Plots.jl/examples/iris.ipynb
2015-09-23 17:13:20 -04:00

342 lines
39 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in update! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:29\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in update! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:29\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in digest! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:34\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in digest! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:34\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in digest! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:34\n",
"WARNING: Base.String is deprecated, use AbstractString instead.\n",
"WARNING: Base.String is deprecated, use AbstractString instead.\n",
"WARNING: Base.String is deprecated, use AbstractString instead.\n",
"INFO: Recompiling stale cache file /home/tom/.julia/lib/v0.4/Plots.ji for module Plots.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Plots.jl] Default backend: immerse"
]
}
],
"source": [
"using RDatasets, Plots; dataframes!()\n",
"iris = dataset(\"datasets\", \"iris\");\n",
"plotDefault!(:size, (400,300));"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"[Plots.jl] Switched to backend: gadfly"
]
},
{
"data": {
"text/plain": [
"Plots.GadflyPackage()"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gadfly!()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in update! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:29\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"WARNING: Base.Uint8 is deprecated, use UInt8 instead.\n",
"in update! at /home/tom/.julia/v0.4/Nettle/src/hmac.jl:29\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"[Plots.jl] Initializing backend: gadfly\n",
"groupargs = Plots.GroupBy(UTF8String[\"setosa\",\"versicolor\",\"virginica\"],[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50],[51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100],[101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150]])"
]
},
{
"ename": "LoadError",
"evalue": "LoadError: MethodError: `start` has no method matching start(::Plots.GroupBy)\nwhile loading In[3], in expression starting on line 1",
"output_type": "error",
"traceback": [
"LoadError: MethodError: `start` has no method matching start(::Plots.GroupBy)\nwhile loading In[3], in expression starting on line 1",
"",
" in append_any at essentials.jl:127",
" in plot! at /home/tom/.julia/v0.4/Plots/src/plot.jl:98",
" in plot at /home/tom/.julia/v0.4/Plots/src/plot.jl:58",
" in scatter at /home/tom/.julia/v0.4/Plots/src/Plots.jl:81"
]
}
],
"source": [
"scatter(iris, :SepalLength, :SepalWidth, group=iris[:Species])\n",
"plot!(u->6+2*sin(u), u->3+cos(u), 0, 2π, lab=\"an oval\", fill=3)\n",
"plot!(Any[[6],[3]], t=[:vline,:hline], w=4, c=RGB(1,0,0))\n",
"title!(\"Playing around with series\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"groupargs = Any[]"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEsCAIAAABi1XKVAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd5wT1RbHz0x6sr2y9CKoSBUUVgWlCkiXJr0oqICFJ4rvPRXLU0EsKCKCVAUpojQB6U0XpC4sbSlLtmU32SSb3iYz74/BbDabMpuykwn3++HDJ5m9d+5JMvnl3jPnnoNRFAUIBALBBXC2DUAgEAimIMFCIBCcAQkWAoHgDEiwEAgEZ0CChUAgOAMSLAQCwRmQYCEQCM6ABAuBQHAGJFgIBIIzIMFCIBCcAQkWAoHgDEiwEAgEZ0CChUAgOAMSLAQCwRmQYCEQCM6ABAuBQHAGJFgIBIIzsCZYBOFka+hwQVEUQZBsWxEqJEk5nZx/FU4nSZKcz51LEE6UAdg/7AgWSVKFhWpWhg4jNpujvLySbStCxWCwaDRGtq0IFbXaaDRa2bYiVMrKKu12gm0roho+K6NiGEgkQlaGDiM4jotEAratCBU+n8e2CWFAKOTx+Zz3b4hEAhzn/KuIKBiagiIQCK4QnhlWXm7etk2/qVXq1PTUoaOHtWnfxn97igKz2SaTicIyOls4naTdTnB9quhwOEmS5PpU0WZz4DguEHB7tmix2EUiPppk+SE8b836H34aPubZz75bNGz0sPUrfwrYnqKo8nJdWIZmEYeDiAHvj9ls0+stbFsRKjqdxWKxs21FqKjVBoeD8zejIkp4ZliJyYkAgAEGAEnJSQHbYxgkJUnDMjSL8Pm8uDgx21aEikgkiAE3llQq5Pr0CgDi4yU8Hppe+SM8PqzS4tLFn35lNpmlMulrb7+W1aB+6OdEIBAID3jz588P/Syrlq58sveTU2dOk0gkB/ce7PpEV9efrFZHYWGF3e6MixPrdObSUg2O4yIR/84dlVZrlEhEfD6vsLBCrTYkJ8cRBHnnjtJstickSEwmW3Gx2umkpFKRWm0sK9MKBHyhkF9aqlWp9PHxEhzHb99W6vXmpCSZzeYoLKyw2QjXKBiGicVCpVJXXq6TSISuUZKS4kiSvHNHaTJ5jqLRGBUKLZ/PF4nujhIXJ+Hx8IICpU5nTkqS2e2EXK6iR9HrLcXFaovFnpAgUSr15eWVYrFQIOAVFanVakNSkoyiqIICpclkS0iQms22oiI1QZAymWsUnkgkUCi0KpVeJhPXHMVqJeLjxQaDpaREA4BJJEKVSl9eXikSVY2SmCijKCgoUBqNtsREqcViLyqqoEfRak0KhZbHo0epVKl09Ch37qi0WlNysszhoEdx8Pk8rdZYXq6jKHAbRSAQ8IuL1RUVhoQEKYZ5juJweI5SVlapVOqkUjGf7z6KUy5XWSyO+HiJ0WgtLlbTo1RUGMrKKoVCgVDILy7WVFToExKkGIYVFJQbDNbERCl92TgcTplMXFl597IRi12jiPh8nlyu0mhMyckygnDevFlmNtsTE6X0KCQJUmm1UUpKNBUV+vh4KY5jt29XG8Xj4hSLBeXlOqVSR1+ccnmFRuP94iRJ+uI0lJVV0hfnP6PQF2e5Xm9NSpLSF6f7KBiGi8WCfy7Oqq8ARWE4jhUWVtT8CoT+JY0NwjPDmjP99QVLFgqEArvdPm/2W198/6X/9iRJ3bmjat48I/ShWcRqtavVxgYNUtg2JCR0OrPdTqSnJ7BtSEgolXqxWJCQIGHbkJAoLlanpydw/QZIRAnPgjkzK/PUn6ccdsepEyfrZdUL2B7DsMzMxLAMzSICAT8lJY5tK0JFKhVx/XsOAImJEq7frgWA1NT4GPDERZTwzLDkBfKNa38uV5RnZmWOnTy2UdPGoZ8TgUAgPGAncJSiqNJSLdcXUzabQ6ezZGRwezFlNFoJwpmUJGPbkJDQaIwikYDrkX3l5brkZJlQyM7+E07Azj1UigKbjfN7piiKcjg4/yqcTjIGYn8IgoyBLdwOB4F2nviHta05JEnhOMbK0OGCooCiYuBVUACAYehVsA9JUhjG9RcRWdBeQgQCwRlYSy9z+7aSlaHDiNVqLynRsG1FqOh0ZpVKz7YVoaJU6mNgg1Fxsdpmc7BtRVTD2j6AGLh9i2FYDGykwPFYeBU8Hsb1tTkA8Hg8tCD0D1oSIhAIzsDaXcIY2FtPklQMTOAJwhkDWS7tdiIG0lVbrY4YSPQcUdgSLEqh4HxyYbvdUVFhYNuKUDGZbDqdmW0rQqWy0mw229i2IlQqKvQxECgTUVhLkRwXx+0YPwDAcTwGtoMIBLHgNxGJ+DHgFZVIhCh7n3+QDwuBQHAG1paElZWcX4YQhNNg4HylFpvNYTZz3p9oNttiwBNnMFhiIF4/orDmdI+B5MIE4dTrOS+7VqvDZOK87BqNNquV8zdAdDpzDNTrjChs+bCw9PR4VoYOIwIBn+t7hgFAIhHGQAKm+HhxDESTJSfLYiBddURBPiwEAsEZ2JlhURSlUukzMridw89uJ4xGK9dz+JnNNoIguZ7DT6czC4X8ur9pW1nJNDonMTEx4N1YtdqQkCCNgdudkYMtwQKj0ZbB7QzJQJJkDIS/Ohx04Ci3BctmIzAMk9Tti9Dr9cnJyQwbl5eXZwS64i0We1ycGAAJlk/YESwcxxo0YPpJRy1CoYDr2fsAIC5OHANugZQUWQxEk2VkJKLplX9Yy20YA45eHMdwnPPJIWPAVw0AseGrRrlGA8Jaepk7d1SsDB1GrFaHQqFl24pQ0estajXnNxhVVBgMBs6nlykp0cRAJt6Iwtqva0xs8qRi4FVQVCy8CpJkYV1rt9fCg2mxBNZTiqIAOP9ZRBTWfFhcL0oIAGKxkOt1NAAgMVHKtglhgBVnYkVFBfPGRUVFTZo08d+mYcPU0CyKfVibYcVARC9FUTGQ0oQkqRjYDuJ0kjEwTyQIZwzcAIko7MywSJIqLFRzfZJlszlioPKzwWCJgcrParUx0pWf//3vf+/atcv9SK2WhEwoK6tElZ/9w1p6GZGI8zdEMAwTCDj/Kng8PAZupfP5eKRvdxYWFl66dCmiQwgE/BgIzogorO0l5PrEBABEIkFGBud/DOPixGybEAa4vt+AJjOT23s/6gDWsjWYTJzPD+l0xkikewwkerbZHDFQDtZisZMk5/2JEYW1fFjl5TpWhg4jDgcRA0lyzGZbDBTI0uksMfDjoVYbYkB2Iwo7goVhkJTE+bvpfD4vBtZTIpFAKuV8umqpVBjlXtFu3bphgWjUKO348WNsWxrVsObDigGnA5/Pi4EgJrGY8244iBVPHADEQHXFiMJaehmt1sR1zSIIp8lk47pmWa0Op5OUybg9yTIarQIBL2BAwJ9//rlhwwYmJ7z//vtfeeWVcJhWO2IgJi6isJZeprLSHAOCZTRauS5YNpvDbie4Llhms10sFgQUrMuXLy9dupTJCXv06MGKYCGnu39YWxLGwB1cgYDPdc0FAKlUFAOrwsRESWwUyIqNtBORg7XAUa7/pAMAjxcjdQljIGNczESHo8BR/7AW1lBSomFl6DBiszmUSj3bVoSK0WitrDSxbUWoaDTG6InswzAMrw7zvjGwxzaisObDioG8PxRFxUBhcaeTjIHYH4Ig+XxP70+vXr0IotoHpFAoGJ7w/PnzTz75pPuRa9euMezbuHFjj8QMp06dstkY6Sna/Owf1qrmEIST68t1iqKcTorP57brhCQpiqK4nnfU6SQxDPOICeDz+U4nx7T4wIEDvXr1YtuK6IW1WDuuqxUAYBjG53Pe44DjGEDgV6FUKg8fPszkhDKZbODAgSHbVTu8Cm7Yf4zfeOON7Oxs11Oz2TxhwoTwDoF8WP5hLb3MnTsqrqeXsVrtMZBeRqczM0kvk5eXN2bMGCYnbNSoUd0LllKpr5leJuwhAl26dBk+fLjrqV4ffg9mDDgZIgprC4EYSGmCYRjXV1IAgOOx8Cp4PM/1IEdBMyz/hG2GdfTA0YN7D1RqKimK+mb1Ev+NcRxr1Ijz2WBFIkG9eklsWxEq8fHRUpFw586dkydPZtKybdu2R44ccT+yaNHHy5cvj4RVdUwMuEoiSngEK/fshaP7jzw/64VGTRox/Imw2Rxcj50hScrpdHI9h5/TSVIUFQ3fE5vNptEwCnapWW/ZYDAy7BvloLuE/gnPl+3g3kNDRg1p3LQxw/YkSZWUaLnuw7LbYyFFstFoDW+KZJ1O98477wRs9tdff3Xp0oXHqxLKq1evBj1o9Kf0ysnJSU0NsKooK6ts2/b+urGHo4RHsMpKFflX89etWJeekT5u6rhGgZQLwyAujvOR7jgeI5Hu4fWb6PX6jz76iEnLQ4cOhWvQ6HfDNW/ePGCp+pQUg0zG7a2pkSY8H7PT6czMyvxk8afZ3R/7ee1G9z/ZbA65XKVS6QFAr7fI5Sq93kJn/5HLVfQPY0mJRi5XAYDTScrlKoWiEgDMZptcrqIz5Gm1JrlcRYcyl5VVyuUqOiBYLq8oLlYDgN1OyOUqOu7cYLDI5SqdzgwAFRUGuVxltVaNQlGuUbQAYDbba4xiBYDycp1crqIjKgsLK4qK3EfRAYDBYFUotPT3xNsoFElScrmqtFQLABaLXS5XqdVGAKisNMnlKqPR5ygOR9UoRqPV9VrUaoNcrqLT1JWWauVyFUlWG8VqpUcxAIBOZ3aNolTq5HKV3U4AQFGRurCwAgAcDqdcriov10mlIhzH5HIVHe+uVhtrjEJSFFVe7rkKYxG73aFQKM6du3L69GWFQlFUVFxZWRf5IFUqvfvFqdXWYocA/bnQFyedMbHmZZOSEk9/Fv+MUnVxIu5ChYMP5n1gs9koirLZbHOmv+7+J5KkCMJJO0pIkiQIJ0mSJElqNEaCcNJRiwThpAsc0Y+dTqerMd3R6bzbkaIop7NaY/qx11HcOnoZ5Z+OwY9itdp1OnNoo3jpGOi1kExGCfgmuEaxWu1Go9Wree6j7N9/gO1LlX02bdrsfnFqtbUQcYWiLODnoteb6Qc1P1AETXiWhO0fbpdzLCe7e3bOsZz6Deu7/wnDqqbrGIbxeBgAkCSl1ZqSk2X0cff5fM3GUD240X1nllvjwB3DPgpFUQaDJSFBEsIoXjqG5bUE7OgaxWqtll7G1yixETQQIjiO0RcG/fbW6j2hG/v/XHQ6s1DId92Mcm+MoAmPYPV5pu+aZau3b96W1SBr3LTxAdtjWCyUOeHzeQkJnPc4HDlyYOXKlQF9QMx30iGCJjFRGg23a6OZ8AiWRCp5ac7LzNtjGBYbOd3j4zl/eRUWynfu3MG2FQiAaIqJi1pYS5GsUukzMridw89uJ4xGK9enirQz/h7nxRdf7Ny5c8BmHm0kEskPP/zAcIiEhMCBI2q1ISFBGgObQCIHa+lljEZboJu80Q5JxkJdQpREHAAGDRo0YMCA2vYSCATTpk0LoxkWiz0uThwD+RQjBzuCheNYgwbJrAwdRoRCQUZG2OIt2YLr+w3CgkgUFVGBGRmJaHrlH9a2lcTA9wTHMRzn9r4cQLf/AACgQYMGbJsAACAUcv5yijTsxAeTJEUHSXIam81RVhZF4ZTBEf2bWu4dFIpK5FL0D2uKHgNpeSmKigEHEEnGyG7b3r37fvTRB+5HHnvsMW5VzaKjUtm2IqphzYfF9Z3PACAWC7m+8xkAYmA7JE29ehldunRxP8K53FING3I+51KkYW2GhXK6Rwkx85Ne84VMnDiRYU73xMSoiLAhCCePh3NOZ+sS1lIkFxaquT7JstliIb0Mvfk2BiAIz9XfqlWrWLEkaMrKKtPTE2LgflTkYGd2gGEgEnH+hgiGYVzP3gcxdJcwBuYlAgEfTa/8w1qpeq5PTABAJBJkZETFj+GOHTtqlm9xOBweVfkAgCTJ5s2bux+pmb2To9Svn8W2CaGSmRkVK9NohrVId7PZxvVq9U4nabcT0eC0zs/PZ17B5caNGxE1hi3KysrZNiFULBa7SMSvVaXoew3W9hKWl+u47sNyOAiNhgUf1rVr14zGakndioqK6tiGKCQGQkzUakN6eoJIhATLJ2wtCSE2sjXExYnrftxp06b99ddfdT9ulBMDzrj4eEn053pmF9Z8WFxPcgAAfD4vMZHzshszxMBXHV1OAWFtSajVmriuWQThNJlsEb3I/vjjj5oVaEKpLhPDyOWFbJsQKjqdWSYTcT0+MaKw5nSvrDTHgGAZjdaIClZFRcXp06cjd/5YwmKxsG1CqBgMFrFYgATLD2zFYWExcAdXIOBzXXNjiYYNoyLjQiikpsaj9DL+Yc3pzvWYBgDg8WKhLmHMEBfH+R8PdDkFhJ0ZFkVRdOU1TmO3ExUVBratQNyFLlXJaVQqfQxkMYkobAkWxEByYZIkUTKp6GHLls3S6jBJox5V2GwObuXDqXtYSy/TuDHnM2mIRILMzCS2rUDcxel0evjdeTyO+YPq1UuKgeCMiMLa3t0YuBWCYRifz/lgRUT0EANfikjDWork27eVrAwdRqxWe0mJhm0rELFDcbEaORn8w9oMK5o3Uuh0OrU6cMp5m41wOCC4vYRarVar1QZsVlxcHMTJERwFw6qK1yO8QyFqsHDhQobv3tChQ4MbYt68eRH9WBEAwOPxwnthIFiHNQ9fbEx9Y6aCAyIasNsJKlYyVkcI1nxYJSWBF0TRj90eC7KLiBKUSh0q8+Uf1lIkx8VxPtIdAFCuNUQYkUiE6IryD2vpZTIyOL+XEFCpXkRYSU2NZ9uEaIe1SHeDgfN76yEmslwiogeTyYquKP+wlg9LpTLEx0tYGT2MOByBPQ4URV0svti+Ufs6sMeD1PqpDzR7wPWUJMmcnJy6NyNE7rvvvszMTNdTi8Vy7tw5Fu2JHFqtKT2dh4Ld/cBatobYSMwSMDSZpMgZP764+s/Va6asHt91fN1Y5UJdrr5ovRgv5vZC44033pgxY4br6bVr1x588EEW7YkciYnSaAt2H9Rj4M7Du6JnFNZ8WDGQ0x0CCRatVj8c/wEAJq+eAgB1rVlOMGgMBkApJbgBkzXHsWPHam6Z7N27t/uRQT0GAgCfz292X7OZc2a1aNnC19mYK0XYlSu4E7K4JNTHgN/dz01od7UCACfpZEezuE/Lli3dnzZr1iw3N9ejjdFoFQh4HjWTOVeUVK02JCRI/efwGzdunMf+B5FIZLVaPZrtPLzL4XDs3bnn68++Xrx8cfhtZQnWUiQbjbYMblf5AgDwlQzEQ61okGYFh1hcrTSRSCRq166dRxulUi8WCxISuO0VtVjscXFigPCsCgUCQZ8BfdcsX0M/1VXqvv5s8aULlzLrZc6e+0qrB1rREzH6f3qyM6jHQAzDMuplzJwzq2Pnjv7PX/OE9BnGTRm/bfNvEqlk5r9mde7SGQAUpYrPPlhYJC8aOGzgLz//svPwrppDb1y30aOXV1hLkZyVFQuJWbyGNXhVKxpas346+VPkTbu3SEqSSqWcj+xLS0sQCMI2hyAIYv/ufQ0bN6KfLl+y/LHuj6/ftmHy9MnffPY1/KMUOw/vci3Ndh7etf3gjtfeen35N98HPH/NE9I4ncSaLWunvfz8iiXL6SMrvln+8KOd1m5dh/2zg7jm0DV7eYU1p3tsZIOtGebnR61oaM0aYO0fYdPuLWIjIE4sFgRuxIxBPQby+fymzZvO+tcs+sj50+eOHTz61adfgo/F8oUz51d+t7K4sJggCCbxq75OOHLcKKFQ+Fj3xxZ+sIA+cuXSlX/99w2pVPrsmBFb1m/xeraavbzCzsdMklRJiaZRI87n8LNaq23NISly4upJ63PW++/lJJ27Lv4eSbvuOdRqg0gkYKWurQdO0kkBxccDf7NshE3ErzYrVCgqU1PjwiK+XvzZFKz9ZV1Kqs/kIosXLn7ptZc7dO7gJJyjnhkZeAwfJxQKhQCA43it9kUy7MVaxEc0566eO3eukwEmk2XFirWuXiRFDvxm0Prl6+EwFfAfZSDxfrx1f65zOp31Xq8P0zCYxjEPcVThdFLRsBHd4XSM/n7M4G+G2Aib/5Zv/vJWl4+7Vhgr3A86nc7IbX7u1KXT6mWrdJW6CmXFZx99Rh+USqXlinL6sc1mk8qkTsL506ofgz6hVx5s8+C2zdssZsuvm351HXQfmjnhnGGdzjm9YdX6L1d8FbAljmPNm0e1y53JlFgqFUuld3/SabXac2kPKChgVtCTTCenrJ36zo73ygwKwCiUCCkUMjLYT9/ucDqeWz5267mtADDs2+G/zfzVYwLl4s1f3vrsj88AoPcXfQ7M2Z8Wl0Yfb9gw8Jpj8uTJHpnUBAJGC8npr8z4fvH3L06cIYuTTZ4+hT44dNTQV56fbTabdx7eNe3l5z9572M+n99/sHd/Be0jp9l5eJfXE3rlhVnTP/tw4bbNv/UZ0FcsEdccmon9NFi4FF1eIN+64Ze09LSJ0ycxaU+SVDTn8GMCRQFF3X0Vc7fOXbT3cwCAfUwFC7pi0Kba+cCn44vzDB48uE+fPu5HTp48abd7FiLJyMh44IEHPA6OGDGiXr16/s9PX8YsxjG4qxVN/zb9vWqWS61o2jdq79IskqQwjHPBGEwhCGLnrztPnshZ8DXTfHM1Cc8MS6/Tb1q78YVXpm9c+zOT9iRJ3bmjivJJVkBsNrtabWzQIOXA1QOf7/0i5PNhAOwvaiJEdnb2rFmz3I94PA0RlcrAYlhDTbUCgD15e2rOszzUCgByi3Jd86zSUk16eoJHNFlsMKjHQBzHGzdt/Pq810M5TxgEiyCINctWjxw/KjklWav2zHJFEE6dziIU8uPjxVarw2SyyWRCkUiA45habUxMlPD5PK3WRJJUamocSVJarYnPxxMTpXY7YTBYxWKBTCYym20WiyM+XiwU8vV6i8PhTE6W4jiu0RgxDEtOlv0zCi8+XkKPIpUKJRKh0Wi12YiEBIlAwKusNBVpiu9v3IyPC/yMEhcnEokE9ChJSVIe7+4oWqK8cXJTnc7sGkWtNRRXllzVn+v7xdNU7GqNC5lM1rhxY4oCkiQxDMNxrKysPC5OJpPJMAwjSYqiKBzHMezunnB6T5zTSWIYlpaWZrM5jEabRCKQSkUmk81qvfuB6nRmgiCTk2X0JcHjYUlJMofDqddbRCJ+XJzYYrGbzXaZTCQWCwwGi93udF02FEWlpMSRJGm12gEgIUFCf6C+RhHJMKPNICDicNz9snG/OOlRrHY7wfDi1BmME1ZN2Jm3veY7RmvWlhlbrCZSKOR/+Md7HmpFk1uU2+OzXlun7UgUJVEUqNXGmqNE+LONOOGKkg+DYG1au7HrE12b3dcMALSammn5MB4Pp9dNGAY8Ho5hGIZhGRkJdruTdtzweDiG3f3C83g4faFjWFVHHMdcO0L/eezqiLk19t6RnmPfUF0f+N2ADo07/Pbyrz4a464T/tPx7ii/5+2a/OOE13q/9u/e79EdHaR96s8TTt7JMVj094JaAUB29mP79+8jCKfRaBMKeVKpyGp1WK0OqVQoFPJNJpvD4YyPF/N4uF5voSgqMVFKkpReb+Hz8bg4sd1OuN5297cXx3EeD+jPyONSqf4huhpTrs/lH4cGlpAg5fNxPx15PNxgNQ7+anhJZcn26b83S2tGd+TxcB7P/eIE8HKN+bw4HU7H5LWTvKoVzZ68PSOWjVgzfv1Hu+Z/dcjnNDyv9NKzKwcfnntQJOJbrY6aFyeCJgw+rNlTPOf236xe4r8LRYHZbKvL340rpVd6ft6rXF8OAH0f6rtt5m8SAdPlw7bz20Z9P9rhdADAm/3eXPDspzbC9ux3I373GpoQvA8L4IeoFr5+/frt2bOHbSu8Y7M5cBz3s6nFYDX0+6r/X7f+AoAmqU0Ov3HoH80KHq8rQa80S2teUHE7YLO2DdodmLMvIyGKXCVBbyH02jH0DYlhCGv4ZvUS1z9goFYAQFFUebku9KEZ4q5WALDv8r6h3w6zOBgl5HJXKwBYuHfhG1vm+lQrBEvodBY/tcTd1QoA5Gp5j0U9CyoKQhmRuVoBABO1AoBLJRf7fNnXI9YhCAb1GDiox8BhfYbOeen1Wzdu+W/J5ITTxkwtKbq7gfGNl/9FPygpLpk2ZmrAkzAcgiGsRbrXmX/UQ61oaM0KOM/yUCuaz/d9HhFDESEgkQh8bWrxUCsaWrOCnmfVSq1qxcXiix6xDh689x541IcTCODzGpdkeDc/t2nf5lJuXoNGDcsUZdevXi+SFzZq0vjqpattO7SF8PmnmBDmwFEm0ysAwDAsLa0ukjR5VSsaP/OsU7dPHb5+2Kta3cvoLJ6T4rPys0abkRVjPIiPl3jd1+JVrWhCmWe9sG56JNSKJrcod8DiZ3ytAFatgm++qfbv22+9n4fe/FxcWEQ/1VXqPvzPB6OeGTl72qz8a/nwz9yHno7RbQb1GDi456Dnx047f+a8+6nadmiXdyEPAC7n5kmkkvNnLgDAlbwrbdq3Bbc5VLmifM5Lr4/sP2LtPzuuaw6xcd3GMQNHTxk1+cypM0G8OWylSKY0mohf6H7UisarZh2+fvjxBU/0WtR7xLKR1dRqEwU/MPjH0IHFQU7dPrUzd6fr6YGrB7ot6P7kwqc0JvbLXxuN1pqF4/yoFU3QmjX6kVG+gkLDwsjOI5j7WH0Rxs3PbTq0ycu9BACXcvNGjRt14cx5ALhy6Qo9w3KxfMn3Dz8Snk3OvmAtp3tlpTmiQwRUKxoPzTp8/XCfL/rS28GcZPRuHmIFkiJHLBtJa9aBqwcGfzPE4rCcKzzX54u+4dIsggyyyJXZbLfZqvUNqFY0wWmWr6DQsLBwxIK5T88N8SSDegwc2X/EoT8OuW9+/urTL4f3HTZ/3nx5gbxmlwtnzs+eNmt432FvvzavtLjU/U/1suphOKYoVchv3xkycmjB7QKNWmO32TKzMt2bXc69PGzUMHqTsy/DRo4bJZaIH+v+mKJEEcTrYi3jaGZmBLP3MVQrGpc/6+Ttk7RaRc4w1hGLxXT6t0JN4ZAlQ4u0ReAEIAAAUmQp66aubZXZim6ZlJSE47jRZhz9/ZhTBacAAE/L+wIAACAASURBVHCwE/YRy0a+88x/P979iUvlac3aP2dfisznxlom9Pq815k7Z/P/dz0zITNw6+okJkrcd1MxVCua4PxZtGYN+3Z4wG2DtWLBs5+GrlYQgc3Pbdu3PXrgSL36WQKB4IHWD2zb/Fub6tMrhgS3NdoFa3UJIxfTUCu1otl3eV/3hU/GvFoBAI7jqampBjAMWzm8yFwEIgApQAJAAmh4mim/TrVKrS1btmzZsmV6erpQJhz34/hTpadABCACEAAA2An7O9vf9VhHhz7P6vV5r0PXDuut+lb/ub9Wnx2NSCRwxTTUSq1oIjrPEvAEi0Z+5suJ7s7CEQve7PdmrWxgToibn9t2aLv9l+2du3QCgE6Pdt69fXfb9h5ROfBQ+4d+2/ybxWzZuvEX18HgNjn7gjUflkJRGcYTLj2yVG1UA4CdsA/5dmgQV/yZO2eq1MoGoK3xj/lipQUGnRj8i3y0zcPdH/7AjXfnv9vjuR43VTef+qyHXO1lUaAyqHp93vtSySUAMFgN/RcP+PPmnwzHojXretn1YUuHeSRiPXztsP/z0GpFP/bQrB+O/6DQVVs7aEyabw97+pk3/rXl5I2/6ccv/vRSrdSKRq6WP/vdCJKqXZWtgJol4Al+nr7hX33/5efGH83CEQsmPzwjcllMpr8yg6LgxYkz5r32VvYT2fRBegcy7RGnNz+/OHFGfIKXG2Jt2rc1GowdH3kYAB5+9GGbzVZzhjV91oxzp89OfHYC5ZY5w32I0Anb5udaEd69hHM2/+vL/V8+UO+BQ28czErMqlWYlXcuAvwdwtvyCAbB1fQKd+DomjVrJk26uxfd4rAMWTJ0/5X9EqHEYvf35qTHp++Ytf2NLXOZq5ULHMNJirwvveXVjy7TOaF25u4csWwkH+fvmLW914O9anZxVysXCeKE/P9dX3Z02fwd7zdJbXJk7uGmqU0BoExX1mNRz2tl117r/dqXo+8Gjq8/tX7SqskyoWzfnD+6NOsS3HQpXhy/97U9j7V4rLYvGf7ZglNzbUir1bMPP0s/pbcNeg2zov1WxcXqgHsJjxyB6jUogMeDvn2DsJqTsCNYAEAQzrBUNKLVin7srlmDlwTOSeQTtgRrZZg3+bgEy6VWDDsKeIIQ4zlozdpzac+IZSPthB0ApEJpTc3yqlY0Ir7I9QnSmiXmi2m1og/SmkWrFT07TpQk/vH63iA0KxS1oqmpWR5qReNVs1xedoJwuvYSIbzCmmCFBXe1oqE163rZ9f6LB1gdnqVEmMKWYK2lIKxRX7Rg1VatwkVWYn21qYJWKxoPzfKjVjVpmNxQxBfdUlWL2+7Xpt/+K/vdPY9BaFboakXjrlle1YrGQ7PCck/w3oEdHxZJUrdvK0M8SU21AoBrZde6fpz9zDcDg1er2IIttQIAha7UXa0AwGw3D14y5ODVg1BLtQKAYm2xh1oBwN68vR73SXQW3dNf9jtVcIrhhsFwqRW4+bP8qBVUT4DloVbFxeqa0WQId1jzYRUWVjRtmh5E3/1X9l8vu367oqCmWoUNtmZYhQAePt8ygLzgLVm+cvkW3S+sqJUfpEJpy8z7cosuRm6IREniry9v3Xr21ydaPj7+hwl+XOnvDXp3/uD5wY2iMqg+2PXhwhEL3IM8X9/8uo2wLR271H/f03dO77u87z/P/Mf9YEmJJi0tQSSKhYIaEYJjS8IduTtGLhvl8bsdftgSrJrcBDgSvCUPPdfmsuxymEzhGDyc5ySd9P/+m62bunZsl7G1PX9pZWmPRT3zy/OfuO+JPa/tjhPFAcC6nHVT10wjKfLbsUteeuql4K2PSqIhcwNrRSiCmPrWkVpFFVKABjX+MS6Qdrn0HlUrAKB1KmBgnZN0Tlg1cf3JAIWOPHCpFQCcuHmi/1cDjDYjrVZO0klR1MwNs7478l1tbbbbibBMIBSlik/e/Xj8sHHD+w6b9+pbp3P+Dv2cLtjN3MBimS9trcIauKRW5ynwWO7EAwytdusHw5jNbesD1K9xz2gnBWELxEMASZITVk2kgGJYkdtdrWhO3DzR6cPOt1S3XPpIaxYA1GqepVTqAoY1dFvQvVRXbd+MiC+68kG1X6ZP53+a/UTXl+fMlMqk169c3/rzL49kP8rcDP+wm7mBG4VUuaRWAEDUiDKtHlfIx/kbXli/I3fHT7X8YUdECIqiJq6aBAABNaumWtHUPBKEZolEgoDlmu6o7xRri6v1qhG2Wl5a1vPpXolJiQDQpn2bNv+EpPsqLj/iuRG7ftvVqGmjt96d59oe6KtsfdsO7S6cvdBvYD9X5oZGTRq7Z26gNatcUb7gg0+L7hQNHFaVCgKCKk/vDgdK1XNMrQJBq9XIziO/Hfttenwwtx2gJwYjmf1rGmbjYxiKol7b+Dodfbbh1IbuC5/UW/QebXyplZ9z1mptmJ6e4CdpKnOemzz2tRdefX/e/JVLf8g9l+s67qu4PI/PX7t1XYdOHdwzKERn5gZ2ZlgUBUajJT4+cAKNWFUrvUXfb3F/lUEVzFlk4TaLq4S5mKPapJ64ctIz7QZMXj3FSTr7Le6/99U9CZK7FQ9rq1Z3TazNPMtksorFQlf5gqAZMmJIz749r1y6LC+Qf//1si6Pd530wiTwXVzelWJh2nNT6SN+yta7Z26YOWfm79t/95W5Yc7b/wpLeXp32BIsSqUyBBSs2FarnFs5bFvEaSJSenbj6Y2bzmyi3Ys5t3JcmhWcWtEw1yyt1pSezgtdsAAgPiG+y+Nduzze9emB/WaMn04LVsCEDS6iNnMDa9kaUlLi/LeJMbXCMRypVfiIYKFs9y8PrVnXy64HrVauczJZGyYmSsOyX+2Dt9/Py82z2+0mo2n/nv1pGXc3XfsqLu9KsdCm3V1vV9RmbmDNh5WUJPXTgGW1wr39Cw2SIk8V/I3UKhxEUK1qknMrp8MHD4eiVjRMNCs+XhJweoVjdwvlucAxzy79hwz4adWPYwaOfmHs83kXLr357lv0ca8JGwDASRATn51w4eyFF2ZNp49EbeYGdgJHKYpSq41+0rrP/eXNRX8sqkuTgqEI4A9m714CwCgMACY/NmlH7s5oyCnMWepUrcLOc48+t+EFn7eGtVpTfLw4LJMs5oReeqsuYS1Fsl7vL8PJZyMWeuxaiA3W/LV2SIch9RLrsW0IR+G2Wk3MnvjjtHV+GphMVrpoNsIXbM2wwGq1BwzF+u+2d/73+//qxqRgqP0Mi2bK41P25O0p05VFyrDYhNtq1TKj1ZUP8vg8f7e5rFaHUMhHpZ79wJrTnUng6EdDPwx9nvVos0cFPC+hw83Smr3Q7fkQTx4cq/9c3b9NfzTPqg0+1aplxn1dmnWpY2uC4IYy/+X1M/3PD8RiAVIr//Dmz59f96OSJFVcrElM9Od3p+n5QE+CJI7fOB7cQEM7Dt3z6u62Ddv8dn6b+5b9ZmnNDr9xaEL2BKPNcPLWyfqJ9Q02Q63PrgfwV1XXDRHAQ9UuxAtFF0Z2HlmmL4uSun61w1IPbkyEvNfh2gy4PQrKuwFgEH8bsKCWM6QACgdB3utw9UW4MQmK+4MtHeIKge+qq+RTrRomNSj4tGBk55H78w62a9i20lLpPZmqUwzyYXBpDlybATcmQklfsCdDfAHw6jQH0bnCcya7uW/rPr4aKBSVIhE/LGENsQo3UiQHtzYc2nHo5hmb6OnV1nNbn1s+lo5jptWqSWoTulleSV7rrNbt3++QV5pXuwGCXRK64N7akOLBuXfg0htA1PixSboKj8+ErCO1O2Hx0/DXN6C/z/O4wAgdPoF2C/yIII7hJ946nt0iGwDy5YUp8YnFpoLeX/Shs/tXUfAsnPwCTI08+4u08PD78NDXnscDwecJiGDTsX45+ovXer/m669MUiTf47CWXoYkqVrNfmurWe5qRUNrVsPkhu5q5WYPWWvNClmwIEKaRUig4hGwZABOgLQE0s4GOffxwCmCA1uhaIDPBrgDuk2HlmuZnvDaDPhzCVC+b4o1/RV6Pge4F3VwVyv4J3gKw7ALRReqaVbuPDj9P3/Or1arodsLzN+fsV3Gzug+/ZmvBwYxNfavVgBAkhSGoQzJ/uCMYEENzcIApzzz3d1laMehs3vO+v7o8nXT1rpvDd18ZnP7hu3vr3e/D5NqqVl2AM/i7T7gAfiILpYIJNtnbZu4alJ4NMvYGM69C7fHVJsBSZTQeim0+QIEoS0/j6yDm4HyGeAEPD0AGhwIfLbCQbD/N6ACLX8eXAaPv+xxjIfjx9+sUitwEywAqNKsGxPh6JrAlnT4GDr/N3AzgLFdxq6bupaH81wpZZj0omme3jz3vQt02ixfIMEKCGspku/cqfU2Oncf/OD2g3+ctpauy+LB0I5DZzw5feDXgzaf2dz3y6dNNpPrT6M6j/KlVgCA43juexfa1PeM2fWJECCd2T8fahUvjt8/Z1+PB3o83PhhpoP6obgfbL0I+VM912uWDDg7H7b/7WXlxZzSXoHVCgBIPvy5FMhAixpCAie+C6xWAHD1RSivlr84QZLgoVYAoFIZDIa7DqkOjTocmLM/hX8f5HwV+PwAkPsWVLYO2MqlVgDQqUmn1vUDd3Hntur2gMXP+Ne40lKN3Y5SJPuDtcDR0lJtgwbBFAr+77Z3LhVf2vLiZiFfuOn0pvE/THCvb06r1fBvn3WV+ereqvvuV36XiZjuGLY5bBlz6umtDOdOwRMvjt/z6u7H73v8X5vf+GL/F6GerrQn7N0LpN/NoZIyGPoIyEpqcVpLBlybDoUDQdMOnGKmvSRKyDwBzbdAsy3eV1u3R8Ohn5mejW+BlFyodww0HTBlNkbEURTG40H9+jBuHHz0EeA4aDRGkUjgXp337Y+KPn2nht/KF62XwGOv+Pm7u1oBwKjvR285U31Db+EgOPcuaB8CUggAgDsg6Qo8/CE02ebeanD7wdtnVTviTnm5LjlZJhSiFMk+4ViKZACgKMrhdAj5d6Mi3DWrplrRMNcsh9Px3PKxW89tjYTl7rjUCgAuFl/svvBJnSUEiSRksOUamBoEbtlkO/QZxvS0V1+CvxeAI8CuT3+k5ELP5yDpmusAhmE9H+hx8LvJjOZrDIiLgz174IknPI8PGAB79jA+S/ydJ9+Zcr7ofM2UMlBDrQDg+I3jVdMlQgo7/gSNj6zYKZdg8OPANwKARCDZNvO3vg/dM0UEIwBrke4WS5D7BDEMc6kVAIx+ZPRPz//Ix/m+1AoAjuUfG/D1M+5rQ6+wolYAoDVr7c7Qdk1eeZmRWgGAfAi/osaX2ytnP4A/vw1JrQBA0x62nYETy+Dce3BzAmatN6//W2funAVNu5BO64bRCE8+Cb//7iSIalO5WwwjTu6epcnu2fvck8m4qKlWANCtZbfdr/4eJ4oDQgwbC3yqFQBo2sLPBUBImaiV1eogSY5NIOoYboQ1BGT3pd0AMOK7kX4KPgecZ91S3Xr0f10ivdHPQ60AIAxLwm1noIKpF2zM1LKKhyYeuOrXL14wEg5uCskkb2A41erRq9cbDYNdx8CSGbgDY4RCyM+3NGlSlbCoSRMoLKzFGfR6iI+/m57BNc/yqlYujt84/tQTcaSyo9e/uoOn5e45Uh5wboXCGgLCWqR7QkLg7H3MEfKF/tUKGMyzWqS3+GDI+xDJmzQ11QoA5j79hrBGlttaQPFAXYsqPSU36s14cjrm504/IYGTnwdvj28oErt+srVw5yUgwpyE0G6HF16o9h7Wq80+gvh4iI8HAMhuke2aZ/lXKwDQXu3GRK0AgKxob74ReCUok4lR1Kh/uOfDqsmBqwcGfzPEv1q58DPPyi/Pb/9+h8hVYI0Xx+9+9fcn7vNckT34TmtX+fVgsGTCegXz5vUbm8qeTvRTqg9uj4JDG4O3hwkYBVSYfxh4PLDbQaOBL7+ErVvh+vVa9B08GLZvr3p65PqRZUe/Xzd1rbvzwUVpKXzxBfz6KxQEripdRfv2cOFCLdojvMKWD4vSaMKzJaVWagV+51mtMlu9H2xNzYD4UisAWDfN3894YISVALX41Sm1XPGnVgBQ2jN4YxgSbrUCAKcT3nsPWrSAjz+unVoBwPjqNwCeuv+pjdN/9qpWK1dCy5bw+ee1UysAuMbgJ0mnMxNEgLpk9zis5XSvrDQHTDoakNqqFQ2tWV7nWW/2exMA3to6L0TD3BnY7pmj+cd8qRUAnJWfDaAgNLZUkA8GZRewJQPPCvEF0GQHAEDhIBCYauEdT7oSoIHRcxsAV/jf/yCIBUPnzvCs96rynixaBHPnBm7mFZsNAICi4M8/4fffoagI7HZIT4du3WDAAEhIAAAwGCxisaCO82FxC7bKfGHp6T6z9zHH5rAx+qrXhvBq1sIRC+Y+Pfe26nbz9Oa+2gRelZN8uPAfuPiGp+vn/LvB2NRkZ4AGEZj+1A1BqFX9+rB1KwSqrQUAcOAAvPVWEEZV8fffMGsWnD5d7eDSpZCaCu++C7NnQ3KyDKmVfzjvw2IYsuBO7wd775i9XSLw5/VfuHdh6JpFqxWTlmv+WjNtzfPexZeQwP5tUOJzi3/tSDsHQx4NsHXu+Aq4Pi08w0U37dvD9u3QpPqEsqgI5HKwWiElBdq0AeE/68LOneHs2ZCGE4vB6ttBOm4crF0LPKRXfmEt0r2sTMe8NKF/aqVZHmpFEMSPP3pJsw8Aey7t2XL2l2qHmlefkpoAfAeNj+o8sl+bfvTjxMTE4cOH+zfMp2YdXg+3nvPflyk8KzzTAzJOBWhWB053VsFxeOQRmDYNpkwB/j8fKEnCzz/DokXVXOMJCTByJLz7Lmg00JHR/cCQmDXL/sUXvLCUJoxVwiNY50+f373td02FpnGzxqMmjMpqUN9/+7DHYTHUrJpzK5PJFBfH2PszFgP3XXqMszXcd999N27cCNjMi2bJh8L+X5maF5Cu/4I2XwZu5oiDzTfCGycVVfzwA0yrPoPU62H0aNi713t7mQzGjIGVKyNuGIbB8ePE44+jrTk+CY9grVq6sv+Q/qnpaccPHT914tS/P/p3wC4E4Qzvcj2gZnldCUaVYEFNzdp1DMqYBaYzBCMAJ0BaCk12gkQFxX3AnAUUDpJyqH8QEm9B2ROg6gymhmANqio1F2jSBMaPhwcfhOPH4fRp0GqhvBzMZn9dMCwYB1kQjBkDPzPeZHkPEuYlodlknj/3vYVLPwvcNAL40SxffqtoEyxw1yxrGqwvY5TSABErxMeDRlO1UEV4EOYvw7GDR1u3e8j9CEVRdjtBR5c4naTdTjidJElSBQVKu52g5dJuJ+x2AgAoCux2wuFwAgBJ0h1JV0d6m5XD4bTbCVpm3TpSdjvxWPPHvQYr0GrFB4HXUWrx8m49B6pHgyuFUOO1kG6vpdqbMCl70vfjl+MYDobmSK3uNQwGKCry8hVA0IRTyf869te5v8+9Mu9V94MOh1Op1EkkwtTUeIvFXllpSkyUyWQi+nhGRqJQyFerjU6ns2HDVJIklUqdUMjPyEi02RxqtSEuTpyUJDMarQaDJSUlXioVarUmu91Rr14yn48rlXocx+rXT3aN0r1V960v/DZ8+VCz/e4Uv1vzJ7dM/0UikJSVVRKEs0GDVIoilUqdQMDPzEy02WqTfujUIoAskBVDh0/g/hVgIgJ3AQAAjUarVOpkMnFyssxksun15mXLFu/du5sgnCRJCQR8DAOHgwAAgYBPUeBwEA2tDQqVVwA6A3QD8HA8LQFgGLb4HEDnWrxARBQglxtlMszjK8C2UVEDFSYO7zv84dsf6Cp14TphKBy9flQ2Mw6ex3p/3sdsN/tpaTTWKuC+FIC6+y/rCLRnehkJBAKPcbt27cp40FZVg97991jgTndZU6Mv+hft/yorI/nd4DjhmWH9sfOP0zl/v/LWqwmJntk5fGGzOSK3K53eMPjlga82vLDe3W+lVCoNhmrVcUymWgRwAWwGSLv7UAGg7gJwiEk3iuPBbtHPo49SCgVWVMS2HSHTrh0kJrJtRBQTHsHa9etOAPjPa3dvDi5a9rlI5C/9AElSJSXaMIY11KR7q+7dW3X3ODh37tx16/yV3g1E9QoCjHNYOZ1og1gEefBBWLXKqNUKhw0TVVREdqy4OKjdpLyWjBrlBEBxWD4Jj2B9s3pJrdozLKSKAAAcBxJ5XX2AYTBmDCxdCgB4s2Zw8iRMmQLHgyxiGRiRCA4e9LK9JiBZWaBgkFCjXj1q5szgTLtXYG0vYbjC3H1x/fr1V17xzNKdl1fLyoNhgqIoobCaQBMEU4e9UFjqcED1KdodxiNfZtwyqunXD/R6yMnxDIaKj4dOnSAhAXBcBgAtWsCxY3D4MGzdCitX+tsHExxPPQWPPgqnTsEff8Cvv8L161BZCdev393Y7Iv69eHoUZgwAU6e9NdMIoFt27CkJDS98gsrnjOSpPR6f77w0Dnp/+rgDgKB8PHHPfyyzPeNP8+6Czks/zIz/f21Tx/q6FH7mTOEUll1AXTqFGYbMIz66y8vV5pcTrVv77NX27ZUQQFFUZRORw0Y4LNZvXpUTg5lNFoIwhnR7wXXYSu9DKVSGeLjg0k6WlhYeP78+YDNTp0KtGOOIxAE+eef2z2OsWMKe5SX+/vr/v2wf78AADAMOnWCmTNh4kSQhTsSYNo0yM72crxxYzh9GpYvh+XL4eLFquNt2sD06TBjxt3t0wkJsGsXbN0KX30FOTlVy/wmTWDCBHjjDUhMhOJiU3o6DyUd9QNrm591OktSUo1y5wxYuXLl888/H3aTYpTnAVawbQMLPPEEGAyQmxu2Ew4bBj//DH7vJAEAKBR3i180bw71fW+o1Wjgxg2wWqFhQ2jRouq4wWCRSkVIsPzAmg8rOLVCIJhw4gQIwhQzk5kJ770HL77IKNd/VhZkZQVulpICXbp4OR7cmuOegrUloVptTEsLJoffz2hvKIIBjhAqKLdvD61bQ4MG0L079O4NkrqSEa3WFB8vRjn8/MBaimS93hKcYFkstUuIjEAwRyqFRYvgpZfYGd1kskqlQiRYfojZsAYEAABcAPhf9SNCgGDTksc0DRrA0KHw1lvQiHF9+7CTlpYgEKBEDf5gS7BQ4GjdcAbgTPUjUiRYHuA4nDjh/Q5gHSMWoxKqAWBHsEiSKinRNGqUGrBlZWWlx31M5iGXCAQTXnwxKtQKABSKytTUOKEQTbJ8wtpbQ2f8CUhmZqbdznjPHgJRneRk0Gr9NejdG75kkDW6bnA6nayEGXEIdiI+cBxr2jRmM/Aioofu3eGzz7wHkfL58OqrsHs3CKPGOVG/fopQiFaF/kCTT0QsM2AATJ8O48fD2rWwdy/k54PTCU2bQu/eMGkStGzJtn2IWsJOpDvzqjkikQgtCcOKFKBWKcA4TOPGcO1a3UVRhU5xsTo9PSFyeeJiANZmWKj4WmhMBHjU7WkJwCes2RKVYBh89RWX1AoAeDwexiSg/h4m2is/oxmWD34EGO/2NBegA7OO3J5hSaUwbx48+CCsXQu7dvlshuPw2WcwZ04dWoaoE1iLdLda7bEbilXzRxIHuB8AMAxSUiAjA1QqZUVIyTEDbcONJqRScDoDJI3ywGsdwKeegm++gTZtAABGjIDVq+E///GSGO+hh2DxYujVKwSLWcJqdQiFfBxHkyyfIB+WL/4L8GH1IwLGeV0+BXjL41BWFrz3HgwZAvXqAQC8/fbbn376aQjmnQHo5PY0emdYOA6bN4PFAhMnBqhF+uCD0LQpNG4MPXtCdjYcOgTHjkFJCcTFwYMPwuDB8Mgjnl0sFtizBw4ehPx8QijEWrfm9esHTz0FPG76G5APKyCsRbonJHDKuxAy/fvDjBlsG1HnJCTAjz/C4MEAAEIhTJ0KXot+CASwcCG8Vj1j/qRJMGlSgPNLJDB8OAwfDgaDQyDgi8XcFKp/kMnEKLeMf2LHhzV27NjU1KrQ+fLy8s2bNzPpmJCQsGPHDtfTffvg448BoAlA0+oN6wMwyMsNAPArwDCPQ1u2wIgRVU8LCgoKCwvdGwwbBlptHkDNeNoUgJrb2zoBuBesrrsZVuvW0KwZFBbCpUt3j0gk0LUrCIVw+jRoNHcPNmkCo0bB3LmQ7hZvp1DAwoXwyy9QXHz3SFoaDBkC8+bBffeFYhTinoGVPKckSWq1JiYthYyj+vLy8tw7Mk+RnJKS4t5x715feWybMn5T93n0bdiQMgfKCN21aygJfC8wtk0axPkfeIDKyaFu3apWMk+no27dooqLKav17hGHg1IoqFu3KJXK/6dPKZXUrVtUWRlFEEyugsCYTFabzRGec7GHXm9GKZL9w5rTXaMxRmcOvw4dfBWqGQigZHaOeh7Pv/gi8P31Ll0CFCnwSxLAKGYtxbU6r0gEL70E8+d7KZaXkAAJ1atQ8vl3PXT+wTBIT6828wodo9EmFgu4vgtPpzMLhXy0KvQDa+ll0tODSYZVB2RmQo8ecPBgzb98E9wJ//MfGDkycLPRo2Hx4uBGAIAmAJuC7uyVwYNh9GgYMACSuJAHKD4+Frw/yckylAzLP+x8xhgW1dlg33svPOeJi4OlS+Gjjxg1zs6Gp58Oz7h+YFhVuHlz2LIFxo7lhloBgEQi5Pr0CpDTnQGspUguK9MxyeGnUCgoZrcFksL33erWDT76CP7735BOwufDmDEwiuFCDQAAfvoJsrPh5k1/bTAMMAxwHILIstOiBWzZAgMGQFmZv2aJibBjRxRtCWZCZaVJKORLpVwKT6uJSqVPSpKhTSD+YMVz5nSSt26VR3SIoJ3uNCRJzZ9PYVioxeyaNaMuX2ZkcGUldf48deYM9cADPs+WkEDt2UNRFKXRUD171tpxfuMGRVHUxYtUkyY+m6WnUydOhPFzqCPKy3U6XWQrXdYBRUUVVqudbSuiGtbCGmw2R0QD5EpLS1etWsWkpVQqneNjE8eff8K778KRIyEVVAdoXQAAEQRJREFUi69XD06fhoYNvf/17Fl49lkoLKwKqsQwiIsDPr9aIiepFEaPhvffr0rgSxDwySewaBHo9VXNMAySksBiqVb0OCMDZs6EOXMg7p9AiMpKWLAAVqwAtbqqWUICTJgA77wDmZnBv1i2IAgnhmFcX0/Z7YRAgLYT+iPa47CiAaUSxo716oZnyogRsGWLl+NjxsAm377yLl1g9mxwOKBxY8jOrnafkaLgww/hww+9LwybNoW33wahEAQCaNUKOnUC3NsX2emEv/+GmzeBJKFZM+jSJXDdPQSCXVjbmlNYWBGhHH43b8KOHXDtGhgMdys1PfUUnDoFhw5BYSGIRHD//TBgALRtW9MqOH0a9u6FW7eAoqB5c+jbF7KzAcehRw84ciR4kzAMcnM9R3zmGdi9O0DHRx8FrxWsX30Vvv7aX0eZDI4cgc6dA9um11scDiI1NUpv2jKkosIgEvGj+U4OE0pKNGlpCSIR5+8eRBBWFqJOJ1lQoAz7aW/dooYN8+KX4fG8HOzZk8rNrep7+DDVsaOXZm3aUPv2Ud26herMev/9aqauXMm04wcfeL7M9esZdWzUiNLrA79pOp25ooJBu+hGpdLr9Zz3YRUXq61Wzoe/RhTOLwktFvjxRzh/Hmw22Lq1mkMnIBIJvPgi1KsH167BunXg9JFlHsOgUSOovpGm1nTqBH/9dffWW3ExtGgBDPd04zgcPQpPPHH3qdUKLVtWbW3xz5QpsHAhpKUFZTECEX2wJlgE4QwxRm7fPhg7tprbOMrBMMjIAIkE7typdV+BALp3hw0bICcHhg6t3aCPPAKzZ8PYsd49WSRJURTFdXe100liGMb1xCwE4eTxcOR090O0p5fxRb9+8McfYbSIG/B40Lt3kC+8WzfYtAmysjyP63Rmu51IT0/w1okzKJV6sVjA9RQgKL1MQDhTSFWvh02bYO9eKC2FK1dqt/SLGZzO4GX6+PG7Nx88AmxjYy+IUMjj87k9SQQAkUiAe50GI/6BGz6s1avhzTchpAydCAAAGDcOfvqJbSMQiGBhR7AoCoxGC8Ob0P/+N3yCCiyECRyH3Ny7WYZp7HaCJCmuF0m3WOw8Hs717YQmk1UsFnLdnxhR2HlrKIpSqQxMWi5bhtQqnJCk5wzLYrEbDBaWzAkbBoPVanWwbUWoaLUmgmBUEf2ehTUfFpNkWGo1zJtXB+bcW3hsshSJBDHgxpJKhTGwZzg+XoKmV/5hLR9WSkpcwGYbNoBOVwfm3Ft4lJnh+mKQJi6udokJo5PExGhMaRlVhEewzCbzqqUrb+XfatGqxdSXp0llAd53iqLUamNaWoDtIAF3riCCwCNNqMVidzpJrn/hDQaLQMDnuvhqtab4eHEMTHgjR3jmn/t+35eSlvK/rz5OSUvZv3tfwPYUBXp9YL9JEAGWiIDcf3+1p3Y7YbFwvlStxeKw22ufISzKMJmsTmcIiUHuAcIjWJfOX+zVr7dUJu35dK+L5y4GbI9hGJPsfajksy/iAq+nfTJwYLWnMpkoBlYiSUlSrmfvA4C0tASBgNs3OiNNeASrUluZkpoCAKlpqZXayoDtGQaO1q8fBttikl9/hSFDgun40EOeCeb5fB7XowEAQCjkx0DgqFgs4PruokgT8c/YanXk5ysUCi0AVFaa8vMVdIGv/HxFfr6CXowUFCjz8xUAQBDO/HxFYWEFABiN1g4djJE2j4v06QOtWqkWLFBs2kR17gzMd57x+fD229qCgjIAsNuJ/HxFcbHGaLQqFNr8fIVabQAApVKXn68wmWwAIJdX5OcrnE6S/rzu3FEBgNlsz89XlJVVAoBGY8zPV+h0ZgAoLdXm5ytsNgcA3L5dfvNmGQA4HPQoagAwGCz5+YqKCnoUfX6+wmi0AkBhYbVRCgqUAGCxVI2i1Zry8xWVlSbXKHQEw+3byhs36FGcV64U0x3pUVQqPQCoVFWjFBWp8/MVdNCAaxSr1Z6fr1AoqkbRak0AQL8h9CgeF2dRkRoAjEarxygGQ9UoDocTAG7cUNy+TY/iyM9XlJZW+woAgEJR6fEVKCvT0W+v6yuQn69QKu/JXR2+CEvOhw/mvV9WWkZRlKJE8cG89wO2Z5gi+fp1is8PMp3L+PHUnj2UTBZqWpho+9e6NeWsXrmuuJg6fpzat48aMcJfR4GAWrPGy5tcWWlSKnUMP+ioBaVIvkcIj2D9tvHX9at+MhlN61f99Num35h0oX9RA/Lii7X+SguF1Nq1VWfo3Jl9lQnLPxynJk4M8HatWEFlZnrp264ddeyY9y4kSZIko88imomNV+F0xsCLiCzh2ZpjMppWLV1568atFi1bTJv5fMCwBgAgSYrJct1qhaefhmPH/LXBcRCJgM+H1FR48UV46y3PBrdvw+zZcPIkWK2AYZCYCCNGQL9+8M03cOMGWCxQUQE2W0BbvEAXsGnQAD78ENauhfPnwWoFpzPA7QIeD7p1g6wsqFcP+vUDmQw+/xzy8sBiAbEY7r8fXn0V8vJg40ZQKsHphKQk6NsX3nwTMhiktzCbYfduOHoUlErg86FBA+jfH5580ntuGQCgLwCupzSJjVdBkhSGcf1FRBhWZLJWVXPMZmrsWJ/zjieeoBSKUO3R6ahBg2o333nuOcpisRUXq72e8KuvKJHIe8esrOgqS4OWhNEDWhIGhLUbK8w3UkgksH49HD0Ko0ZVBT0KhfD007B5Mxw7xqg8un8SEmDHDti7F4YNA+k/s0OJBPr0gY4dq1V/4POhY0c4eRI2bAA/ZVpefRWuX4fZs6uK3ADAww/DggVw4wY8/nioBocRHOd8sRkA4PE4n70PAHg8VDInANxIL+NOWRkQBGRlAS8y8cAUBQoFUBRkZVUtoyor4eJFaNECGjSo9Ql1OtBqoV49EHM7mByBYB/W0stYrfba5vCLNkiScjgIrueHJAgnSVJcD8Wy2wkcx7keimW1OoRCfgxMFSMHazMshk73aIa+x8r9VxEL7urYeBXI6R4Q7i0JEQjEPQu3p9AIBOKeAgkWAoHgDEiwEAgEZ0CChUAgOANrN7NP55zesGr9lyu+YsuAEJk9ZZbr8Terl7BoSYgcPXD04N4DlZpKiqK4+ELcPwiJRLJw6WcsGhM0ebl52zb9plapU9NTh44e1qZ9m8B97knYESx5gfz4oWMdH+nIyujhgotfbw9yz144uv/I87NeaNSkEUdvp7s+hX27/tBqtOwaEzTrf/hpwgsTW7Vudf3ytZ9W/vTJ15+ybVGUwsKSUK/Tb1q7ccpLU00mU92PjnDn4N5DQ0YNady0MUfVygVFUTnHc7K7P8a2IUGSmJwIABhgAJCUHDgZ7z1LXc+wCIJYs2z1yPGjklOStWqu/h7SvDlzLoZhLR9oNWLcCI5eZGWlivyr+etWrEvPSB83dVyjpo3ZtihIbl67IRKJGnPW/onTJy3+9CuzySyVSV97+zW2zYle6nqGtWntxq5PdG12XzMA4O4EHgC+Wb1k4bef/ffjd1LTUn5csY5tc4LE6XRmZmV+svjT7O6P/bx2I9vmBM9fx3Oyu2WzbUXwbPlp88DhAz///osBQ5/Z/ONmts2JXupasE6eOPnjDz/OnjJr9pRZVovV3WPKReIT4vsPGSC/LWfbkCBJSk7u2i1bKBJmd88uLy1j25wgsZgtl3PzHnnsUbYNCR75bXnXJ7KFQmF292x5AVcvpzqgrpeE7o7q2VNmcd1vbTFbDuze37BJQ7YNCZL2D7fLOZaT3T0751hO/YZcrflxOuf0g20eZJI2MmrJzMo89eepLo93OXXiZL2skPMlxS7c3qPPIvTcUCKRNG/ZfMLzE9k2J0j6PNN3zbLV2zdvy2qQNW7aeLbNCZKc438NGTmUbStCYszk5zau/fnXjVszszLHTh7LtjnRC9r8jEAgOAOKdEcgEJwBCRYCgeAMSLAQCARnQIKFQCA4AxIsBALBGZBgIRAIzoAEC4FAcAYkWAgEgjMgwUIgEJwBCRYCgeAMSLAQCARnQIKFQCA4AxIsBALBGZBgIRAIzoAEC4FAcAYkWAgEgjMgwUIgEJwBpUhmGYqijuw/cuTAYUWJwmg0pqSktG7bule/3ve3vj8Sw41+ZtSm3ze7P6h7WBwawXWQYLHMqu9WKcuV46dOaNi4oUAoUJWrLl24uHbFmo+//IRt08IDkidEGEGCxTJHDx75ds3S+Ph4+mlWg6ysBll9n3maXasQiOgECRbLpKSk5F/J79Slk68GZ06d2fLT5uLC4uSU5OHPPduzb0/6+OhnRr0w64Wdv+5UKVVpaWnDn3v2qd5PuXpp1Jptm387evBofEJ89hPZo8aPFggFDE3yM+Lsua/s/HVnSWGxVCZt17HdpBmTXVJ7YO+BbZt/06g16Rnpg4YPWrFkxabfN49+ZhTdkW7jmmqdOHLC13kQCH9QCFa5dP7iC2Off+eN/25Ys+HowaPKcqX7X69dvjZl5OQTR06YTeYb12/Mnjrr/Olz9J9GDRg5c/LLly9etpgtly/mvTzppdyzF1wdZ05++fC+QxazRVmm/PKTLzasXu/q5fHAA/8jznnx9UsXLlnMFo1a8/XCxYsXfEX/6eypMzOnuIy5PHPyy34G8nMeBMI/SLDYx2q1nvv73OYfN33+v0VTR0/56L8faTVa+k8f/vuDnOM5rpY3ruXPe3Ue/XjUgJFnTp5x/envv/6e/9Z7Xs9vNBhnT53l6uXxwAP/IxbcvO36U6W2ctroqfTjd+e+e/ZUlTFnTp7xL1i+zoNA+ActCdlHJBJ1fKRjx0c6AoDD7ljz/eoVS1bMfWcuANy5fefLT75wb4zjVZEoD7R5wPW4ddvWyxZ/Rz82Goxb1m8+9/c5rUbrcDg8evnH/4hNmjd1PU5MSjQYDPTjInnh/Q9VGfOA22Ov+DoPAuEfJFjRhUAoGDtl3MzJL9NPrVbr2l/WiSXiWp3k28+XpKan/vvD/6SlpwmEApvVNvHZCQz7+h8Rw7BaWeKLcJ0Hca+BAkdZZvWy1SRJuh/RqjUuvWh+X/PbN2/76nst75rr8ZVLVxo1aUQ/vpp3dezkcVkNsmhH+6XcS8zt8T+iLxo1aXz9cpUx169UPebxeB4vEIEIGiRYLLN35563X3v7dM5ps8lsMVvycvMWf/Z1v8H96b+OGjfqx5U/Xs27arVYbVZb3oVLn86vis9avWzVlUtXrBbrlUuX13y/euioYfTxJs2b7Ni63Wgwmkymkydyln/9PXN7/I/oiyEjBq9etvra5as2q+3a5aurl612/SktPe3ShUsURTG3AYHwBVoSssyHiz48+MehtcvXaNQaoVDYqEmjZ4YMeKpPD/qvbTq0nTBtwpb1m2/m36RIquUDLYePHu7qO2Tk0GWLv6tQVqSmpY4YO7JDpw708Vn/mr1q2arZ02Y57I76DeuPnzr+2y++rTm0K9rAxabfN/sf0RcPP9pJo9YsWbREo9GkZ6T3HzJg/aqf6D+Nnzb+hyUrKlQVJEmiCFJEiGDop4+jRHMEef61/GVffvfF91+ybQgi1kBLQkR4WLLomyJ5kc1mu3n9xoolK57q24NtixAxCFoSIsJD247tFi/4SlmmTMtI69Wv94AhA9i2CBGDoCUhAoHgDGhJiEAgOAMSLAQCwRmQYCEQCM6ABAuBQHAGJFgIBIIzIMFCIBCcAQkWAoHgDEiwEAgEZ0CChUAgOAMSLAQCwRmQYCEQCM6ABAvx/3bqgAQAAABA0P/X7Qh0hLAhLGBDWMCGsIANYQEbwgI2hAVsCAvYEBawISxgQ1jAhrCADWEBG8ICNoQFbARHE/8APt6M0AAAAABJRU5ErkJggg==",
"text/plain": [
"Plot{Plots.GadflyPackage() n=3}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"scatter(iris, :SepalLength, [:PetalLength,:PetalWidth,:SepalWidth], m=:auto, ms=10, gui=false)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "LoadError",
"evalue": "LoadError: MethodError: `split` has no method matching split(::DataArrays.PooledDataArray{ASCIIString,UInt8,1})\nClosest candidates are:\n split(::Any, !Matched::Any, !Matched::Bool)\n split(::Any, !Matched::Any, !Matched::Integer)\n split(::Any, !Matched::Any, !Matched::Integer, !Matched::Bool)\nwhile loading In[7], in expression starting on line 2",
"output_type": "error",
"traceback": [
"LoadError: MethodError: `split` has no method matching split(::DataArrays.PooledDataArray{ASCIIString,UInt8,1})\nClosest candidates are:\n split(::Any, !Matched::Any, !Matched::Bool)\n split(::Any, !Matched::Any, !Matched::Integer)\n split(::Any, !Matched::Any, !Matched::Integer, !Matched::Bool)\nwhile loading In[7], in expression starting on line 2",
""
]
}
],
"source": [
"species = iris[:Species]\n",
"split(species)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "ErrorException",
"evalue": "type TypeConstructor has no field name",
"output_type": "error",
"traceback": [
"type TypeConstructor has no field name",
""
]
}
],
"source": [
"using StatsBase\n",
"methods(svd)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "LoadError",
"evalue": "LoadError: MethodError: `pca` has no method matching pca(::Array{Float64,2})\nwhile loading In[20], in expression starting on line 2",
"output_type": "error",
"traceback": [
"LoadError: MethodError: `pca` has no method matching pca(::Array{Float64,2})\nwhile loading In[20], in expression starting on line 2",
""
]
}
],
"source": [
"arr = Array(iris[[:SepalLength,:SepalWidth]])\n",
"pca(arr)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"search: "
]
},
{
"data": {
"text/latex": [
"\\href{https://travis-ci.org/joshday/OnlineStats.jl}{\\begin{figure}\n",
"\\centering\n",
"\\includegraphics{https://travis-ci.org/joshday/OnlineStats.jl.svg}\n",
"\\caption{Build Status}\n",
"\\end{figure}\n",
"} \\href{https://ci.appveyor.com/project/joshday/onlinestats-jl/branch/master}{\\begin{figure}\n",
"\\centering\n",
"\\includegraphics{https://ci.appveyor.com/api/projects/status/x2t1ey2sgbmow1a4/branch/master?svg=true}\n",
"\\caption{Build status}\n",
"\\end{figure}\n",
"} \\href{https://coveralls.io/r/joshday/OnlineStats.jl?branch=josh}{\\begin{figure}\n",
"\\centering\n",
"\\includegraphics{https://coveralls.io/repos/joshday/OnlineStats.jl/badge.svg?branch=josh}\n",
"\\caption{Coverage Status}\n",
"\\end{figure}\n",
"} \\href{http://codecov.io/github/joshday/OnlineStats.jl?branch=josh}{\\begin{figure}\n",
"\\centering\n",
"\\includegraphics{http://codecov.io/github/joshday/OnlineStats.jl/coverage.svg?branch=josh}\n",
"\\caption{codecov.io}\n",
"\\end{figure}\n",
"} \\href{https://readthedocs.org/projects/onlinestatsjl/?badge=latest}{\\begin{figure}\n",
"\\centering\n",
"\\includegraphics{https://readthedocs.org/projects/onlinestatsjl/badge/?version=latest}\n",
"\\caption{Documentation Status}\n",
"\\end{figure}\n",
"}\n",
"\\section{OnlineStats}\n",
"Online algorithms for statistics. See \\href{src/README.md}{Implementation Progress}\n",
"Install with \\texttt{Pkg.add(\"OnlineStats\")}\n",
"\\subsubsection{\\href{http://onlinestatsjl.readthedocs.org/en/latest/}{Documentation}}\n"
],
"text/markdown": [
"[![Build Status](https://travis-ci.org/joshday/OnlineStats.jl.svg)](https://travis-ci.org/joshday/OnlineStats.jl) [![Build status](https://ci.appveyor.com/api/projects/status/x2t1ey2sgbmow1a4/branch/master?svg=true)](https://ci.appveyor.com/project/joshday/onlinestats-jl/branch/master) [![Coverage Status](https://coveralls.io/repos/joshday/OnlineStats.jl/badge.svg?branch=josh)](https://coveralls.io/r/joshday/OnlineStats.jl?branch=josh) [![codecov.io](http://codecov.io/github/joshday/OnlineStats.jl/coverage.svg?branch=josh)](http://codecov.io/github/joshday/OnlineStats.jl?branch=josh) [![Documentation Status](https://readthedocs.org/projects/onlinestatsjl/badge/?version=latest)](https://readthedocs.org/projects/onlinestatsjl/?badge=latest)\n",
"\n",
"# OnlineStats\n",
"\n",
"Online algorithms for statistics. See [Implementation Progress](src/README.md)\n",
"\n",
"Install with `Pkg.add(\"OnlineStats\")`\n",
"\n",
"### [Documentation](http://onlinestatsjl.readthedocs.org/en/latest/)\n"
],
"text/plain": [
"[![Build Status](https://travis-ci.org/joshday/OnlineStats.jl.svg)](https://travis-ci.org/joshday/OnlineStats.jl) [![Build status](https://ci.appveyor.com/api/projects/status/x2t1ey2sgbmow1a4/branch/master?svg=true)](https://ci.appveyor.com/project/joshday/onlinestats-jl/branch/master) [![Coverage Status](https://coveralls.io/repos/joshday/OnlineStats.jl/badge.svg?branch=josh)](https://coveralls.io/r/joshday/OnlineStats.jl?branch=josh) [![codecov.io](http://codecov.io/github/joshday/OnlineStats.jl/coverage.svg?branch=josh)](http://codecov.io/github/joshday/OnlineStats.jl?branch=josh) [![Documentation Status](https://readthedocs.org/projects/onlinestatsjl/badge/?version=latest)](https://readthedocs.org/projects/onlinestatsjl/?badge=latest)\n",
"\n",
"# OnlineStats\n",
"\n",
"Online algorithms for statistics. See [Implementation Progress](src/README.md)\n",
"\n",
"Install with `Pkg.add(\"OnlineStats\")`\n",
"\n",
"### [Documentation](http://onlinestatsjl.readthedocs.org/en/latest/)\n"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"OnlineStats OnlineStat\n",
"\n"
]
}
],
"source": [
"?OnlineStats"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 0.4.0-rc1",
"language": "julia",
"name": "julia-0.4"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "0.4.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}