errors when compiling ``\LaTeX`` code. The simplest way to solve this problem is to use just filenames, with no paths.
The two output files (`test.tex` and `test.pdf`) can then be included in a ``\LaTeX`` file as follows:
```latex

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -32,10 +32,10 @@ for loop in 1:2
x = [cos(u) + .5 * cos(u) * cos(v) for u in U, v in V]
y = [sin(u) + .5 * sin(u) * cos(v) for u in U, v in V]
z = [.5 * sin(v) for u in U, v in V]
@gsp :- x y z "w pm3d"
@gsp :- x' y' z' "w pm3d"
x = [1 + cos(u) + .5 * cos(u) * cos(v) for u in U, v in V]
y = [.5 * sin(v) for u in U, v in V]
z = [sin(u) + .5 * sin(u) * cos(v) for u in U, v in V]
@gsp :- x y z "w pm3d"
@gsp :- x' y' z' "w pm3d"
end

File diff suppressed because it is too large Load Diff

73
src/recipes.jl Normal file
View File

@ -0,0 +1,73 @@
# ╭───────────────────────────────────────────────────────────────────╮
# │ IMPLICIT RECIPES │
# ╰───────────────────────────────────────────────────────────────────╯
# --------------------------------------------------------------------
# Histograms
"""
recipe(h::Histogram1D)
recipe(h::Histogram2D)
Implicit recipes to visualize 1D and 2D histograms.
"""
recipe(h::Histogram1D) =
PlotElement(cmds="set grid",
data=DatasetText(h.bins, h.counts),
plot="w histep notit lw 2 lc rgb 'black'")
recipe(h::Histogram2D) =
PlotElement(cmds=["set autoscale fix"],
data=DatasetText(h.bins1, h.bins2, h.counts),
plot="w image notit")
# --------------------------------------------------------------------
# Contour lines
"""
recipe(c::IsoContourLines)
recipe(v::Vector{IsoContourLines})
Implicit recipes to visualize iso-contour lines.
"""
function recipe(c::IsoContourLines)
if isnan(c.prob)
return PlotElement(data=c.data, plot="w l t '$(c.z)'")
end
return PlotElement(data=c.data, plot="w l t '$(round(c.prob * 100, sigdigits=6))%'")
end
recipe(v::Vector{IsoContourLines}) = recipe.(v)
# --------------------------------------------------------------------
# Images
"""
recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.RGBA{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.Gray{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.GrayA{T}}, opt="flipy")
Implicit recipes to show images.
"""
recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :r),
256 .* getfield.(M, :g),
256 .* getfield.(M, :b)),
plot="$opt with rgbimage notit")
recipe(M::Matrix{ColorTypes.RGBA{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :r),
256 .* getfield.(M, :g),
256 .* getfield.(M, :b)),
plot="$opt with rgbimage notit")
recipe(M::Matrix{ColorTypes.Gray{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :val)),
plot="$opt with image notit")
recipe(M::Matrix{ColorTypes.GrayA{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :val)),
plot="$opt with image notit")

View File

@ -1,20 +1,15 @@
using Test, Gnuplot
try
@info "Gnuplot version: " * string(Gnuplot.gpversion())
@info "Gnuplot.jl version: " * string(Gnuplot.version())
@info "gnuplot version: " * string(Gnuplot.gpversion())
catch
Gnuplot.options.dry = true
end
push!(Gnuplot.options.init, "set term unknown")
Gnuplot.options.gpviewer = true
x = [1, 2, 3]
y = [4, 5, 6]
s = Gnuplot.arrays2datablock(1)
@test all(s .== [" 1"])
s = Gnuplot.arrays2datablock(1, 2)
@test all(s .== [" 1 2"])
s = Gnuplot.arrays2datablock(x)
@test all(s .== [" 1" ,
" 2" ,
@ -94,15 +89,37 @@ s = Gnuplot.arrays2datablock(1:3, 1:3, ["One", "Two", "Three"])
#-----------------------------------------------------------------
dummy = palette_names()
pal = palette(:deepsea)
@test pal == "set palette defined (0.0 '#2B004D', 0.25 '#4E0F99', 0.5 '#3C54D4', 0.75 '#48A9F8', 1.0 '#C5ECFF')\nset palette maxcol 5\n"
ls = linetypes(:deepsea)
@test ls == "set linetype 1 lc rgb '#2B004D\nset linetype 2 lc rgb '#4E0F99\nset linetype 3 lc rgb '#3C54D4\nset linetype 4 lc rgb '#48A9F8\nset linetype 5 lc rgb '#C5ECFF\nset linetype cycle 5\n"
ls = linetypes(:Set1_5, lw=1.5, ps=2)
@test ls == "unset for [i=1:256] linetype i\nset linetype 1 lc rgb '#E41A1C' lw 1.5 dt solid pt 1 ps 2\nset linetype 2 lc rgb '#377EB8' lw 1.5 dt solid pt 2 ps 2\nset linetype 3 lc rgb '#4DAF4A' lw 1.5 dt solid pt 3 ps 2\nset linetype 4 lc rgb '#984EA3' lw 1.5 dt solid pt 4 ps 2\nset linetype 5 lc rgb '#FF7F00' lw 1.5 dt solid pt 5 ps 2\nset linetype cycle 5\n"
dummy = terminals()
# if "sixelgd" in terminals()
# Gnuplot.options.term = "sixelgd enhanced"
# elseif "sixel" in terminals()
# Gnuplot.options.term = "sixel enhanced"
# elseif "dumb" in terminals()
# Gnuplot.options.term = "dumb"
# else
# Gnuplot.options.term = "unknown"
# end
# Gnuplot.quitall()
# Force unknown on Travis CI
Gnuplot.options.term = "unknown"
@gp 1:9
@info "using terminal: " terminal()
#test_terminal("unknown")
#-----------------------------------------------------------------
# Test wth empty dataset
@gp Float64[]
@gsp Float64[]
@gp Float64[] Float64[]
@gsp Float64[] Float64[]
#-----------------------------------------------------------------
@ -121,9 +138,9 @@ Gnuplot.quitall()
@gp "plot sin(x)" "pl cos(x)"
@gp "plo sin(x)" "s cos(x)"
@gp "plot sin(x)" :-
@gp :- "plot cos(x)"
@gp mar="0,1,0,1" "plot sin(x)"
@gp :- mar=gpmargins() "plot cos(x)"
@gp :- 0. 0.
@gp "plot sin(x)" 2 xr=(-2pi,2pi) "pause 2" "plot cos(4*x)"
@ -134,7 +151,7 @@ noise = err .* randn(length(x));
h = hist(noise, nbins=10)
@gp h.bins h.counts "w histeps"
@gp h
@gp x y
@gp x y "w l"
@ -181,9 +198,9 @@ name = "\$MyDataSet1"
@gp :- :dry 2 xlab="X label" ylab="Residuals" :-
@gp :- :dry "plot $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars notit" :-
@gp :- :dry
save("test.gp") # write on file test.gp
save(:dry, "test.gp") # write on file test.gp
Gnuplot.quitall()
gpexec("load 'test.gp'") # load file test.gp
#gpexec("load 'test.gp'") # load file test.gp, commented to avoid errors in CI
#-----------------------------------------------------------------
@gp("""
@ -247,4 +264,30 @@ gpexec("load 'test.gp'") # load file test.gp
"splot x7, v, (u<0.5) ? -1 : sinc(x7,v) notitle",
"splot x8, v, (u<0.5) ? -1 : sinc(x8,v) notitle",
"splot x9, v, (u<0.5) ? -1 : sinc(x9,v) notitle")
x = randn(5000);
y = randn(5000);
h = hist(x, y, nbins1=20, nbins2=20);
clines = contourlines(h, "levels discrete 15, 30, 45");
@gp clines
@gp "set size ratio -1"
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i dt $i"
end
Gnuplot.options.verbose = true
@gp randn(10^6) randn(10^6)
@gp :- 0. 0.
Gnuplot.quit(:default)
Gnuplot.options.dry = true
@gp hist(randn(1000))
# Various hist() corner cases
@gp hist([1,2,3], bs=2)
@gp hist([1,1,1], bs=1)
Gnuplot.quitall()