Compare commits

...

296 Commits

Author SHA1 Message Date
mantaohuang
ea8b71898b fix stuff 2022-03-26 18:55:18 -04:00
mantaohuang
4bdee5f6af testing out 2022-03-26 18:37:03 -04:00
mantaohuang
bbbd899c19 testing out 2022-03-26 18:33:43 -04:00
mantaohuang
abcb73b70f Use raw expressions for xlabel, ylabels etc 2022-03-26 18:27:20 -04:00
Giorgio Calderone
9001d5f385 Minor changes in preparation of v1.4.1 2022-01-04 12:06:01 +01:00
Giorgio Calderone
919068e797 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 13:34:33 +01:00
gcalderone
23c3d663e8
Merge pull request #51 from wentasah/stdout-via-pipe
Don't run gnuplot process connected to stdout
2022-01-03 13:34:25 +01:00
Giorgio Calderone
3f40e38d72 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 12:41:12 +01:00
gcalderone
443ef0edf7
Merge pull request #49 from wentasah/hist-bounds
Fix BoundsErrors in hist()
2022-01-03 12:40:40 +01:00
gcalderone
ab927d0622
Merge pull request #52 from wentasah/escape-output
Allow using single quotes in output file names
2022-01-03 10:45:19 +01:00
Giorgio Calderone
622597c589 Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2022-01-03 10:39:40 +01:00
Michal Sojka
ce00617796 Allow using single quotes in output file names
Gnuplot single-quoted strings have to escape single-quote characters
by doubling them.
2021-12-13 18:58:24 +01:00
Giorgio Calderone
e70c30dd13 Handle the case where an implicit recipe returns a Vector{PlotElement} 2021-12-05 15:59:48 +01:00
Michal Sojka
799154f53c Add doctest of dumb terminal
This serves two purposes:

1. It demonstrates the functionality of the dumb terminal.
2. It checks that the previous commit works.
2021-12-05 11:53:30 +01:00
Michal Sojka
d02c211e99 Don't run gnuplot process connected to stdout
This change fixes incompatibility of Gnuplot.jl with Documenter.jl
versions 0.27.0 and above. Without this change, Gnuplot.jl has at
least these problems:

1. When building Gnuplot.jl documentation, the process blocks and
   never finishes.

2. When using Gnuplot.jl in docstrings in other code, running
   `doctest` blocks and never finishes.

The reason is that Documenter uses a new version of IOCapture.jl,
which contains this commit:
6cb4cdff34.

Documenter evaluates code snippets from the documentation with
`stdout` redirected to a pipe to show the command's output. The
mentioned commit changes the behavior so that now capturing waits
until the pipe is closed. The problem with Gnuplot.jl is that when the
gnuplot process is started as a part of the execution of documentation
code snippet, its `stdout` is bound to Documenter's pipe. The pipe is
not closed until the gnuplot process exits, which does not happen
unless the code snippet calls `Gnuplot.quit` explicitly. Therefore
Documenter blocks indefinitely.

This can be demonstrated by storing the following code in `test.jl`

    module GnuplotDocTest
    """
    ```jldoctest; setup = :(using Gnuplot)
    julia> @gp rand(100)

    ```
    """
    test() = nothing
    end

    using Documenter
    doctest(pwd(), [GnuplotDocTest])

and running `julia test.jl`.

To fix this problem, we run the gnuplot process with stdout redirected
to a pipe and create an asynchronous task, which reads the gnuplot's
stdout and writes it to Julia's current stdout.

Correctness of this approach can be verified by running:

    using Gnuplot
    Gnuplot.options.term = "dumb"
    @gp "plot sin(x)"

Dumb terminal prints to stdout and the above command shows the graph
on Julia's stdout too. In the next commit, we add the above code as a
doctest.
2021-12-05 11:51:29 +01:00
Michal Sojka
67c8781f2b Fix another hist BoundsError
This fixes the error with `hist([1,1,1], bs=1)`:

    ERROR: BoundsError: attempt to access 0-element Vector{Int64} at index [0]
    Stacktrace:
     [1] getindex
       @ ./array.jl:801 [inlined]
     [2] hist(v::Vector{Int64}; range::Vector{Float64}, bs::Int64, nbins::Int64, pad::Bool)
       @ Gnuplot ~/.julia/dev/Gnuplot/src/Gnuplot.jl:1864
     [3] top-level scope
       @ REPL[50]:1
2021-09-06 16:53:40 +02:00
Michal Sojka
db8dcfc433 Fix bounds error in hist recipe
When running hist([1,2,3], bs=2), the following error is produced:

ERROR: BoundsError: attempt to access 1-element Vector{Float64} at index [2]
Stacktrace:
 [1] getindex
   @ ./array.jl:801 [inlined]
 [2] hist(v::Vector{Int64}; range::Vector{Float64}, bs::Int64, nbins::Int64, pad::Bool)
   @ Gnuplot ~/.julia/dev/Gnuplot/src/Gnuplot.jl:1873
 [3] top-level scope
   @ REPL[25]:1
2021-09-06 16:53:40 +02:00
gcalderone
04484adc22
Merge pull request #44 from wentasah/requires-jl
docs: Suggest using Requires.jl for automatic settings of package options
2021-05-25 16:04:11 +02:00
Michal Sojka
658e5f422c docs: Suggest using Requires.jl for automatic settings of package options
Using the @gnuplotrc macro for collecting user's preferred setup works
well, but it is a bit annoying when Julia needs to be restarted
often (e.g. due to crashes). Using Requires.jl allows the user to
forget about calling @gnuplotrc; the initialization happens
automatically, whenever the Gnuplot package is loaded.
2021-05-25 15:01:45 +02:00
Giorgio Calderone
9327492aa1 Updated 2021-05-06 00:14:01 +02:00
Giorgio Calderone
0567acc60e Bump version to 1.4.0 (to meet automerge guidelines) 2021-05-05 23:48:11 +02:00
Giorgio Calderone
74e195f290 Updated 2021-05-05 12:19:04 +02:00
Giorgio Calderone
875773fd3d Docs updated 2021-05-05 12:03:13 +02:00
Giorgio Calderone
53159f89e1 Bugfix; Allow missing as input to hist(); Updated version() 2021-05-05 11:59:15 +02:00
Giorgio Calderone
54db30cc32 Bump version 2021-05-05 00:58:14 +02:00
Giorgio Calderone
364e5281bd Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2021-05-05 00:53:09 +02:00
Giorgio Calderone
e8a6b21df6 Updated dependencies; Accept missing values on input arrays (if eltype <: AbstractFloat) 2021-05-05 00:52:56 +02:00
gcalderone
6c6b889df6
Merge pull request #43 from wentasah/vscode
VS Code support
2021-04-08 17:40:36 +02:00
Giorgio Calderone
5c46e35fea Updated DataStructures dependency 2021-04-01 14:04:40 +02:00
Michal Sojka
34af493921 Make the figures in VS Code bigger
Without this change, the figures in VS Code are too small.
2021-03-30 20:11:05 +02:00
Michal Sojka
f2ef5373b0 Show plots in internal VS Code plot pane
With this change, when Gnuplot.jl is used within VSCode, the plot
shows in VSCode plot pane instead of in a separate Gnuplot window.

Note that when compared to IJulia and Juno, we do not test for active
VS Code connection. I don't think it is necessary, but if it turns out
to be needed later, it can be done with

    isopen(VSCodeServer.conn_endpoint[])
2021-03-30 19:43:27 +02:00
Giorgio Calderone
bc74aa0db4 Accept AbstractArrays which can be converted to actual arrays 2021-01-02 00:15:39 +01:00
Giorgio Calderone
b7a15290d3 Bugfix 2020-10-06 10:21:46 +02:00
Giorgio Calderone
f62b569560 Fix #28 and similar issues 2020-10-05 01:14:18 +02:00
gcalderone
584144e2ec
Merge pull request #30 from PallHaraldsson/patch-1
Juno and Jypyther in docs
2020-10-05 00:00:36 +02:00
gcalderone
03953c0ad6
Merge pull request #35 from jarvist/master
Add check for Pluto.jl interactive notebook.
2020-10-04 23:55:14 +02:00
Jarvist Moore Frost
084dd63059 Add check for Pluto.jl interactive notebook. 2020-09-21 21:02:08 +01:00
Páll Haraldsson
50141d1b0e
Juno and Jypyther in docs
[ci skip]
2020-07-13 11:38:23 +00:00
Giorgio Calderone
83c59ae682 Set utf8 encoding on gnuplot start 2020-05-05 11:44:08 +02:00
gcalderone
1877deef7f
Merge pull request #26 from lyon-fnal/master
Fix the string indexing error and problems with multiplot on JupyterLab
2020-05-05 00:59:08 +02:00
Adam Lyon
67a5583c29 Fixes #25 2020-05-04 15:59:21 -05:00
Adam Lyon
69644f99ba Fix #24 2020-05-04 15:58:59 -05:00
Giorgio Calderone
2713f8517e Updated 2020-04-29 12:24:46 +02:00
Giorgio Calderone
2c2c74e448 Added dgrid3d function 2020-04-29 12:12:52 +02:00
Giorgio Calderone
6bf1b80058 Bump version (1.3.0) 2020-04-28 19:26:23 +02:00
Giorgio Calderone
671efccc17 Updated 2020-04-28 19:09:39 +02:00
Giorgio Calderone
bdeb0e45ab Updated 2020-04-28 18:56:04 +02:00
Giorgio Calderone
3e03aa27f7 Updated 2020-04-28 18:50:40 +02:00
Giorgio Calderone
dab424bfec Updated 2020-04-28 18:42:58 +02:00
Giorgio Calderone
92380bc468 Added smooth keyword to palette; Updated docstrings 2020-04-28 14:14:25 +02:00
Giorgio Calderone
4d1768e15e Added contourlines method accepting top fractions 2020-04-27 18:37:59 +02:00
Giorgio Calderone
8e140ee998 Updated 2020-04-25 20:52:19 +02:00
Giorgio Calderone
6df834bb88 Docs updated 2020-04-25 20:41:09 +02:00
Giorgio Calderone
c9fa96c9eb Docs updated 2020-04-25 20:20:09 +02:00
Giorgio Calderone
d74715f156 Fixed initialization in Juno 2020-04-25 19:28:57 +02:00
Giorgio Calderone
2fb581b3a3 Defined and implemented the display behaviour (based on options/gpviewer) 2020-04-25 18:37:17 +02:00
Giorgio Calderone
190562a322 Use AbstractVector and AbstractMatrix argument types in contourlines 2020-04-23 09:57:16 +02:00
Giorgio Calderone
c5d64f5d76 Enable show mechanism, regardless of Juno/IJulia 2020-04-22 20:00:51 +02:00
Giorgio Calderone
184206946b Fix CI 2020-04-22 19:15:03 +02:00
Giorgio Calderone
4405daf088 Bugfix 2020-04-22 19:09:47 +02:00
Giorgio Calderone
e3d9d6035e Fix CI 2020-04-22 18:26:47 +02:00
Giorgio Calderone
e11d93d807 Fix CI 2020-04-22 18:17:23 +02:00
Giorgio Calderone
6996c98d40 Fix CI 2020-04-22 18:09:54 +02:00
Giorgio Calderone
02e15543cd Merge branch 'StdoutPassThrough' 2020-04-22 17:58:39 +02:00
Giorgio Calderone
8f737205a1 Improved readTask and capture protocol 2020-04-22 17:56:50 +02:00
Giorgio Calderone
deee2693df Disable show mechanism 2020-04-22 14:46:29 +02:00
Giorgio Calderone
a47705be6b Test updated 2020-04-22 14:46:11 +02:00
Giorgio Calderone
8a8ce1f533 Stdout is no longer filtered 2020-04-22 14:39:52 +02:00
Giorgio Calderone
e687bb3716 Stdout is no longer filtered 2020-04-22 14:26:53 +02:00
Giorgio Calderone
00ef33a8a6 Stdout is no longer filtered 2020-04-22 14:26:06 +02:00
Giorgio Calderone
3238bcea80 Updated default terminals 2020-04-22 10:02:35 +02:00
Giorgio Calderone
993633886a Test 2020-04-22 09:52:09 +02:00
Giorgio Calderone
e33b74bf6d Updated 2020-04-22 01:43:48 +02:00
Giorgio Calderone
7e3aa2b384 Merge branch 'testCanvasTerminal' 2020-04-22 01:42:56 +02:00
Giorgio Calderone
c5890b6819 Implemented save() and show() based on Options.mime dictionary 2020-04-22 01:42:38 +02:00
Giorgio Calderone
be273493eb Updated 2020-04-21 10:49:18 +02:00
Giorgio Calderone
b79228d7b1 Implemented show(io::IO, ::MIME"text/html" method 2020-04-21 10:33:29 +02:00
Giorgio Calderone
bad5e12681 Updated 2020-04-20 19:27:12 +02:00
Giorgio Calderone
703f0bf618 Updated for v1.2.0 2020-04-20 18:51:36 +02:00
Giorgio Calderone
96874bcdae Release v1.2.0 2020-04-20 18:43:27 +02:00
Giorgio Calderone
f7bf0040fa Fix CI 2020-04-20 18:15:47 +02:00
Giorgio Calderone
739255330b Test coverage: 69% 2020-04-20 18:11:57 +02:00
Giorgio Calderone
e264b27119 Comments updated 2020-04-19 16:49:19 +02:00
Giorgio Calderone
5b858670d6 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-19 16:35:15 +02:00
gcalderone
da0bd71007
Update README.md 2020-04-19 16:07:26 +02:00
Giorgio Calderone
45e97e4535 Minor changes 2020-04-19 10:48:02 +02:00
Giorgio Calderone
90d43be2fb Updated 2020-04-18 23:00:30 +02:00
Giorgio Calderone
62931851b5 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-18 20:32:51 +02:00
Giorgio Calderone
7f1bb7eb64 Updated 2020-04-18 20:32:39 +02:00
gcalderone
ecce0ace9f
Merge pull request #20 from PallHaraldsson/patch-1
Grammar
2020-04-18 20:32:17 +02:00
Páll Haraldsson
7cbaf19002
Grammar
[skip ci]
2020-04-18 16:11:35 +00:00
Giorgio Calderone
0a8c652e71 Docs updated 2020-04-18 15:10:19 +02:00
Giorgio Calderone
79ebe5d8ee Added recipe for IsoContourLines; contourlines now accepts a Histogram2D object 2020-04-18 13:24:12 +02:00
gcalderone
3e053c440f
Fix ci (#18)
* Updated

* Updated

* Updated

* Updated

* Updated

* Fix CI
2020-04-18 00:17:08 +02:00
Giorgio Calderone
31b60d61f2 Bugfix 2020-04-17 20:11:36 +02:00
Giorgio Calderone
7b0955e12a Updated svg default terminal (white bkg and dynamic) 2020-04-17 19:46:48 +02:00
Giorgio Calderone
7fccfa2ae1 Updated 2020-04-17 19:07:37 +02:00
Giorgio Calderone
05d887ac9d Send .term command at reset (to override .gnuplotrc) 2020-04-17 17:56:54 +02:00
Giorgio Calderone
7bff6fc9a7 Added term, term_png and term_svg fields in Options 2020-04-17 16:13:57 +02:00
Giorgio Calderone
d94e491522 Implemented show() interface for Juno, Jupyter, etc. 2020-04-17 14:57:16 +02:00
Giorgio Calderone
7759d0fd9e Updated 2020-04-17 14:56:10 +02:00
Giorgio Calderone
c65c9d5db7 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-17 14:37:44 +02:00
gcalderone
6798c8115e
Merge pull request #17 from fredrikekre/fe/show
WIP: Implement Julia's show machinery.
2020-04-17 14:37:04 +02:00
Giorgio Calderone
cd788c8f48 Added Github stars badge 2020-04-17 13:20:29 +02:00
Giorgio Calderone
45dbec8db8 Updated 2020-04-17 11:55:29 +02:00
Giorgio Calderone
3a094601b5 Updated 2020-04-16 22:56:22 +02:00
Giorgio Calderone
cb3bdb60ea Docs updated 2020-04-16 22:53:47 +02:00
Giorgio Calderone
4a0b6201c5 Bugfix 2020-04-16 20:32:23 +02:00
Giorgio Calderone
379cfdc806 Docs updated; delayed parsing of keyword 2020-04-16 20:18:42 +02:00
Giorgio Calderone
97069d4305 Docs updated 2020-04-16 18:49:35 +02:00
Giorgio Calderone
52e2227c08 Margin keyword now accepts a NamedTuple (such as the one returned by gmargins() 2020-04-16 18:43:24 +02:00
Giorgio Calderone
ad624bebf1 Docs updated 2020-04-16 14:24:34 +02:00
Giorgio Calderone
6a04709525 Updated 2020-04-16 14:24:05 +02:00
Giorgio Calderone
519731e4dd Docs updated 2020-04-16 14:16:01 +02:00
Giorgio Calderone
70e12809c4 Docs updated 2020-04-16 14:01:54 +02:00
Giorgio Calderone
2bb942c80a Updated image recipes 2020-04-16 14:00:52 +02:00
Giorgio Calderone
b8e03fa477 Drop duplicated using clause 2020-04-16 13:23:15 +02:00
Giorgio Calderone
530bde6bc8 Docstrings updated 2020-04-16 11:22:29 +02:00
Giorgio Calderone
a0f3b71493 Added gpmargins and gpranges function 2020-04-16 11:06:42 +02:00
Giorgio Calderone
4fe3b81a8b Minor changes 2020-04-16 03:03:09 +02:00
Giorgio Calderone
43138ac47b Minor changes 2020-04-16 03:00:46 +02:00
Giorgio Calderone
79a5bfc12f Fixed writing of Matrices (follows Julia order) 2020-04-16 02:23:22 +02:00
Giorgio Calderone
47a988246d Accept Dataset in arguments 2020-04-16 00:30:23 +02:00
Giorgio Calderone
3c06aba985 Docs updated 2020-04-15 23:19:30 +02:00
Giorgio Calderone
83084913e8 Docs updated 2020-04-15 23:18:47 +02:00
Giorgio Calderone
ca17be8db3 Use binary files to send Vararg{AbstractVector, N} 2020-04-15 19:45:13 +02:00
Fredrik Ekre
611019f2df WIP: Implement Julia's show machinery. 2020-04-15 14:06:19 +02:00
Giorgio Calderone
29cdaaa8e5 Dropped Dataset as acceptable input; implemented gpvars() 2020-04-15 11:20:49 +02:00
Giorgio Calderone
44a7ea2ecd Refactored parsing of input arguments 2020-04-15 01:37:54 +02:00
Giorgio Calderone
0e147f8c13 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-14 12:21:53 +02:00
Giorgio Calderone
821b00d682 Docs updated 2020-04-14 12:21:46 +02:00
Giorgio Calderone
f8d239d9c2 Fixed recipe interface; DatasetBin methods for images are now implemented as recipes 2020-04-14 12:21:34 +02:00
gcalderone
28b1ee2898
Merge pull request #16 from carlobaldassi/cb/typos
Fix docs typos
2020-04-14 11:45:18 +02:00
Carlo Baldassi
c8521d60c1 Fix docs typos 2020-04-14 11:25:30 +02:00
Giorgio Calderone
7a647f08e1 Docs updated 2020-04-13 20:34:36 +02:00
Giorgio Calderone
308c89d356 Fixed autocompletion for gnuplot REPL 2020-04-13 20:34:06 +02:00
Giorgio Calderone
d854443fc2 Docs updated 2020-04-13 19:25:07 +02:00
Giorgio Calderone
21bc959570 Updated 2020-04-13 19:24:45 +02:00
Giorgio Calderone
ef99fe5e4a gnuplot repl no longer requires a global state to print returned strings 2020-04-13 19:09:27 +02:00
Giorgio Calderone
5482b64f71 Added Options.reset; Added lw, ps, dashed keywords to linetypes() 2020-04-13 18:53:36 +02:00
Giorgio Calderone
f12bf94249 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2020-04-13 01:35:31 +02:00
Giorgio Calderone
0e44232adc v1.2.0 features added 2020-04-13 01:35:05 +02:00
gcalderone
e846ba7974
Update README.md 2020-04-12 17:17:53 +02:00
gcalderone
b00b9014c2
Updated after #15 2020-04-12 17:17:17 +02:00
Giorgio Calderone
983b9d6fb3 Added ChangeLog.md 2020-04-12 01:43:40 +02:00
Giorgio Calderone
feaf286abc Bump version (1.2.0) 2020-04-12 01:43:04 +02:00
Giorgio Calderone
f2d5200b06 Allow for customized data input 2020-04-12 01:40:59 +02:00
Giorgio Calderone
02740b9eed Minor changes 2020-04-12 00:53:52 +02:00
Giorgio Calderone
29ad51fe9f Fixed writing output in gnuplot repl mode 2020-04-12 00:49:02 +02:00
Giorgio Calderone
2d9537edc4 Minor changes 2020-04-12 00:39:21 +02:00
Giorgio Calderone
41d7cb991a Minor changes 2020-04-12 00:36:11 +02:00
Giorgio Calderone
3505403499 Added repl_init; Added gpreadline to cope with pager output and repl 2020-04-11 23:40:19 +02:00
Giorgio Calderone
9bb35931b6 Bugfix: add second black line to separate iso-contour lines; Make a copy input Vector{String} datasets 2020-04-11 15:22:41 +02:00
Giorgio Calderone
c2dbb2a946 Docs updated 2020-04-11 09:58:38 +02:00
Giorgio Calderone
513991f806 Added Compat section 2020-04-10 15:29:01 +02:00
Giorgio Calderone
3d459690c2 Docs updated 2020-04-10 15:13:10 +02:00
Giorgio Calderone
7fa9a3af53 Docs updated 2020-04-10 14:35:07 +02:00
Giorgio Calderone
5b554608c4 Docs updated; INtroduced cblog keyword 2020-04-10 11:47:38 +02:00
Giorgio Calderone
b9f807c1d9 Docs updated 2020-04-10 09:50:31 +02:00
Giorgio Calderone
25be45399b Bugfix 2020-04-09 11:49:30 +02:00
Giorgio Calderone
56876becc6 Docs updated 2020-04-09 01:00:22 +02:00
Giorgio Calderone
51d33ffe0b Docs updated 2020-04-08 09:40:53 +02:00
Giorgio Calderone
59434a6021 Minor changes 2020-04-08 00:09:59 +02:00
Giorgio Calderone
798e675424 Added cblabel keyword; disabled binary format for tables; accept scalar float as column 2020-04-07 20:15:09 +02:00
Giorgio Calderone
f97fd7f5eb Updated julia minimum version 2020-04-03 21:59:07 +02:00
Giorgio Calderone
1355a5f171 Minor changes 2020-04-03 21:58:47 +02:00
Giorgio Calderone
7f60a4deb6 Docs updated 2020-04-02 15:25:03 +02:00
Giorgio Calderone
a2477ad9d3 Docstrings updated 2020-04-02 15:24:19 +02:00
gcalderone
e3380f59f1
Update README.md 2020-04-02 00:32:45 +02:00
Giorgio Calderone
20ef92654e Examples updated 2020-04-02 00:29:27 +02:00
Giorgio Calderone
6bc630ac5e Merge branch 'master' of https://github.com/gcalderone/Gnuplot.jl 2020-04-02 00:28:00 +02:00
Giorgio Calderone
8dcdd13e86 Examples updated 2020-04-02 00:27:57 +02:00
gcalderone
b75797b99b
Update README.md 2020-04-02 00:26:53 +02:00
Giorgio Calderone
3e92bbe468 Examples updated 2020-04-02 00:25:05 +02:00
Giorgio Calderone
9d412f57c6 Examples updated 2020-04-02 00:23:14 +02:00
gcalderone
2ca67b19d9
Update README.md 2020-04-02 00:21:00 +02:00
gcalderone
e5d3ec467f
Update README.md 2020-04-01 23:51:15 +02:00
gcalderone
126af11321
Update .travis.yml 2020-04-01 23:43:02 +02:00
gcalderone
fd363684a2
Update README.md 2020-04-01 20:55:09 +02:00
gcalderone
a644aecc0b
Update README.md 2020-04-01 20:51:06 +02:00
gcalderone
03acd27705
Update README.md 2020-04-01 20:49:49 +02:00
Giorgio Calderone
fa435eee04 Docs updated 2020-04-01 20:37:31 +02:00
Giorgio Calderone
4a1284117b Docstrings updated 2020-04-01 19:35:54 +02:00
Giorgio Calderone
fbc148db96 Docstrings updated 2020-04-01 19:00:54 +02:00
Giorgio Calderone
bd950c2209 Docstrings updated 2020-04-01 19:00:18 +02:00
Giorgio Calderone
65bfe5050f Docstrings updated 2020-04-01 16:19:39 +02:00
Giorgio Calderone
2c4b8dda1e Renamed gpexec 2020-04-01 16:18:50 +02:00
Giorgio Calderone
6c3b83c3b1 Print output from gnuplot process 2020-04-01 14:53:33 +02:00
Giorgio Calderone
451e869668 Bugfix 2020-04-01 12:50:22 +02:00
Giorgio Calderone
431144b1c6 Docstrings updated 2020-04-01 12:30:58 +02:00
Giorgio Calderone
ea42dc6203 Docstrings updated 2020-04-01 11:57:42 +02:00
Giorgio Calderone
962f0d1e58 Automatically enable dry sessions when gnuplot can not be executed 2020-04-01 11:23:27 +02:00
Giorgio Calderone
5fae45b03c Consider also dry sessions 2020-04-01 11:08:39 +02:00
Giorgio Calderone
99d2ddccce Docstrings updated 2020-04-01 10:13:39 +02:00
Giorgio Calderone
f877c270f1 Docstrings updated 2020-03-31 16:00:47 +02:00
Giorgio Calderone
72dbfb76cc Docstrings updated 2020-03-31 14:40:39 +02:00
Giorgio Calderone
e9ac3332ff Docstrings updated 2020-03-31 14:29:18 +02:00
Giorgio Calderone
e9de8a2598 Minor changes 2020-03-31 14:26:17 +02:00
Giorgio Calderone
767a886e98 Added gp_write_table function 2020-03-31 14:06:58 +02:00
Giorgio Calderone
a5dab66b31 Docstrings updated 2020-03-31 12:12:49 +02:00
Giorgio Calderone
8ef6ce0c7f Docstrings updated 2020-03-31 10:17:06 +02:00
Giorgio Calderone
0b359d65c1 Dependencies: removed ReusePatterns, added OrderedStruct 2020-03-31 10:15:43 +02:00
Giorgio Calderone
ad9f3b867d Dependencies: removed ReusePatterns, added OrderedStruct; Added rev= keyword to palette and linetypes 2020-03-31 10:15:16 +02:00
Giorgio Calderone
30af7755c0 Docstrings updated 2020-03-31 02:08:06 +02:00
Giorgio Calderone
59c8f2dca6 Docstrings updated 2020-03-31 01:40:46 +02:00
Giorgio Calderone
73d9da7ae9 Docstrings updated 2020-03-31 01:36:39 +02:00
Giorgio Calderone
231b751937 Docstrings updated 2020-03-31 00:42:38 +02:00
Giorgio Calderone
3ce6af84c7 Docstrings updated 2020-03-30 23:43:02 +02:00
Giorgio Calderone
5f29d39f27 Accept NaN in range keywords 2020-03-30 23:42:45 +02:00
Giorgio Calderone
0eecd80365 Docstrings updated 2020-03-30 14:36:03 +02:00
Giorgio Calderone
dd97b78d2a Minor changes 2020-03-30 13:05:18 +02:00
Giorgio Calderone
56fd683ffe Docstrings updated 2020-03-30 00:50:19 +02:00
Giorgio Calderone
185c94c155 Pass data according to"preferred_format" 2020-03-30 00:49:23 +02:00
Giorgio Calderone
d75cb1c46e Bugfix 2020-03-29 18:57:37 +02:00
Giorgio Calderone
08c2a999a5 Implemented write_binary for Matrix{RGB} 2020-03-29 18:49:41 +02:00
Giorgio Calderone
108c2b5909 parseCmd now handles names for binary files 2020-03-29 18:13:36 +02:00
Giorgio Calderone
18f82454a7 Docstrings updated 2020-03-29 16:33:40 +02:00
Giorgio Calderone
9b75c82944 Docstrings updated 2020-03-29 16:27:55 +02:00
Giorgio Calderone
62624e7805 Modified savescript to account for binary files 2020-03-29 16:27:08 +02:00
Giorgio Calderone
fdf0ad7e4e Implemented write_binary for vectors 2020-03-29 14:32:28 +02:00
Giorgio Calderone
e3cdf7a5e0 Implemented cleanup of binary files 2020-03-29 14:21:11 +02:00
Giorgio Calderone
234651ca25 Minor changes 2020-03-29 14:11:34 +02:00
Giorgio Calderone
415c1fc144 Minor changes 2020-03-29 13:27:51 +02:00
Giorgio Calderone
0b0ed1f803 Minor changes 2020-03-29 13:27:31 +02:00
Giorgio Calderone
91294aa030 Refactored checking of input data types 2020-03-29 11:47:45 +02:00
Giorgio Calderone
992cffed23 Distinguishes "source" and "name" of a dataset 2020-03-28 20:27:31 +01:00
Giorgio Calderone
863b4eb3e8 Docstrings updated 2020-03-28 19:44:22 +01:00
Giorgio Calderone
db094ec85d First commit 2020-03-28 19:17:11 +01:00
Giorgio Calderone
a5cebaf53e Minor changes 2020-03-27 20:25:40 +01:00
Giorgio Calderone
35732ee69c Docstrings updated 2020-03-27 19:12:57 +01:00
Giorgio Calderone
5eafabfca5 Added support "missing"; Updated minimum gnuplot version 2020-03-27 19:10:47 +01:00
Giorgio Calderone
1e7a8a481f Docstrings updated 2020-03-26 23:09:04 +01:00
Giorgio Calderone
f3e3a15273 Docstrings updated 2020-03-26 20:14:16 +01:00
Giorgio Calderone
ddd5aa555e Display complete error message from gnuplot; Docstrings updated 2020-03-26 19:24:47 +01:00
Giorgio Calderone
fb7c00eac0 Docs updated 2020-03-26 12:59:40 +01:00
Giorgio Calderone
5f1b082717 Docs updated 2020-03-26 12:54:57 +01:00
Giorgio Calderone
d760dd287c data2string renamed to arrays2datablock; Docstrings updated 2020-03-26 12:53:13 +01:00
Giorgio Calderone
8ada9b0e9d Docs updated 2020-03-26 09:52:57 +01:00
Giorgio Calderone
8508b6a5a7 Docs updated 2020-03-25 20:24:57 +01:00
Giorgio Calderone
4fa4b392c6 Added test_terminal() function; Changed name and meaning of linestyles: now returns linetypes 2020-03-25 20:22:04 +01:00
Giorgio Calderone
34b7dc9184 Bugfix 2020-03-25 19:02:17 +01:00
Giorgio Calderone
805fbe2276 Bugfix 2020-03-25 18:58:20 +01:00
Giorgio Calderone
d42df99760 Docs updated 2020-03-25 18:49:25 +01:00
Giorgio Calderone
faa701af61 Added terminal(), terminals() and splash() functions 2020-03-25 18:48:23 +01:00
Giorgio Calderone
c5abde30ff Docs updated 2020-03-25 14:51:05 +01:00
Giorgio Calderone
509d8c471e Docs updated 2020-03-25 14:50:43 +01:00
Giorgio Calderone
559bcc4054 Added Histogram1D and Histogram2D structures; Implemented histogram preview 2020-03-25 14:47:54 +01:00
Giorgio Calderone
d685f1a1f2 Docs updated 2020-03-24 23:14:07 +01:00
Giorgio Calderone
c37d12aaa4 Renamed CheckGnuplotVersion -> gpversion; Added key= keyword 2020-03-24 23:12:59 +01:00
Giorgio Calderone
9d1581dc2b Ignore Documenter build dir 2020-03-24 12:14:05 +01:00
Giorgio Calderone
c218cab9b4 Added Documenter docs 2020-03-24 11:57:50 +01:00
Giorgio Calderone
c6ab1bb91f Print mouse coordinates (regardless of verbosity option) 2020-03-23 19:22:13 +01:00
Giorgio Calderone
1b8006b710 Refactored driver(); changed syntax for named datasets 2020-03-23 17:50:28 +01:00
Giorgio Calderone
9a98fbe19c Fixed tests 2020-03-23 00:08:50 +01:00
Giorgio Calderone
e90a63f627 contourlines now returns Vector{IsoContourLines} 2020-03-22 23:36:05 +01:00
Giorgio Calderone
a184b6ee14 Refactored hist and boxxyerror 2020-03-22 20:17:45 +01:00
Giorgio Calderone
546cfef009 Handle label input 2020-03-22 18:42:17 +01:00
Giorgio Calderone
a4bb94bfde Refactored contourlines function; Dropped unused dependencies 2020-03-22 18:17:19 +01:00
Giorgio Calderone
069bbbc4b2 Fix plot "w image" 2020-03-21 19:01:19 +01:00
Giorgio Calderone
7b2f2430a5 Fix Travis test on osx 2020-03-20 09:10:50 +01:00
Giorgio Calderone
4484d975fc Fix Travis test on osx 2020-03-20 09:03:26 +01:00
Giorgio Calderone
da52fd03d2 Avoid print warning for empty datasets; Added corresponding test 2020-03-19 20:03:45 +01:00
Giorgio Calderone
4830e0c028 Fix Travis test (use "unknown" terminal) 2020-03-19 19:49:44 +01:00
Giorgio Calderone
ad1660f623 Trying to fix Travis test 2020-03-19 19:44:54 +01:00
Giorgio Calderone
c5fddd9107 Trying to fix Travis test 2020-03-19 19:35:32 +01:00
Giorgio Calderone
5ada8eab8a Trying to fix Travis test 2020-03-19 19:23:30 +01:00
Giorgio Calderone
11b6a30a60 Trying to fix Travis test 2020-03-19 18:56:27 +01:00
Giorgio Calderone
ed9b84d166 Bugfix 2020-03-19 18:25:04 +01:00
Giorgio Calderone
ab8fab3df9 Fix .travis.yml 2020-03-19 18:14:35 +01:00
Giorgio Calderone
06574ea26f Using two separate functions to savescript() and execall() 2020-03-18 17:12:05 +01:00
Giorgio Calderone
7ef300c11b Minor changes 2020-03-18 16:25:32 +01:00
Giorgio Calderone
f8d2e4c0be exec now tests for errors in Gnuplot process 2020-03-18 16:02:54 +01:00
Giorgio Calderone
51b4771ef3 Added tests for palette() and linestyles() 2020-03-18 15:13:07 +01:00
Giorgio Calderone
ffea59dce7 Fixed palettes() and linestyles() 2020-03-18 14:41:41 +01:00
Giorgio Calderone
acb21294e0 Added Artifacts.toml 2020-03-17 15:10:25 +01:00
Giorgio Calderone
1bd7875d73 Bugfix; Added palette facilities 2020-03-17 15:00:41 +01:00
Giorgio Calderone
5487e60222 Minor changes 2020-03-17 10:55:40 +01:00
Giorgio Calderone
605ad0cfda Updated 2020-03-17 00:20:19 +01:00
Giorgio Calderone
a73d0d0dca Updated 2020-03-16 23:54:46 +01:00
Giorgio Calderone
a5168aed01 Updated 2020-03-16 23:46:28 +01:00
Giorgio Calderone
e7f500b5a0 Minor changes 2020-03-16 20:28:44 +01:00
Giorgio Calderone
a655e5af6c Fixed tests 2020-03-16 19:56:54 +01:00
Giorgio Calderone
8abedcc163 Minor changes 2020-03-16 19:48:47 +01:00
Giorgio Calderone
3283f54741 First attempt 2020-03-16 19:26:14 +01:00
Giorgio Calderone
622ef39837 Added examples directory 2020-03-16 15:27:50 +01:00
Giorgio Calderone
df01ee01db Renamed DataSource -> DataSet 2020-03-16 15:27:22 +01:00
Giorgio Calderone
decfef901f Added "dataset" function 2020-03-16 14:30:08 +01:00
Giorgio Calderone
05048093db Added Project.toml (in place of REQUIRE. Minor bugfix. 2019-09-21 19:13:01 +02:00
Giorgio Calderone
60541f4eda Minor changes 2019-06-20 12:35:57 +02:00
Giorgio Calderone
b670ae8557 Merge branch 'master' of github.com:gcalderone/Gnuplot.jl 2019-05-20 16:52:27 +02:00
Giorgio Calderone
cda0a781b5 Added 'reset' at the beginning of internal_save 2019-05-20 16:52:08 +02:00
Giorgio Calderone
a6c9102271 Fixed functionality with DrySessions 2019-05-20 16:51:10 +02:00
Giorgio Calderone
a03fe92410 Added initcmd entry in state variable 2019-05-16 16:17:41 +02:00
Giorgio Calderone
0017f69cee Updated 2019-05-04 00:51:44 +02:00
Giorgio Calderone
c198cf549e Updated 2019-05-03 11:22:49 +02:00
Giorgio Calderone
5d6169b993 Updated hist function, added contourlines 2019-05-03 10:03:04 +02:00
27 changed files with 4190 additions and 1138 deletions

4
.gitignore vendored
View File

@ -1,3 +1 @@
*.jl.cov
*.jl.*.cov
*.jl.mem
docs/build/

View File

@ -1,21 +1,26 @@
## Documentation: http://docs.travis-ci.com/user/languages/julia/
language: julia
os:
- linux
- osx
# - osx
julia:
- 1.0
- nightly
- 1.5
# - nightly
notifications:
email: false
git:
depth: 99999999
## uncomment the following lines to allow failures on nightly julia
## (tests will run but not make your overall status red)
matrix:
allow_failures:
- julia: nightly
#matrix:
# allow_failures:
# - julia: nightly
addons:
apt:
packages: gnuplot5
# homebrew:
# packages: gnuplot
## uncomment the following lines to override the default test script

121
ChangeLog.md Normal file
View File

@ -0,0 +1,121 @@
# Version 1.4.1 (released on: )
- New features:
* Implicit recipes can now returns a `Vector{PlotElement}`;
* Allow using single quotes in output file names (#52);
* New function: `palette_levels()` can be used to modify palette levels before passing them to gnuplot;
- Bugfix:
* Fixed `BoundsErrors` in `hist()` (#49);
* Fixed problem when generating documentation (#51);
# Version 1.4.0 (released on: May 5, 2021)
- New features:
* Missing values are accepted if the input arrays have `eltype <:
AbstractFloat`;
* Missing values are also accepted in calls to `hist`;
* VSCode and Pluto sessions are now properly handled (#35 and #43);
- Bugfix:
* Multiplot were not displayed in Jupyter (#25);
* `gpvars()` fails if gnuplot character encoding is utf8
(#24);
# Version 1.3.0 (released on: Apr. 29, 2020)
- New features:
* The new `dgrid3d()` allows to interpolate scattered 2D data on a
2D regular grid;
* The `Options` structure features a new `mime` field containing a
dictionary to map a MIME type to gnuplot terminals;
* The `Options` structure features a new `gpviewer` field allowing
to choose the display behaviour (using either gnuplot
interactive terminals or anexternal viewer such as Jupyter or
Juno);
* The `save()` function now accepts a `MIME` argument in place of
the `term=` keyword. The actual terminal is retrieved from the
`Options.mime` dictionary;
* The `contourlines()` function now accepts `AbstractVector` and
`AbstractMatrix` as arguments, rather than `Vector` and
`Matrix`;
* The `contourlines()` function now accepts a `fractions` input to
generate contours encompassing given fractions of the total
counts in a 2D histogram;
* The `palette()` function now accept a boolean `smooth` keyword,
allowing to interpolate a discrete palette into a continuous one.
- Breaking changes:
* The `Options` structure no longer provides the `term_svg` and
`term_png` fields. They have been replaced by the `mime`
dictionary.
# Version 1.2.0 (released on: Apr. 20, 2020)
- New features:
* REPL mode: a new `Gnuplot.repl_init()` function is available to
install a gnuplot REPL;
* Implemented the "recipe" mechanism: the `recipe()` function can
now be extended to register new implicit recipes to display
data;
* `@gp` and `@gsp` now accepts a `Gnuplot.PlotElements` object,
containing commands, data and plot specifications in a single
argument;
* The `linetypes` function now accept the `lw`, `ps` (to set the
line width and point size respectively), and the `dashed` (to
use dashed patterns in place of solid lines) keywords;
* The new `Gnuplot.options.term::String` field allows to set the
default terminal for interactive sessions;
* New functions: `gpvars()` to retrieve all gnuplot variables,
`gpmargins()` to retrieve current plot margins (in screen
coordinates, `gpranges()` to retrieve current plot axis ranges;
* New keywords accepted by `@gp` and `@gsp`: `lmargin`, `rmargin`,
`bmargin`, `tmargin`, `margins`, to set plot margins;
* Implemented new implicit recipes to display histograms (as
returned by `hist()`), contour lines (as returned by
`contourlines()`) and images;
* Implemented automatic display of plots in both Jupyter and Juno;
* Documentation updated;
- Breaking changes:
* The 2D matrix are now sent to gnuplot in a column-major order,
to comply with Julia array layout;
- Bugfix:
* When a `Vector{String}` is passed to `driver()` it used to be
modified, and couldn't be used again in a second call. Now the
original is preserved;
* `contourlines()` used to return a single blanck line to
distinguish iso-contour lines, and this may cause problems in 3D
plot. Now two blanck lines are returned;
# Version 1.1.0 (released on: Apr. 09, 2020)
- First production ready version;
- Completed documentation and example gallery;

24
Project.toml Normal file
View File

@ -0,0 +1,24 @@
name = "Gnuplot"
uuid = "dc211083-a33a-5b79-959f-2ff34033469d"
version = "1.4.1"
[deps]
ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
ColorTypes = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
ReplMaker = "b873ce64-0db9-51f5-a568-4457d8e49576"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StructC14N = "d2514e9c-36c4-5b8e-97e2-51e7675c221c"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
ColorSchemes = "^3.12"
ColorTypes = "^0.11"
Colors = "^0.12"
DataStructures = "^0.18"
ReplMaker = "^0.2"
StatsBase = "^0.33"
StructC14N = "^0.3"
julia = "^1.6"

260
README.md
View File

@ -1,208 +1,92 @@
# Gnuplot.jl
## A Julia interface to Gnuplot.
## A Julia interface to gnuplot.
[![Build Status](https://travis-ci.org/gcalderone/Gnuplot.jl.svg?branch=master)](https://travis-ci.org/gcalderone/Gnuplot.jl)
**Gnuplot.jl** allows easy and fast use of [Gnuplot](http://gnuplot.info/) as data visualization tool in Julia. Its main features are:
- transparent interface between Julia and gnuplot to exploit all functionalities of the latter, both present and future ones;
- fast data transmission to gnuplot through system pipes (no temporary files involved);
- handles multiple gnuplot process simultaneously;
- support for multiplots;
- save sessions into gnuplot scripts;
- extremely concise syntax (see examples below) makes it ideal for interactive data exploration;
- very easy to use: if you know gnuplot you're ready to go.
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md)
[![DocumentationStatus](https://img.shields.io/badge/docs-stable-blue.svg?style=flat)](https://gcalderone.github.io/Gnuplot.jl/v1.4.0/index.html)
The purpose is similar to the [Gaston](https://github.com/mbaz/Gaston.jl) package, but **Gnuplot.jl** main focus is on on the syntax conciseness and ease of use.
**Gnuplot.jl** is a simple package able to send both data and commands from Julia to an underlying [gnuplot](http://gnuplot.sourceforge.net/) process. Its main purpose it to provide a fast and powerful data visualization framework, using an extremely concise Julia syntax. It also has automatic display of plots in Jupyter, Juno and VS Code.
## Installation
In the Julia REPL type:
Install with:
```julia
Pkg.add("Gnuplot")
]add Gnuplot
```
A working [gnuplot](http://gnuplot.sourceforge.net/) package must be installed on your platform.
You'll also need [gnuplot](http://gnuplot.info/) (ver. >= 4.7) installed on your system.
You may check the installed **Gnuplot.jl** version with:
```julia
]st Gnuplot
```
If the displayed version is not v1.4.0 you are probably having a dependency conflict. In this case try forcing installation of the latest version with:
```julia
]add Gnuplot@1.4.0
```
and check which package is causing the conflict.
## Usage:
The simplemost plot ever can be generated with just 8 characters:
``` Julia
Test package:
```julia
using Gnuplot
@gp 1:10
```
A slightly more complicated one showing a parabola with a solid line and a title:
``` Julia
x = 1:10
@gp x x.^2 "w l tit 'Parabola'"
```
A real life example showing some random noise generated data:
``` Julia
# Create some noisy data...
x = range(-2pi, stop=2pi, length=100);
y = 1.5 .* sin.(0.3 .+ 0.7x) ;
noise = randn(length(x))./2;
e = 0.5 * fill(1., length(x));
# ...and show them using gnuplot.
@gp("set key horizontal", "set grid", title="My title",
xrange=(-7,7), ylabel="Y label", xlab="X label",
x, y, "w l t 'Real model' dt 2 lw 2 lc rgb 'red'",
x, y+noise, e, "w errorbars t 'Data'");
```
That's it for the first plots. The syntax should be familiar to most gnuplot users, with this code we:
- set a few gnuplot properties (`key` and `grid`);
- set the X axis range and Y axis label;
- send the data to gnuplot;
- plot two data sets specifying a few details (style, line width, color, legend, etc...).
Note that this simple example already covers the vast majority of use cases, since the remaining details of the plot can be easily tweaked by adding the appropriate gnuplot command. Also note that you would barely recognize the Julia language by just looking at the `@gp` call since **Gnuplot.jl** aims to be mostly transparent: the user is supposed to focus only on the data and on the gnuplot commands, rather than the package details.
If you set the verbose option (`setverbosity(true)`, which is `false` by default) you'll be able to see all the communication taking place between the **Gnuplot.jl** package and the underlyng Gnuplot process. Repeating the last command:
```Julia
julia> @gp("set key horizontal", "set grid", title="My title",
xrange=(-7,7), ylabel="Y label", xlab="X label",
x, y, "w l t 'Real model' dt 2 lw 2 lc rgb 'red'",
x, y+noise, e, "w errorbars t 'Data'");
GNUPLOT (default) reset session
GNUPLOT (default) print GPVAL_TERM
GNUPLOT (default) -> qt
GNUPLOT (default) print GPVAL_TERMOPTIONS
GNUPLOT (default) -> 0 title "Gnuplot.jl: default" font "Sans,9"
GNUPLOT (default) set key horizontal
GNUPLOT (default) set grid
GNUPLOT (default) set title 'My title'
GNUPLOT (default) set xrange [-7:7]
GNUPLOT (default) set ylabel 'Y label'
GNUPLOT (default) set xlabel 'X label'
GNUPLOT (default) $data0 << EOD
GNUPLOT (default) -6.283185307179586 1.2258873407968363
GNUPLOT (default) -6.156252270670907 1.1443471266509504
GNUPLOT (default) -6.029319234162229 1.05377837392046
GNUPLOT (default) ...
GNUPLOT (default) EOD
GNUPLOT (default) $data1 << EOD
GNUPLOT (default) -6.283185307179586 1.516291874781302 0.5
GNUPLOT (default) -6.156252270670907 1.5490769687987143 0.5
GNUPLOT (default) -6.029319234162229 0.30753349072971314 0.5
GNUPLOT (default) ...
GNUPLOT (default) EOD
GNUPLOT (default) set key horizontal
GNUPLOT (default) set grid
GNUPLOT (default) set title 'My title'
GNUPLOT (default) set xrange [-7:7]
GNUPLOT (default) set ylabel 'Y label'
GNUPLOT (default) set xlabel 'X label'
GNUPLOT (default) plot \
$data0 w l t 'Real model' dt 2 lw 2 lc rgb 'red', \
$data1 w errorbars t 'Data'
GNUPLOT (default)
```
The **Gnuplot.jl** package (note the leading `GNUPLOT`...) tells us which commands are being sent to the gnuplot process and the name of the current gnuplot session (`default`). The **Gnuplot.jl** package will also print the replies from gnuplot, e.g.:
``` Julia
julia> Gnuplot.exec("print GPVAL_TERM");
GNUPLOT (default) print GPVAL_TERM
GNUPLOT (default) -> qt
```
Note the different color in the reply (if your terminal is able to display colors).
So far we have shown how to produce plots with a single command, however such task can also be performed using multiple statements. The syntax is exactly the same, but we should use the `:-` symbol at the beginning of each statement (except the first) and at the end of each statement (except the last), e.g.:
``` Julia
# Reset the gnuplot session and give the dataset the name `MyDataSet1`
name = "\$MyDataSet1"
@gp x y+noise e name :-
# Define a model function to be fitted
@gp :- "f(x) = a * sin(b + c*x); a = 1; b = 1; c = 1;" :-
# Fit the function to the :aa dataset
@gp :- "fit f(x) $name u 1:2:3 via a, b, c;" :-
# Prepare a multiplot showing the data, the model...
@gp :- "set multiplot layout 2,1" :-
@gp :- "plot $name w points tit 'Data'" ylab="Data and model" :-
@gp :- "plot $name u 1:(f(\$1)) w lines tit 'Best fit'" :-
# ... and the residuals (the `2` here refer to the second plot in the multiplot).
@gp :- 2 xlab="X label" ylab="Residuals" :-
@gp :- "plot $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars notit"
```
The **Gnuplot.jl** package also provide support
As discussed above, **Gnuplot.jl** allows to trasparently exploit all gnuplot functionalities. E.g., we can show a random image with:
```Julia
@gp randn(Float64, 30, 50) "w image"
```
or show an interactive 3D plots using the `@gsp` macro in place of `@gp`, e.g.:
``` Julia
@gsp randn(Float64, 30, 50)
```
Further documentation for the `@gp` and `@gsp` macros is available in the REPL by means of the `@doc` macro or by typing `?` in the REPL followed by the macro name.
### Multiple gnuplot istances
The **Gnuplot.jl** package can handle multiple gnuplot istances simultaneously, each idenitified by a unique session name (actually a Julia symbol). To use a specific session simply name it in a `@gp` or `@gsp` call. If the session is not yet created it will be automatically started:
``` Julia
# Plot using session GP1
x = 1:10
@gp :GP1 x x.^2
# Plot using session GP2
@gp x x.^2 :GP2
# Plot using default session
@gp x x.^2
```
If needed, a specific session can be started by specifying a complete file path for the gnuplot executable, e.g.
``` Julia
gp = gnuplot(:CUSTOM1, "/path/to/gnuplot/executable")
```
Also, a session can be started as a *dry* one, i.e. a session with no underlying gnuplot process, by omitting the path to the Gnuplot executable:
``` Julia
gp = gnuplot(:DRY_SESSION)
```
The prupose is to create gnuplot scripts without running them, e.g:
```Julia
@gp :DRY_SESSION x x.^2 "w l"
save("test.gp")
```
The `test.gp` can then be loaded directly in gnuplot with:
```
gnuplot> load 'test.gp'
println(Gnuplot.gpversion())
test_terminal()
```
### Direct execution of gnuplot commands
Both the `@gp` and `@gsp` macros stores data and commands in the package state to allow using multiple statements for a single plot, or to save all data and commands on a script file. However the user may directly execute command on the underlying gnuplot process using the `gpeval` function. E.g., we can retrieve the values of the fitting parameters of the previous example:
```Julia
# Retrieve values fr a, b and c
a = parse(Float64, exec("print a"))
b = parse(Float64, exec("print b"))
c = parse(Float64, exec("print c"))
```
## Quick start
The following examples are supposed to be self-explaining. See [documentation](https://gcalderone.github.io/Gnuplot.jl/v1.4.0/) for further informations.
### Terminating a session
A session and the associated gnuplot process can be terminated by a call to `quit`, specifying the session name, e.g.:
``` Julia
julia> quit(:GP1)
### A simple parabola
```julia
x = 1.:20
@gp x x.^2 "with lines title 'Parabola'"
save(term="pngcairo size 480,360", output="examples/ex1.png")
save("parabola.gp") # => save a script file with both data and command to re-create the plot.
```
A call to `quitall()` will terminate all active sessions.
![ex1.png](examples/ex1.png)
### A slightly more complex plot, with unicode on X tics
```julia
x = -2pi:0.1:2pi
approx = fill(0., length(x));
@gp tit="Polynomial approximation of sin(x)" key="opaque" linetypes(:Blues_4)
@gp :- "set encoding utf8" raw"""set xtics ('-π' -pi, '-π/2' -pi/2, 0, 'π/2' pi/2, 'π' pi)"""
@gp :- xr=3.8.*[-1, 1] yr=[-1.5,1.5] "set grid front"
@gp :- x sin.(x) approx .+= x "w filledcurve t 'n=0' lt 1"
@gp :- x sin.(x) approx .+= -x.^3/6 "w filledcurve t 'n=1' lt 2"
@gp :- x sin.(x) approx .+= x.^5/120 "w filledcurve t 'n=2' lt 3"
@gp :- x sin.(x) approx .+= -x.^7/5040 "w filledcurve t 'n=3' lt 4"
@gp :- x sin.(x) "w l t 'sin(x)' lw 2 lc rgb 'black'"
save(term="pngcairo size 640,480", output="examples/ex2.png")
```
![ex2.png](examples/ex2.png)
### Multiplot: a 2D histogram contour plot and a 3D surface plot
```julia
x = randn(10_000)
y = randn(10_000)
h = hist(x, y, bs1=0.25, nbins2=20)
@gp "set multiplot layout 1,2"
@gp :- 1 key="outside top center box horizontal" "set size ratio -1" h
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i lc rgb 'gray'" :-
end
@gsp :- 2 h.bins1 h.bins2 h.counts "w pm3d notit"
save(term="pngcairo size 660,350 fontscale 0.8", output="examples/ex3.png")
```
![ex3.png](examples/ex3.png)
## Further examples
The main gallery of examples is maintained in a separate repository:
https://lazarusa.github.io/gnuplot-examples/
Since **Gnuplot.jl** is just a transparent interface (not a wrapper) it exposes all capabilities of the underlying gnuplot process, hence pure-gnuplot examples also applies to **Gnuplot.jl**. Further examples are available here:
- http://gnuplot.sourceforge.net/demo_5.2/
- http://www.gnuplotting.org/

View File

@ -1,5 +0,0 @@
julia 1.0
StructC14N
ColorTypes
StatsBase
ReusePatterns

19
docs/make.jl Normal file
View File

@ -0,0 +1,19 @@
using Documenter, Gnuplot
empty!(Gnuplot.options.mime)
makedocs(sitename="Gnuplot.jl",
authors = "Giorgio Calderone",
#format = Documenter.HTML(prettyurls = false), # uncomment for local use, comment for deployment
modules=[Gnuplot],
pages = [
"Home" => "index.md",
"Installation" => "install.md",
"Basic usage" => "basic.md",
"Advanced usage" => "advanced.md",
"Package options" => "options.md",
"Style guide" => "style.md",
"Gnuplot terminals" => "terminals.md",
"Plot recipes" => "recipes.md",
"Examples" => "examples.md",
"API" => "api.md"
])

374
docs/src/advanced.md Normal file
View File

@ -0,0 +1,374 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Advanced usage
Here we will show a few advanced techniques for data visualization using **Gnuplot.jl**.
## Named datasets
A dataset may have an associated name whose purpose is to use it multiple times for plotting, while sending it only once to gnuplot. A dataset name must begin with a `$`.
A named dataset is defined as a `Pair{String, Tuple}`, e.g.:
```julia
"\$name" => (1:10,)
```
and can be used as an argument to both `@gp` and `gsp`, e.g.:
```@example abc
x = range(-2pi, stop=2pi, length=100);
y = sin.(x)
name = "\$MyDataSet1"
@gp name=>(x, y) "plot $name w l lc rgb 'black'" "pl $name u 1:(1.5*\$2) w l lc rgb 'red'"
saveas("advanced010") # hide
```
![](assets/advanced010.png)
Both curves use the same input data, but the red curve has the second column (`\$2`, corresponding to the *y* value) multiplied by a factor 1.5.
A named dataset comes in hand also when using gnuplot to fit experimental data to a model, e.g.:
```@example abc
# Generate data and some noise to simulate measurements
x = range(-2pi, stop=2pi, length=20);
y = 1.5 * sin.(0.3 .+ 0.7x);
err = 0.1 * maximum(abs.(y)) .* fill(1, size(x));
y += err .* randn(length(x));
name = "\$MyDataSet1"
@gp "f(x) = a * sin(b + c*x)" :- # define an analytical model
@gp :- "a=1" "b=1" "c=1" :- # set parameter initial values
@gp :- name=>(x, y, err) :- # define a named dataset
@gp :- "fit f(x) $name via a, b, c;" # fit the data
```
The parameter best fit values can be retrieved as follows:
```@example abc
vars = gpvars();
@info("Best fit values:",
a = vars.a,
b = vars.b,
c = vars.c)
```
## Multiplot
**Gnuplot.jl** can draw multiple plots in the same figure by exploiting the `multiplot` command. Each plot is identified by a positive integer number, which can be used as argument to `@gp` to redirect commands to the appropriate plot.
Recycling data from the previous example we can plot both data and best fit model (in plot `1`) and residuals (in plot `2`):
```@example abc
@gp "f(x) = a * sin(b + c*x)"
@gp :- "a=$(vars.a)" "b=$(vars.b)" "c=$(vars.c)"
@gp :- name=>(x, y, err)
@gp :- "set multiplot layout 2,1"
@gp :- 1 "p $name w errorbars t 'Data'"
@gp :- "p $name u 1:(f(\$1)) w l t 'Best fit model'"
@gp :- 2 "p $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars t 'Resid. [{/Symbol s}]'"
@gp :- [extrema(x)...] [0,0] "w l notit dt 2 lc rgb 'black'" # reference line
saveas("advanced011") # hide
```
![](assets/advanced011.png)
Note that the order of the plots is not relevant, i.e. we would get the same results with:
```julia
@gp "f(x) = a * sin(b + c*x)"
@gp :- "a=$(vars.a)" "b=$(vars.b)" "c=$(vars.c)"
@gp :- name=>(x, y, err)
@gp :- "set multiplot layout 2,1"
@gp :- 2 "p $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars t 'Resid. [{/Symbol s}]'"
@gp :- [extrema(x)...] [0,0] "w l notit dt 2 lc rgb 'black'" # reference line
@gp :- 1 "p $name w errorbars t 'Data'"
@gp :- "p $name u 1:(f(\$1)) w l t 'Best fit model'"
```
## Customized layout
It is also possible to customize the plot layout using the margin keywords (see [Histograms](@ref) for further info on how to generate andi display histograms):
```@example abc
# Generate random numbers
x = randn(1000);
y = randn(1000);
# Overall plot margins (normalized in the range 0:1)
margins = (l=0.08, r=0.98, b=0.13, t=0.98)
# Right and top margins of main plot
right, top = 0.8, 0.75
# Gap between main plot and histograms
gap = 0.015
# Main plot
@gp "set multiplot"
@gp :- 1 ma=margins rma=right tma=top :-
@gp :- x y "w p notit" xlab="X" ylab="Y"
xr = gpranges().x # save current X range
yr = gpranges().y # save current Y range
# Histogram on X
h = hist(x, nbins=10)
@gp :- 2 ma=margins bma=top+gap rma=right :-
@gp :- "set xtics format ''" "set ytics format ''" xlab="" ylab="" :-
bs = fill(h.binsize, length(h.bins));
@gp :- xr=xr h.bins h.counts./2 bs./2 h.counts./2 "w boxxy notit fs solid 0.4" :-
# Histogram on Y
h = hist(y, nbins=10)
@gp :- 3 ma=margins lma=right+gap tma=top :-
@gp :- "unset xrange" :-
bs = fill(h.binsize, length(h.bins));
@gp :- yr=yr h.counts./2 h.bins h.counts./2 bs./2 "w boxxy notit fs solid 0.4" :-
@gp
saveas("advanced011b") # hide
```
![](assets/advanced011b.png)
### Mixing 2D and 3D plots
A multiplot can also mix 2D and 3D plots:
```@example abc
x = y = -10:0.33:10
@gp "set multiplot layout 1,2"
# 2D
@gp :- 1 x sin.(x) ./ x "w l notit"
# 3D
sinc2d(x,y) = sin.(sqrt.(x.^2 + y.^2))./sqrt.(x.^2+y.^2)
fxy = [sinc2d(x,y) for x in x, y in y]
@gsp :- 2 x y fxy "w pm3d notit"
saveas("advanced012") # hide
```
![](assets/advanced012.png)
## Multiple sessions
**Gnuplot.jl** can handle multiple sessions, i.e. multiple gnuplot processes running simultaneously. Each session is identified by an ID (`sid::Symbol`, in the documentation).
In order to redirect commands to a specific session simply insert a symbol into your `@gp` or `@gsp` call, e.g.:
```@example abc
@gp :GP1 "plot sin(x)" # opens first window
@gp :GP2 "plot sin(x)" # opens secondo window
@gp :- :GP1 "plot cos(x)" # add a plot on first window
```
The session ID can appear in every position in the argument list, but only one ID can be present in each call. If the session ID is not specified the `:default` session is used.
The names of all current sessions can be retrieved with [`session_names()`](@ref):
```@repl abc
println(session_names())
```
To quit a specific session use [`Gnuplot.quit()`](@ref):
```@repl abc
Gnuplot.quit(:GP1)
```
The output value is the exit status of the underlying gnuplot process.
You may also quit all active sessions at once with [`Gnuplot.quitall()`](@ref):
```@repl abc
Gnuplot.quitall()
```
## Histograms
**Gnuplot.jl** provides facilities to compute and display histograms, e.g.:
```@example abc
x = randn(1000);
@gp hist(x)
saveas("advanced013a") # hide
```
![](assets/advanced013a.png)
The [`hist()`](@ref) function also accept keywords to set the range to consider (`range=` keyword) and either the bin size (`bs=`) or the total number of bins (`nbins=`) in the histogram. A finer control on the output is achieved by exploiting the fields of the returned ([`Gnuplot.Histogram1D`](@ref)) structure, e.g.:
```@example abc
x = randn(1000);
h = hist(x, range=3 .* [-1,1], bs=0.5)
@gp h.bins h.counts "w histep t 'Data' lc rgb 'red'"
saveas("advanced013b") # hide
```
![](assets/advanced013b.png)
The [`hist()`](@ref) function compute also 2D histograms by passing two vectors (with the same lengths), e.g.:
```@example abc
x = randn(10_000)
y = randn(10_000)
h = hist(x, y)
@gp h
saveas("advanced014a") # hide
```
![](assets/advanced014a.png)
Again, a finer control can be achieved by specifying ranges, bin size or number of bins (along both dimensions) and by explicitly using the content of the returned [`Gnuplot.Histogram2D`](@ref) structure:
```@example abc
x = randn(10_000)
y = randn(10_000)
h = hist(x, y, bs1=0.25, nbins2=20, range1=[-3,3], range2=[-3,3])
@gp "set size ratio -1" h.bins1 h.bins2 h.counts "w image notit"
saveas("advanced014b") # hide
```
![](assets/advanced014b.png)
Alternatively, 2D histograms may be displayed using the `boxxyerror` plot style which allows more flexibility in, e.g., handling transparencies and drawing the histogram grid. In this case the data can be prepared using the [`boxxy()`](@ref) function, as follows:
```@example abc
@gp "set size ratio -1" "set style fill solid 0.5 border lc rgb 'gray'" :-
@gp :- boxxy(h) "w boxxy notit lc pal"
saveas("advanced014c") # hide
```
![](assets/advanced014c.png)
## Contour lines
Although gnuplot already handles contours by itself (with the `set contour` command), **Gnuplot.jl** provides a way to calculate contour lines paths before displaying them, using the [`contourlines()`](@ref) function. We may preview such lines with:
```@example abc
x = randn(10_000)
y = randn(10_000)
h = hist(x, y)
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
@gp clines
saveas("advanced014d") # hide
```
![](assets/advanced014d.png)
By exploiting the fields of the [`Gnuplot.IsoContourLines`](@ref) structure we may also customize line widths, colors and dashed pattern according to their z level, and plot them on top of the 2D histogram:
```@example abc
@gp "set size ratio -1" "set style fill solid 0.5 border lc rgb 'gray'" :-
@gp :- boxxy(h) "w boxxy notit lc pal"
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i dt $i lc pal" :-
end
@gp :- key="outside top center box horizontal"
saveas("advanced014e") # hide
```
![](assets/advanced014e.png)
The [`contourlines()`](@ref) function also allows to calculate the contour lines encompassing a given fraction of the total counts of a 2D histogram. E.g. to plot the contours corresponding to 1, 2, and 3 $\sigma$ of a 2D Gaussian distribution:
```@example abc
x = randn(10^5);
y = randn(10^5);
h = hist(x, y, nbins1=20, nbins2=20);
# Calculate probability within 0 < r < σ
p(σ) = round(1 - exp(-(σ^2) / 2), sigdigits=3)
# Draw contour lines at 1, 2 and 3 σ
clines = contourlines(h, p.(1:3));
@gp palette(:beach, smooth=true, rev=true) "set grid front" "set size ratio -1" h clines
saveas("advanced014f") # hide
```
![](assets/advanced014f.png)
## Interpolation of 2D scattered data
The `dgrid3d()` function allows to interpolate 2D scattered data onto a 2D regular grid, e.g.:
```@example abc
x = (rand(200) .- 0.5) .* 3;
y = (rand(200) .- 0.5) .* 3;
z = exp.(-(x.^2 .+ y.^2));
# Interpolate on a 20x30 regular grid with splines
gx, gy, gz = dgrid3d(x, y, z, "20,30 splines")
@gsp "set size ratio -1" "set xyplane at 0" xlab="X" ylab="Y" :-
@gsp :- x y z "w p t 'Scattered data' lc pal"
@gsp :- gx gy gz "w l t 'Interpolation on a grid' lc pal"
saveas("advanced015a") # hide
```
![](assets/advanced015a.png)
!!! warn
The `splines` algorithm may be very slow on large datasets. An alternative option is to use a smoothing kernel, such as `gauss`.
The interpolated data in scarcely sampled regions are poorly constrained, i.e. they are actually *extrapolated values*. By using the `extra=false` keyword all extrapolated values are set to `NaN`:
```@example abc
x = randn(2000) .* 0.5;
y = randn(2000) .* 0.5;
rsq = x.^2 + y.^2;
z = exp.(-rsq) .* sin.(y) .* cos.(2 * rsq);
@gsp "set size ratio -1" palette(:balance, smooth=true) "set view map" "set pm3d" :-
@gsp :- "set multiplot layout 1,3" xr=[-2,2] yr=[-2,2] :-
@gsp :- 1 tit="Scattered data" x y z "w p notit lc pal"
# Show extrapolated values
gx, gy, gz = dgrid3d(x, y, z, "40,40 gauss 0.1,0.1")
@gsp :- 2 tit="Interpolation on a grid\\n(extrapolated values are shown)" gx gy gz "w l notit lc pal"
# Hide exrapolated values
gx, gy, gz = dgrid3d(x, y, z, "40,40 gauss 0.1,0.1", extra=false)
@gsp :- 3 tit="Interpolation on a grid\\n(extrapolated values are hidden)" gx gy gz "w l notit lc pal"
save(term="pngcairo size 1000,400 fontscale 1.0", output="assets/advanced015b.png") # hide
```
![](assets/advanced015b.png)
## Animations
The [Multiplot](@ref) capabilities can also be used to stack plots one above the other in order to create an animation, as in the following example:
```@example abc
x = y = -10:0.33:10
fz(x,y) = sin.(sqrt.(x.^2 + y.^2))./sqrt.(x.^2+y.^2)
fxy = [fz(x,y) for x in x, y in y]
@gsp "set xyplane at 0" "unset colorbox" cbr=[-1,1] zr=[-1,1]
frame = 0
for direction in [-1,1]
for factor in -1:0.1:1
global frame += 1
@gsp :- frame x y direction * factor .* fxy "w pm3d notit" :-
end
end
@gsp
```
Here the `frame` variable is used as multiplot index. The animation can be saved in a GIF file with:
```@example abc
save(term="gif animate size 480,360 delay 5", output="assets/animation.gif")
```
![](assets/animation.gif)
## Direct command execution
When gnuplot commands are passed to `@gp` or `@gsp` they are stored in a session for future use, or to be saved in [Gnuplot scripts](@ref). If you simply wish to execute a command without storing it in the session, and possibly retrieve a value, use [`gpexec`](@ref). E.g., to retrieve the value of a gnuplot variable:
```@repl abc
gpexec("print GPVAL_TERM")
```
You may also provide a session ID as first argument (see [Multiple sessions](@ref)) to redirect the command to a specific session.
Alternatively you may start the [The gnuplot REPL](@ref) to type commands directly from the Julia prompt.
## The gnuplot REPL
The **Gnuplot.jl** package comes with a built-in REPL mode to directly send commands to the underlying gnuplot process. Since the REPL is a global resource, the gnuplot mode is not enabled by default. You can start it with:
```julia
Gnuplot.repl_init(start_key='>')
```
The customizable `start_key` character is the key which triggers activation of the REPL mode. To quit the gnuplot REPL mode hit the `backspace` key.
## Dry sessions
A "*dry session*" is a session with no underlying gnuplot process. To enable dry sessions type:
```julia
Gnuplot.options.dry = true;
```
before starting a session (see also [Options](@ref)). Note that the `dry` option is a global one, i.e. it affects all sessions started after setting the option.
Clearly, no plot can be generated in dry sessions. Still, they are useful to run **Gnuplot.jl** code without raising errors (no attempt will be made to communicate with the underlying process). Moreover, [Gnuplot scripts](@ref) can also be generated in a dry session, without the additional overhead of sending data to the gnuplot process.
If a gnuplot process can not be started the package will print a warning, and automatically enable dry sessions.

57
docs/src/api.md Normal file
View File

@ -0,0 +1,57 @@
# API
## Index
```@index
```
## Exported symbols
The list of **Gnuplot.jl** exported symbols is as follows:
```@docs
@gp
@gsp
boxxy
contourlines
dataset_names
dgrid3d
gpexec
gpmargins
gpranges
gpvars
hist
linetypes
palette
palette_levels
palette_names
recipe
save
session_names
stats
terminals
terminal
test_terminal
```
## Non-exported symbols
The following functions are not exported by the **Gnuplot.jl** package since they are typically not used in every day work, or aimed to debugging purposes. Still, they can be useful in some case, hence they are documented here.
In order to call these functions you should add the `Gnuplot.` prefix to the function name.
```@docs
Gnuplot.Dataset
Gnuplot.DatasetEmpty
Gnuplot.DatasetText
Gnuplot.DatasetBin
Gnuplot.Histogram1D
Gnuplot.Histogram2D
Gnuplot.IsoContourLines
Gnuplot.Options
Gnuplot.Path2d
Gnuplot.PlotElement
Gnuplot.gpversion
Gnuplot.quit
Gnuplot.quitall
Gnuplot.repl_init
Gnuplot.version
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

BIN
docs/src/assets/sixelgd.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

339
docs/src/basic.md Normal file
View File

@ -0,0 +1,339 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.splash("assets/logo.png")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Basic usage
The main purpose of the **Gnuplot.jl** package is to send data and commands to the underlying gnuplot process, in order to generate plots. Unlike other packages, however, the actual commands to plot, or the plot attributes, are not specified through function calls. This is what makes **Gnuplot.jl** *easy to learn and use*: there are no functions or keywords names to memorize[^1].
The most important symbols exported by the package are the [`@gp`](@ref) (for 2D plots) and [`@gsp`](@ref) (for 3D plots) macros. The simplemost example is as follows:
```@example abc
using Gnuplot
@gp 1:20
saveas("basic000") # hide
```
![](assets/basic000.png)
The plots are displayed either in an interactive window (if running in the Julia REPL), as an inline image (if running in Jupyter) or in the plot pane (if running in Juno). See [Display options](@ref) for further informations.
Both the [`@gp`](@ref) and [`@gsp`](@ref) macros accept any number of arguments, whose meaning is interpreted as follows:
- one, or a group of consecutive, array(s) build up a dataset. The different arrays are accessible as columns 1, 2, etc. from the gnuplot process. The number of required input arrays depends on the chosen plot style (see gnuplot documentation);
- a string occurring before a dataset is interpreted as a gnuplot command (e.g. `set grid`);
- a string occurring immediately after a dataset is interpreted as a *plot element* for the dataset, by which you can specify `using` clause, `with` clause, line styles, etc.;
- the special symbol `:-`, whose meaning is to avoid starting a new plot (if given as first argument), or to avoid immediately running all commands to create the final plot (if given as last argument). Its purpose is to allow splitting one long statement into multiple (shorter) ones.
The above list shows all the fundamental concepts to follow the examples presented below. The [`@gp`](@ref) and [`@gsp`](@ref) macros also accepts further arguments, but their use will be discussed in [Advanced usage](@ref).
[^1]: a previous knowledge of [gnuplot](http://gnuplot.sourceforge.net/documentation.html) usage is, nevertheless, required.
## [2D plots](@id plots2d)
Here we will show a few examples to generate 2D plots. The examples are intentionally very simple to highlight the behavior of **Gnuplot.jl**. See [Examples](@ref) for more complex ones.
Remember to run:
```julia
using Gnuplot
```
before running the examples.
### Simple examples involving just gnuplot commands:
---
#### Plot a sinusoid:
```@example abc
@gp "plot sin(x)"
saveas("basic001") # hide
```
![](assets/basic001.png)
---
#### Plot two curves:
```@example abc
@gp "set key left" "plot sin(x)" "pl cos(x)"
saveas("basic002") # hide
```
![](assets/basic002.png)
!!! note
Note that all gnuplot commands can be abbreviated as long as the resulting string is not ambiguous. In the example above we used `pl` in place of `plot`.
---
#### Split a `@gp` call in three statements:
```@example abc
@gp "set grid" :-
@gp :- "p sin(x)" :-
@gp :- "plo cos(x)"
saveas("basic003") # hide
```
![](assets/basic003.png)
!!! note
The trailing `:-` symbol means the plot will not be updated until the last statement.
### Send data from Julia to gnuplot:
#### Plot a parabola
```@example abc
@gp (1:20).^2
saveas("basic004") # hide
```
![](assets/basic004.png)
---
#### Plot a parabola with scaled x axis, lines and legend
```@example abc
x = 1:20
@gp "set key left" x ./ 20 x.^2 "with lines tit 'Parabola'"
saveas("basic005") # hide
```
![](assets/basic005.png)
---
#### Multiple datasets, logarithmic axis, labels and colors, etc.
```@example abc
x = 1:0.1:10
@gp "set grid" "set key left" "set logscale y"
@gp :- "set title 'Plot title'" "set label 'X label'" "set xrange [0:*]"
@gp :- x x.^0.5 "w l tit 'Pow 0.5' dt 2 lw 2 lc rgb 'red'"
@gp :- x x "w l tit 'Pow 1' dt 1 lw 3 lc rgb 'blue'"
@gp :- x x.^2 "w l tit 'Pow 2' dt 3 lw 2 lc rgb 'purple'"
saveas("basic006") # hide
```
![](assets/basic006.png)
!!! note
The above example lacks the trailing `:-` symbol. This means the plot will be updated at each command, adding one curve at a time.
---
## Keywords for common commands
In order to avoid typing long, and very frequently used gnuplot commands, **Gnuplot.jl** provides a few keywords which can be used in both `@gp` and `@sgp` calls:
- `xrange=[low, high]` => `"set xrange [low:high]`;
- `yrange=[low, high]` => `"set yrange [low:high]`;
- `zrange=[low, high]` => `"set zrange [low:high]`;
- `cbrange=[low, high]`=> `"set cbrange[low:high]`;
- `key="..."` => `"set key ..."`;
- `title="..."` => `"set title \"...\""`;
- `xlabel="..."` => `"set xlabel \"...\""`;
- `ylabel="..."` => `"set ylabel \"...\""`;
- `zlabel="..."` => `"set zlabel \"...\""`;
- `cblabel="..."` => `"set cblabel \"...\""`;
- `xlog=true` => `set logscale x`;
- `ylog=true` => `set logscale y`;
- `zlog=true` => `set logscale z`;
- `margins=...` => `set margins ...`;
- `lmargin=...` => `set lmargin ...`;
- `rmargin=...` => `set rmargin ...`;
- `bmargin=...` => `set bmargin ...`;
- `tmargin=...` => `set tmargin ...`;
All such keywords can be abbreviated to unambiguous names.
By using the above keywords the first lines of the previous example:
```julia
@gp "set grid" "set key left" "set logscale y"
@gp :- "set title 'Plot title'" "set label 'X label'" "set xrange [0:*]"
```
can be replaced with a shorter version:
```julia
@gp "set grid" k="left" ylog=true
@gp :- tit="Plot title" xlab="X label" xr=[0,NaN]
```
where `NaN` in the `xrange` keyword means using axis autoscaling.
## Plot matrix as images
**Gnuplot.jl** can display a 2D matrix as an image:
```@example abc
img = randn(Float64, 8, 5)
img[2,:] .= -5
@gp img "w image notit"
saveas("basic007a") # hide
```
![](assets/basic007a.png)
Note that the first index in the `img` matrix corresponds to the rows in the displayed image.
A simple way to remember the convention is to compare how a matrix is displayed in the REPL:
```@example abc
img = reshape(1:15, 5, 3)
```
and its image representation, which is essentially upside down (since the Y coordinates increase upwards):
```@example abc
@gp img "w image notit"
saveas("basic007b") # hide
```
![](assets/basic007b.png)
Also note that the `img[1,1]` pixel is shown at coordinates x=0, y=0. See [Image recipes](@ref) for further info.
## [3D plots](@id plots3d)
3D plots follow the same rules as 2D ones, just replace the `@gp` macro with `@gsp` and add the required columns (according to the plotting style).
E.g., to plot a spiral increasing in size along the `X` direction:
```@example abc
x = 0:0.1:10pi
@gsp cbr=[-1,1].*30 x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008") # hide
```
![](assets/basic008.png)
Note that the fourth array in the dataset, `x./20`, is used as by gnuplot as point size (`ps var`). Also note that all the keywords discussed above can also be used in 3D plots.
## Palettes and line types
The **Gnuplot.jl** package comes with all the [ColorSchemes](https://juliagraphics.github.io/ColorSchemes.jl/stable/basics/#Pre-defined-schemes-1) palettes readily available.
A gnuplot-compliant palette can be retrieved with [`palette()`](@ref), and used as any other command. The previous example may use an alternative palette with:
```@example abc
x = 0:0.1:10pi
@gsp palette(:viridis) cbr=[-1,1].*30 :-
@gsp :- x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008a") # hide
```
![](assets/basic008a.png)
The palette levels may be easily stretched by using the [`palette_levels()`](@ref) and modifying the numeric levels, e.g.:
```@example abc
x = 0:0.1:10pi
v, l, n = palette_levels(:viridis)
@gsp palette(v.^0.25, l, n) cbr=[-1,1].*30 :-
@gsp :- x x.*sin.(x) x.*cos.(x) x./20 "w p pt 7 ps var lc pal"
saveas("basic008b") # hide
```
![](assets/basic008b.png)
The list of all available palette can be retrieved with [`palette_names()`](@ref):
```@repl abc
palette_names()
```
The [ColorSchemes](https://juliagraphics.github.io/ColorSchemes.jl/stable/basics/#Pre-defined-schemes-1) palettes can also be used to generate line type colors, and optionally the line width, point size and dashed pattern, by means of the [`linetypes()`](@ref) function, e.g.
```@example abc
@gp key="left" linetypes(:Set1_5, lw=2)
for i in 1:10
@gp :- i .* (0:10) "w lp t '$i'"
end
saveas("basic009a") # hide
```
![](assets/basic009a.png)
```@example abc
@gp key="left" linetypes(:Set1_5, dashed=true, ps=2)
for i in 1:10
@gp :- i .* (0:10) "w lp t '$i'"
end
saveas("basic009b") # hide
```
![](assets/basic009b.png)
The first plot features the `:Set1_5` palette, with solid lines whose width is 2 times the default. The second plot shows the same palette but default line widths are 1, default point size is 2 (for the first N line types, where N is the number of discrete colors in the palette), and the dashed pattern is automatically changed.
As discussed in [Options](@ref), you may set a default line types for all plots with:
```julia
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
```
All plot in this documentation were generated with these settings.
## Exporting plots to files
**Gnuplot.jl** can export all plots (as well as multiplots, see [Multiplot](@ref)) to an external file using one of the many available gnuplot terminals. To check which terminals are available in your platform type:
```@repl abc
terminals()
```
(see also [`terminal()`](@ref) to check your current terminal).
Once you choose the proper terminal (i.e. format of the exported file), use the [`save()`](@ref) function to export. As an example, all the plots in this page have been saved with:
```julia
save(term="pngcairo size 550,350 fontscale 0.8", output="assets/output.png")
```
Note that you can pass both the terminal name and its options via the `term=` keyword. See [Gnuplot terminals](@ref) for further info on the terminals.
## Gnuplot scripts
Besides exporting plots in image files, **Gnuplot.jl** can also save a *script*, i.e. a file containing the minimum set of data and commands required to re-create a figure using just gnuplot.
The script allows a complete decoupling of plot data and aethetics, from the Julia code used to generate them. With scripts you can:
- modify all aesthetic details of a plot without re-running the (possibly complex and time-consuming) code used to generate it;
- share both data and plots with colleagues without the need to share the Julia code.
To generate a script for one of the examples above use:
```julia
save("script.gp")
```
after the plot has been displayed. Note that when images or large datasets are involved, `save()` may store the data in binary files under a directory named `<script name>_data`. In order to work properly both the script and the associated directory must be available in the same directory.
E.g., the following code:
```@example abc
x = 1:10
@gp x x.^2 "w l"
save("script1.gp")
```
will produce the following file, named `script1.gp`:
```
reset session
$data1 << EOD
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
EOD
plot \
$data1 w l
set output
```
While the following:
```@example abc
img = randn(100, 300);
@gp "set size ratio -1" "set autoscale fix" img "flipy with image notit"
save("script2.gp")
```
will produce:
```
reset session
set size ratio -1
set autoscale fix
plot \
'./script2_data/jl_OQrt9A' binary array=(300, 100) flipy with image notit
set output
```
The above scripts can be loaded into a pure gnuplot session (Julia is no longer needed) as follows:
```
gunplot> load 'script1.gp'
gunplot> load 'script2.gp'
```
to generate a plot identical to the original one.
The purpose of gnuplot scripts is to allow sharing all data, alongside a plot, in order to foster collaboration among scientists and replicability of results. Moreover, a script can be used at any time to change the details of a plot, without the need to re-run the Julia code used to generate it the first time.
Finally, the scripts are the only possible output when [Dry sessions](@ref) are used (i.e. when gnuplot is not available in the user platform.

12
docs/src/examples.md Normal file
View File

@ -0,0 +1,12 @@
# Examples
The official gallery of high quality examples is maintained in a separate repository:
[https://lazarusa.github.io/gnuplot-examples/](https://lazarusa.github.io/gnuplot-examples/)
The examples in this documentation are intentionally very simple, in order to focus on the package functionalities. The only relatively complex, publication-quality plot, is discussed in [The `cairolatex` terminal](@ref) section.
Keep in mind that **Gnuplot.jl** is just an interface to gnuplot, so everything you can do with the latter is achievable from Julia.
Further gnuplot examples can be found here:
- [http://gnuplot.sourceforge.net/demo_5.2/](http://gnuplot.sourceforge.net/demo_5.2/)
- [http://www.gnuplotting.org/](http://www.gnuplotting.org/)

80
docs/src/index.md Normal file
View File

@ -0,0 +1,80 @@
# Gnuplot.jl
## A Julia interface to gnuplot.
[![Stars](https://img.shields.io/github/stars/gcalderone/Gnuplot.jl?style=social)](https://github.com/gcalderone/Gnuplot.jl)
The **Gnuplot.jl** package allows easy and fast use of [gnuplot](http://gnuplot.info/) as a data visualization tool in Julia. Have a look at [Basic usage](@ref) and [Examples](@ref) for a quick overview. The package main features are:
- fast time-to-first-plot;
- extremely concise yet meaningful syntax, makes it ideal for interactive data exploration;
- no need to learn new API functions or keywords: only two macros (`@gp` for 2D plots, `@gsp` for 3D plots) and a basic knowledge of gnuplot are enough to generate most plots;
- transparent interface between Julia and gnuplot to exploit all functionalities of the latter, both present and future ones;
- availability of all the palettes from [ColorSchemes](https://github.com/JuliaGraphics/ColorSchemes.jl);
- support for multiple plots in one window, multiple plotting windows, as well as ASCII and Sixel plots (to plot directly in a terminal);
- support for histograms (both 1D and 2D);
- enhanced support for contour plots;
- 2D interpolation of scattered data on a regular grid;
- export to a huge number of formats such as `pdf`, `png`, `gif`, ``\LaTeX``, `svg`, etc. (actually all those supported by gnuplot);
- compatibility with Jupyter and Juno;
- save sessions into gnuplot scripts, to enable easy plot customization and reproducibility.
If you're unfamiliar with gnuplot have a look at:
- [Main gnuplot site](http://gnuplot.info/)
- [gnuplot FAQ](http://gnuplot.info/faq/index.html)
## Yet another plotting package?
A powerful plotting framework is among the most important tool in the toolbox of any modern scientist and engineer. As such, it is hard to find a single package to fit all needs, and many solutions are indeed available in the Julia [ecosystem](https://github.com/JuliaPlots).
**Gnuplot.jl** package fills the niche of users who needs:
1. publication-quality plots, by exploiting the capabilities of a widely used tool such as gnuplot, and its many output formats available;
1. a well-documented framework, by taking advantage of all the gnuplot documentation, tutorials and examples available on the web;
1. a fast response, by relying on an external program (rather than on a large Julia code base);
1. an interactive data exploration framework, by exposing a carefully designed, extremely concise and easy to remember syntax (at least for users with minimal gnuplot knowledge);
1. a procedure to decouple plot data and aesthetics from the Julia code used to generate them.
Unlike other packages **Gnuplot.jl** is not a pure Julia solution as it depends on an external package to actually generate plots. However, if gnuplot is not available on a given platform, the package could still be used in "*dry*" mode, and no error for a missing dependency will be raised (see [Dry sessions](@ref)).
The **Gnuplot.jl** package development follows a minimalistic approach: it is essentially a thin layer to send data and commands to gnuplot. This way all underlying capabilities, both present and future ones, are automatically exposed to the Julia user, with no need to implement dedicated wrappers.
The functionalities 1, 2 and 3 listed above are similar to those provided by the [Gaston](https://github.com/mbaz/Gaston.jl) package. **Gnuplot.jl** also provides features 4 and 5, as well as the minimalistic approach.
## Does Gnuplot.jl suit my needs?
Any modern plotting framework is able to produce a simple scatter plot, with custom symbols, line styles, colors and axis labels. Indeed, this is exactly the example that is reported in every package documentation (also here: see [2D plots](@ref plots2d)). Still, producing complex and publication-quality plots is not an easy task. As a consequence is also hard to tell whether a package can cope with the most difficult cases, unless you actually try it out. A reasonable choice, then, is to rely on the size of the user base, the availability of documentation / tutorials, and the possibility to preview complex examples.
By allowing transparent access to the underlying gnuplot process, the **Gnuplot.jl** package immediately exposes all capabilities of the backend and allows to take advantage of the many resources available online. The minimalistic approach allows to value the widely spread knowledge of gnuplot syntax, and ensures a shallow learning curve for the package. Finally, its extremely concise syntax makes it ideal for interactive data exploration.
As a final remark, note that the **Gnuplot.jl** features directly maps onto the different stages of production of a plot:
- syntax conciseness, interactivity, [Plot recipes](@ref) => preliminary data exploration;
- access to all gnuplot capabilities, allowing to tweak even the smallest detail of a plot => plot preparation;
- [Gnuplot scripts](@ref) => post-production.
Before continuing, have a look at the [Examples](@ref) page!
## Notation
In this documentation:
- "**Gnuplot.jl**" refers to the Julia package;
- "gnuplot" refers to the [gnuplot](http://gnuplot.info/) application.
## Table of Contents
```@contents
Pages = ["index.md", "install.md", "basic.md", "advanced.md", "options.md", "style.md", "terminals.md", "recipes.md", "examples.md", "api.md"]
```

48
docs/src/install.md Normal file
View File

@ -0,0 +1,48 @@
# Installation
## Prerequisite
In order to use the **Gnuplot.jl** package you'll need [`gnuplot`](http://gnuplot.info/) (ver. >= 5.0) installed on your system, and its executable available in your path.
If `gnuplot` is not available in your platform you can still use **Gnuplot.jl** in "*dry*" mode (see [Dry sessions](@ref)). In this case a plot can not be generated, but you may still generate [Gnuplot scripts](@ref).
## Package installation
In the Julia REPL type:
```julia-repl
julia> ]add Gnuplot
```
The `]` character starts the Julia [package manager](https://julialang.github.io/Pkg.jl/v1/getting-started.html#Basic-Usage-1). Hit backspace key to return to Julia prompt.
## Check installation
Check **Gnuplot.jl** version with:
```julia-repl
julia> ]st Gnuplot
Status `~/.julia/environments/v1.4/Project.toml`
[dc211083] Gnuplot v1.4.1
```
If the displayed version is not `v1.4.1` you are probably having a dependency conflict. In this case try forcing installation of the latest version with:
```julia-repl
julia> ]add Gnuplot@1.4.1
```
and check which package is causing the conflict.
Check execution and version of the underlying `gnuplot` process:
```@repl
using Gnuplot
Gnuplot.gpversion()
```
The minimum required version is `v5.0`.
Generate the first plot:
```julia-repl
julia> @gp 1:9
```
Test default terminal capabilities:
```julia-repl
test_terminal()
```

114
docs/src/options.md Normal file
View File

@ -0,0 +1,114 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Display options
The display behaviour of **Gnuplot.jl** depends on the value of the `Gnuplot.options.gpviewer` flag:
- if `true` the plot is displayed in a gnuplot window, using one of the interactive terminals such as `wxt`, `qt` or `aqua`. This is the default setting when running a Julia REPL session; The terminal options can be customized using `Gnuplot.options.term`;
- if `false` the plot is displayed through the Julia [multimedia interface](https://docs.julialang.org/en/v1/base/io-network/#Multimedia-I/O-1), i.e. it is exported as either a `png`, `svg` or `html` file, and displayed in an external viewer. This is the default setting when running a Jupyter, JupyterLab or Juno session. The terminal options can be customized using the `Gnuplot.options.mime` dictionary.
The `Gnuplot.options.gpviewer` flag is automatically set when the package is first loaded according to the runtime environment, however the user can change its value at any time to fit specific needs. Further informations and examples for both options are available in this Jupyter [notebook](https://github.com/gcalderone/Gnuplot.jl/blob/gh-pages/v1.3.0/options/display.ipynb).
# Package options and initialization
## Options
The package options are stored in a global structure available in Julia as `Gnuplot.option` (the type of the structure is [`Gnuplot.Options`](@ref)). The most important settings are as follows:
- `dry::Bool`: if true all new sessions will be started as [Dry sessions](@ref). Default is `false`, but if the package is not able to start a gnuplot process it will automatically switch to `true`;
- `cmd::String`: command to start the gnuplot process, default value is `"gnuplot"`. Use this field to specify a custom path to the gnuplot executable;
- `gpviewer::Bool`: use a gnuplot terminal as main plotting device (if `true`) or an external viewer (if `false`);
- `term::String`: default terminal for interactive use (default is an empty string, i.e. use gnuplot settings). A custom terminal can be set with, e.g.:
```@repl abc
Gnuplot.options.term = "wxt size 700,400";
```
- `mime::Dict{MIME, String}`: dictionary of MIME types and corresponding gnuplot terminals. Used to export images with either [`save()`](@ref) or `show()` (see [Display options](@ref)). Default values are:
- `MIME"application/pdf" => "pdfcairo enhanced"`
- `MIME"image/jpeg" => "jpeg enhanced"`
- `MIME"image/png" => "pngcairo enhanced"`
- `MIME"image/svg+xml" => "svg enhanced mouse standalone dynamic background rgb 'white'"`
- `MIME"text/html" => "svg enhanced mouse standalone dynamic"`
- `MIME"text/plain" => "dumb enhanced ansi"`
- `init::Vector{String}`: commands to initialize the session when it is created or reset. It can be used to, e.g., set a custom linetypes or palette:
```@repl abc
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5));
```
Note that this option affect all the sessions, and that all inserted commands are saved in [Gnuplot scripts](@ref);
- `verbose::Bool`: a flag to set verbosity of the package. If `true` all communication with the underlying process will be printed on stdout. E.g.:
```@repl abc
empty!(Gnuplot.options.init); # hide
gpexec("set term wxt"); # hide
Gnuplot.options.verbose = true;
x = 1.:10;
@gp x x.^2 "w l t 'Parabola'"
save(term="pngcairo size 480,360 fontscale 0.8", output="output.png")
Gnuplot.options.verbose = false # hide
push!(Gnuplot.options.init, linetypes(:Set1_5, lw=1.5)); # hide
gpexec("set term unknown"); # hide
```
Each line reports the package name (`GNUPLOT`), the session name (`default`), the command or string being sent to gnuplot process, and the returned response (line starting with `->`). Default value is `false`;
## Package initialization
If you use **Gnuplot.jl** frequently you may find convenient to automatically apply the package settings ([Options](@ref)) whenever the package is loaded. A possibility is to use [Requires.jl](https://github.com/JuliaPackaging/Requires.jl) and put the following code in the `~/.julia/config/startup.jl` initialization file (further info [here](https://docs.julialang.org/en/v1/stdlib/REPL/)):
```julia
using Requires
@require Gnuplot="dc211083-a33a-5b79-959f-2ff34033469d" begin
@info "Custom Gnuplot initialization"
# Uncomment the following if you don't have the gnuplot
# executable installed on your platform:
#Gnuplot.options.dry = true;
# Set the proper path if the gnuplot executable is not
# available in your $PATH
#Gnuplot.options.cmd = "/path/to/gnuplot";
# Force a specific display behaviour (see documentation). If
# not given explicit Gnuplot.jl will choose the best option
# according to your runtime environment.
#Gnuplot.options.gpviewer = true
# Set the default terminal for interacitve use
Gnuplot.options.term = "wxt size 700,400";
# Set the terminal options for the exported MIME types:
#Gnuplot.options.mime[MIME"image/png"] = "";
#Gnuplot.options.mime[MIME"image/svg+xml"] = "svg enhanced standalone dynamic";
#Gnuplot.options.mime[MIME"text/html"] = "svg enhanced standalone mouse dynamic";
# Set the terminal to plot in a terminal emulator:
# (try with `save(MIME"text/plain")`):
#Gnuplot.options.mime[MIME"text/plain"] = "sixelgd enhanced"; # requires vt340 emulation
# Set the default linetypes
empty!(Gnuplot.options.init);
push!(Gnuplot.options.init, Gnuplot.linetypes(:Set1_5, lw=1.5, ps=1.5));
# Initialize the gnuplot REPL using the provided `start_key`.
if Gnuplot.options.gpviewer;
Gnuplot.repl_init(start_key='>');
end;
end
```
The above code will be automatically when you first load the package with `using Gnuplot`.

136
docs/src/recipes.md Normal file
View File

@ -0,0 +1,136 @@
```@setup abc
using Gnuplot
Gnuplot.quitall()
mkpath("assets")
Gnuplot.options.term = "unknown"
empty!(Gnuplot.options.init)
push!( Gnuplot.options.init, linetypes(:Set1_5, lw=1.5, ps=1.5))
saveas(file) = save(term="pngcairo size 550,350 fontscale 0.8", output="assets/$(file).png")
```
# Plot recipes
A plot *recipe* is a quicklook visualization procedure aimed at reducing the amount of repetitive code to generate a plot. More specifically, a recipe is a function that convert data from the "Julia world" into a form suitable to be ingested in **Gnuplot.jl**, namely a scalar (or a vector of) [`Gnuplot.PlotElement`](@ref) object(s). The latter contain informations on how to create a plot, or a part of it, and can be used directly as arguments in a `@gp` or `@gsp` call.
There are two kinds of recipes:
- *explicit* recipe: a function which is explicitly invoked by the user. It can have any name and accept any number of arguments and keywords. It is typically used when the visualization of a data type requires some extra information, beside data itself (e.g. to plot data from a `DataFrame` object, see [Explicit recipe (example)](@ref));
- *implicit* recipe: a function which is automatically called by **Gnuplot.jl**. It must extend the [`recipe()`](@ref) function, and accept exactly one mandatory argument. It is typically used when the visualization is completely determined by the data type itself (e.g. the visualization of a `Matrix{ColorTypes.RGB}` object as an image, see [Image recipes](@ref));
An implicit recipe is invoked whenever the data type of an argument to `@gp` or `@gsp` is not among the allowed ones (see [`@gp()`](@ref) documentation). If a suitable recipe do not exists an error is raised. On the other hand, an explicit recipe needs to be invoked by the user, and the output passed directly to `@gp` or `@gsp`.
Although recipes provides very efficient tools for data exploration, their use typically hide the details of plot generation. As a consequence they provide less flexibility than the approaches described in [Basic usage](@ref) and [Advanced usage](@ref).
Currently, the **Gnuplot.jl** package provides no built-in explicit recipe. The implicit recipes are implemented in [recipes.jl](https://github.com/gcalderone/Gnuplot.jl/blob/master/src/recipes.jl).
## Explicit recipe (example)
To generate a plot using the data contained in a `DataFrame` object we need, beside the data itself, the name of the columns to use for the X and Y coordinates. The following example shows how to implement an explicit recipe to plot a `DataFrame` object:
```@example abc
using RDatasets, DataFrames, Gnuplot
import Gnuplot: PlotElement, DatasetText
function plotdf(df::DataFrame, colx::Symbol, coly::Symbol; group=nothing)
if isnothing(group)
return PlotElement(data=DatasetText(df[:, colx], df[:, coly]),
plot="w p notit",
xlab=string(colx), ylab=string(coly))
end
out = Vector{Gnuplot.PlotElement}()
push!(out, PlotElement(;xlab=string(colx), ylab=string(coly)))
for g in sort(unique(df[:, group]))
i = findall(df[:, group] .== g)
if length(i) > 0
push!(out, PlotElement(data=DatasetText(df[i, colx], df[i, coly]),
plot="w p t '$g'"))
end
end
return out
end
# Load a DataFrame and convert it to a PlotElement
iris = dataset("datasets", "iris")
@gp plotdf(iris, :SepalLength, :SepalWidth, group=:Species)
saveas("recipes001") # hide
```
![](assets/recipes001.png)
## Histogram recipes
The object returned by the [`hist()`](@ref) function can be readily visualized by means of implicit recipes defined on the `Gnuplot.Histogram1D` and `Gnuplot.Histogram2D` types:
```@example abc
x = randn(1000);
@gp hist(x)
saveas("recipes002") # hide
```
![](assets/recipes002.png)
```@example abc
x = randn(10_000);
y = randn(10_000);
@gp hist(x, y)
saveas("recipes002a") # hide
```
![](assets/recipes002a.png)
## Contour lines recipes
The object returned by the [`contourlines()`](@ref) function can be readily visualized by means of implicit recipes defined on the `Gnuplot.IsoContourLines` types:
```@example abc
x = randn(10_000);
y = randn(10_000);
h = hist(x, y)
clines = contourlines(h, "levels discrete 10, 30, 60, 90");
@gp clines
saveas("recipes002b") # hide
```
![](assets/recipes002b.png)
## Image recipes
The **Gnuplot.jl** package provides implicit recipes to display images in the following formats:
- `Matrix{ColorTypes.RGB{T}}`;
- `Matrix{ColorTypes.RGBA{T}}`
- `Matrix{ColorTypes.Gray{T}}`;
- `Matrix{ColorTypes.GrayA{T}}`;
To use these recipes simply pass an image to `@gp`, e.g.:
```@example abc
using TestImages
img = testimage("lighthouse");
@gp img
saveas("recipes007b") # hide
```
![](assets/recipes007b.png)
All such recipes are defined as:
```julia
function recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy")
...
end
```
with only one mandatory argument. In order to exploit the optional keyword we can explicitly invoke the recipe as follows:
```@example abc
img = testimage("walkbridge");
@gp palette(:gray1) recipe(img, "flipy rot=15deg")
saveas("recipes007c") # hide
```
![](assets/recipes007c.png)
Note that we used both a palette (`:gray`, see [Palettes and line types](@ref)) and a custom rotation angle.
The `flipy` option is necessary for proper visualization (see discussion in [Plot matrix as images](@ref)).

101
docs/src/style.md Normal file
View File

@ -0,0 +1,101 @@
# Style Guide
The **Gnuplot.jl** loose syntax allows to create a plot using very different approaches. While this was one of the initial purposes for the package, it may lead to a reduced code readability if not used judiciously.
Here I will summarize a few, non-mandatory, guidelines which allows to maintain a neat syntax and a high readability:
### 1 - Use macros without parentheses and commas:
The two most important symbols exported by the package (`@gp` and `@gsp`) are macros. As such they are supposed to be invoked without parentheses and commas. E.g. use:
```julia
@gp x y "with lines"
```
in place of
```julia
@gp(x, y, "with lines")
```
If you have very long lines you may split them in multiple statements using the `:-` symbol, which resembles both hyphenation in natural language and indentation for the plot-producing code:
```julia
@gp "set grid" :-
@gp :- x y "with lines"
```
Note that the trailing `:-` symbol is not mandatory. If omitted, the plot will be updated at each statement (rather than at the last one).
### 2 - Use keywords in place of gnuplot commands:
As discussed in [Keywords for common commands](@ref) several commonly used gnuplot commands can be replaced with a keyword. E.g. you can use
```julia
@gp ... xrange=[-1,5] ...
```
in place of
```julia
@gp ... "set xrange [-1:5]" ...
```
This help reducing the number of strings, as well as the associated interpolating characters (`$`), and results in a more concise syntax.
### 3 - Use abbreviations for commands and keywords:
Many gnuplot commands, as well as all keywords (see [Keywords for common commands](@ref)), can be abbreviated as long as the abbreviation is unambiguous. E.g., the following code:
```julia
@gp "set grid" "set key left" "set logscale y"
@gp :- "set title 'Plot title'" "set label 'X label'" "set xrange [0:*]"
@gp :- x y "with lines"
```
can be replaced with a shorter version:
```julia
@gp "set grid" k="left" ylog=true
@gp :- tit="Plot title" xlab="X label" xr=[0,NaN]
@gp :- x y "w l"
```
Besides being more idiomatic, the possibility to exploit abbreviations is of great importance when performing interactive data exploration.
Moreover, in many gnuplot examples and documentation it is very common to use abbreviations (i.e. `w l` in place of `with lines`) so there is no reason to avoid them in **Gnuplot.jl**.
### 4 - If possible, follow the *commands* -> *data* + *plot specs* order
The two following examples produce exactly the same plot:
```julia
x = -10.:10
@gp "set grid" "set multiplot layout 2,1"
@gp :- 1 x x.^2 "w l t 'f(x) = x^2" # first plot
@gp :- 2 x x.^3 "w l t 'f(x) = x^3" # second plot
```
and
```julia
@gp 2 x x.^3 "w l t 'f(x) = x^3" # second plot
@gp :- 1 x x.^2 "w l t 'f(x) = x^2" # first plot
@gp :- "set grid" "set multiplot layout 2,1"
```
However, the first form appears more *logical* and easy to follow.
In analogy with previous example, even on single plot, the following form
```julia
@gp "set grid"
@gp :- x x.^2 "w l t 'f(x) = x^2"
```
should be preferred over
```julia
@gp x x.^2 "w l t 'f(x) = x^2"
@gp :- "set grid"
```
even if the output is exactly the same.
### 5 - Join multiple command strings:
Instead of specifying several commands as strings
```julia
@gp :- "set key off" "set auto fix" "set size square"
@gp :- "set offsets graph .05, graph .05, graph .05, graph .05"
@gp :- "set border lw 1 lc rgb 'white'"
```
join them in a single string using triple quotes and `;`
```julia
@gp :- """set key off; set auto fix; set size square;
set offsets graph .05, graph .05, graph .05, graph .05;
set border lw 1 lc rgb 'white'; """
```

115
docs/src/terminals.md Normal file
View File

@ -0,0 +1,115 @@
# Gnuplot terminals
Gnuplot provides dozens of terminals to display plots or export them into files (see [`terminals()`](@ref) to get a list of enabled terminals on your platform). This section discuss a few tips on how to use the most common terminals.
To use a specific terminal for interactive use you may either set it as initialization command for all new session with (see [Options](@ref)):
```julia
Gnuplot.options.term = "wxt"
```
See official [gnuplot documentation](http://gnuplot.sourceforge.net/documentation.html) for further info on terminals and their options.
## Interactive terminals (`wxt` and `qt`)
The multiplatform `wxt` and `qt` terminals are among the most widely used ones for their nicely looking outputs on display and for their interactive capabilities.
You may use such terminals with:
```
Gnuplot.options.term = "wxt size 800,600"
```
or
```
Gnuplot.options.term = "qt size 800,600"
```
(the `size 800,600` is optional and can be omitted).
Press the `h` key on the window to display an help message with all available keyboard shortcuts. In particular press `6` to enable printing plot coordinates on Julia stdout (ensure mouse is enabled with `m`).
## Plot in a terminal application (`dumb`, `sixel` and `sixelgd`)
Gnuplot supports plotting in a terminal application, with no need for X11 or other GUI support, via the `dumb`, `sixel` and `sixelgd` terminals. These are extremely useful when you run Julia on a remote shell through `ssh`, with no X11 forwarding. The `dumb` terminal uses ASCII characters to draw a plot, while `sixel` and `sixelgd` actually use bitmaps (but require Sixel support to be enabled in the terminal, e.g. `xterm -ti vt340`).
Dumb terminal can be used as follows:
```jldoctest; setup = :(using Gnuplot)
julia> origterm = Gnuplot.options.term;
julia> Gnuplot.options.term = "dumb size 60,15";
julia> @gp "plot sin(x)"
1 +-------------------------------------------------+
0.8 |-+ *+ * + ** ** + * * +-|
0.6 |-+ * ** * * sin(x) *******-|
0.4 |*+ * * * * * *+-|
0.2 |*+ * * * * * *-|
0 |*+ * * * * * *-|
| * * * * * * *|
-0.2 |-* * * * * * +*|
-0.4 |-+* * * * * * +*|
-0.6 |-+* * * * ** * +-|
-0.8 |-+ * * + ** ** + * * +-|
-1 +-------------------------------------------------+
-10 -5 0 5 10
julia> Gnuplot.options.term = origterm;
```
A sixel plot on `xterm` looks as follows:
![](assets/sixelgd.png)
The above terminals are available if gnuplot has been compiled with the `--with-bitmap-terminals` option enabled and Libgd (only for `sixelgd`).
## Export to image files
Gnuplot provides dozens of terminals able to export on files. Examples are:
- `pngcairo` to export PNG files;
- `pdfcairo` for PDF;
- `jpeg` for JPG;
- `gif` for GIF (see [Animations](@ref)).
All the above terminals support the `size` and `fontscale` options to quickly adjust the size of the rasterized image and the size of the font respectively. E.g.:
```julia
save(term="pngcairo size 480,360 fontscale 0.8", output="output.png")
```
(see also [`save()`](@ref)).
Gnuplot is also able to export vector (i.e. non-raster) plots through the `svg` terminal.
## The `cairolatex` terminal
The `cairolatex` terminal allows to produce high quality plots by splitting the output into a PDF file (containing a rasterized image of a plot) and a `.tex` file (containing all the text as ``\LaTeX`` code). The following example shows how to write plot tics and an equation in ``\LaTeX``:
```julia
x = LinRange(-2pi, 2pi, 1000)
@gp tit="Polynomial approximation of sin(x)" "set style fill transparent solid 0.6 noborder"
@gp :- raw"""set xtics ('$-\pi$' -pi, '$-\pi/2$' -pi/2, 0, '$\pi/2$' pi/2, '$\pi$' pi)"""
@gp :- xr=3.8.*[-1, 1] yr=[-1.5,1.5] key="box opaque left horiz" linetypes(:Blues_3) "set grid front"
latex = raw"""\begin{minipage}[c]{\textwidth}\begin{equation*}""" *
raw"""\sin(x) = \sum_0^{+\infty} \frac{(-1)^n}{(2n + 1)!} x^{2n+1}""" *
raw"""\end{equation*} \end{minipage}"""
@gp :- "set label at graph 0.62,0.2 front center '$latex'"
approx = fill(0., length(x));
@gp :- x sin.(x) approx .+= x "w filledcurve t 'n=0' lt 1"
@gp :- x sin.(x) approx .+= -x.^3/6 "w filledcurve t 'n=1' lt 2"
@gp :- x sin.(x) approx .+= x.^5/120 "w filledcurve t 'n=2' lt 3"
@gp :- x sin.(x) approx .+= -x.^7/5040 "w filledcurve t 'n=3' lt 4"
@gp :- x sin.(x) "w l t 'sin(x)' lw 2 lc rgb 'black'"
save(term="cairolatex pdf input color dashed size 5in,3.3in", output="test.tex")
```
!!! warning
If you add a path in the `output=` keyword this will also be copied in the the `.tex` file, and may generate errors when compiling ``\LaTeX`` code. The simplest way to solve this problem is to use just filenames, with no paths.
The two output files (`test.tex` and `test.pdf`) can then be included in a ``\LaTeX`` file as follows:
```latex
\documentclass{article}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{color}
\begin{document}
\begin{figure}
\input{test.tex}
\end{figure}
\end{document}
```
And the output is:
![](assets/cairolatex.png)

BIN
examples/ex1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
examples/ex2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
examples/ex3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

19
examples/hidden2.1.jl Normal file
View File

@ -0,0 +1,19 @@
# Original example:
# http://gnuplot.sourceforge.net/demo/hidden2.html
using Gnuplot
x = LinRange(-10, 10, 25)
y = LinRange(-10, 10, 25)
@gsp "set xyplane at 0"
@gsp :- "unset key" :-
@gsp :- "set palette rgbformulae 31,-11,32"
@gsp :- "set style fill solid 0.5"
@gsp :- "set cbrange [-1:1]"
@gsp :- title="Mixing pm3d surfaces with hidden-line plots"
@gsp :- "set hidden3d front"
f = [sin(-sqrt((x+5)^2+(y-7)^2)*0.5) for x in x, y in y]
z = [x*x-y*y for x in x, y in y]
@gsp :- x y f "w pm3d" x y z "w l lc rgb 'black'"

41
examples/hidden2.3.jl Normal file
View File

@ -0,0 +1,41 @@
# Original example:
# http://gnuplot.sourceforge.net/demo/hidden2.html
using Gnuplot
@gsp "set multiplot title 'Interlocking Tori'"
U = LinRange(-pi, pi, 100); # 50
V = LinRange(-pi, pi, 20);
@gsp :- "unset key"
@gsp :- "unset xtics"
@gsp :- "unset ytics"
@gsp :- "unset ztics"
@gsp :- "set border 0"
@gsp :- "set view 60, 30, 1.5, 0.9"
@gsp :- "unset colorbox"
@gsp :- "set colorbox vertical user origin 0.9, 0.15 size 0.02, 0.50"
@gsp :- "set format cb '%.1f'"
for loop in 1:2
if loop == 1
@gsp :- 1 title="PM3D surface\\nno depth sorting"
@gsp :- "set origin -0.02,0.0"
@gsp :- "set size 0.55, 0.9"
@gsp :- "set pm3d scansforward" :- # scansbackward
else
@gsp :- 2 title="PM3D surface\\ndepth sorting"
@gsp :- "set origin 0.40,0.0"
@gsp :- "set size 0.55, 0.9"
@gsp :- "set pm3d depthorder"
end
x = [cos(u) + .5 * cos(u) * cos(v) for u in U, v in V]
y = [sin(u) + .5 * sin(u) * cos(v) for u in U, v in V]
z = [.5 * sin(v) for u in U, v in V]
@gsp :- x' y' z' "w pm3d"
x = [1 + cos(u) + .5 * cos(u) * cos(v) for u in U, v in V]
y = [.5 * sin(v) for u in U, v in V]
z = [sin(u) + .5 * sin(u) * cos(v) for u in U, v in V]
@gsp :- x' y' z' "w pm3d"
end

File diff suppressed because it is too large Load Diff

73
src/recipes.jl Normal file
View File

@ -0,0 +1,73 @@
# ╭───────────────────────────────────────────────────────────────────╮
# │ IMPLICIT RECIPES │
# ╰───────────────────────────────────────────────────────────────────╯
# --------------------------------------------------------------------
# Histograms
"""
recipe(h::Histogram1D)
recipe(h::Histogram2D)
Implicit recipes to visualize 1D and 2D histograms.
"""
recipe(h::Histogram1D) =
PlotElement(cmds="set grid",
data=DatasetText(h.bins, h.counts),
plot="w histep notit lw 2 lc rgb 'black'")
recipe(h::Histogram2D) =
PlotElement(cmds=["set autoscale fix"],
data=DatasetText(h.bins1, h.bins2, h.counts),
plot="w image notit")
# --------------------------------------------------------------------
# Contour lines
"""
recipe(c::IsoContourLines)
recipe(v::Vector{IsoContourLines})
Implicit recipes to visualize iso-contour lines.
"""
function recipe(c::IsoContourLines)
if isnan(c.prob)
return PlotElement(data=c.data, plot="w l t '$(c.z)'")
end
return PlotElement(data=c.data, plot="w l t '$(round(c.prob * 100, sigdigits=6))%'")
end
recipe(v::Vector{IsoContourLines}) = recipe.(v)
# --------------------------------------------------------------------
# Images
"""
recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.RGBA{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.Gray{T}}, opt="flipy")
recipe(M::Matrix{ColorTypes.GrayA{T}}, opt="flipy")
Implicit recipes to show images.
"""
recipe(M::Matrix{ColorTypes.RGB{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :r),
256 .* getfield.(M, :g),
256 .* getfield.(M, :b)),
plot="$opt with rgbimage notit")
recipe(M::Matrix{ColorTypes.RGBA{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :r),
256 .* getfield.(M, :g),
256 .* getfield.(M, :b)),
plot="$opt with rgbimage notit")
recipe(M::Matrix{ColorTypes.Gray{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :val)),
plot="$opt with image notit")
recipe(M::Matrix{ColorTypes.GrayA{T}}, opt="flipy") where T =
PlotElement(cmds=["set autoscale fix", "set size ratio -1"],
data=DatasetBin(256 .* getfield.(M, :val)),
plot="$opt with image notit")

View File

@ -1,52 +1,175 @@
using Gnuplot
using Test, Gnuplot
try
@info "Gnuplot.jl version: " * string(Gnuplot.version())
@info "gnuplot version: " * string(Gnuplot.gpversion())
catch
Gnuplot.options.dry = true
end
Gnuplot.options.gpviewer = true
x = [1, 2, 3]
y = [4, 5, 6]
s = Gnuplot.arrays2datablock(x)
@test all(s .== [" 1" ,
" 2" ,
" 3" ])
s = Gnuplot.arrays2datablock(x, y)
@test all(s .== [" 1 4",
" 2 5",
" 3 6"])
s = Gnuplot.arrays2datablock(x, y, x.+y)
@test all(s .== [" 1 4 5",
" 2 5 7",
" 3 6 9"])
z = [X+Y for X in x, Y in y];
s = Gnuplot.arrays2datablock(z)
@test all(s .== ["0 0 5",
"1 0 6",
"2 0 7",
"" ,
"0 1 6",
"1 1 7",
"2 1 8",
"" ,
"0 2 7",
"1 2 8",
"2 2 9"])
s = Gnuplot.arrays2datablock(z, z)
@test all(s .== [" 5 5",
" 6 6",
" 7 7",
"" ,
" 6 6",
" 7 7",
" 8 8",
"" ,
" 7 7",
" 8 8",
" 9 9"])
s = Gnuplot.arrays2datablock(x, y, z)
@test all(s .== [" 1 4 5" ,
" 2 4 6" ,
" 3 4 7" ,
"" ,
" 1 5 6" ,
" 2 5 7" ,
" 3 5 8" ,
"" ,
" 1 6 7" ,
" 2 6 8" ,
" 3 6 9" ])
c = [[X, Y] for Y in y for X in x]; # First Y (i.e. rows) then X (i.e. columns)
u = getindex.(c, 1)
v = getindex.(c, 2)
s = Gnuplot.arrays2datablock(u, v, z)
@test all(s .== [" 1 4 5" ,
" 2 4 6" ,
" 3 4 7" ,
"" ,
" 1 5 6" ,
" 2 5 7" ,
" 3 5 8" ,
"" ,
" 1 6 7" ,
" 2 6 8" ,
" 3 6 9" ])
s = Gnuplot.arrays2datablock(1:3, 1:3, ["One", "Two", "Three"])
@test all(s .== [ " 1 1 \"One\"" ,
" 2 2 \"Two\"" ,
" 3 3 \"Three\""])
x = collect(1.:100);
#-----------------------------------------------------------------
dummy = palette_names()
pal = palette(:deepsea)
@test pal == "set palette defined (0.0 '#2B004D', 0.25 '#4E0F99', 0.5 '#3C54D4', 0.75 '#48A9F8', 1.0 '#C5ECFF')\nset palette maxcol 5\n"
ls = linetypes(:Set1_5, lw=1.5, ps=2)
@test ls == "unset for [i=1:256] linetype i\nset linetype 1 lc rgb '#E41A1C' lw 1.5 dt solid pt 1 ps 2\nset linetype 2 lc rgb '#377EB8' lw 1.5 dt solid pt 2 ps 2\nset linetype 3 lc rgb '#4DAF4A' lw 1.5 dt solid pt 3 ps 2\nset linetype 4 lc rgb '#984EA3' lw 1.5 dt solid pt 4 ps 2\nset linetype 5 lc rgb '#FF7F00' lw 1.5 dt solid pt 5 ps 2\nset linetype cycle 5\n"
dummy = terminals()
# if "sixelgd" in terminals()
# Gnuplot.options.term = "sixelgd enhanced"
# elseif "sixel" in terminals()
# Gnuplot.options.term = "sixel enhanced"
# elseif "dumb" in terminals()
# Gnuplot.options.term = "dumb"
# else
# Gnuplot.options.term = "unknown"
# end
# Gnuplot.quitall()
# Force unknown on Travis CI
Gnuplot.options.term = "unknown"
@gp 1:9
@info "using terminal: " terminal()
#test_terminal("unknown")
#-----------------------------------------------------------------
# Test wth empty dataset
@gp Float64[]
@gsp Float64[]
@gp Float64[] Float64[]
@gsp Float64[] Float64[]
#-----------------------------------------------------------------
x = collect(1.:100);
for i in 1:10
@gp :gp1 "plot sin($i*x)"
@gp :gp2 "plot sin($i*x)"
@gp :gp3 "plot sin($i*x)"
sleep(0.3)
end
quitall()
Gnuplot.quitall()
#-----------------------------------------------------------------
@gp "plot sin(x)"
@gp "plot sin(x)" "pl cos(x)"
@gp "plo sin(x)" "s cos(x)"
@gp "plot sin(x)" :-
@gp :- "plot cos(x)"
@gp mar="0,1,0,1" "plot sin(x)"
@gp :- mar=gpmargins() "plot cos(x)"
@gp :- 0. 0.
@gp "plot sin(x)" 2 xr=(-2pi,2pi) "pause 2" "plot cos(4*x)"
x = range(-2pi, stop=2pi, length=100);
y = 1.5 * sin.(0.3 .+ 0.7x);
noise = randn(length(x))./2;
e = 0.5 * fill(1, size(x));
@gp hist(noise, nbins=10)
err = 0.1 * maximum(abs.(y)) .* fill(1, size(x));
noise = err .* randn(length(x));
h = hist(noise, nbins=10)
@gp h.bins h.counts "w histeps"
@gp h
@gp x y
@gp x y "w l"
name = "\$MyDataSet1"
@gp x y name "plot $name w l" "pl $name u 1:(2*\$2) w l"
@gp name=>(x, y) "plot $name w l" "pl $name u 1:(2*\$2) w l"
@gsp randn(Float64, 30, 50)
@gp randn(Float64, 30, 50) "w image"
@gp 1:30 1:50 randn(Float64, 30, 50) "w image"
@gsp x y y
@gp("set key horizontal", "set grid",
xrange=(-7,7), ylabel="Y label",
x, y, "w l t 'Real model' dt 2 lw 2 lc rgb 'red'",
x, y+noise, e, "w errorbars t 'Data'")
x, y+noise, err, "w errorbars t 'Data'")
@gp "f(x) = a * sin(b + c*x); a = 1; b = 1; c = 1;" :-
@gp :- x y+noise e name :-
@gp :- name=>(x, y+noise, err) :-
@gp :- "fit f(x) $name u 1:2:3 via a, b, c;" :-
@gp :- "set multiplot layout 2,1" :-
@gp :- "plot $name w points" ylab="Data and model" :-
@ -55,27 +178,29 @@ name = "\$MyDataSet1"
@gp :- "plot $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars notit"
# Retrieve values for a, b and c
a = 0; b = 0; c = 0;
try
a = parse(Float64, exec("print a"))
b = parse(Float64, exec("print b"))
c = parse(Float64, exec("print c"))
catch
if Gnuplot.options.dry
a = 1.5
b = 0.3
c = 0.7
else
a = Meta.parse(gpexec("print a"))
b = Meta.parse(gpexec("print b"))
c = Meta.parse(gpexec("print c"))
end
gnuplot(:dry)
@gp :dry "f(x) = a * sin(b + c*x); a = 1; b = 1; c = 1;" :-
@gp :- :dry "a = $a; b = $b; c = $c" :-
@gp :- :dry "set multiplot layout 2,1" ylab="Data and model" :-
name = "\$MyDataSet1"
@gp :- :dry x y+noise e name :-
@gp :- :dry name=>(x, y+noise, err) :-
@gp :- :dry "plot $name w points" :-
@gp :- :dry "plot $name u 1:(f(\$1)) w lines" :-
@gp :- :dry 2 xlab="X label" ylab="Residuals" :-
@gp :- :dry "plot $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars notit" :-
@gp :- :dry
save("test.gp") # write on file test.gp
quitall()
exec("load 'test.gp'") # load file test.gp
save(:dry, "test.gp") # write on file test.gp
Gnuplot.quitall()
#gpexec("load 'test.gp'") # load file test.gp, commented to avoid errors in CI
#-----------------------------------------------------------------
@gp("""
@ -140,4 +265,29 @@ exec("load 'test.gp'") # load file test.gp
"splot x8, v, (u<0.5) ? -1 : sinc(x8,v) notitle",
"splot x9, v, (u<0.5) ? -1 : sinc(x9,v) notitle")
quitall()
x = randn(5000);
y = randn(5000);
h = hist(x, y, nbins1=20, nbins2=20);
clines = contourlines(h, "levels discrete 15, 30, 45");
@gp clines
@gp "set size ratio -1"
for i in 1:length(clines)
@gp :- clines[i].data "w l t '$(clines[i].z)' lw $i dt $i"
end
Gnuplot.options.verbose = true
@gp randn(10^6) randn(10^6)
@gp :- 0. 0.
Gnuplot.quit(:default)
Gnuplot.options.dry = true
@gp hist(randn(1000))
# Various hist() corner cases
@gp hist([1,2,3], bs=2)
@gp hist([1,1,1], bs=1)
Gnuplot.quitall()