Plots.jl/src/components.jl
2016-06-13 01:45:53 -04:00

502 lines
13 KiB
Julia

typealias P2 FixedSizeArrays.Vec{2,Float64}
typealias P3 FixedSizeArrays.Vec{3,Float64}
nanpush!(a::AbstractVector{P2}, b) = (push!(a, P2(NaN,NaN)); push!(a, b))
nanappend!(a::AbstractVector{P2}, b) = (push!(a, P2(NaN,NaN)); append!(a, b))
nanpush!(a::AbstractVector{P3}, b) = (push!(a, P3(NaN,NaN,NaN)); push!(a, b))
nanappend!(a::AbstractVector{P3}, b) = (push!(a, P3(NaN,NaN,NaN)); append!(a, b))
compute_angle(v::P2) = (angle = atan2(v[2], v[1]); angle < 0 ? 2π - angle : angle)
# -------------------------------------------------------------
immutable Shape
x::Vector{Float64}
y::Vector{Float64}
function Shape(x::AVec, y::AVec)
if x[1] != x[end] || y[1] != y[end]
new(vcat(x, x[1]), vcat(y, y[1]))
else
new(x, y)
end
end
end
Shape(verts::AVec) = Shape(unzip(verts)...)
get_xs(shape::Shape) = shape.x
get_ys(shape::Shape) = shape.y
vertices(shape::Shape) = collect(zip(shape.x, shape.y))
function shape_coords(shape::Shape)
shape.x, shape.y
end
function shape_coords(shapes::AVec{Shape})
length(shapes) == 0 && return zeros(0), zeros(0)
xs = map(get_xs, shapes)
ys = map(get_ys, shapes)
x, y = map(copy, shape_coords(shapes[1]))
for shape in shapes[2:end]
nanappend!(x, shape.x)
nanappend!(y, shape.y)
end
x, y
end
"get an array of tuples of points on a circle with radius `r`"
function partialcircle(start_θ, end_θ, n = 20, r=1)
@compat(Tuple{Float64,Float64})[(r*cos(u),r*sin(u)) for u in linspace(start_θ, end_θ, n)]
end
"interleave 2 vectors into each other (like a zipper's teeth)"
function weave(x,y; ordering = Vector[x,y])
ret = eltype(x)[]
done = false
while !done
for o in ordering
try
push!(ret, shift!(o))
end
end
done = isempty(x) && isempty(y)
end
ret
end
"create a star by weaving together points from an outer and inner circle. `n` is the number of arms"
function makestar(n; offset = -0.5, radius = 1.0)
z1 = offset * π
z2 = z1 + π / (n)
outercircle = partialcircle(z1, z1 + 2π, n+1, radius)
innercircle = partialcircle(z2, z2 + 2π, n+1, 0.4radius)
Shape(weave(outercircle, innercircle)[1:end-2])
end
"create a shape by picking points around the unit circle. `n` is the number of point/sides, `offset` is the starting angle"
function makeshape(n; offset = -0.5, radius = 1.0)
z = offset * π
Shape(partialcircle(z, z + 2π, n+1, radius)[1:end-1])
end
function makecross(; offset = -0.5, radius = 1.0)
z2 = offset * π
z1 = z2 - π/8
outercircle = partialcircle(z1, z1 + 2π, 9, radius)
innercircle = partialcircle(z2, z2 + 2π, 5, 0.5radius)
Shape(weave(outercircle, innercircle,
ordering=Vector[outercircle,innercircle,outercircle])[1:end-2])
end
from_polar(angle, dist) = P2(dist*cos(angle), dist*sin(angle))
function makearrowhead(angle; h = 2.0, w = 0.4)
tip = from_polar(angle, h)
Shape(P2[(0,0), from_polar(angle - 0.5π, w) - tip,
from_polar(angle + 0.5π, w) - tip, (0,0)])
end
const _shapes = KW(
:ellipse => makeshape(20),
:rect => makeshape(4, offset=-0.25),
:diamond => makeshape(4),
:utriangle => makeshape(3),
:dtriangle => makeshape(3, offset=0.5),
:pentagon => makeshape(5),
:hexagon => makeshape(6),
:heptagon => makeshape(7),
:octagon => makeshape(8),
:cross => makecross(offset=-0.25),
:xcross => makecross(),
:vline => Shape([(0,1),(0,-1)]),
:hline => Shape([(1,0),(-1,0)]),
)
for n in [4,5,6,7,8]
_shapes[Symbol("star$n")] = makestar(n)
end
# -----------------------------------------------------------------------
# uses the centroid calculation from https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
function center(shape::Shape)
x, y = shape_coords(shape)
n = length(x)
A, Cx, Cy = 0.0, 0.0, 0.0
for i=1:n
ip1 = i==n ? 1 : i+1
A += x[i] * y[ip1] - x[ip1] * y[i]
end
A *= 0.5
for i=1:n
ip1 = i==n ? 1 : i+1
m = (x[i] * y[ip1] - x[ip1] * y[i])
Cx += (x[i] + x[ip1]) * m
Cy += (y[i] + y[ip1]) * m
end
Cx / 6A, Cy / 6A
end
function Base.scale!(shape::Shape, x::Real, y::Real = x, c = center(shape))
sx, sy = shape_coords(shape)
cx, cy = c
for i=1:length(sx)
sx[i] = (sx[i] - cx) * x + cx
sy[i] = (sy[i] - cy) * y + cy
end
shape
end
function Base.scale(shape::Shape, x::Real, y::Real = x, c = center(shape))
shapecopy = deepcopy(shape)
scale!(shape, x, y, c)
end
function translate!(shape::Shape, x::Real, y::Real = x)
sx, sy = shape_coords(shape)
for i=1:length(sx)
sx[i] += x
sy[i] += y
end
shape
end
function translate(shape::Shape, x::Real, y::Real = x)
shapecopy = deepcopy(shape)
translate!(shape, x, y)
end
function rotate_x(x::Real, y::Real, Θ::Real, centerx::Real, centery::Real)
(x - centerx) * cos(Θ) - (y - centery) * sin(Θ) + centerx
end
function rotate_y(x::Real, y::Real, Θ::Real, centerx::Real, centery::Real)
(y - centery) * cos(Θ) + (x - centerx) * sin(Θ) + centery
end
function rotate(x::Real, y::Real, θ::Real, c = center(shape))
cx, cy = c
rotate_x(x, y, Θ, cx, cy), rotate_y(x, y, Θ, cx, cy)
end
function rotate!(shape::Shape, Θ::Real, c = center(shape))
x, y = shape_coords(shape)
cx, cy = c
for i=1:length(x)
x[i] = rotate_x(x[i], y[i], Θ, cx, cy)
y[i] = rotate_y(x[i], y[i], Θ, cx, cy)
end
shape
end
function rotate(shape::Shape, Θ::Real, c = center(shape))
shapecopy = deepcopy(shape)
rotate!(shapecopy, Θ, c)
end
# -----------------------------------------------------------------------
immutable Font
family::AbstractString
pointsize::Int
halign::Symbol
valign::Symbol
rotation::Float64
color::Colorant
end
"Create a Font from a list of unordered features"
function font(args...)
# defaults
family = "Helvetica"
pointsize = 14
halign = :hcenter
valign = :vcenter
rotation = 0.0
color = colorant"black"
for arg in args
T = typeof(arg)
if T == Font
family = arg.family
pointsize = arg.pointsize
halign = arg.halign
valign = arg.valign
rotation = arg.rotation
color = arg.color
elseif arg == :center
halign = :hcenter
valign = :vcenter
elseif arg in (:hcenter, :left, :right)
halign = arg
elseif arg in (:vcenter, :top, :bottom)
valign = arg
elseif T <: Colorant
color = arg
elseif T <: Symbol || T <: AbstractString
try
color = parse(Colorant, string(arg))
catch
family = string(arg)
end
elseif typeof(arg) <: Integer
pointsize = arg
elseif typeof(arg) <: Real
rotation = convert(Float64, arg)
else
warn("Unused font arg: $arg ($(typeof(arg)))")
end
end
Font(family, pointsize, halign, valign, rotation, color)
end
"Wrap a string with font info"
immutable PlotText
str::AbstractString
font::Font
end
PlotText(str) = PlotText(string(str), font())
text(t::PlotText) = t
text(str::AbstractString, f::Font) = PlotText(str, f)
function text(str, args...)
PlotText(string(str), font(args...))
end
annotations(::Void) = []
annotations(anns::AVec) = anns
annotations(anns) = Any[anns]
# -----------------------------------------------------------------------
# -----------------------------------------------------------------------
immutable Stroke
width
color
alpha
style
end
function stroke(args...; alpha = nothing)
width = nothing
color = nothing
style = nothing
for arg in args
T = typeof(arg)
# if arg in _allStyles
if allStyles(arg)
style = arg
elseif T <: Colorant
color = arg
elseif T <: Symbol || T <: AbstractString
try
color = parse(Colorant, string(arg))
end
elseif allAlphas(arg)
alpha = arg
elseif allReals(arg)
width = arg
else
warn("Unused stroke arg: $arg ($(typeof(arg)))")
end
end
Stroke(width, color, alpha, style)
end
immutable Brush
size # fillrange, markersize, or any other sizey attribute
color
alpha
end
function brush(args...; alpha = nothing)
size = nothing
color = nothing
for arg in args
T = typeof(arg)
if T <: Colorant
color = arg
elseif T <: Symbol || T <: AbstractString
try
color = parse(Colorant, string(arg))
end
elseif allAlphas(arg)
alpha = arg
elseif allReals(arg)
size = arg
else
warn("Unused brush arg: $arg ($(typeof(arg)))")
end
end
Brush(size, color, alpha)
end
# -----------------------------------------------------------------------
"type which represents z-values for colors and sizes (and anything else that might come up)"
immutable ZValues
values::Vector{Float64}
zrange::Tuple{Float64,Float64}
end
function zvalues{T<:Real}(values::AVec{T}, zrange::Tuple{T,T} = (minimum(values), maximum(values)))
ZValues(collect(float(values)), map(Float64, zrange))
end
# -----------------------------------------------------------------------
abstract AbstractSurface
"represents a contour or surface mesh"
immutable Surface{M<:AMat} <: AbstractSurface
surf::M
end
Surface(f::Function, x, y) = Surface(Float64[f(xi,yi) for yi in y, xi in x])
Base.Array(surf::Surface) = surf.surf
for f in (:length, :size)
@eval Base.$f(surf::Surface, args...) = $f(surf.surf, args...)
end
Base.copy(surf::Surface) = Surface(copy(surf.surf))
Base.eltype(surf::Surface) = eltype(surf.surf)
function expand_extrema!(a::Axis, surf::Surface)
ex = a[:extrema]
for vi in surf.surf
expand_extrema!(ex, vi)
end
ex
end
"For the case of representing a surface as a function of x/y... can possibly avoid allocations."
immutable SurfaceFunction <: AbstractSurface
f::Function
end
# -----------------------------------------------------------------------
# style is :open or :closed (for now)
immutable Arrow
style::Symbol
headlength::Float64
headwidth::Float64
end
function arrow(args...)
style = :simple
headlength = 0.3
headwidth = 0.3
setlength = false
for arg in args
T = typeof(arg)
if T == Symbol
style = arg
elseif T <: Number
# first we apply to both, but if there's more, then only change width after the first number
headwidth = Float64(arg)
if !setlength
headlength = headwidth
end
setlength = true
elseif T <: Tuple && length(arg) == 2
headlength, headwidth = Float64(arg[1]), Float64(arg[2])
else
warn("Skipped arrow arg $arg")
end
end
Arrow(style, headlength, headwidth)
end
# allow for do-block notation which gets called on every valid start/end pair which
# we need to draw an arrow
function add_arrows(func::Function, x::AVec, y::AVec)
for i=2:length(x)
xyprev = (x[i-1], y[i-1])
xy = (x[i], y[i])
if ok(xyprev) && ok(xy)
if i==length(x) || !ok(x[i+1], y[i+1])
# add the arrow from xyprev to xy
func(xyprev, xy)
end
end
end
end
# -----------------------------------------------------------------------
type BezierCurve{T <: FixedSizeArrays.Vec}
control_points::Vector{T}
end
@compat function (bc::BezierCurve)(t::Real)
p = zero(P2)
n = length(bc.control_points)-1
for i in 0:n
p += bc.control_points[i+1] * binomial(n, i) * (1-t)^(n-i) * t^i
end
p
end
Base.mean(x::Real, y::Real) = 0.5*(x+y)
Base.mean{N,T<:Real}(ps::FixedSizeArrays.Vec{N,T}...) = sum(ps) / length(ps)
curve_points(curve::BezierCurve, n::Integer = 30; range = [0,1]) = map(curve, linspace(range..., n))
# build a BezierCurve which leaves point p vertically upwards and arrives point q vertically upwards.
# may create a loop if necessary. Assumes the view is [0,1]
function directed_curve(p::P2, q::P2; xview = 0:1, yview = 0:1)
mn = mean(p, q)
diff = q - p
minx, maxx = minimum(xview), maximum(xview)
miny, maxy = minimum(yview), maximum(yview)
diffpct = P2(diff[1] / (maxx - minx),
diff[2] / (maxy - miny))
# these points give the initial/final "rise"
# vertical_offset = P2(0, (maxy - miny) * max(0.03, min(abs(0.5diffpct[2]), 1.0)))
vertical_offset = P2(0, max(0.15, 0.5norm(diff)))
upper_control = p + vertical_offset
lower_control = q - vertical_offset
# try to figure out when to loop around vs just connecting straight
# TODO: choose loop direction based on sign of p[1]??
# x_close_together = abs(diffpct[1]) <= 0.05
p_is_higher = diff[2] <= 0
inside_control_points = if p_is_higher
# add curve points which will create a loop
sgn = mn[1] < 0.5 * (maxx + minx) ? -1 : 1
inside_offset = P2(0.3 * (maxx - minx), 0)
additional_offset = P2(sgn * diff[1], 0) # make it even loopier
[upper_control + sgn * (inside_offset + max(0, additional_offset)),
lower_control + sgn * (inside_offset + max(0, -additional_offset))]
else
[]
end
BezierCurve([p, upper_control, inside_control_points..., lower_control, q])
end