Plots.jl/examples/palettes.ipynb
2015-10-20 12:55:36 -04:00

3409 lines
886 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO: Recompiling stale cache file /home/tom/.julia/lib/v0.4/Plots.ji for module Plots.\n"
]
},
{
"data": {
"text/plain": [
"old_pick_colors (generic function with 1 method)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Plots\n",
"function old_pick_colors(grad,n)\n",
" grad=colorscheme(grad)\n",
" RGB[getColorZ(grad,z) for z in Plots.getpctrange(n)]\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"95.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#FF9BFF\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00FFFF\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E98300\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0085FF\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#009100\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E90069\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0084C3\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F9FF0E\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#980000\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F3FCFF\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0010B4\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4E3000\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0045D1\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#B79395\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#003B20\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00DDFF\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#98B6A6\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#610000\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#001C00\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"19-element Array{ColorTypes.RGB{FixedPointNumbers.UfixedBase{UInt8,8}},1}:\n",
" RGB{U8}(1.0,0.608,1.0) \n",
" RGB{U8}(0.0,1.0,1.0) \n",
" RGB{U8}(0.914,0.514,0.0) \n",
" RGB{U8}(0.0,0.522,1.0) \n",
" RGB{U8}(0.0,0.569,0.0) \n",
" RGB{U8}(0.914,0.0,0.412) \n",
" RGB{U8}(0.0,0.518,0.765) \n",
" RGB{U8}(0.976,1.0,0.055) \n",
" RGB{U8}(0.596,0.0,0.0) \n",
" RGB{U8}(0.953,0.988,1.0) \n",
" RGB{U8}(0.0,0.063,0.706) \n",
" RGB{U8}(0.306,0.188,0.0) \n",
" RGB{U8}(0.0,0.271,0.82) \n",
" RGB{U8}(0.718,0.576,0.584)\n",
" RGB{U8}(0.0,0.231,0.125) \n",
" RGB{U8}(0.0,0.867,1.0) \n",
" RGB{U8}(0.596,0.714,0.651)\n",
" RGB{U8}(0.38,0.0,0.0) \n",
" RGB{U8}(0.0,0.11,0.0) "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# without specifying the background color, you get colors that are hard to see\n",
"cols = distinguishable_colors(20)[2:end]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"95.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#610007\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#002B2C\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#913B00\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0063FF\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#009100\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#FF008D\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00ACEC\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#190E00\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#FF7A00\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00002B\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#CEA3FF\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#EBBE00\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00D0FF\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#6B4C4D\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00FFD0\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#004BC7\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#2E493C\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#FFA0C9\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#B8FF4B\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"19-element Array{ColorTypes.RGB{FixedPointNumbers.UfixedBase{UInt8,8}},1}:\n",
" RGB{U8}(0.38,0.0,0.027) \n",
" RGB{U8}(0.0,0.169,0.173) \n",
" RGB{U8}(0.569,0.231,0.0) \n",
" RGB{U8}(0.0,0.388,1.0) \n",
" RGB{U8}(0.0,0.569,0.0) \n",
" RGB{U8}(1.0,0.0,0.553) \n",
" RGB{U8}(0.0,0.675,0.925) \n",
" RGB{U8}(0.098,0.055,0.0) \n",
" RGB{U8}(1.0,0.478,0.0) \n",
" RGB{U8}(0.0,0.0,0.169) \n",
" RGB{U8}(0.808,0.639,1.0) \n",
" RGB{U8}(0.922,0.745,0.0) \n",
" RGB{U8}(0.0,0.816,1.0) \n",
" RGB{U8}(0.42,0.298,0.302)\n",
" RGB{U8}(0.0,1.0,0.816) \n",
" RGB{U8}(0.0,0.294,0.78) \n",
" RGB{U8}(0.18,0.286,0.235)\n",
" RGB{U8}(1.0,0.627,0.788) \n",
" RGB{U8}(0.722,1.0,0.294) "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ugly, plus many similar, but at least you can see them\n",
"cols = distinguishable_colors(20,colorant\"white\")[2:end]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"250.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0000E6\" stroke=\"none\" />\n",
"<rect x=\"2.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0400E0\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0800DB\" stroke=\"none\" />\n",
"<rect x=\"7.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0C00D6\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1100D1\" stroke=\"none\" />\n",
"<rect x=\"12.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1500CC\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1900C7\" stroke=\"none\" />\n",
"<rect x=\"17.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1D00C2\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2100BC\" stroke=\"none\" />\n",
"<rect x=\"22.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2500B7\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2900B2\" stroke=\"none\" />\n",
"<rect x=\"27.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2E00AD\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3200A8\" stroke=\"none\" />\n",
"<rect x=\"32.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3600A3\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3A009E\" stroke=\"none\" />\n",
"<rect x=\"37.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3E0099\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#420093\" stroke=\"none\" />\n",
"<rect x=\"42.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#46008E\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4B0089\" stroke=\"none\" />\n",
"<rect x=\"47.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4F0084\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#53007F\" stroke=\"none\" />\n",
"<rect x=\"52.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#57007A\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5B0075\" stroke=\"none\" />\n",
"<rect x=\"57.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5F006F\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#63006A\" stroke=\"none\" />\n",
"<rect x=\"62.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#650165\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#610561\" stroke=\"none\" />\n",
"<rect x=\"67.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5D095D\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#590D59\" stroke=\"none\" />\n",
"<rect x=\"72.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#551255\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#511651\" stroke=\"none\" />\n",
"<rect x=\"77.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4D1A4D\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#481E48\" stroke=\"none\" />\n",
"<rect x=\"82.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#442244\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#402640\" stroke=\"none\" />\n",
"<rect x=\"87.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3C2A3C\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#382F38\" stroke=\"none\" />\n",
"<rect x=\"92.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#343334\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#303730\" stroke=\"none\" />\n",
"<rect x=\"97.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2B3B2B\" stroke=\"none\" />\n",
"<rect x=\"100.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#273F27\" stroke=\"none\" />\n",
"<rect x=\"102.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#234323\" stroke=\"none\" />\n",
"<rect x=\"105.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1F471F\" stroke=\"none\" />\n",
"<rect x=\"107.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1B4C1B\" stroke=\"none\" />\n",
"<rect x=\"110.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#175017\" stroke=\"none\" />\n",
"<rect x=\"112.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#135413\" stroke=\"none\" />\n",
"<rect x=\"115.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0E580E\" stroke=\"none\" />\n",
"<rect x=\"117.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0A5C0A\" stroke=\"none\" />\n",
"<rect x=\"120.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#066006\" stroke=\"none\" />\n",
"<rect x=\"122.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#026402\" stroke=\"none\" />\n",
"<rect x=\"125.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#056700\" stroke=\"none\" />\n",
"<rect x=\"127.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0E6900\" stroke=\"none\" />\n",
"<rect x=\"130.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#176A00\" stroke=\"none\" />\n",
"<rect x=\"132.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#206C00\" stroke=\"none\" />\n",
"<rect x=\"135.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2A6D00\" stroke=\"none\" />\n",
"<rect x=\"137.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#336F00\" stroke=\"none\" />\n",
"<rect x=\"140.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3C7000\" stroke=\"none\" />\n",
"<rect x=\"142.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#467200\" stroke=\"none\" />\n",
"<rect x=\"145.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4F7300\" stroke=\"none\" />\n",
"<rect x=\"147.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#587500\" stroke=\"none\" />\n",
"<rect x=\"150.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#617600\" stroke=\"none\" />\n",
"<rect x=\"152.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6B7800\" stroke=\"none\" />\n",
"<rect x=\"155.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#747900\" stroke=\"none\" />\n",
"<rect x=\"157.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7D7B00\" stroke=\"none\" />\n",
"<rect x=\"160.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#867C00\" stroke=\"none\" />\n",
"<rect x=\"162.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#907E00\" stroke=\"none\" />\n",
"<rect x=\"165.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#997F00\" stroke=\"none\" />\n",
"<rect x=\"167.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A28100\" stroke=\"none\" />\n",
"<rect x=\"170.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#AC8200\" stroke=\"none\" />\n",
"<rect x=\"172.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B58400\" stroke=\"none\" />\n",
"<rect x=\"175.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#BE8500\" stroke=\"none\" />\n",
"<rect x=\"177.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C78700\" stroke=\"none\" />\n",
"<rect x=\"180.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D18800\" stroke=\"none\" />\n",
"<rect x=\"182.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DA8A00\" stroke=\"none\" />\n",
"<rect x=\"185.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E38B00\" stroke=\"none\" />\n",
"<rect x=\"187.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E68700\" stroke=\"none\" />\n",
"<rect x=\"190.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E68200\" stroke=\"none\" />\n",
"<rect x=\"192.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E67C00\" stroke=\"none\" />\n",
"<rect x=\"195.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E67600\" stroke=\"none\" />\n",
"<rect x=\"197.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E67100\" stroke=\"none\" />\n",
"<rect x=\"200.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E66B00\" stroke=\"none\" />\n",
"<rect x=\"202.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E66500\" stroke=\"none\" />\n",
"<rect x=\"205.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E66000\" stroke=\"none\" />\n",
"<rect x=\"207.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E65A00\" stroke=\"none\" />\n",
"<rect x=\"210.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E65500\" stroke=\"none\" />\n",
"<rect x=\"212.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E54F00\" stroke=\"none\" />\n",
"<rect x=\"215.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E64900\" stroke=\"none\" />\n",
"<rect x=\"217.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E64400\" stroke=\"none\" />\n",
"<rect x=\"220.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E63E00\" stroke=\"none\" />\n",
"<rect x=\"222.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E63800\" stroke=\"none\" />\n",
"<rect x=\"225.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E63300\" stroke=\"none\" />\n",
"<rect x=\"227.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E62D00\" stroke=\"none\" />\n",
"<rect x=\"230.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E52700\" stroke=\"none\" />\n",
"<rect x=\"232.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E62200\" stroke=\"none\" />\n",
"<rect x=\"235.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E61C00\" stroke=\"none\" />\n",
"<rect x=\"237.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E61700\" stroke=\"none\" />\n",
"<rect x=\"240.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E61100\" stroke=\"none\" />\n",
"<rect x=\"242.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E60B00\" stroke=\"none\" />\n",
"<rect x=\"245.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E60600\" stroke=\"none\" />\n",
"<rect x=\"247.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E60000\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"100-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{Float64}(0.0,0.0,0.9) \n",
" RGB{Float64}(0.0162408,0.0,0.879877)\n",
" RGB{Float64}(0.0324817,0.0,0.859754)\n",
" RGB{Float64}(0.0487225,0.0,0.839632)\n",
" RGB{Float64}(0.0649634,0.0,0.819509)\n",
" RGB{Float64}(0.0812042,0.0,0.799386)\n",
" RGB{Float64}(0.097445,0.0,0.779263) \n",
" RGB{Float64}(0.113686,0.0,0.75914) \n",
" RGB{Float64}(0.129927,0.0,0.739018) \n",
" RGB{Float64}(0.146168,0.0,0.718895) \n",
" RGB{Float64}(0.162408,0.0,0.698772) \n",
" RGB{Float64}(0.178649,0.0,0.678649) \n",
" RGB{Float64}(0.19489,0.0,0.658526) \n",
" ⋮ \n",
" RGB{Float64}(0.9,0.243137,0.0) \n",
" RGB{Float64}(0.9,0.221034,0.0) \n",
" RGB{Float64}(0.9,0.19893,0.0) \n",
" RGB{Float64}(0.9,0.176827,0.0) \n",
" RGB{Float64}(0.9,0.154724,0.0) \n",
" RGB{Float64}(0.9,0.13262,0.0) \n",
" RGB{Float64}(0.9,0.110517,0.0) \n",
" RGB{Float64}(0.9,0.0884135,0.0) \n",
" RGB{Float64}(0.9,0.0663102,0.0) \n",
" RGB{Float64}(0.9,0.0442068,0.0) \n",
" RGB{Float64}(0.9,0.0221034,0.0) \n",
" RGB{Float64}(0.9,0.0,0.0) "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# this is the default gradient used as the base for color picking now\n",
"rainbow = colorscheme(:darkrainbow)\n",
"RGB[getColorZ(rainbow,z) for z in linspace(0,1,100)]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"250.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#00008B\" stroke=\"none\" />\n",
"<rect x=\"2.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#080390\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#110596\" stroke=\"none\" />\n",
"<rect x=\"7.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#19089B\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#210AA0\" stroke=\"none\" />\n",
"<rect x=\"12.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2A0DA5\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3210AB\" stroke=\"none\" />\n",
"<rect x=\"17.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3B12B0\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4315B5\" stroke=\"none\" />\n",
"<rect x=\"22.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4B17BA\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#541AC0\" stroke=\"none\" />\n",
"<rect x=\"27.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5C1DC5\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#641FCA\" stroke=\"none\" />\n",
"<rect x=\"32.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6D22D0\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7524D5\" stroke=\"none\" />\n",
"<rect x=\"37.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7D27DA\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#862ADF\" stroke=\"none\" />\n",
"<rect x=\"42.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#862EDF\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7D34DA\" stroke=\"none\" />\n",
"<rect x=\"47.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#753AD5\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6D3FD0\" stroke=\"none\" />\n",
"<rect x=\"52.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6445CA\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5C4BC5\" stroke=\"none\" />\n",
"<rect x=\"57.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5451C0\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4B57BA\" stroke=\"none\" />\n",
"<rect x=\"62.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#435CB5\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3B62B0\" stroke=\"none\" />\n",
"<rect x=\"67.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3268AB\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2A6EA5\" stroke=\"none\" />\n",
"<rect x=\"72.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2174A0\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#197A9B\" stroke=\"none\" />\n",
"<rect x=\"77.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#117F96\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#088590\" stroke=\"none\" />\n",
"<rect x=\"82.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008B8B\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008A83\" stroke=\"none\" />\n",
"<rect x=\"87.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008A7A\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008972\" stroke=\"none\" />\n",
"<rect x=\"92.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008869\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008861\" stroke=\"none\" />\n",
"<rect x=\"97.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008758\" stroke=\"none\" />\n",
"<rect x=\"100.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008650\" stroke=\"none\" />\n",
"<rect x=\"102.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008648\" stroke=\"none\" />\n",
"<rect x=\"105.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#00853F\" stroke=\"none\" />\n",
"<rect x=\"107.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008437\" stroke=\"none\" />\n",
"<rect x=\"110.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#00842E\" stroke=\"none\" />\n",
"<rect x=\"112.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008326\" stroke=\"none\" />\n",
"<rect x=\"115.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#00821D\" stroke=\"none\" />\n",
"<rect x=\"117.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008215\" stroke=\"none\" />\n",
"<rect x=\"120.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#00810D\" stroke=\"none\" />\n",
"<rect x=\"122.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#008004\" stroke=\"none\" />\n",
"<rect x=\"125.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#058200\" stroke=\"none\" />\n",
"<rect x=\"127.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#108500\" stroke=\"none\" />\n",
"<rect x=\"130.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1B8800\" stroke=\"none\" />\n",
"<rect x=\"132.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#268B00\" stroke=\"none\" />\n",
"<rect x=\"135.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#318E00\" stroke=\"none\" />\n",
"<rect x=\"137.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3C9100\" stroke=\"none\" />\n",
"<rect x=\"140.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#469400\" stroke=\"none\" />\n",
"<rect x=\"142.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#519700\" stroke=\"none\" />\n",
"<rect x=\"145.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5C9A00\" stroke=\"none\" />\n",
"<rect x=\"147.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#679D00\" stroke=\"none\" />\n",
"<rect x=\"150.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#72A000\" stroke=\"none\" />\n",
"<rect x=\"152.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7CA300\" stroke=\"none\" />\n",
"<rect x=\"155.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#87A600\" stroke=\"none\" />\n",
"<rect x=\"157.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#92A900\" stroke=\"none\" />\n",
"<rect x=\"160.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#9DAC00\" stroke=\"none\" />\n",
"<rect x=\"162.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A8AF00\" stroke=\"none\" />\n",
"<rect x=\"165.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B2B200\" stroke=\"none\" />\n",
"<rect x=\"167.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B7B200\" stroke=\"none\" />\n",
"<rect x=\"170.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#BCB100\" stroke=\"none\" />\n",
"<rect x=\"172.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C0B000\" stroke=\"none\" />\n",
"<rect x=\"175.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C5AF00\" stroke=\"none\" />\n",
"<rect x=\"177.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CAAE00\" stroke=\"none\" />\n",
"<rect x=\"180.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CEAE00\" stroke=\"none\" />\n",
"<rect x=\"182.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D3AD00\" stroke=\"none\" />\n",
"<rect x=\"185.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D8AC00\" stroke=\"none\" />\n",
"<rect x=\"187.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DCAB00\" stroke=\"none\" />\n",
"<rect x=\"190.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E1AA00\" stroke=\"none\" />\n",
"<rect x=\"192.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E5AA00\" stroke=\"none\" />\n",
"<rect x=\"195.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#EAA900\" stroke=\"none\" />\n",
"<rect x=\"197.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#EFA800\" stroke=\"none\" />\n",
"<rect x=\"200.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#F3A700\" stroke=\"none\" />\n",
"<rect x=\"202.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#F8A600\" stroke=\"none\" />\n",
"<rect x=\"205.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#FDA500\" stroke=\"none\" />\n",
"<rect x=\"207.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#FDA000\" stroke=\"none\" />\n",
"<rect x=\"210.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#FA9600\" stroke=\"none\" />\n",
"<rect x=\"212.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#F78C00\" stroke=\"none\" />\n",
"<rect x=\"215.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#F48200\" stroke=\"none\" />\n",
"<rect x=\"217.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#F17800\" stroke=\"none\" />\n",
"<rect x=\"220.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#EE6E00\" stroke=\"none\" />\n",
"<rect x=\"222.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#EB6400\" stroke=\"none\" />\n",
"<rect x=\"225.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E85A00\" stroke=\"none\" />\n",
"<rect x=\"227.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E55000\" stroke=\"none\" />\n",
"<rect x=\"230.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E24600\" stroke=\"none\" />\n",
"<rect x=\"232.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DF3C00\" stroke=\"none\" />\n",
"<rect x=\"235.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DB3200\" stroke=\"none\" />\n",
"<rect x=\"237.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D82800\" stroke=\"none\" />\n",
"<rect x=\"240.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D51E00\" stroke=\"none\" />\n",
"<rect x=\"242.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D21400\" stroke=\"none\" />\n",
"<rect x=\"245.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CF0A00\" stroke=\"none\" />\n",
"<rect x=\"247.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CC0000\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"100-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{U8}(0.0,0.0,0.545) \n",
" RGB{Float64}(0.0327986,0.0102198,0.565775)\n",
" RGB{Float64}(0.0655971,0.0204397,0.586453)\n",
" RGB{Float64}(0.0983957,0.0306595,0.60713) \n",
" RGB{Float64}(0.131194,0.0408794,0.627807) \n",
" RGB{Float64}(0.163993,0.0510992,0.648485) \n",
" RGB{Float64}(0.196791,0.0613191,0.669162) \n",
" RGB{Float64}(0.22959,0.0715389,0.68984) \n",
" RGB{Float64}(0.262389,0.0817588,0.710517) \n",
" RGB{Float64}(0.295187,0.0919786,0.731194) \n",
" RGB{Float64}(0.327986,0.102198,0.751872) \n",
" RGB{Float64}(0.360784,0.112418,0.772549) \n",
" RGB{Float64}(0.393583,0.122638,0.793226) \n",
" ⋮ \n",
" RGB{Float64}(0.933333,0.431373,0.0) \n",
" RGB{Float64}(0.921212,0.392157,0.0) \n",
" RGB{Float64}(0.909091,0.352941,0.0) \n",
" RGB{Float64}(0.89697,0.313725,0.0) \n",
" RGB{Float64}(0.884848,0.27451,0.0) \n",
" RGB{Float64}(0.872727,0.235294,0.0) \n",
" RGB{Float64}(0.860606,0.196078,0.0) \n",
" RGB{Float64}(0.848485,0.156863,0.0) \n",
" RGB{Float64}(0.836364,0.117647,0.0) \n",
" RGB{Float64}(0.824242,0.0784314,0.0) \n",
" RGB{Float64}(0.812121,0.0392157,0.0) \n",
" RGB{Float64}(0.8,0.0,0.0) "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# try out a new gradient\n",
"new_colorgradient = colorscheme([colorant\"darkblue\", colorant\"blueviolet\", colorant\"darkcyan\",colorant\"green\",\n",
" Plots.darken(colorant\"yellow\",0.3), colorant\"orange\", Plots.darken(colorant\"red\",0.2)])\n",
" #[0, 0.15, 0.3, 0.45, 0.7, 1.0]) # add z-values for each color to make gradient non-linear\n",
"RGB[getColorZ(new_colorgradient,z) for z in linspace(0,1,100)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"new_pick_colors (generic function with 1 method)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# a different method to choose from the gradient\n",
"function new_get_zvalues(n::Int)\n",
" offsets = Plots.getpctrange(ceil(Int,n/4)+1)/4\n",
" offsets = vcat(offsets[1], offsets[3:end])\n",
" zvalues = Float64[]\n",
" for offset in offsets\n",
" append!(zvalues, offset + [0.0, 0.5, 0.25, 0.75])\n",
" end\n",
" vcat(zvalues[1], 1.0, zvalues[2:n-1])\n",
"end\n",
"\n",
"# and a method to display the colors we will choose\n",
"function new_pick_colors(grad,n)\n",
" grad=colorscheme(grad)\n",
" RGB[getColorZ(grad,z) for z in new_get_zvalues(n)]\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"100.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0000E6\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E60000\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#006600\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#660066\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E68C00\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#3300A6\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#333333\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#737900\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E64600\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A00C6\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4D0086\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4D1A4D\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A4D1A\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#397000\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#AC8200\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E66900\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E62300\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0D00D6\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#2600B6\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#400096\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"20-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{Float64}(0.0,0.0,0.9) \n",
" RGB{Float64}(0.9,0.0,0.0) \n",
" RGB{Float64}(0.0,0.401961,0.0) \n",
" RGB{Float64}(0.401961,0.0,0.401961) \n",
" RGB{Float64}(0.9,0.547059,0.0) \n",
" RGB{Float64}(0.20098,0.0,0.65098) \n",
" RGB{Float64}(0.20098,0.20098,0.20098) \n",
" RGB{Float64}(0.45,0.47451,0.0) \n",
" RGB{Float64}(0.9,0.273529,0.0) \n",
" RGB{Float64}(0.10049,0.0,0.77549) \n",
" RGB{Float64}(0.301471,0.0,0.526471) \n",
" RGB{Float64}(0.301471,0.10049,0.301471)\n",
" RGB{Float64}(0.10049,0.301471,0.10049) \n",
" RGB{Float64}(0.225,0.438235,0.0) \n",
" RGB{Float64}(0.675,0.510784,0.0) \n",
" RGB{Float64}(0.9,0.410294,0.0) \n",
" RGB{Float64}(0.9,0.136765,0.0) \n",
" RGB{Float64}(0.0502451,0.0,0.837745) \n",
" RGB{Float64}(0.150735,0.0,0.713235) \n",
" RGB{Float64}(0.251225,0.0,0.588725) "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# old gradient with old color picker\n",
"# better (IMO) than the distinguishable_colors... first 5 colors are good, but then it gets worse\n",
"# NOTE: this is the current default palette\n",
"oldgrad_oldcolors = old_pick_colors(:darkrainbow,20)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"100.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00008B\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#CC0000\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008000\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#455BB6\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#D9AC00\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#6820CC\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008868\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#86A600\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F27C00\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#3410AC\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#7937D7\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#117F96\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008434\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#439300\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#BCB100\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F5A700\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#DF3E00\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A089B\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4E18BC\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#8128DD\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"20-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{U8}(0.0,0.0,0.545) \n",
" RGB{Float64}(0.8,0.0,0.0) \n",
" RGB{Float64}(0.0,0.501961,0.0) \n",
" RGB{Float64}(0.270588,0.356863,0.715686) \n",
" RGB{Float64}(0.85,0.673529,0.0) \n",
" RGB{Float64}(0.405882,0.126471,0.80098) \n",
" RGB{Float64}(0.0,0.534314,0.408824) \n",
" RGB{Float64}(0.525,0.65049,0.0) \n",
" RGB{Float64}(0.95,0.485294,0.0) \n",
" RGB{Float64}(0.202941,0.0632353,0.673039)\n",
" RGB{Float64}(0.473529,0.215686,0.843627) \n",
" RGB{Float64}(0.0676471,0.498039,0.587745)\n",
" RGB{Float64}(0.0,0.518137,0.204412) \n",
" RGB{Float64}(0.2625,0.576225,0.0) \n",
" RGB{Float64}(0.7375,0.693382,0.0) \n",
" RGB{Float64}(0.9625,0.653676,0.0) \n",
" RGB{Float64}(0.875,0.242647,0.0) \n",
" RGB{Float64}(0.101471,0.0316176,0.609069)\n",
" RGB{Float64}(0.304412,0.0948529,0.73701) \n",
" RGB{Float64}(0.507353,0.158088,0.864951) "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# new gradient with old color picker... darker, with less blue\n",
"newgrad_oldcolors = old_pick_colors(new_colorgradient, 20)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"100.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0000E6\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E60000\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#006600\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#660066\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E68C00\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#3300A6\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#737900\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#333333\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E64600\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A00C6\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#397000\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4D1A4D\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E66900\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#4D0086\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#AC8200\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A4D1A\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#E62300\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#0D00D6\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1D6B00\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#5A0D5A\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"20-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{Float64}(0.0,0.0,0.9) \n",
" RGB{Float64}(0.9,0.0,0.0) \n",
" RGB{Float64}(0.0,0.401961,0.0) \n",
" RGB{Float64}(0.401961,0.0,0.401961) \n",
" RGB{Float64}(0.9,0.547059,0.0) \n",
" RGB{Float64}(0.20098,0.0,0.65098) \n",
" RGB{Float64}(0.45,0.47451,0.0) \n",
" RGB{Float64}(0.20098,0.20098,0.20098) \n",
" RGB{Float64}(0.9,0.273529,0.0) \n",
" RGB{Float64}(0.10049,0.0,0.77549) \n",
" RGB{Float64}(0.225,0.438235,0.0) \n",
" RGB{Float64}(0.301471,0.10049,0.301471) \n",
" RGB{Float64}(0.9,0.410294,0.0) \n",
" RGB{Float64}(0.301471,0.0,0.526471) \n",
" RGB{Float64}(0.675,0.510784,0.0) \n",
" RGB{Float64}(0.10049,0.301471,0.10049) \n",
" RGB{Float64}(0.9,0.136765,0.0) \n",
" RGB{Float64}(0.0502451,0.0,0.837745) \n",
" RGB{Float64}(0.1125,0.420098,0.0) \n",
" RGB{Float64}(0.351716,0.0502451,0.351716)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# old gradient with new color picker... colors are the same but ordering is different... better randomization\n",
"oldgrad_newcolors = new_pick_colors(rainbow, 20)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"100.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#00008B\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#CC0000\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008000\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#455BB6\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#D9AC00\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#6820CC\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#86A600\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008868\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F27C00\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#3410AC\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#439300\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#117F96\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#F5A700\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#7937D7\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#BCB100\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#008434\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#DF3E00\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#1A089B\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#218900\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"4.0mm\" height=\"25.0mm\"\n",
" fill=\"#2B6DA6\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"20-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{U8}(0.0,0.0,0.545) \n",
" RGB{Float64}(0.8,0.0,0.0) \n",
" RGB{Float64}(0.0,0.501961,0.0) \n",
" RGB{Float64}(0.270588,0.356863,0.715686) \n",
" RGB{Float64}(0.85,0.673529,0.0) \n",
" RGB{Float64}(0.405882,0.126471,0.80098) \n",
" RGB{Float64}(0.525,0.65049,0.0) \n",
" RGB{Float64}(0.0,0.534314,0.408824) \n",
" RGB{Float64}(0.95,0.485294,0.0) \n",
" RGB{Float64}(0.202941,0.0632353,0.673039)\n",
" RGB{Float64}(0.2625,0.576225,0.0) \n",
" RGB{Float64}(0.0676471,0.498039,0.587745)\n",
" RGB{Float64}(0.9625,0.653676,0.0) \n",
" RGB{Float64}(0.473529,0.215686,0.843627) \n",
" RGB{Float64}(0.7375,0.693382,0.0) \n",
" RGB{Float64}(0.0,0.518137,0.204412) \n",
" RGB{Float64}(0.875,0.242647,0.0) \n",
" RGB{Float64}(0.101471,0.0316176,0.609069)\n",
" RGB{Float64}(0.13125,0.539093,0.0) \n",
" RGB{Float64}(0.169118,0.427451,0.651716) "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# new gradient with new color picker\n",
"newgrad_newcolors = new_pick_colors(new_colorgradient, 20)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFFFFF\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-3\">\n",
" <text x=\"7.51\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.79\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"64.08\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"92.36\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"120.65\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"148.93\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-5\">\n",
" <text x=\"154.75\" y=\"45.14\" dy=\"0.35em\">y1</text>\n",
" <text x=\"154.75\" y=\"48.78\" dy=\"0.35em\">y2</text>\n",
" <text x=\"154.75\" y=\"52.41\" dy=\"0.35em\">y3</text>\n",
" <text x=\"154.75\" y=\"56.04\" dy=\"0.35em\">y4</text>\n",
" <text x=\"154.75\" y=\"59.68\" dy=\"0.35em\">y5</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-6\">\n",
" <rect x=\"151.93\" y=\"44.24\" width=\"1.82\" height=\"1.82\" fill=\"#00008B\"/>\n",
" <rect x=\"151.93\" y=\"47.87\" width=\"1.82\" height=\"1.82\" fill=\"#CC0000\"/>\n",
" <rect x=\"151.93\" y=\"51.5\" width=\"1.82\" height=\"1.82\" fill=\"#008000\"/>\n",
" <rect x=\"151.93\" y=\"55.14\" width=\"1.82\" height=\"1.82\" fill=\"#455BB6\"/>\n",
" <rect x=\"151.93\" y=\"58.77\" width=\"1.82\" height=\"1.82\" fill=\"#D9AC00\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-7\">\n",
" <text x=\"151.93\" y=\"41.32\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-b09b9202c10c41f2a5d2eac1d974acbd-element-9)\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-10\">\n",
" <rect x=\"5.51\" y=\"1\" width=\"145.43\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-11\">\n",
" <path fill=\"none\" d=\"M5.51,98.19 L 150.93 98.19\"/>\n",
" <path fill=\"none\" d=\"M5.51,86.29 L 150.93 86.29\"/>\n",
" <path fill=\"none\" d=\"M5.51,74.39 L 150.93 74.39\"/>\n",
" <path fill=\"none\" d=\"M5.51,62.49 L 150.93 62.49\"/>\n",
" <path fill=\"none\" d=\"M5.51,50.59 L 150.93 50.59\"/>\n",
" <path fill=\"none\" d=\"M5.51,38.7 L 150.93 38.7\"/>\n",
" <path fill=\"none\" d=\"M5.51,26.8 L 150.93 26.8\"/>\n",
" <path fill=\"none\" d=\"M5.51,14.9 L 150.93 14.9\"/>\n",
" <path fill=\"none\" d=\"M5.51,3 L 150.93 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-12\">\n",
" <path fill=\"none\" d=\"M7.51,1 L 7.51 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.79,1 L 35.79 100.19\"/>\n",
" <path fill=\"none\" d=\"M64.08,1 L 64.08 100.19\"/>\n",
" <path fill=\"none\" d=\"M92.36,1 L 92.36 100.19\"/>\n",
" <path fill=\"none\" d=\"M120.65,1 L 120.65 100.19\"/>\n",
" <path fill=\"none\" d=\"M148.93,1 L 148.93 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00008B\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-14\">\n",
" <path fill=\"none\" d=\"M10.34,26.8 L 13.16 34.26 15.99 33.7 18.82 33.06 21.65 40.29 24.48 42.57 27.31 42.81 30.13 40.56 32.96 35.71 35.79 34 38.62 26 41.45 23.52 44.28 19.35 47.11 22.05 49.93 25.34 52.76 25.64 55.59 31 58.42 33.62 61.25 31.47 64.08 34.62 66.91 35.91 69.73 36.47 72.56 38.95 75.39 41.08 78.22 40.23 81.05 38.6 83.88 34.9 86.71 26.18 89.53 32.92 92.36 26.42 95.19 24.98 98.02 24.74 100.85 20.61 103.68 21.39 106.51 23.25 109.33 15.91 112.16 10.97 114.99 14.73 117.82 18.24 120.65 19.81 123.48 24.57 126.31 22.34 129.13 20.74 131.96 21.26 134.79 20.51 137.62 23.15 140.45 22.85 143.28 24.49 146.1 24.9 148.93 24.95\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#CC0000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-15\">\n",
" <path fill=\"none\" d=\"M10.34,38.7 L 13.16 35.08 15.99 30.08 18.82 34.34 21.65 40.84 24.48 40.29 27.31 33.53 30.13 34.01 32.96 29.97 35.79 26.61 38.62 17.49 41.45 15.72 44.28 15.64 47.11 20 49.93 25.24 52.76 17.71 55.59 20.7 58.42 24.68 61.25 29.89 64.08 26.03 66.91 30.64 69.73 31.26 72.56 28.42 75.39 25.9 78.22 25.08 81.05 34.53 83.88 32.5 86.71 27.38 89.53 28.84 92.36 26.49 95.19 25.23 98.02 31.79 100.85 36.17 103.68 29.18 106.51 24.96 109.33 28.84 112.16 26.25 114.99 22.83 117.82 30.4 120.65 33.28 123.48 36.01 126.31 35.48 129.13 32.63 131.96 25.54 134.79 27.42 137.62 31.1 140.45 29.26 143.28 29.87 146.1 28.78 148.93 27.51\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-16\">\n",
" <path fill=\"none\" d=\"M10.34,50.59 L 13.16 56.19 15.99 58.19 18.82 61.25 21.65 61.62 24.48 59.46 27.31 59.33 30.13 60.05 32.96 58.81 35.79 61.91 38.62 57.08 41.45 64.61 44.28 64.12 47.11 67.64 49.93 63.94 52.76 62.41 55.59 61.91 58.42 59.53 61.25 60.81 64.08 63.85 66.91 67.71 69.73 64.3 72.56 69.97 75.39 71.14 78.22 72.73 81.05 67.75 83.88 66.28 86.71 68.71 89.53 62.55 92.36 61.65 95.19 58.98 98.02 58.55 100.85 56.4 103.68 53.8 106.51 52.79 109.33 47.02 112.16 48.1 114.99 39.65 117.82 40.55 120.65 44.24 123.48 49.74 126.31 54.11 129.13 53.45 131.96 47.65 134.79 47.46 137.62 41.65 140.45 44.19 143.28 40.94 146.1 43.4 148.93 39.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#455BB6\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-17\">\n",
" <path fill=\"none\" d=\"M10.34,62.49 L 13.16 68.24 15.99 67.62 18.82 64.45 21.65 68.34 24.48 69.33 27.31 65.36 30.13 63.15 32.96 60.13 35.79 53.96 38.62 57.46 41.45 58.19 44.28 56.29 47.11 60.08 49.93 60.69 52.76 66.18 55.59 71.1 58.42 60.37 61.25 66.96 64.08 66.13 66.91 66.65 69.73 67.45 72.56 66.97 75.39 68.06 78.22 66.29 81.05 77.52 83.88 78.13 86.71 75.44 89.53 67.3 92.36 71.08 95.19 73.7 98.02 74.17 100.85 77.2 103.68 82.32 106.51 80.13 109.33 77.41 112.16 84.63 114.99 86.47 117.82 79.99 120.65 78.74 123.48 78.83 126.31 72.31 129.13 72.82 131.96 68.82 134.79 65.77 137.62 68.82 140.45 71.02 143.28 71.82 146.1 74.8 148.93 77.89\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D9AC00\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-18\">\n",
" <path fill=\"none\" d=\"M10.34,74.39 L 13.16 70.59 15.99 71.84 18.82 76.59 21.65 71.54 24.48 75.23 27.31 72.3 30.13 79.48 32.96 76.49 35.79 77.36 38.62 77.64 41.45 80.92 44.28 75.74 47.11 66.22 49.93 71.25 52.76 72.83 55.59 78.62 58.42 75.27 61.25 78 64.08 78.4 66.91 70.36 69.73 61.3 72.56 58.69 75.39 58.88 78.22 58.41 81.05 54.4 83.88 62.68 86.71 69.74 89.53 72.09 92.36 66.71 95.19 64.96 98.02 61.14 100.85 64.15 103.68 66.58 106.51 67.57 109.33 71.12 112.16 72.74 114.99 67.03 117.82 73.45 120.65 68.4 123.48 68.36 126.31 72.54 129.13 70.39 131.96 72.17 134.79 67.53 137.62 72.93 140.45 70.7 143.28 67.18 146.1 66.9 148.93 59.81\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-19\">\n",
" <text x=\"4.51\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-1</text>\n",
" <text x=\"4.51\" y=\"86.29\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"4.51\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">1</text>\n",
" <text x=\"4.51\" y=\"62.49\" text-anchor=\"end\" dy=\"0.35em\">2</text>\n",
" <text x=\"4.51\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">3</text>\n",
" <text x=\"4.51\" y=\"38.7\" text-anchor=\"end\" dy=\"0.35em\">4</text>\n",
" <text x=\"4.51\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"4.51\" y=\"14.9\" text-anchor=\"end\" dy=\"0.35em\">6</text>\n",
" <text x=\"4.51\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">7</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-9\">\n",
" <path d=\"M5.51,1 L 150.93 1 150.93 100.19 5.51 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/html": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFFFFF\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-3\">\n",
" <text x=\"7.51\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.79\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"64.08\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"92.36\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"120.65\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"148.93\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-5\">\n",
" <text x=\"154.75\" y=\"45.14\" dy=\"0.35em\">y1</text>\n",
" <text x=\"154.75\" y=\"48.78\" dy=\"0.35em\">y2</text>\n",
" <text x=\"154.75\" y=\"52.41\" dy=\"0.35em\">y3</text>\n",
" <text x=\"154.75\" y=\"56.04\" dy=\"0.35em\">y4</text>\n",
" <text x=\"154.75\" y=\"59.68\" dy=\"0.35em\">y5</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-6\">\n",
" <rect x=\"151.93\" y=\"44.24\" width=\"1.82\" height=\"1.82\" fill=\"#00008B\"/>\n",
" <rect x=\"151.93\" y=\"47.87\" width=\"1.82\" height=\"1.82\" fill=\"#CC0000\"/>\n",
" <rect x=\"151.93\" y=\"51.5\" width=\"1.82\" height=\"1.82\" fill=\"#008000\"/>\n",
" <rect x=\"151.93\" y=\"55.14\" width=\"1.82\" height=\"1.82\" fill=\"#455BB6\"/>\n",
" <rect x=\"151.93\" y=\"58.77\" width=\"1.82\" height=\"1.82\" fill=\"#D9AC00\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-7\">\n",
" <text x=\"151.93\" y=\"41.32\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-b09b9202c10c41f2a5d2eac1d974acbd-element-9)\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-10\">\n",
" <rect x=\"5.51\" y=\"1\" width=\"145.43\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-11\">\n",
" <path fill=\"none\" d=\"M5.51,98.19 L 150.93 98.19\"/>\n",
" <path fill=\"none\" d=\"M5.51,86.29 L 150.93 86.29\"/>\n",
" <path fill=\"none\" d=\"M5.51,74.39 L 150.93 74.39\"/>\n",
" <path fill=\"none\" d=\"M5.51,62.49 L 150.93 62.49\"/>\n",
" <path fill=\"none\" d=\"M5.51,50.59 L 150.93 50.59\"/>\n",
" <path fill=\"none\" d=\"M5.51,38.7 L 150.93 38.7\"/>\n",
" <path fill=\"none\" d=\"M5.51,26.8 L 150.93 26.8\"/>\n",
" <path fill=\"none\" d=\"M5.51,14.9 L 150.93 14.9\"/>\n",
" <path fill=\"none\" d=\"M5.51,3 L 150.93 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-12\">\n",
" <path fill=\"none\" d=\"M7.51,1 L 7.51 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.79,1 L 35.79 100.19\"/>\n",
" <path fill=\"none\" d=\"M64.08,1 L 64.08 100.19\"/>\n",
" <path fill=\"none\" d=\"M92.36,1 L 92.36 100.19\"/>\n",
" <path fill=\"none\" d=\"M120.65,1 L 120.65 100.19\"/>\n",
" <path fill=\"none\" d=\"M148.93,1 L 148.93 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00008B\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-14\">\n",
" <path fill=\"none\" d=\"M10.34,26.8 L 13.16 34.26 15.99 33.7 18.82 33.06 21.65 40.29 24.48 42.57 27.31 42.81 30.13 40.56 32.96 35.71 35.79 34 38.62 26 41.45 23.52 44.28 19.35 47.11 22.05 49.93 25.34 52.76 25.64 55.59 31 58.42 33.62 61.25 31.47 64.08 34.62 66.91 35.91 69.73 36.47 72.56 38.95 75.39 41.08 78.22 40.23 81.05 38.6 83.88 34.9 86.71 26.18 89.53 32.92 92.36 26.42 95.19 24.98 98.02 24.74 100.85 20.61 103.68 21.39 106.51 23.25 109.33 15.91 112.16 10.97 114.99 14.73 117.82 18.24 120.65 19.81 123.48 24.57 126.31 22.34 129.13 20.74 131.96 21.26 134.79 20.51 137.62 23.15 140.45 22.85 143.28 24.49 146.1 24.9 148.93 24.95\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#CC0000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-15\">\n",
" <path fill=\"none\" d=\"M10.34,38.7 L 13.16 35.08 15.99 30.08 18.82 34.34 21.65 40.84 24.48 40.29 27.31 33.53 30.13 34.01 32.96 29.97 35.79 26.61 38.62 17.49 41.45 15.72 44.28 15.64 47.11 20 49.93 25.24 52.76 17.71 55.59 20.7 58.42 24.68 61.25 29.89 64.08 26.03 66.91 30.64 69.73 31.26 72.56 28.42 75.39 25.9 78.22 25.08 81.05 34.53 83.88 32.5 86.71 27.38 89.53 28.84 92.36 26.49 95.19 25.23 98.02 31.79 100.85 36.17 103.68 29.18 106.51 24.96 109.33 28.84 112.16 26.25 114.99 22.83 117.82 30.4 120.65 33.28 123.48 36.01 126.31 35.48 129.13 32.63 131.96 25.54 134.79 27.42 137.62 31.1 140.45 29.26 143.28 29.87 146.1 28.78 148.93 27.51\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-16\">\n",
" <path fill=\"none\" d=\"M10.34,50.59 L 13.16 56.19 15.99 58.19 18.82 61.25 21.65 61.62 24.48 59.46 27.31 59.33 30.13 60.05 32.96 58.81 35.79 61.91 38.62 57.08 41.45 64.61 44.28 64.12 47.11 67.64 49.93 63.94 52.76 62.41 55.59 61.91 58.42 59.53 61.25 60.81 64.08 63.85 66.91 67.71 69.73 64.3 72.56 69.97 75.39 71.14 78.22 72.73 81.05 67.75 83.88 66.28 86.71 68.71 89.53 62.55 92.36 61.65 95.19 58.98 98.02 58.55 100.85 56.4 103.68 53.8 106.51 52.79 109.33 47.02 112.16 48.1 114.99 39.65 117.82 40.55 120.65 44.24 123.48 49.74 126.31 54.11 129.13 53.45 131.96 47.65 134.79 47.46 137.62 41.65 140.45 44.19 143.28 40.94 146.1 43.4 148.93 39.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#455BB6\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-17\">\n",
" <path fill=\"none\" d=\"M10.34,62.49 L 13.16 68.24 15.99 67.62 18.82 64.45 21.65 68.34 24.48 69.33 27.31 65.36 30.13 63.15 32.96 60.13 35.79 53.96 38.62 57.46 41.45 58.19 44.28 56.29 47.11 60.08 49.93 60.69 52.76 66.18 55.59 71.1 58.42 60.37 61.25 66.96 64.08 66.13 66.91 66.65 69.73 67.45 72.56 66.97 75.39 68.06 78.22 66.29 81.05 77.52 83.88 78.13 86.71 75.44 89.53 67.3 92.36 71.08 95.19 73.7 98.02 74.17 100.85 77.2 103.68 82.32 106.51 80.13 109.33 77.41 112.16 84.63 114.99 86.47 117.82 79.99 120.65 78.74 123.48 78.83 126.31 72.31 129.13 72.82 131.96 68.82 134.79 65.77 137.62 68.82 140.45 71.02 143.28 71.82 146.1 74.8 148.93 77.89\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D9AC00\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-18\">\n",
" <path fill=\"none\" d=\"M10.34,74.39 L 13.16 70.59 15.99 71.84 18.82 76.59 21.65 71.54 24.48 75.23 27.31 72.3 30.13 79.48 32.96 76.49 35.79 77.36 38.62 77.64 41.45 80.92 44.28 75.74 47.11 66.22 49.93 71.25 52.76 72.83 55.59 78.62 58.42 75.27 61.25 78 64.08 78.4 66.91 70.36 69.73 61.3 72.56 58.69 75.39 58.88 78.22 58.41 81.05 54.4 83.88 62.68 86.71 69.74 89.53 72.09 92.36 66.71 95.19 64.96 98.02 61.14 100.85 64.15 103.68 66.58 106.51 67.57 109.33 71.12 112.16 72.74 114.99 67.03 117.82 73.45 120.65 68.4 123.48 68.36 126.31 72.54 129.13 70.39 131.96 72.17 134.79 67.53 137.62 72.93 140.45 70.7 143.28 67.18 146.1 66.9 148.93 59.81\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-19\">\n",
" <text x=\"4.51\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-1</text>\n",
" <text x=\"4.51\" y=\"86.29\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"4.51\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">1</text>\n",
" <text x=\"4.51\" y=\"62.49\" text-anchor=\"end\" dy=\"0.35em\">2</text>\n",
" <text x=\"4.51\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">3</text>\n",
" <text x=\"4.51\" y=\"38.7\" text-anchor=\"end\" dy=\"0.35em\">4</text>\n",
" <text x=\"4.51\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"4.51\" y=\"14.9\" text-anchor=\"end\" dy=\"0.35em\">6</text>\n",
" <text x=\"4.51\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">7</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-9\">\n",
" <path d=\"M5.51,1 L 150.93 1 150.93 100.19 5.51 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/plain": [
"Compose.SVG(158.73015873015876,105.82010582010584,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=9087, maxsize=Inf, ptr=9088, mark=-1),nothing,\"fig-b09b9202c10c41f2a5d2eac1d974acbd\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(Compose.Property{Compose.FillPrimitive}=>nothing),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(5.506666666666661,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(150.9334920634921,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(150.9334920634921,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(5.506666666666661,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-b09b9202c10c41f2a5d2eac1d974acbd-element-19\",false,19,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-b09b9202c10c41f2a5d2eac1d974acbd-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-b09b9202c10c41f2a5d2eac1d974acbd-element-8\\\")\\n .init_gadfly();\"],false,:none)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd3gUxfvA392rufRGCS2Q0DsqIE2kdxRBAaUrXxEUREVUFCk/FREVQUWQXg0gSglFihSlGFoIIYEEUu+SXO9l2++POZaQerdXUtjPw8OzuZudd3ZudmfnnbdgDMMADw8PDw/Pkwpe1Q3g4eHh4eGpSviJkIeHh4fnicYnE6HV6vBFtU8IDMPYbHwHcoemGbudqOpW1GAoinY4yKpuRQ2GJCmC4DuQOwRBkSTlT4k+mQjlcq0vqn1CoCi6oEBf1a2owTgcpFJprOpW1GCsVodGY6rqVtRgzGa7Xm+t6lbUYAwGi9Fo86dEoS8qDQyU+KLaJwQMw/gO9ASBAJPJxFXdihqMUCiQSkVV3YoajEgkwDCsqltRgxGLRTju1w7EeKtRHh4eHp4nGZ+oRnU6sy+qfUKgaUavt1R1K2owJEkbjbxiijsEQZrN9qpuRQ3GbicsFn6bnztWq8Nm8+s2f+UTYdRDIiMjhUKXVKlqNb/BwB2aprVa/k2COyRJ8Ts0nmC3k/ybhCfYbITFwr9JcMdisfvZ4rLyiU2lUqGDvXv3Xr161ZVKo6NDPGrUkw2O45GRwVXdihqMSCQIDw+s6lbUYCQSEY7zjlXcCQgQSyT8lhN3AgOlft5kdXWPUK1Wv/jii8ePHw8ICGA/ZBigaRrDMBzHGIahaQbHMQzDaJphGAbHcQwDiqIBQCDAAR4do8LoxIeFyz2xMikYhmGVSqm0eaWllG5eOVLc7gQMAxwvtxP8I4WmaYapMVIqGzb+k+KLwcnhFnB52HC4BfjBWR2lVI9boFo8n12ZsNxF8Pnnn7tSbtasWQsWLIiLiyv+IUGQcrmGIMjAQKnJZC8s1GEYJpWKHjxQmkxWqVQsFAoUCq1OZw4NlTEM5OWprVYiODjAZiMUCi1NMzKZWK+3KJUGoVAgFguLigwajSkwUCoQ4Hl5apPJFhoqI0kyP98pxWx+JEWjMalURolEJBIJCgp0Op05JOQxKXY7kkLLZBKDwVpUpEdSlEqDRmOSySQCAZ6frzEYrKGhMpKk8vM1DgcZFMRKAalUrNGYVSrD41ICACA3V22xOEJCnFIo6pEUgQCXSERKpVGjMZYpxW4ng4KkFoujoEAHAAEBYq3WrFIZxGKRSCRQKLSFhbqwsEAMw3JzVRVLUamMarVTilyu0eutYWGVShGKRMKCAr1WawoODsBxLDdXZTY7QkICHA5CLteSJBUYKDEabUVFehx/JCUgQCwUCuRyrV5vDgsLJEk6P19ts5HBwVKr1VFQoGMYJiBArNNZlEqDSCQUi4WFhXqt1hQUJMVxPDdXZTbbQ0JkDgcpl2uQFJPJVljolKJWm9Rq4+PDJpCm6bw8VgpRUKCtTIraYLDQNCMU4nK5hiAeSUHDpiwpMoZh8vLUNpvbg7O8W+ChFJFQ6Bw25dwCtEwm0eutSqX+cSkSJMVoLG9wlnsLoMH58BYgSw0bgURS8S1ACYUCjcao0ZjQLYCGDZJSWKjTas3BwQEY5vYtwGFwFr8FOAzOiqU8HDZu3wJo2ISFBVJU8cH56BYoKtIXFuqlUnHpwWk220JC2GHjyuBkbwEiODigrFuA8+Csvs/nwkKDQIBLpaISgxP9iN6dAhEurQgzMzMnTpx4+fJlFyvNzCyMi6vrWcOeXEiSysvTxMZGV3VDaio2G6FSGRs2jKjqhtRUTCabyWSrVy+sqhtSU9HrLQRBRUXxGxwcUauNOI77c4PDJeOXnTt3jh071vVK+WeQJwgEgpiY8KpuRQ1GLBbWqcPvUnNHJhNLJLwfIXeCgqS8W5onhIbKqt0eIcMwLVu2PHbsWLNmzfzTJh4eHh4eHr9RuW0YhmF37951axZ88KDIgyY96ZAknZurrupW1GDsdoIP8ucJZrO9qIgP8scdg8GqVvNB/rij0Zj87EvtEyNpmubVAp7AIFspHm4wDD8CPQKZ8FV1K2owDMNrRj3C/yOQD7HGw8PDw/NE45MVIUH4NYNGLYNhwM8pSGoZDMOQJL+k5g7D8DoJj6BpvgM9gqJoP68IfTIR5uSofFHtEwJFUXl5mqpuRQ3GbieR3xgPN8xmu1JpqOpW1GCMRisfJdETdDqzn/cIfZKGyUc+j08IGIbxHegJOI7xWYQ8QSjExWKfPBmeEIRCQVU3oWYjEgn5NEw8PDw8PDz+wyeqUZPJr8mFaxkMw/BJcDyBomg/h66vZZAk5eckOLUMgqDsdr4DueNwkA4H6U+JPpkICwt5JyTuUBTN79B4AkFQfCIwT7DZCD6lqCdYLHajkV8McMdotPp5MeCTnYCwMD4JDndwHA8NlVV1K2owQiEeHCyt6lbUYMRiYWCgpKpbUYORSET8NqEnBASIq12INR4eHh4enlqMT1SjvGbPE2ia5uMzeQJBULzxuifY7YTBwGeo547V6uDtJDzBbLZZLH5VjfpkIuTvIk+gaYbfYPAEiqJ5ayNPIAjKz4+hWobDQfLWRp5gsxF2u1+NZXyiGjWZbEFB/CYNRxiGsVgc/CYNZyiKdjhI3heTMyRJkSTN+2JyhiAomqb5VFacQSaj/nRm5fcIeXh4eHieaHyiGs3L47MIcYeiaIWCzyLEHYeD5LMIeYLV6uB3qT3BZLLx/ieeoNdbjEa/7q/5ZO3pZ/VuLYNhGL4DPYGmGYeDj1rOHYqi+bj5nkBRNB/23RNIksJxnyzSysMnqlGapv18GbUMmmb8HGqvNsEwwDB8B3KH70APQQ9VP3vC1Sb834H8HiEPDw8PzxONT9ZtmZmFvqj2CYEkqawsZVW3ogZjsxF8HitPMJlsfB4rT9DrLSoVv8nKHbXa6GdXYJ9MhHx4Ic/ARCK+A7mDYSAU8pp57uA4JhDwHcgdHMd4xbIn4Dju5xHIq0Z5eHh4eJ5ofDLr8klwPIFhGJuN70Du0DTDJ8HxBBSRoKpbUYMhSYog+A7kDkFQJOlXu2WfTIRyOe8Gxx2KogsKeDc47jgcpFLJ79Bwx2p1aDS1OY+V1erbWcpstuv1fJhJ7hgMFj+HmfTJRMiHB/MEDMP4DvQEgQCTyfj4atwRCgW1O77am2/+tWnTLd/VLxIJ/BkerPYhFov83IH8HiEPD88TxJUriu7dd0okwosXJ3bqVKeqm8NTLfDJipAPL+QJNM3o9ZaqbkUNhiRpP8dnqmUQBFmL03d88MFZhgGbjZw0KdFi8clest1OWCz8Nj93rFaHn9N3+GQiVKtr8waDr6Fpmk+n5wkkSfE7NJ5gt5O19U1i7970c+fy0HFKimrOnFO+kGKzEXweK0+wWOx+trj0iWrUYLCGhAR4vdonBJpmzGZ7cDCfx4ojFEXbbAS/z8oZgqAIgqp9+6xmM9Gq1aa8vMcMqX75ZdDMmR28K8jhIGmaqd37rD7FZiMwDJNI/LdN6JMVIT8LegKOY/ws6AkCAc7Pgp4gEglq3ywIAKtXX0WzYHS0bPz4VujDd989c/u2yruCxGIhPwt6glQq8ucsCD6aCPn4TJ5AUbRSaajqVtRgCIKs3db/vsZmI2rfNn9OjmH58kvo+Kuvem/ZMrRLl7oAYLEQL7zwh17vTU2mxWI3GGqnbtk/GI02P+9S+2QirMU77X6AYRi+Az2BohjeVMETSJLys6mCH/j44/PIffDpp+tNndpOIhH89tvI0FAJAGRk6N5444QXZREExUck8ASHg/BzB/pkj9BuJyQSXjPAEYYBgiB5PyTO0DRDkhTfgZyhaZqimNoU8PbChfw+fXYzDGAYXLgwsUePGPT53r3pL798CB3/9NOAWbM6eUUcRdEMw/AhlzlDkhSG+TXgrU8k8bOgJ2AY8A9xT8BxjO9AT8BxvDbNggwD77//N3rhHzu2JTsLAsC4cS1nz+6Mjt9998zVq95JmyMQ4Pws6AlCocDPQbd9Iiw728ubz08UJEnn5/NZhLhjtxP8LrUnWCz22rRLvXNn6uXLCgCQyUSrVvUt8e2qVX2feqouANjt1CuvHPLKZqHRaOV3qT1BqzX7eZPVJxOhn+Ol1joYguA7kDsMAyRJV3UrajA0zVBULelAs5lYuPAcOp43r0ujRsElCkgkgv37R0dESAEgM1M3eXKi55tFNM3QNB+xizs0Tft5BPIh1nh4eGotixf/s3TpRQCIiQlKT58RFFT2rs2hQ5mjRx9Az8Iffuj39ttd/NlInirHJytCfkHjCQzDL6k9gmEYfkXoCQxTS1aE2dmGlSv/Q8f/93+9ypsFAWDkyDh28nvvvb8vXpR7Irc2LamrBIqi/bykrnwiVCqVY8aM6dChQ8+ePffv3+9KpTk5/B4hdyiKysvj9wi5Y7eT/B6hJ5jNtWSPcOHCc8hlomvX+pMnt6248Dff9H322RgAIAh6/PjDajX3PSqj0cpHSfQEnc7s53jLlU+EH3zwQd++fZOTkw8dOtSyZUtXKvVzUIBahp9jC9U+cBwTi3mbPe4IBLXBavTKFcVvv6Wh4xUr+uA4VnF5kQjftm1YSIgYAHJyDLNncw9DKhDgQqFfjR5rGUKhwM8dWLmw48ePZ2dnR0REDB48GMMeG0wM82gNi9QpaMcxJiaComikcKeoR9ue7DEqjE5EagR04sPjEoXLllL8xEqllHViJVJKN68cKRU3r4xOoOmKOgEA6tQJ9bWU4tvR1V9KZcPmscICAV6nTqiPpPhicHK4BVwenBxuATogQBwREVSFt4Dnw4ZhYO7cM+jDMWOa9+7dwBUp8fFhGzYMRp/89lvamjXXuF2LTCYJDg6owlvAZ1L89HwOCpIGBQWUJ8UXCD7//POKS3z88cf9+/ffu3evXq//9ttvZ8yYwX5FEKRcriEIMjBQajLZCwt1GIZJpSK5XKvTmaVSsVAoUCi0Op05NFTGMJCXp7ZaieDgAJuNUCi0NM3IZGK93qJUGoRCgVgsLCoyaDSmwECpQIDn5alNJltoqIwkyfx8pxSz+ZEUjcakUhklEpFIJCgo0Ol05pCQx6TY7UgKLZNJDAZrUZEeSVEqDRqNSSaTCAR4fr7GYLCGhspIksrP1zgcZFAQKwWkUrFGY1apDI9LCQCA3Fy1xeIICXFKoahHUgQCXCIRKZVGjcZYphS7nQwKklosDqTBCwgQa7VmlcogFotEIkFhoVapNIaGyjAMy81VVSxFpTKq1U4pcrlGr7eGhVUqRSgSCQsK9FqtKTg4AMex3FyV2ewICQlwOAi5XEuSVGCgxGi0FRXpcfyRlIAAsVAokMu1er05LCyQJOn8fLXNRgYHS61WR0GBjmGYgACxTmdRKg0ikVAsFhYW6rVaU1CQFMfx3FyV2WwPCZE5HKRcrkFSTCZbYaFTilptUquNjw+bQJqm8/JYKURBgbYyKWqj0SoWCxmGkcs1BPFICho2ZUmRMQyTl6e22dwenOXdAg+liIRC57Ap5xagZTKJXm9VKvWPS5EgKUZjeYOz3FsADc6HtwBZatgIJJKKbwFKKhUZDBal0oBuATRskJTCQp1Waw4ODsAwt28BDoOz+C3g1uDcsSN1zZprACCRCHbvHm63W0tLeThsHrsF4uND8/IMN26oAODkyexWrYIbNw4pIQUNm7CwQIoqPjgf3QJqtamoSC+RiEoPTrPZFhLCDhtXBid7CxDBwQFl3QKcB2f1fT6rVEaxWCAWC0sMTvQj+mIirNxqNCYm5urVq/Xr1y8oKIiLizObK9d9Z2YWxsXV9VILnzhIksrL08TGRnOugTIagSRpu522WACA0moBgLZYaLsdSJIyGgEgqFcvUf363mpztcJmI1QqY8OGEVXdkJqKyWQzmWz16oVVdUM4YjA4WrT4tbDQAgCffvrs0qU93TqdopgRI34/duwBAISHS69ceS0+3r2u0OstBEFFRZV01eBxEbXaiON4eHig3yRWvhc1cODAP//8880330xMTHzqqadcqTQszH8XUPvAcTw0VMbtXFKlyps/X71jB1T2fhPct2+L06cBq2TjpCYiFOJ8+g5PEIuFNTp9x9dfX0GzYOPGIQsXdnX3dIEA27lzeNeuOzIzdVqtbdSoA5cuvYr2Dl1EIhHxkWU8ISBAjPn30VT5ilAul0+dOjU/Pz86Onr9+vUtWrTwT8t43EW7b1/u3LmE3FXL79jNmyOnTvVli3h4/E1hoaVZsw0o9fzGjYOnT2/PrZ6rVwt7996NjE4nTmy9c+dwb7aSp5rhE4d6tdoUGRnk9WqfEGia0estbqkFHNnZOXPm6A8fZj8RhIVhAoEgNBQABOHhACAIDcVwHA8KIgoLzRcvAoAwIqLN7duievW8fQVVDElSZrOd86qax+Eg7XYiOLhGZhVdufK/BQvOAkDnznWSkiZVaixaATt2pE6alPiw2ufef/8ZF0+02QiKomv0qrpqsVjsGIb5aDuwTHxipq/TmfmJkDM0Tbs+ETJ2u+LLLwtXrKBtNvSJtFWrxuvWBT/3XAWnpHbpYktNJTWa7Ndfjy82fdYOSJI2Gm38RMgZh4M0m+01cSJkGNiwIRkdz5//tCezIAC89lqb1FT1l19eBoAPPzzXqlXEiBFxrpxotxPIEMYT6U8yVqsDx3F/ToQ+WRGaTLagIH6ThiMMw1gsDlfuIuOpU9mzZtnv3UN/YhJJvYUL6y1ciEsr6XzzpUtpPXsCTQNA0127IiZM8LzZ1QeKoh0O0p93US2DJCmSpGtijvVz5/Kee24PAISHS/Pz3wwI8PRFn6aZUaMOHDlyHwCCg8WXLr3apk1kpWcRBEXTNJ+EhzMoGaE/c8j4xGmRnwU9AcOwSmdBUqXKmjz57sCB7CwY3L9/21u3Yj7/vNJZEAACu3ev89Zb6Dj3nXfIoiIP21ytEAj8+i5Z+xAKBTVxFgSAjRtvoYPx41t5PgsCAI5ju3aNaN06EgCMRseYMX+6kp5CJBLws6AniMVCP2dS88lEmJen9kW1TwgURSsU2goKaPfvT+3YUb19OzINFYSGNl67tsWJE5LmzV2XErN8ubhhQ0CGpgsWeNjm4pgvXTKdP+/FCt3F4SCLivRV2ICajtXqUKuNVd0Kt9Hp7Hv3pqPj6dPbeavakBDxgQOjUS779HTNK68coqhKtGgmk02n40OscUevtxiNNT8Nk91O+qLaJwSGYSroQPXWrffHjmVNQ8PHjWubmho9ezbg7v2UgtDQxj/9xNZpOH6cc4NLoNqwIWPECPN//3mrQnehacbh4KOWc4ei6JoYNz8hIR0ZeXbqVOfpp71pAtayZcS2bcPQjuPx41lLlvxbcXmKovmw756AlPP+lOiTibBx4yhfVPuEIBAIKnAG1+7bhw7EsbHxR440S0gQxcSUV7hiQkeOZHcHs//3P+Ro7yG02azdu5cyGDKGDrWmpHheIQckEmHNdQavDgQGSqKjQ6q6FW7D6kWnTfPacpBl1Ki4Tz99Fh0vX34xISG9gsLBwQH+dAavfYSFBfrZ2I3PR1iToM3mm9HRtNUKAO3u35c0bephhaRSebtNG1KlAoA6c+Y0WrPGwwrV27dnTZ6MjkX16rU8d84thS0PDzfu3FG3abMZAMRiQV7e/6Kjvf8YpWlm5MgDiYn3ASA0VHL27PiOHbmHf+KpVvhkRZiZWeiLap8QSJLKylKW+ZU+MRHNgrIuXTyfBQFAGB3d+Oef0XHRjz8aTp70sEL1xo3sMVFQkN63r/3+fQ/rdBebjeDzWHmCyWSrcXms2OXgyJFxvpgFAQDHsZ07h7doEQ4Aer39mWe2z5lzSqksI1uQXm9RqWreJmv1Qa02+jmPlU8mQj68kGdg5SXBYV3mQ0eM8Jaw8LFjnbUxTO6cOaw/IgccWVnG8+cBABMI8MBAACDk8ntDhhAFBV5qrEtgGPBJcDwBxzGBoCZ1oN1ObdlyGx3PnNnBd4LCwiSHD48JC5MAAEHQP/54PTZ2w8KF5wwGR/FiOI556ML4hIPjuJ9HoE+ENWnC7xFyRyjEGzQoY4+QIQjdwYPoOHzMGE9ElLAlabJhA4o+Y0tPly9axLla1ZYtyDcxZMiQ5idOoLnQfu9eep8+/pwLJRIRv0foCTJZDdsjTEy8j/LoNmwY3L9/E5/Kat48/Ny5CYMGxaI/LRZixYor7dtv2bEjlU0SFBwcEBHBRxThTnh4IEry4zd8ZDVK+KLaJwSGcfqTlsB07hyl0wGApGnTgI4dOde/c+edHj12FU/ALapXr+E336Djwu++M/1biVFc2dC0essWdBg5dWpQjx5xBw5gEgkA2O/duzdoEKnxk7qSppkyO5DHRWi6hlmNrl/vjCYzfXo7gcDnS7H27aOOHx978eKrPXs2QJ/k5BgmTUps23Yz8t+gKJoka1IHVjdIkmLzF/oHH/kR8js03KEoSi4vw49Q9+ef6CB01CjOlefmGufMOXn1amGfPnsUikda+Kjp00MGDQIAoOns119n7JV7DZfAePasIzsbAIRRUWGjRgFAyMCBzfbswYRCALDeupUxbJhXDFMrxeEgi4oMfhBUW7FYapIfYU6O4cSJLADAccwX9qLl0b17/fPnJyQkjGzWzJlGOy1N8/LLhwYMSLh4MU+nK2PvkMdF9HqLwVDz/Qj5IHueUHZkGYZhJ8Kw0aM5Vz5nzkmdzg4AqanqwYP3omw1iCbr1+NBQQBgu3NH8eWX7tbMLgcjxo/HxM7ALmEvvNBk0ybk42i+fDlj6FDahXyWHiIQYDIZH1mGOzUrsgyrk+zTp2FsbKg/RWMYjBvXMjl56pIlPYOCnD126lTO88/vW7jwnxIbhzyuIxaLakNkGX6HxhMEArz0Do311i1HTg4ACMLDg3r14lbz1q23Dx7MZP+8dUv13HN7cnOd7/7iJk1iFi9GxwVffWVLS3O9Ztps1h04gI4jXnut+FeRkyY1XLkSHZv++efBpEkM6Vu9pUgk5HdoPEEqFdWUlKIMA5s3O91VZ8zgmHHJQwIDRZ999uy9e6/PnNkBKWZJkt64MWXRogtV0p5aQHCw1M+rKZ9MhHx4IU9AaZhKfPhILzpsGCbi8raem2ucN+80On722RhkV5merunTZ09mptNWvs677wY+8wwAMHZ73vvvu165dv9+pPaUtm4d2K1biW/rzp8f8/nnzgs5cCBr2jRkU+MjSJL2c3ymWgZBkGaz27rxKuHs2dyMDB0AhIZKXnqpKlOl1qsX+Msvg27enDJsWDP0yc8/30hOLtsPqsqp5qGXrFaHzeZXQxOfTIRqtckX1T4h0DRd2odG98cf6ICbXpRhYMaMY0gpGhsbeuzY2ISEkWKxAACysvR9+uy5c0cNAJhA0OTXXzGBAAD0R44Yz551sf7iZjJlFqi/eHHd995Dx5odO3JmzwafRXIgSUqv5ydC7tjtpE/fJObOPf3226eOHLlvNnv6sNu0yek+OGGCd6Jse0jbtlFHjozp378RAJAk/fbbp3wxzM1mgoPelaKYpKSCFSuuDB68Lzx87dy5p6ttMBWLxW61+lWx7JPIMjqduaaoVqohNM0YjdbiEYYcubm3mjQBhsEkko5KpSA42N06f/75xltvnQQAHMdOnhz3/PONAeDYsQdjxvyJwjNGR8tOnBjbqVMdAMieMUO1aRMABHbr1uriRcAqMcNzZGXdiosDmsYEgvY5OeWGfGOYnFmzlL/8gv5q8MUX9T76yN0LcQWSpK3WGplOr5pAEKTD4at0er/9ljZ+vNMdViIR9OrVYPDgpoMHx3bo4HaUFr3eHhOzDiWj/++/17wbX9QTbt0qevrpnWjVtXPn8IkTW3urZppmNm1K+fTTC4WF5qZNQzt1qtOhQ3THjnU6doxu2rTs/dE7d9SnTuWcPp3z99+5Wu1jXsKTJ7fduHFwNXS6tVodGIb5c6OaD7FWAyhauzb37bcBIHTYsPgjR9w9PTNT16nTVpOJAIB33umyenU/9quzZ3NHjjxgNDoAIDxcmpj4Uvfu9R15ebdbtEAhbJrt2xf+0ksV169YulS+eDEAhA4dGp+YWFFRmn4webJm504AwESilv/8gzSxPE8IcrmpffstGk0ZQRtiYoIGD44dPDh2wIAmkZEuvcSsW3dz1qy/AKBDh+ibN6d4ua2esXDhuRUrrgBATExQWtr04GAvWG+dOZMzf/7fN26UnTQtNFTSoUN0x47RHTpEt20bdfeu5tSpnFOnsosbh5fmhRfid+8eIZVW/WK6avHJRFhQoOPtZThDUbRGYypuL3Nv4EAU/KzJL79EzZzpVm00zfTt+9v583kA0KJF+PXrk2Wyx96zLl9WDB26H70qBgeLDx58sW/fRvkffljw9dcAIG3Zsk1KCnKBKBuGSYmPR3HUmv32W/jLL1fcHoYg0nv1Ml+5AgDSFi1aX7uG/O69CEGQRqONt5fhjM1G2GwOryt1GAaGD99/9OgDAKhXLzAyMuD2bVXpYgIB9vTT9caMaT537lMSSUUxqp55ZkdSUgEAfP99v7lzu3i3tZ5gsdj1evszz+zKzzcBwAcfPPP11895UuG9e9oFC87+8UeGhw1r2jR0wIAmAwY0OX8+b+3a6+jDfv0a//nni6zVa3XAaLTheOVpWb2ITybCzMzCuLi6Xq/2CYEkqbw8TWysU1NEqtXJdesyFIUJBB3kcmGdOm7VtmpV0vvv/w0AAgF24cLE7t3rly5z40bR4MH7ioosABAQINy/f/SgXlEp8fEoYW+jNWvqzJlTXv3G06fv9u8PAMKoqA75+azjRAU4cnNTO3aktFoAiJwyJfbh/qK3sNkIlcpYQQYPnooxmWwmk83r77Lr1yf/738nAADD4K+/Xu7fv3F+vunEiawTJ7JOnsxWqUruSrZtG7Vx4+Bu3coYsQCQnKzs2HErAEgkgvz8N11cRPoHvd5CENTJk/kTJhwGALFYcOPGZJTd1110Ovvy5RfXrLnOmrcEB4s/+qjbrFmdMjN1yclK9O/mTWXxEBnFiYwM6NevcSCz+UIAACAASURBVP/+jQcMaBIX9+g3/fzzf9l8Ul271k9MHFN9+lCtNuI47s8MHj6ZCO12gk/QzBmGAYIgWTcaNp9DUM+eLS+4Z5B95466S5ftNhsJAB991O2LL3qXVzItTTNgQAJ6gRWLBbt3j+iZfThv/nwAEEZHt8vIEISUHXMra8oU9bZtAFDn7bcb/fCDiw3T7NjxYNIkdNx09+6I8ePduaxKoGmGJCk/+yHVJmiapiimvIC33Lh/X9+x4xakn3/77S4//NCv+Lc0zVy7VnjiRNaJE9n//ptPEE6jYoEAmzfvqWXLepU2hJk79/QPP1wDgJdfbvnbbyO92FTPoSiaYRihUPD887/9/XcuAAwY0OSvv8a5VQlJ0uvXJy9e/A/7ioDj2PTp7ZYt61WvXhkzRH6+6eGkWJSSoqpbNxAt/jp3rlNe4NMffrg2b57TZKZt26gTJ8bGxFQLPQpJUhjm14C3/B5hdef+2LHa/fsBoOHXX9f94APXTyRJukePXf/9VwAAHTpEX7nyWsWKpvv39QMGJDx4oAcAoRDft3to3IcjkM6z/uLFrP9DcSijMbl+feQj3/rqVVkXN9RTD159VbNrFwAIwsLa3LwpbtzY9XN5ahY0zTz33J4LF/IBoGXLiGvXJpXQzxfHZCJ2777z4YfnWMuO+PiwjRuH9OnTkC1jt1MNGqxDa6Bjx8YOHhzr2wvgSkqKqnPnbSjH7L59o1x38Dh+PGv+/DOpqWr2k+efb/ztt32ROZsX2bbt9owZx1ELmzYN/euvccVXjU8OPplys7PLUP3zuAhJ0vn5zhh1jN1u+OsvdOxuxomvvrqCZkGxWLB169CKZ0EAaNYs9Ny58S1bRqA2TJxywv7a2+irou++I5VleETpfv8dzYLSNm3cmgUBoNGaNaIGDQCA0umyZ870ojeF3U7UuCxC1QqLxa5UejNG3apVSWgWFArxrVuHVjALAkBQkOiNNzqkpEwdNSoOfZKRoevbd8/s2SeRVRcA/PHHPTQLNm4cMnCg96NskyqV7c4dzqcbjVaNxgQA7dpFzZ7dCX04f/7fyMC1YgwGx9ixB4cM2cfOgs2bhx848MLp0y97fRYEgMmT2+7fPxoZyzx4oO/de/etW1X/9NZqzbUhxBofcNYzGDbkseHkScpgAABp69bS1m4YYd+4UbRs2UV0/Omnz7p4CzVsGHz27PhWrSIAwGIhRm8QC9t2AADKYJAvWVK6PPKyAICoGTNcbxtCGBHRbM8e5LNoOH688GHUb89hGEBvuDzcoGnGiyGPU1JUn37qVOl/+GHX8vb8ShATE/Tnny/u3DkcbVwxDPz004327bccP54FAJs2OaPJTJ3a1usJj2ir9d7QoUWrV3OvgWbYTBRLlvSsW1cGADk5hi+/vFzxibdvq555Zvv+/XfRn2FhklWr+qakTH3hhXjOjamUUaPijh59KSREDAAKhfm55/ZcvCiv+JSCAjP7UuILaJr2c9BtXjVarcmeOVO1YQMA1Fu4sIHL8T/tdqpr1x0oqkXXrvX/+WeCW65C9+/ru3ffiTKOToyVz8/6DgAwkajt7dvF083bMzJSWrQAhsFEog55ee5a8SDyP/mk4IsvgPemqKU4HFT37juvXy8CgE6d6ly+/CoK4+A6hYWWOXNO7tvnnBswDF55pVVCQjpNMziOZWS8Xp7/HGeyJk9Wb98uCA3tIJfjMi/k+N2yJWXatGMAIJUKb92aGh9ftu4xISF9xoxjaBsVw+DNNzstXdozKspPBixJSQXDhv2O7vrAQFFCwsi2baPy8oz5+Sa53JSTY5DLzeyfDgcVESFdsqTnm292rIZuiBzwyURIEJR3d9qfKBgGKIoSCgXAMMkNGxJyOQC0/OefoB49XKzh44/Po3fPgADhtWuT0QrPLf79V96/fwKystkXvilWewcAIl59temOHWwZxZIl8s8/B4DQ4cPjH2YMdhfGbk/r3t1y4wYABHTo0PrKFZS5yRMYhqEopnbcn1UCwzA0zXjFVGHRogv/93+XAEAiEfz336T27TlmKt237+7s2SeRYTNL//6NT56sxF3HXYq+/z733XfRcbOEhPBx7lm4IGiaYZhHHcgw0LPnLrTMGj682eHDJZOJkiS9cOG5b79NQg/jkBDx1q3DfLoKLJO0NM2gQXvZ4MOu0K5d1Pff9+vf38sb/BRFY5hfkxv75GGRk1P1WuaaC0VRKI+V+coVNAuK6tYN6t7dxdMvXVJ8/fUVdPx//9ebwywIAD16xGzZMgSFlFmq7Y8+1Ozebbnu9D0ChkHGolB+WDVXwCSSpjt34gEBAGBNTs73RqwZu53k9wg9wWz2zh7h5csK5FQOAEuX9uQ8CwLA2LEtbt+eViJEy4wZXk5Gbzh2rHiIXTVXxx6j0Vo8SiKGwZo1/VE87iNH7h8+nFm8cFGRZeDAvatWOWfBNm0ir1x5zf+zIAC0ahVx4cKEFi3CKy3JvmWmpKgGDEh46aU/kZGdt9DpzKXjLfsUn0yEEglvuc4dDMNQB7L5HMJeeAFlMqqUf/+VjxjxO0U5s9J44mX8yiutli/vBQDJ0OQv6AgAQNN5D1+WjadPI4NSYXR0mAf5EQFA2qZNo4f7MYXff6/nurhkwXHMXf0bT3EEAtxzjY7FQkyenIg2a3v2bPDee54qvaOiAnbuHP7nny/Wrx8IAOHh0hdf9OZsYU1Ozhw3jqEe2Tfojx1z5OZyqEogwEsoJJ56qu4bbzin7XnzziBdCwBcuqR46qntyMUCAMaNa3n58mvIYK1KaNw45Pz5CZ071wkMFLVsGdGnT8OJE1u/++5Tq1b13bFj+Jkzr9y5M91geMdgeGfZsl6BgU6jp99/v9emzeZFiy54HjwWIRQK/KzR4fcIqy+327a1paYCQPyhQ66YjO7bd3fSpER0jwUHi2/enOL59sn06cc2b06JhaLfYJUAaABocfJkcP/+WdOmoffl6NmzG69d66EUYJiMkSP1R44AgCgmpk1ysjCSi/cxT/Xh7bdPodglgYGimzeneNEoX6u1zZ//d1CQaM2a/t6qk9Ro0rp1s2dkAICkWTNhdLT58mVw32epAtRqa8uWm5Cx67JlvRYt6r5u3c15807b7RQACIX4F1/0fv/9ZyqL7FuNyM83ffjh2V277rBzSMOGwStW9JkwoXUNugqETyZCk8kWFCT1erVPCAzDWCwOQV7W7VatAEAQEtKxqKjSnbNVq5IWLDiLbNXq1JEdOvRi164umedVjMNBDRmy/8yZnA/hwDj4FwACOnRoefZscoMGtMUCAK2vXZN17uy5IEqrTe3YEb2AhwwZ0jwxsdJg3+VWRdEOBxkQwOfm5QhJUiRJexLy+OTJ7EGD9qJHy88/D3zzzY5ea9xDHA7KW+t+xm6/26+f6d9/AUAQHt7q4kVLUtKD114DAGmLFm3T0twdigRB0TRdOqgIGxxVJhONGhW3Z48z5Wd0tGzPnhH9+tVIV9qLF+Vz555GnlqInj0brF7d76mnuAcXczhIAPBnTAw+xFq1A4VYC9i3Ne+DDwAgbMyYuP37KyhPUcy8eafZyIEtW0YkJr7UrJnXTOm0WluPHrvUaVkH4CspEAAQOmIEUmAGtGvX5tYtbwnSJyZmjBiBHAqb/PorB5cMBB9izUM8DLGm09k7dNiCbC4GD449enSs19cHtNWK9pW9Qs6sWcp16wAAcDz+jz9CR46kzebk+vVRis1WV664a8yMQqxFRZXMEkNRTLduO65eLSz+Ydeu9fftG9WokdspZaoPNM1s3Xr744/PFxQ4d0ZxHOvcuU58fHjz5mHx8eEtWoTHx4dFR7tqgltLQqwplYbSOdZ5XATlI1S9MMx04QIAxG7bFvkwGllpLBZi4sQjf/7pjMbbu3fDP/54ISLCy8tx5FDxsnL/NDhd/POG33zDZhn0Cjlz5ih//BEA8KCgtikp4iZcfKUJgjKZbP68i2oZdjtht5MhIeXONBYLoVRaCwrMSqVFpbIWFlqKiixKpUWptBYWmvPzTci8MzxceuvW1AYNvBy1i9Lp0nv1ijt4UNKsmee1saldAKDBihX1FixAx1nTp6s3bwZOyn+r1UFRdJlasYsX5T177mIfum+80WHNmv6VBruoERiNjuXLL61efRUpe0sTGipp3jw8Pj4M/Y/C5uE4FhrqVHfJZCLUFVaro0uXOjJZDQ+6zeMhZFFRckwMQ1GYUNihsFAYUfbipqjIMnLkgStXFOjPV15p5UoEGW78+698dL+tv9mXh4LTmgsTCtvn5orqeTMJHG213nn6abQzGvHaa023b/di5dUBR26u4ehRfWKiIz+/9X//VXVz3EYuN3311ZWjv5xs48g8CJWsk7ybio8F7U8HduvW8vx5TORRTGPDyZMZQ4cyJAkAkZMmxT40hAYA07lz6c89BwDCiIgOcrnnXj0s06Yd27IlRSoVrl3bf8aM9t6qtpqQkaF7770zBw9mVl60fIRCnCDme6tJruCTiVCtNkVGVovgrTURmmbyflqnfPstAAh+/vkWp0+XWSw9XTNs2P77951WywsWdP3qqz4+3aP+7be0wxMWzGMOoT/lcT0evLOmYcPg+vUDGzUKrls3UCTygqGX6fz59D59AABwvHVSEocNSJKkzGZ78czGVQtDkqZ//kHzn7WYJrndvXuSeJ9YyVutpCfp2h0O0m4nSmQ2Liy0fPXV5Ss/7x9rP9ML7tCAj4KPiqBcDfzYsS327vXInLhM9IcPZ4x0htiu9+GHDb76inNVtrt307p3R1lQArt3b3HmDC4ttoYrnl9s797wsWPdqNlGUBRdXhahwkLLwIEJGzcOeeYZn2QSpq1W1caNdd56y0VTc19QWGi5e1dz7542I0N3754WHbhuUyqVCjWat/y5zc/vEVY7SJK6M3SE4+QxAGj0/fd15s4tXebChfwXXvgDWaAJBNiaNf1nzerkh7Z9tfR8u8Wj64MWABbA5NPw6H0Ww6Bu3cCYmKAGDYIaNAh68cXmgwbFcpOSOXq07uBBAAgZOLD5iRPunm6zEcoH+Y1ac5TuLYjCQjT5Gf76i9KV4dfY6Lvv6syb5wvRc+ac+v775zkboJfYI1QqLd98dfHu2i1jHWdaQT5b7ETDFy51mRwVJatbVxYdLYuKCoiKCqhTR1anjiwqKsCTmbg8SI0mtV07QuFUgQCONz92LGTgQA5VUTpdWvfutvR0ABA3atTqypXSuo1HISNGjIg/dMj1ysvbI2RBYXE4NNsV1Fu3Zk2dGtSjR5ONG6WtWvlICgfy803spJiTY0BeXiRJs9HazGYCZZsSifDExBdq/B4hbzXqCZTJlFynDkoQ3/7BA3FsbIkCCQnpU6YcRW4SgYGiPXtGjBgR57fmrejzwYDz3+hBNgQ+I6BcNWzDhsH37s3glvnadudOaocOSGHV/MQJd590umPH5YsWtb58CQUy9TOM3V6wYoXu4EHLtWulI4njMpmkeXPrzZsAENyvX4tTp7zeAKPRUafOTzt2DHM910EJWKtRtdr6w/Izip/Wveg4VwdKekwLo6Pb5+Q8toryMQ9ee02zc2fxT0T16rW5edPd8H4MSWYMG4bC2eMyWcvz58sMGW9/8CAlLg4Yxt1dgPKsRv1Des+eyAIWl0rrL1lSd/78ihJrV0v8bzXqk7UzPwt6gvHkSTQLBnTsWHoWPHw4c8KEw2gWrFcv8O+/X/HnLAgA7574gmzaytHvhU8+7/366+2HD2/Wvn1U6YiIeXnGH3+8wU2EtHXryGnT0HH+hx8C7Ub4XaKwMGfqFOvVJOXPP3OT7gmUTndvyBD54sWWq1eLz4KSpk3rzJnT/OjRjmp182PHkM7KdP48pfdmPA5EYuJ9m43k3PkAIBQKrFbqq9l7vo8ZPOD7Mf9zHGJnQUYkjpw2TdyoEQCQSqV2927vNNoFdH/84ZwFMazpzp0odQlRUJA1daq7qUvy5s93JnXBsNitW8tLnCJp2jT4uecAgCHJEhNwxYhEgqqaBa0pKWgWBADaZsv/8MP0Hj2sKSlV0hjOiMVCf+cTZSpjzZo1MpksMjIyMjJy/vz5lZZnGCY/X+NKMZ4yuT95chJAEkD+4sWlvx058neAlQArW7fe9OCBzu+tYxiG0R05Yk5KKvGh1UpkZGjPnct9993TqIVRUWv1ejs3EY78/GsyGeoH9fbtrp5GUXcHDUJnXQ8NdSgU3KRzw5GXd7t9eyQ9CeCqUJjet2/B119bU1NLlLzTtSsqo/ntN683Y9y4gwArMWxlSoqSw+kOB/Xt1J+/E3a4Ahh7LUkAV0Ij8j/7zFFQwDCMYsUK9GFqp07ebn7ZEErlzbp1kdCsmTMZhjGcPp2E4+iTglWrXK9Kvnw5e1Hyzz+vuLBqyxZU8na7dq6LMJlsOp3Z9fJeJOedd5zDTyx+NBTFYvnSpbTDUSVN4oBebzEarf6UWPlEOHv27N9//92tSjMyCri250mHdjhuREWh4Wu+dq3EtyqVRSz+Fj3m7t3TVkkLK8VuJ2Nj16O5cPHifzjXk//JJ6gfkmNjaZvNlVPYBzT6d3/CBM7S3cWSkpLcqJFTNIbJly8ndeW+psiXLnW28LXXvNwMCxEY+D3q/Fmz/uJQw7EJ75WYAi81bl60fgNlffRgItRq9jXFePas95pfLpkvv+wcDE2akAYD+pAdIVfF4tJvZmVA0zlz57LXlTluHIPCY5cPZTReCwpy3o+uiGAYhmF0OrNSaXCxsBehLJbr4eGotfrjx+VLlhSfDlM7dTJfv+7/VnFApTJoNCZ/SqxcNZqWlrZixYqgoKBevXqlpaWVWE06HCTKPojCeaAkUjEx4Q4HiaKcEASJFL4A4HCQKNMeRTEKhRHFIUQn0jQNAARBORwkwzCoMDqxuBSafiSFJKliUqjSUmi6ZPOQFHRimVIenlhcCl1CClLDOBwkQZBlSinevAqlMKWl5M6bR6pUACBu3FjWqRMrBZ2YkJCGNpOfeaZe06Yh5Usp2QmVXkvprnbhWkp3NQ0AOI4tWtQN/RbffpuUn2/gJiV83nxhdDQAOLKyFKt/KCHl4Q/66FpMly7JFy0qPj41u3drj58oU0qJwVnetbg4OPV/n03v3RuFxcHE4qY7dkR/uJAKCCzvFmAD5hmOHmUoykUpZQ3OkrfAsWMPWNu87dtv63R2139Q2ma7P2ly1O5VODAAwABm7dQ7/uixpzLuhE6ZCmIJK0UQHhHx2mtIStEPP3j3Fig9OJW792gTEgAAMKzR+g2C4GAkpc6nn6GULIzDcX/CBMporGBwElb7g8mT2SyDIQMHNtiw0UFQFQ9OUiwNe+kl55Vu2uziLSCTSQIDJR7eaC4PzkdSNAkJyAhW0rx5yMCB9T79NP7i5YCHil/LjRtpXbvKP/uMsFgrfj5zuAW8+3yWySTIjbWEFN8lKax8IuzSpcsXX3xRUFAwaNCg119/vfhXBEEpFFqUi9licSgUWpPJBgBms12h0KILKCoyKBRahmFomlEotHfvFi1ffqlFi1/Hjj2I4osbjVaFQmuxOABAozEpFFr0AxQU6AoL9QBAkmVL0estCoXWbicAQKk0KBRalA9TodCi2PkOB6FQaJEUk8lWQgr6MQoL9ShTAUnSJaQYjdYypTAMzTCMQqEtKkJSSIVCq9MVl2IHAI3GXFoKRdEKhVatNgKA1epQKLQoEbPBYFEotPLvVit/+gn1bdQ7cxnAWCl2O6lQaLdvT0XfDh3aGEnRah9JKSrSKxRIClWBFJvNAQAqlVGh0KKRV+JaUOB89COazY+kFP9B2WtRqYwAYLMhKc4f9Pnn67VuHQkARqNj8eILFEU9lKIHAIeDYqVYLI+k6HSoq0nU1UVmqt6iT9H1Fn75JaXT2WwEK8VgsCoUWqvVAQBqtVF+N/vBhIkMQQCAuHuPiIkT0Ym5s2czdjuSgoYNklJicDIMuhbU1Y+GTaWDkyCorE3bM4cMQQ8gLCg4Zu+BiIkTH0pBw8ZY/BZQKg2yTp3QFhepVpsvXjQaSw5O9HQoKNCVPzjLvgX27bsrALonpGHAmEzEpk3JpQZn2bcAWVR0t39/7Q6n42Yy3gzfe7LdmaOhQwYbjFZWikqFbjQ6+u23UeAx3Z9/mjMfuHILPBycFd0CJQYnw4A85V7eQ4d36atTiM7d2MFpsVNNd+7EQ0MBwH7vXu7s2SUGJytFfl+eMXq05mESsZAxL8UfPqy1UgqFFj1bK7gFZC9PQGdpd++ymyxsVwMATZd9C5hMtqIiPTs4FQrtw1tAh26Bh0/OR7dA8cGJboGHg5OVYgCAsm4BO/uDqtavR00VvfwaYBhBUNrIBpGHTjT44gvkB8kQhGLZsrSnn845drrM5zN6crp1C/ji+VxUpEe/S4nnsw/T1ru+eDQYDIGBga6UrEA1WlBgFolWIeVeRkY1Ve5VCbrExKsCAVJi3Bo7vnSB+/d1GLYSYKVItKqoqGp2IFzn0KEMpKATiVZlZnLcy6Tt9ltxcahP8hYsqKAkqzq7ERlpzMzKvp52PSzMuQ+0dCk36a5QuGYNu1N1s35911VP2W++6cp1uYXVSgQFfT8OXkwC2AaNnoXX4+I2UFQl2j+GYSzJycmxsawO7TN4ZtprByo9K71/f69fQmkyxoxx3hRNm1JGY+kCmoQEtuWqbdtKFyA1mrQePdgy2f/7H02SbrSApm81bYrO1e7f78oZVaIataSksIpioqioxLfW27fvdOtWfANb8cUXfm6hi1BGo+LqreqlGrXb7S1btrx79y4AnDhx4umnn3Zlcq3ARaZuXdnAgbEAwDCwY0eqGzN2rcaakvJg/HiUAiawd5/QFd+WLpOQkI4ULP36NXY9al9VMXx4XLdu9QGAIOgvvrjErRJMLG7wf/+Hjot++KG8nDiqX39lVWexmzeLGsQI69RhTyz48kt7pkdxLsqGYfI/+ij37beRUau0VatWFy/KOrnqzclqR3Uep51iOXUqhzEZ34C/AKAN5K6BXz/K/OLc9/sqPkt/6FB6z56OrCwAoAFfDSOWYS9PfaPyC6n70MNV9euvKAK719Hs3q37/XcAABxvsmkTHlRGmI7wceOiHmqqcmfPtt+7V/xbQi5P79OHNaSs9/HHjdetc8+vBsMiJk9GhyrXMhRiGOb/9AvscjDsxRfRnkJxpG3atPznn4Zff41itDIkmf/JJ86+rTYQ+fn5CxcmN2qknjvbn1l5AVxYESYmJrZv375Nmzb9+/fPzMz0fO79/fe7aK3QsOE6kqz8dbXWQxQWsu/jt+LiCGXZxn6tW29C/bZjR0krxOrJ+fN5qMECwTfcLBgZhmFo+s4zz6DOeTBlSunvrbdvs4YbOe+88+gLimJPvDtkCEfp5TXK4XgwaRL7fp3WowehUrlVA2WxsM22eeO2YhhmypTEt6BfcTsX5+UPHGi6fLnMUwpWrmRXtJfEsl4wHWDl4MF7XbsGil2vK3/5xSuXUByHXH4jIsL5y86ZU1FDzOaU1q2dJiFPP03bnbbK1vT0RytdDCv49ltuLbFlZiZhWBLAVZEI2c1WN4qbyRhOnaqgpDUtjb0vroeG2u7e9VsjK8B8/fqDSZOKm/aYr171ZwPcUI26js1WkZ2uw0FFR/+IHpEnTmT5ogE1CMpqZfU218PCrKmpNM3Y7USJYjdvFqEeCwr63mSqMWbQQ4fuQ81+8cU/OFdiOH3aeXvguOXmzeJfURYL67GQ2rkzMi6lKBp1oDkpidU2axISPLwWFtJgYJ00kgAyXniBslg41JMxahSqofD77z1vld1Oxocs/QdETj1tn/4XQVB8OswYNap479F2+4Np09hvk2NjO4d8jH6sI0cykU1EpRR+910S611QmQWmu7D9cysujjJVoiiz3LhxTSpF5XPfe49hGHNS0o06dVhNoGrrVk8ak/7cc0kuu2qQJEUQ7mhfPUa1dauzr5o3r/SHIJRK1sL5docO3Eavd6BpXWIiq2Nn/91q0VJ3govNM2d84lCfl6ep4FuRCH/1VWco3s2bvZbEp0bCMNkzZiC9DSYUNktIkLZuTVGUXK4tUXDXrjvoYNSoeDYxdPXnq6/6IBXHgQP3Ll1SVFq+TIKffz502DAAAJrOX7iw+Fd58+ej6J14UFDT3buRRYDDQSLDB9lTT0XPmoVK5r77Lsqq4yGkWn33+ecNDwO/Rc+a1WzfPm4pgVjtqN4b2tEzZ3JfMxyUAAEAsi5dOpw5sbbfjwfhGeqhQZzu4MHUzp3vjx9vS0sjVaq7Awag7AoAENS795XZm68bwgGgVauI3r1jkJlJpUROmyYIDgYAa0qK8cwZz6+CRb1tGwqzBzgeu3kzHlhJtK2Ajh0bfP01Oi789lvFkiV3n3+eLCoCADwgIO733yMfqje5ETllirNhW7dWWthksiHTIb/B6kWj33ij0uyJwqioZgkJmFgMANbk5Jy33vJ5+0rB2O2qX3+93a5dxrBhxmLxlYL79o0/eLD+hcv008/6t0E+4KElXrncuqVE755S6XcajV8dJ6sV8iVL2Jegoh9/RB+SJFVUpC9ejKLoRo3WoR47fNg7ajS/MX78IdTy/v25O49bkpPZtR2r+dHs2/fISmLzZraww0Go1U6rClKnu1mvnlO9Nm+eB9fBMAxDqNWpnTuzqjb58uWe1ObIz3cq3MRiUq+v/IQKWTjmJ9b/z3D6NMMwiYn3AVY2hgXfiLuw+s8kgKsCAbtUSgLImj6dtNpatPgV/Uxr116zWh1araumCjlz5jhXnKNHe3gJLI68PNbWyY1fjabvjRxZYm1xPTTUK56OpMFwLTAwqRwH3xKYzTa93n/LrMfMZAoLXTyrcM0atpeUv/7q0xYWx3rnTt6HH7LhEZwtF4nuT5jAemoaDFaTySXXYW/hk4nQFbp02YZuvJ9/vlFVbahaNHv2oOdgUSX9/AAAIABJREFUEkDO229XUPLcuVw2VovDQfmthV7h7l0NshMGWHnyZDbneh5MncpuAjE0bc/KYjdF7r/6agUnqnftYvVjnjgUF58FrwoEqk2bOFfFkvr0017R3BIEtUHUElX1X88B6EOaZtjpbcfn+zNGj2bHG3sVBd98wzDMsWMPULGIiDVms3uKd2t6unM6Fwi8tdl5b+hQ1MKUFi0osxsG0oRSebNBA/YCb9atW+mk5ToPHoZ8emwruhrARpPJfPllt068P348OvGaVOprX3vKaFRt2pTWs2fpN5Xc99+3Z3N/MngFn6hGXfH2mDatHTrYvLmGxcHzCubLl7OmTUMxEkOGDGn43XfsVzTNIC8xFlYvOm5cS6+kOvInzZuHs7/1woXnOMd4j1m6FGkgLUlJ6h07Hkyc6PQdjo9v/HhYUYqikWMiImLChOD+/QGAIcmcWbPcilzKQmo09wYMsFy/DgCYQNBk82Y2GqonhHlJO3px1Y7ORDoAUIC3/cXpM45h8L//dUTH3/xhivvjj1aXLoUMGoQ+EYSExB08iPIqr159FX04bVo7mUxEEBTy6HIFaYsWoUOGAABDUSipsododuzQHz0K8NBSVOaGgbQwKqrp9u0olKs4Nrbl+fMc0niVR+TUqc4W7trFOCrqH4eDtNlcTTnkIbTVqn6YtjN65ky3zm2yYYO0dWtAsRTGji0zR0ppjGfOpLZrl9ajR+68eZpdu+wZGRWXN1+8mP3GG8kxMVnTp5v++Yf9XNykScNVq9rn5DRcuVLcuHHxU2w2AjlT+g9fzK6uhFhTq60SybfoPTQ52T2TQpooaUtSs7BnZ7P6uttt25ZQixEE+eDBIzcgu52MiFiDOur8+Ty/N9YL5OcbZTJn3K/ff+dupZb34YesIoXVBZn/+69EMavVkZurfuyTtLSrEkkSV/tGQq1O7dKFNdjx0OyiOOarV1G1N6Ki3HNuKwZNkn9FOG0jd7UbUfwrrdbGRlz755989KHx7NnMsWMtKSnoz9RUFfJPFQpXZWXpGYZBPtSuN0B/9GjSQ2uvMl393IJddiObFw7kf/LJ7XbtHPn5HrakJBTF2qBqK4w66U8/QtW2bU4Dk/h4DvZK1tu32RhyGS+8UHENpE6X9cYbJfQKSQA3IiPvDR2av3ix7sgR1uidKCwsWLUqpU2bEoWvCgT3hg/X/v57BY/x6hhijQOuZOWNiJCOGuXMSrpt223XKyeLijJGjEAudzURymjMGDmSKCgAAGF0dNyhQ4KQkOIFcBwvnojrxIksjcYGAE2bhvbs2cDPrfUKMTFBb73l9Ev76KPzKDIFB+otXCiMjAQAFEEGABp88YWslG+rUCgIDX3MekXasmW9Dz5Ax/kffUQqla4LJTWaewMHWq5dAwDA8diNGz00uyiOrHNnZ4gZlcp8iaO3pWrjxnBNFgBYQNJg6ZLiX4WFSdgc8T/+eB0dBPXp02zv3oC2bdGfa9deR8v0UaPimjQJAQCJRFgiK2/FhAwejPLeUTqduliSdw6Yr1xBy25cJqv/eMA816n/+ectz58XxcR40pIywHH2p6/YZEYqFclkXstoXzGsmUyUC2YypZG2adPkYQ26P/4o/Oab8krqDh683aaNasOG0rk+SLVaf/SoYsmSjOHDb0ZHp8TH3x0wILlRo7z33rOlPnIWl8TFxSxf3j47O/7w4bAXX6wgOZRMJvFnVl7wURqmsDCXEiqyGrPt228ThKsPx/xPPzUcP170/fccG1fVZE2ZYk1OBgBMIok7cEDStGmJAjiOFc+uzupFx49v5X8vXW/x8cfdwsOlAJCertm58w63SgRhYfU+/pj9M3To0Lrz55cuJhTipZ/j9T7+WNKsGQCQGk3ew0mxUkrOgr/+yurHvAOGhQ4fjg65aUdpkyn7Y2cguj+CBvQaXVITOHu285N9++4WFJhLfKvR2LZscb6Gzp37FDoQiYTlZVcvGwyr8zAKWtGaNe4mRSqO6pdf0EHE+PGCsDBulWBCIedzKyZy8mQ02egTE5FJaplIJCKZzB/PcVtqqunCBQDAxOIoriMzYsKE6Nmz0XH+xx+bzp0rUYAsKro/fnzm6NGEXI4+iZw6tcXp0w1Xrgx78UVR/folytszM42nTrHaY1wqjXj11RanT7e7d6/+J5+gN7+KCQgQS6X+tY33xTLTRb1KcWPIgwczXDmFtR68FhBgTU/3rJlVgHLDBtbmsMxwUMzjVqNGo4NVKt6+7Z7LdnVj2bKL6EKaNPnFZuOqBrTZkHrqZv365RnIFbcaLY4uMZHtfFcsCUmNprhGVLlxI7c2V4zu0KEk1hXPffIXL0anH4OQ2dP/LLNMr167UM8vXfpvia9WrryCvnr66Ue5rtyyGkVQRiNr56k/dszdq0CQWi0bZKC8CABVTlrv3qiFhd99V14Zv1mNssk0MseN86Qe2m5nA7DdrF+/eNAA1bZtNyIjWcVmcpMmpX9fe1aWeteunHfeudOtG7ttkQSQ2rlz0dq1pMbtrHz+txr1yYqwuKlCBeA49uqrbdCxiyYzefPnI6UobbVmT5/OzfChqrBnZua++y46jp45M3LSpDKLMQzDduCff2ZYLAQAdOgQ3aZNpH/a6SPeffepunVlAJCdbVi//ia3SjCJpMGyZYDjTbdvLy8vOUUxZdp6hA4dGo4yCTBM9syZmp07Kwi9Rmm1dwcMYNeCTdavj5o+nVubKya4f39kD2JNSbE/eODWuYRCweqy1sGgUa90KLMYuyhct+5mcdULSdJr1zr1pXPmdC72OeWurQceFMT2T9EPP7h1Lot6+3YUqk3WuXNg167cKvE1rEpA8eWXxfV+xSmebMF30Far5qGZTJSbZjIlwMTiZgkJwqgoACAUigcTJjAU5cjJyRg2LGvyZFKtBgDA8ejZs9vcuhUyeHCJ08VNmkRMmNBo9epWly51MhhaXrjQaM2a1levtr52LXr2bEF4uLvtcTgIP3TgY/hidrVYXE3Hmp6ucT2QNPvuzP6r4KWsukETxJ1nn016GP2hgkgZNE1brc4OHDZsP3ph/+qravqC7BarV19FlxMd/aPBwDFnL0NRFZurUBRdXmwje24uaxrg3OePjr43YoR8+XLDyZOs1RKp0aQ+9RS7fFSuX8+xqa5xb8QI53j+4Qe3Tsx6/XV04m9QLypidXmuNQ4H1aDBz6jnExLS2M/37UtHH9ar91PxNTpJUqVjG1WKLTPT6euJ49wCd91u1w5dTtG6dRxO9w+kwcD67dysV8+alla6DEGQDofPDfoemcnExXklrI/+2DHW3/TesGHXg4PZ2ySlRQvjuXOei3ARlH7Ob+IYH60IXd/nbNEivGtXZ2jmPXvSKijJEETe+++jY3HDhugg/5NPKjXerSYUfPml+eJFAMCEwqbbt1cQKQPDMKlUDABqtfXkyWwAwDB4+eWWfmuq75g5s0PDhsEAoFRa3n//b5SrzG2K2SyU8z0mkZS9wSBu2DDm88+Lf0IqlfrDh+WLFt0dMOBGeHhq+/bZr79+d8AAy9WrAAAY1mTduqg33uDSTpcJGzkSHbi1TWhNSWFDw6yG4UOHx5fnWiMS4VOnOvfjf/nl0Vr8xx9voIMZM9pLJI/iUAsEuFhcriFDeUiaNXPGyqHpojVr3D3ddOGCNSUFAATBwWwWrWqIIDi4+bFjyMCNKCi4279/6UeQUCgQidzuQHd5ZCbz+usczGRKEzJ4cP1PnfvN+sREFIkJEwrrLVjQ+saNoN69PRfhIiKRQCh0JzC6x/hkIszOVrle2EWHQuXPP9vS0wFAEBbW6tKlgHbtAIC2WLJqgoLU/N9/imXL0HH9RYsCu3WroDBJ0vn5GgDYu/cuSsPbo0eDpk1D/dBOXyOVCj/7zBk5af365MmTE103kmK5c0f9zDM7/v1XXl4Bu51AOczKpM7cufGJifU/+yxk0CBB6OO9StPWlBTVxo1OjSiGNf75Zw+VTq4QOnw4epAZz551PQ5c/oIFaJvgCjT/F1q99FKLCgq/+WZHoRAHgNOnc+7cUQNAcrLyzJkcABCJ8FmzHss1YbHYUcY4d6nzzjvoQL1lC2VwrwYlayYzcSIK21ZtCezaNf7oUZQKg8jPv9uvXwmdttFoRfn5fMcjMxmRyCsurYiYzz5jPU0BIKBDh1YXLzZYsYJbEEHOaLVmH6YeLAufTIQoraiLvPJKq4AAIQBcv15082bZdu2kRqNY4rQLr79okahBg9gtW5D1ren8+aK1az1usg+hzeasSZOQxX9gt271PvmksjMYlMt0926ndSVrAV8LmD69/ZQpTsP9nTvvjBnzp9XqxmbAjh2pXbvuSEoqGDny99RUdZllGAYq8NDAhMLQoUNjlixpfvx4J42m7e3bTTZujHr99YB27ZAj9sNyWOMff4z+3/9cbxtnRA0aIL9vxm5no5hWjOHkSeR1TgO2GoYHBYkGDYqtoHzDhsGjR8cDAMM4F4KrV19DX40b17JBg8f8nWia4ZYKPLhfv4D27QGAMhrVrmUsQpBqtW7fPnQc5Zc+95CgHj2aHzmC9DqO3Ny7/fo5cnLYb1EGWp82QLlhAzoIGz1aVLeu1+rF8aY7d4obNcLE4pglS1onJZV2T/IDNE37Lhl92fhTD1seEyceRnsVc+eWnUCENY66FRfH5ljJ+/hjZ3ygwEBbhktGp1VC9qxZj9rp8t5JdrYex7+pKWl43YKmmXnzTqNfHGBlnz67dbrKLcSsVmLmzOPsWQArGzVal5vrTbdlUq/X//WXfNmye8OHF/38sxdrrhTW+LPMVFMloajUTp1Q+SXwFMDKl18+WOlJp09no34LDl6dmamTSr9Df166JPe8/SysXfStuDiUDMQVClatQmfd6drVi43xNYaTJ68FBLDXa8/N9Y9cymplE1TpT5zwev3mq1ctt255vdrqjE9WhLSbukpWO7pz5x2kDCyOLT1d+dNP6Ljh11+joOkAEPPZZ04Fqdmc/frrnngv+Q59YqJy3Tp03OjbbyXNm7tyFk0zu3enoZfKgQNjq38aXrfAMPjuu+eXLeuF/jx3Lq9fv4Siooqi9Wdk6J59dtf69cnFP8zNNQ4Zsl+rtZUozDDA7X1cEBISMmBA/UWL4g8fjn7zTQ41cOZRrLWjRytV9au3bbPcuAEABC7+CYYAQMV6UUTfvo3bto0CAKPRMWLE7zYbCQDdu9dH+ZOLw7kDASDi1VeR8aE9M1PxxRf/z955h0VxdXH4zFZ6byIoTVBsCGossXfF3nuUqNHYjUaTLzHFWBKNLZYYe+899oKKPWJBVEApAgq7LMv2Mu374+KKS1u2scC+j4/P7OzMnLvDnTkz957zOzrtQ9MfiyeY97QbiGOXLsEnTqCaJ6o3b1K6dMHfv4cPbxems1tw9CiRnw8A3KAgpy5djH58u8hIdGutLEx9AotjEkeYllYB5Q4A6NKlbnCwCwDk5SlOntSeec6aPx+NKzq0b+8yaJBmPcblBuzYgQZIJbGxGmdpORB8fkZMDPLQzn376jjbRBDk27d5u3YVpjmPHRtuwiZWHv/7X6s9e3qjiav4+NzPPtuXkqJdfAqxdWtCkyY7nzwpzF+eOTPyxo0RqBZVYmJejx5HpdJPYv1VKrx4HSsLxy4qCimhEDye7P79MrakpNJ3HyIa9lKf54KLvT07OjqoXBMYBjNnRqJlNE0IAPPmtSi+pUym5PFEFWq/Boatbe1ly9ByzvLlqEhW2UhiYzXT/67Dh+tnt7Jw6tEj+OhR9HSuTE5O7tIFz80VixUCgQnnCPlFw2QYVUx8WBfy86VmrmNlkpPI5VYsYgrDPt7utUJmJFevis6cAQBgMPz//FNrR7vmzb0/qIRkLVxY0TQsU5MxeXKhlJqXV8DWrTruhWFYaqoY3aocHTn9+gWbsImVypgx4ceP90czxOnpovbtD2pNEsvl+Lhx5yZNuojmEZ2duceO9V+7tnP79n4HD0YjJ/rwYc6AASeKDiQwGBiHY9aQMyNQRGKmoPTYUfmTJy9btlRnZQGA2t5lJ3QCgB49AuzsdJLhGDOmgZubjeZjYKDzwIElDFEwmQw2W/8T6BET49i5MwDQanXGl1+Wq4aoCZNxHzu2QhLbFoJzdHTQoUMYmw0AypcvU7p2hQIh6pymQHrnjvTWLTB2mIxFwWIxTXcCS8Qkxvz8Kpz6PWZMOAoAvnIl4/37QiEomiQzP2houY8daxcVVXxH38WLkWoiJZWmx8Q8js/dsOHx2LHnSoukMBt527YVnDyJlgO2bi0t+7s4TCbj6tXCkMi+fYN1vMdVUfr2DT52rD/6jTk5sm7djjx6lIu+ysgQd+p0eM+ewpzl0FDXmzdHDBpUeOOOjg7+88+OaPnq1bdff31Fc0wOh+XlVfWCbD/W6UVPflrQdO6ff75q1Ur5sjCE6oRHfxnYAMCAATqNtwOAnR1bI2EBAJMmNWEySwi7t7XluLsbELeJYXX//hu5NNmDB7y1a8vYluDxCk6cQMtVIkymRFwGDAjctw+NTimeP383INqB0klUpKLIHz16/aGfuPTrx/bxMYWVSsfZ2a5CareGYxJHKJVqT9uUS3CwS/v2/gBAENSePYWjgoLt25EsJ8PevnYp8w0CCfV24q80gwkA0uvXf4uaNn361b17X+itXWIUVG/eZM6ejZY9Jk1y/pAopgsURWv0RatTvGhp9OoVeOnSEKREyufLO3c+FBubeebMm8jI3Q8eFBa1Hz68/n//jW3SxLPojjNmRC5aVJiIsnVrwo8/FlZ4IUlKodC1ipDl4NS1KwpSVyQkqNPTi36F5+Sk9OyZNW8erVIBAMPOzmHp2pVvGwEAh8Ps27cCYwbTpkWgJ05bW9bkySUr0eihLKMFNyREk6/57ocfVKmppW2Zt307EqV0+PxzjQ54VcR16NCAnTsxJhMA5E+eJHfrVijIYjzk8fHJ3bqh6mNsb2/fJUuMe3zLQa0mzKwsYxJHmJurzwSDJmQGqQCTYrFmLsRnwQKNljxJ0k+f8jdtejJ+/PmwsG2enht6zXuzk+qAvp0F/9YCIQDs3ftSpTJ+hQqaIF40bZrUocPbr7/mb94sjYsrXsSLJsn0ceMoqRQAuCEhxUd0yyYuLis9XQwAHh62ZcfEVxvatq0dGzu8Vi17ABCL1T16HO3f/wSqucHlMv/6q8vBg9GOjiWoNPz2WztNMsavv97duPEJAOA4adIZGhPBsLNDI4rw6eio6OzZF02aaNIq7Jo1a/Do0TmbtiiYoEuXOi4uFRDIrl/frUuXugAwZky4u3vJD91KJV5QoC3PXVG85sxBQziUXJ4xaVLJsWwUlfchDcA8mSomxW306Lpbt6JJO0V8fHKHDmhmxCjI4+NTPnhBlpdXvStXUMWPaolEotBRp9NYmET+wMlJn7faIUNCZ8y4KpGoX74U3Lv33v/UOjw3FwA4fn6C3hMu7UqMj8999Cj3yROeTKb9uPoPdOsAiUGQaweqX9jHJuMxAoHixImUESOM3FdEp0+jl9SiGu2cOnVsGza0bdzYplEj20aNCk6dkt65AxoRGYfyi1IV5dChJLQwbFjVK8OrN02aeN66NbJ79yOpqSLNhF9goPPhw32bNy91/AfD4J9/evB48vPn0wBg5syr3t52/foFV6x4gsXgHB0t+vdfABCdPes1fTqlUGQvWMDbsKHQi2CY99y5tZcuxTicY18eQLsMGlR+vKgWX3/d7OrVDE3gTHHYbKbhVYQwFitg27aXLVrQOC65di1v+3aPmBitbcSXL6OXRZa7u8uQIQZatATcv/iCxvGMKVOAphWJickdO9a7ckWjhKU38sePU7p1Q5GiLE/P0CtXKjeq09TY2LAx85bawcwcpVo2MTEXt29PAIBJfVwmX5qO4SoAWMIZfVIdUdouXC4zKsq7VSvfTl4C3/+NoAkCAJbC4OPQqkuXOleuDDNuC5O7dJFcu6bjxrUWL9YS9CqX58/zOnU6lJenAIC4uJFVtACh3rx/L+vR40hCQh4A9O8fsmNHTzRkWjYyGd6582E0jmpjwzp/fnDHjv4mb6sJUGdlJdSpAzSNcblh169nTJ6MVMcAgF2rVsCuXU7dugHAu3dSf/+/KYpmsRjv30/18KjYcydJ0pMnX9q2TVs62RRkf/99ztKlAMB0cWn44oVWyZ43gwahCULvuXP9Vq0yQ3vMQ962bRmTJ6M0GG5QUOjVq5yAAL2PJn/yJKVrVzTQyvLwCL161bZJyWPaVvTGJI5QIJDqUpu3OHFx2e3aHQCAZbC3GzwFgBfgPx5m0PDJ00GdOk4tWvi0aePburVvZKS3RiYxe9GinOXLAUAGNsNhXi7m8vr1pKAgo8VNKF++TGzYEGgaY7G8FyxQJScrnj9XvX6NvK8W9i1bht2+XUbxSS0kEvXPP99Zty4eqY4FBDinpk6qugUI9UYoVA4YcLJfv5C5c5vr/vP5fHnbtgdQAoazM/fcuQFt2lRJX/gyMhJVpgUM0wwnuvTrV3fbNpSfBwAbNjyePv0qAHTuXOfqVX0e9dRqsozAWrWaUKlwo0QrUErly4gIlB3hMnBg8PHjmq/wd+8S6talCQIwrOGrVzahFX61tViUSly4f9/7KZPQnYFTp07olSs65hBr8YkXdHevd+WKXUSpbwXVBrlchWGYOWvzmmRotKBApp8jbNu2dr16rnYpj7vCMwCgAfsT+tKA+fs7RkV5R0X5NG/uHRXlXVqCue9PPxWcPq188cIelFPhwmJ6xPbtCUuWfG7QjykCf+PGwqTAfv1q//YbWkmrVIqXL5WJiYrnzxXPnysTE1Xp6Qw7u4A9e3T3gocOvZo3LzY7u3Bmi8NhfP99qxroBQHA1dXmxo0RFd3L09Pu4sUhbdrsz8mRiUSqQYPOnDkzqEWLqhdT5xwdXegIaRoAGLa2fn/+qZVmfuxYClrQJY++RMpOL1GrCZlMZRRHyLCxqfvPP0kdOwJFFZw4ITx61PXDEGjetm3ITzh26lSdvCAAqFQ4u9/gQCeHtFGjaBxXv32b1KFD6NWrNg0qFvumePr0oxd0c6t3+XJN8IIAoFCoGQyGOR2hSd4IpVKlg0P5I1olsvS3u/7/Gx4OmQDwvmFnxu//NG/u4+Wla3aR9PbtpM8/BwA1sPrCdza1a6WnTzZKSgopkST4+SEp4dCrVzVxDSVuSebnc+rW1eWwSUn506dfRVUmEF271v3jj3YREVXvJl7pPH7M69jxoFhcGDLauXOdb75p0bNnYBV6pJA9fPjqQyk+26ZNg/bvtwn/RFGBz5fXqrWJJGkGA8vMnOLrq88TZ9kQBEkQlBFLhL+dNo2/aRMAsH18whMTWW5uNEk+DwpC+pxBhw65DjPyFEblguMkRVFcLlt05syboUNRrC/Lyyv08mXdRzUVT58md+1K5OUBANPVNfTKFbvIUqd1qxkoZFSPEih6Y5JYDL29IACM93qFvCDG5XY7/U/v3kG6e0EAcGjb1qFNGwDgADEE7mZnS1EYheHk792LvKBNgwaOnTqVsSXT0VEXLyiX4999d6tJk10aL+jr63DgQPTly0OtXlA/mjXzOn58gOZ159q1t717H2vSZOfOnc+LS/dZJvZRUexatQDDvOfMaXD/vpYXBIB16+JJkgaA1q19TeEFAYDFYhrRCwJA7eXLUcAInpODiqmJz59HXpDt7e0yYIARbVkCbDYTFQJz7ts35PRplFJJ8HjJnTrJ//tPlyMonj376AVdXEIvXao5XhAAOByWOb0gmMgR6i1wpU5Pz1tYWHTQe9YsblD5wlHF8Zo1Cy0MhrscILZufVb29jrC37ABLXhOm2Z49a+TJ1+Hh+9Ytuw+ukEzmdisWZEvX04cMaI+SVL65Z9YAYAuXerExY0YPPhjcb7nz/MmTLgQGPjPihUPCgrMGpOtDwyGR0xMvfPn/f78E4lYFuXSpfSlSwsF2EyXY6pUqo1bRYjp5FTngwKiYOdO8eXLH9VkJkzQqAdXG2QylUhUqBDm1L17yLlzKHScyM9P7toV1SUtDVIkEp0/X9QL1rt0qVJKQFQiYrFCj2R0QzDJ0OibN7nBwRWuDEIplUlt26JScJy6dcOfPtUuF6cbNEE8DwpSZ2YCwM8w/Dyr5du3U1COmt5IYmOTO3UCAKajY+OsLFSWUz9SU0UzZlw9d+5jinGrVrU2beoWEVEoPUMQZFZWfkCAZykHsFIOSiWelyehKNbatfH//PNMIvmYXO/oyPnyy8azZ0fVqaP/X7CyyMyUREXt4fPlANC9e8D584MZDJOM+UqlSqlU6ePjYtzDpo0cmX/wIABw/Pzw9+9pkgQGo1FKin7Pu5aMSCTHcdLD46M6j+zu3ZTevVHOMcPBIeTsWccOhanP6owM+ZMniqdP0f9FxQeYzs71Ll4su3xptUQgkDAYDFdXg27aFcIkjhDHST20CtMnTkQVtxk2NmG3bhnyEJSzYkX2woUAkAy+o2DO0qXtNBIk+pE6bJjwyBEA8Jw6tY4B6t44TjVtuksjeezubrtsWbuYmMZF72g0DSRJmrlAc3WCpmmSpNHEsEik+vvvp+vWxWsCkQCAxWL07x/Spo1vs2ZezZp5VyghvbLAcapDh4N3774DAD8/x/j4saarSULTNEXRTKaRh4sIHi8xPLyo3opTjx71LlwwrhVLgKJomtY+gfJHj1J69EA/n2Fn5z5unDIpSf7kCcqRLw7TyanexYv2rVqZo8UWBklSGIaZ6DmvRCwljzBvy5aMD9ISdbduLZ57WyGI/PwEf39KLgeAyTBVFByZkvKl3sOZeHZ2QmAgqoARnpBgSCrr6tWP5s69DgAYBhMmNF6xon1Fk8Cs6IFaTR448GrVqocoQ1GLwEBn5BGbNfNq1szLRBNvBjJ79jVUSpfNZty4MaJ1a9/KbpE+CHbvTh8YpNcpAAAgAElEQVQ/XvMx+Phxl4EDK7E9ZkaRkJDSrRvSCSkNjM22adDArlkzz6lTa+C7YGVhEUOjsgcPktq3R7FVHpMm1f1QZMQQ3n71FZqHuA6N5sP4q1eHde5cR79DvVu8+P0vvwCAY4cOobGxejeJx5OHhm4TiVQAUMZLqnVo1EDQ0Kifn5vWepqGixfTVq58ePXq2xJ3RHh72zVr5j1uXMORIy1FwurIkaRhwwqVuNes6TxrlmnjJkw0NIpI6dlTfPEiALBr126cnq57ilEVovjQqAblq1fJXbvi2dmaNQwHB7umTW0jIuwiIuyaNbNt1Kj43HBNw/xDoybphRV6pSX4/NQPEcb2LVrUWb/eKG3wmjmTv2UL0HQHeOEL+du2JejnCGkc/yiH+PXXhjTp++9vIS9Yr57r3LllDPxiRh+VqlFgWMk9EMOgZ8/Anj0Dk5Ly7917Hx+fGx+f++QJT6ucYW6u/MKFtIsX016/Fv7wQ2tztbpUkpLyY2IuouUhQ0JN7QUBwKSjUnU3b05s3JiSSj1iYqqlFwQADCtVIMymfv2wGzey5s+3CQ21i4y0jYiwCQmpljUFDcHM46JQ6UOjtFqd3KkTUuZk+/o2ePTIiIVFXvfpIzp3DgAOwud/2QzOzv6qaDE2Hcnfvz9t9GgA4Pj5NUpL0/vSffQot2XLvajw95kzA6Ojq22VwaoFRdFJSfnx8TzkFx8/5qGHFURMTOPNm7uZuTRaUWQyvFWrfc+f5wFAaKjrw4djnZyqfIwlf9OmzFmzGmdkaCmuWbFSWZjkClepdK3h8m7x4kJ9aiYzcPdu45bX0rzARcN/DKVs794XehyEv3kzWvD48ku9vSBNw6xZ15AX7NUrsGwvSNNg5hIk1QyKonU/gQwG1qCB++jRDVat6nj9+nChcEZycky3boVpoNu2JfTte0LrldGcTJ16GXlBOzv20aP9zeMFKYrCcROmXXpOmeL700/V2AuSJEUQVSNv1TIhCJIkKXNaNIkjzMrK12Uz4aFDSBoUAGr/8Ydjly7GbYZzr14oH9kBlAPgwaZNTyr69it/9KiwGDSX6zltmt4t2bXr+e3b2QBgY8P666+uZW9MkqTeiZhWAECtJng8sX77YhjUq+d6/vyQadMKtawuXEhr1Wrf27d6HtAQ1q+P19Ql3r69R+PGHuaxK5erBQKJCQ0wGD7ffWfC41c2UqmyoEBe2a2owohEcrFYYU6LJnGEumjEKRIT0z+EhrqPG+c9Z47x24FhXjNnosURcCv5VR6KPtcdzeug66BBLE89o1dEItXChYU1m+bMiSpXBNzMarPVDwYDM1AYhcnENmzoumZNZzRRkZiY16rVvvj4soL9jM7t29nz5sWi5a+/bjZ8uPkid1gshpl1PaoZLBZTj/wxKxrYbJaZT2DlzBGSItHLFi1UKSkAYNuoUf179xj2JgkQouTyhDp1UO7OPPgieOII3avPEPn5CX5+lEIBAGFxcQ5t2+rXhgULbvzxx0MAqF3b4dWrGAcHY4pXWTEpR44kjRt3XqkkAMDBgX34cL9evQLNYJfPl0dF7cnMlABAmza+sbEjak5lSitWzI+uV9fdu3ft7HRN4C3nrZam08eNQ16Q6ewcfPy4ibwgADDs7Dy+/BItj4Rbhw690igyl4tg507kBe0iI/X2gklJ+Sj9CwBWrOigixekKFoiMau8UDWDJCljlbceOjTs3LlBKONeKsX79TuxZYtxFPvKgCTpkSPPIi/o4WF78GBfM3tBHCflcl0vEyvFUasJpbLS5pWrAUolrlKZNU5CpwssKSlpyZIlCoWug7Z8flkTKjm//15w+jQAAIYF7tmjX5ku3fGaMQNjswGgObypLcs4ciRJp90oiv9BQUarCE6F+Pbbm0hNtGXLWjrmpVEUZdoZmuoOjpNCocxYR+vUqc7Vq8OQRB9BUF99dQm935sImoZffrmDMh0xDLZu7eHvX0I6mklRqXCx2DrFpT8KhdrMUpnVDJlMKZebVRa4fEeYk5Mzffr0HTt2FP+Kpmm1mkDxUSRJqdUECvVxcbFTqwkUJInjhCaET60m1ApVwYfinJ6z5zj37Yt2pCgKAHCcVKsJNFqrVhfuWNQKRX20QhBkEStkUSso5g1FD2LePs59+6KvhsKdbdsS0I4lWvmwI5V/6bLqzRsAYDo5OQweWtQKGktWqwkcJzRWip8EgiDPnXtz6tRrAGAwsD//7MBgYJ9aoYtsTGl+C0nSjo42WlZKO9Wl/Bbtk1DcitZvKX6q9bBCEOaz8qHbFLVSuCNF0c7OtmVb0eqcZVuJiPC8c2dU/fruaMsFC25MnXpZocDL/S0lXgKfWiGL/Bbq/v33rVrt/eWXQlHmOXOievUKKN45dbsEyumcZVwCXC7L3t5Gl25jiJVq3DnZbCabzTLQio6ds8RLQBcrOnTOolZMdX/WugTQjmw2C03za1kxXShpOY5QKpWOGzdu48aNXl5exb8lCJLHE6H4KKVSzeOJ0JAUhmE8nghdJAKBlMcTIfVCHk8kFCvDbt/2mDef26mr4/c/AYBMpuLxROi2UlAg4/FE6A/A54vz8iQAQBCUxopCgWusSCRKHk+ETlN+fqEVmqZ5PBF6o1KrCR5PJJEovefNQw3uA4+S7ibdu5elsZKXJ0HvrySJrMiQlXer/kS7OIwemycnS7EiBQAcJ3g8ERoN/vBb1ADA50tnz76ODjJkSL2AADstK+iMoSdHqVTB44lQ2klBgUyhUFMURdPA44ny8qSa34KsyOUfrYhEch5PhDqWQCBB0ZLICnorUirxEq0IhVIeT4R6XpHfQvJ4IpEIWVHzeCI0RCYSKT61IgIAikJWpACgUn20IpMpeTwRGhoSCmU8ngh1Xx5PjP4uH6ygPyiyogIAsVjB44nQCzTqNqVYUQCAVIqsqDXdBlnh88UFBTJHR1tk5UO30bai1TnRHxSVXPjQbT5aUSjwgADn06ejP/usUC9p8+anvXod5fPlRTsnOtWoc374LSVcAp9aQWdM9fx5zrhx51q33vfgQQ4y0b6938yZjVHnRFY+nLGyLgGkcqn5gxbtNqhzfjhj8jIuATabxWRimj+oRIJ+C17kEqBKuwSKdk5kBXWbIlboci+BEjunWk3qfgl86DYyTbeRyZSaP+gHK7JPrWh3ztIvgXI6J46TEom8xEsA3dPKuwSKdhugaUrTbZCVop2zxEvgw52z5PtziZdASZ2z6D3NhPfnYlbkYrEciS1rdU7TvWeXEyzz5MmTZs2aFV2TlpYWEBBQ9kH5fLGnZznq/rRKZU4loZeRkajw9wbo5Tx7/urVZRUUVL99+zwoiCZJwLCGiYkVrSuNWLPm0Zw51wHAyYmTlBTj46PrPChFUUKhzN3d3ANi1QYcJ6VSpSn0mVQqcvz484cOvUIfa9d2OHAgul07PwOPuXr1f0uX3tdUyeBymbNnR33/fStHx8oJHlapcJWKcHKyquDqiUKhJknKkLKsNRyZTIlhmJ2d+RxEOW+EERER9AcAgKbpcr0glBssAwAAZtbT07wUDofbh/YmqFRlpbvyN2ygSRIAnLp1088L8vnyn3++g5Z/+KG17l4QrMEyBmPEYBktuFzm/v19vvvuMySglZ0t7dz58PLl9/WOvD516nXDhjsWLbql8YIDBoQkJk5Yvrx9ZXlBKAyWsfjCjSZjw8MNPff2/PvR3++l7/U7gtoaLGMAfDlfplCaOVimAukTGKbrxgqF2tIy4Wgcfx4UpM7KAoAfYeSovT+MHl2yh6OUygQ/P5RxEXzqlEu/fnqYmzDhws6dzwGgcWOP+PhxFdLoomlapcJtbCzrBFYhKIrGcQKVCDcRsbGZo0adff++MCSnY0f//fujK1Tz8t6997NmXXvw4OOttnVr37VrO7doYUxxJf0gSYokqRqbSthmW5u7WXcBgIExWtZuOaD+gAH1B4S5h+l+BIIgaZpms2voCTQEFalqu62tE9dpd/89fi61zWbXUsowmYF3P/30/uefASAB6u7r+sfly0NL3Cx/7960sWPBAHHR+PjcFi0KZUXPnRtsnswzK2YmM1MyYsSZO3cKJRr8/R0PHeqrS3WklBTh+vWPN216guZaAMDd3faXX9pOntykEkVNrSDeit4GrAmgQfuu2MCjAfKILXxblKqobcVgZl+Yvfb+WgDwd/JPmpFkyzLT+LxJLryMjBKqvlU6nl99BRwuADSGDP61WydOpKD1pEgkiY3NXb06bezYF40apX/xBVrvMWWKHl6QpmHmzEJZ0ejoYD28IEFQ2dk6adRZKRGVCs/JKTC1FX9/x9jYEd980wLdFTMzJR06HFy16r8SHywJgoqNzZw//0b9+ttDQ7etXx+PvCCLxZgxIzI5OWbatAjL8YJyuarsDKhqzNEXR5EX9LTz5DI/Tt+8zHu5LG7ZZ1s/81/tP+3faZdTL+NUqYOfEokCRZ1YqRCnkk6tu78OLX8dOdNsXhAspB6h2UgfP16wezcA3IPQx1jQgAaqAGWGKjW1+JYYh9M4I6OiIuA0DUuW3P3xx9sAwOUyExK+qFfPtaKNtNYjNJDS6hGaiNOn30yYcD4/v3Bat1+/4J07e7m62gCAUKi8cCH9zJnXFy6kC4Xa877duwesXt0pPNzdPO3UHZPWI7RwWm9rfS/rHgDsHLBzYP2B51LOnXh14lzKOala27ENCR9yeMjhEt8Oy6hHWENIFaYGuQZVaJdMcWbE5oh8RT4A9AzsvS/6kJub+Upkm8QRUhTFsMgKW/L4+JdRUeVsxGDY1KvnNnJkrcWLK3RwqRSfOPGCJmF/4cLPli1rp187KYo2czmu6gRNA02b9QRmZIiHDTujmfALCHCOiWl89WpGXFy2ZvxTg6Mjp0ePgC++aNSnT8XuFGbD/CfQQsgQZQSuCaSB5jA5ud/kutgUPgooCeWV1CsnXp04nXQ6T/5xuGt1j9WzW80ufhx0U62xI6jHXh4bcXTEiq4r5raeq+MuBEV03NnxduZtAKjjXCd+crybrZs5T2DNcoQAkNS+PSoooYHCGOywBi6fNbeLjLSLjLRt2pTpWOFHuZQU4cCBpxITCy+SLl3qnDw5UG9ZUasjNIRKuY+r1eSCBTfWrYsv7Xry93fs2ze4X7+Qjh39uVyLVmSusY5w1d1V31z6BgCiQ6PPjDxTfAOSJm9m3Fx3f93JVycBgM1gx34R28a/jdZmNdkR3s2622VXFwWhAIDpLaev6bmGiZXf27+/9v3SW0sBgMVgxX4R28avDZj3BNasoVEAKDh1KmPiRLvWbR4KnA7cp17Qfung6eJmd/BgX00Vuopy9uybsWPPFRQURpx/802L5cvbM5l6/hWtQ6MGYuah0aIcP54SE3NB0xMwDJo18+7XL7hv3+DISAu9IopTY4dGP9v62YPsBwCwa8CucU3HlbaZmlS339H+fvZ9APBz8oufEu9p98nVWtWHRhfHLq7vUX9ko5EV3fF1/us229rw5XzNmr6hfQ8MOWDPLiug+nLq5Z57e1I0BQBLuyxd9PkigUDCYDBMkQpcGiZxhFlZAj8/i5v5KISiaJJE6qMHD76Kibkol+MAwGRiv//eYe7c5hU92C+/3P3117soOsbenr11a48RIwyqmIM0FGrVqvDkohWEWk0UFMi8vMopd2UiUlNFY8f+6+TERf7Pz6/q3Q0VCrVcrqppkg7pBelBa4NooLlMbu78XGduWf3nreht5N+RAoUAALoGdb045iID+zgGJpUqCYJ0cTHffdyI5CvyA9YEyHDZyu4r57SqQHU8gULQemvrlPwUAGAz2Jpgoua+zc+MPOPjUHK8RY40J2JzRK4sFwC6B3c/P/o8A2OIRHIGA3N0rOLBMlWIpKT8AQNOvnpVGKU5dGjYjh097e11GtLk8eTDhp25cSMTfQwPdz9xYkBoqNWBWbFS9Vh5Z+X8y/MBoG9o39MjT5e7/YXXF/rs74PeY35o/8MvnX4xeRPNwk+xP/1842e0/E2bb37v+rsuQ5RKQtl1d1c0yWfPtr/+xfXDiYdX3lmJvq3rXPff0f829GyotRdFUz329riSegUAajnUevzVY2/7yhk4MclMHtIArBKEhbndvj2qe/cA9PHIkaQ2bfanpYnK3fHhw5zmzfdovOCgQfXu3RttFC9I0zTSD7SiHxRFIzFJK/qBFJAruxXm5nDiYbQwtGHJGcZa9Azp+b/2/0PLv9367cLrC5qvCIJESp5VDrFKrElgAICVd1aOPTFWTZZzO6JoatyJccgLMjHmgSEHWvi2+KPbHxv7bEQThBmijM+3f34t7ZrWjsvjliMvyMAYewft1XhBHCeRGLfZMIkjfPdOaIrDmgg3N5uzZwd9/XWhpOqzZ/w2bfb//POdzZufnjz5+vbt7ORkoUYBC3H4cFLnzodQxTgMg0WLPjt8uJ+xNLFIksrJKd8TWykNtZrg8611rPRHoVDXtDS4tIK0/979BwBcJrdfmK5iUos7LO4W1A0AKJoac3zMW9FbtF4mUyHl+irHhocbhEohAGhGevcl7IveHy1Rl3VBfXvl2yMvjqDltb3W9g0trPYztfnUUyNPOXAcAKBAWdBrX6/dT3dr9op7G7c4tjAy//t233cO7Kz5SiyWm1lm0iRDo7qIblsgW7cmTJ9+pTQZUhsblqenrY+PvZ0d++bNTHTaHBzYO3f2Gjw41IjNsIpuG4jpRLdrCDVQdHtZ3LLvrn4HAAPrDzw+/LjuOwqVwqi/o9IK0gCgiXeTe1/es2XZVlHRbYlaErAmAGXy7ei/40H2g03/bUJfNfRseH7MeX8n/+J7rb63eu7FwjSJ79p991vn37Q2SOQn9tnXJ0OUgT7O/Gzm6h6reTKeZmqwW1C3C2MuFJ1kNb/odk2fI9Tizp13Q4ac0mhIlk29eq4nTvRv2NDD1K2yYsWKSWnxTwv0Rrhn4J4xTcZUaN+7WXc77OiAYkOmt5y+vtd6kzTR9Px59895l+YBQIBLQPKMZBbG+v7a98vilqFvg12DL4y5EOIWUnSXs8lnBxwcQNIkAAxuMPjw0MNF/ZmGTHFmn319EngJ6OP4puPzFflnks8AgIedx5OvntR2NJ+saImYxBEKBFJ3d/OJAhiX7GzpyZMpeXkKPl+Rmyvj8eR8voLPl+flfTLW0adP0N69fVxcjP/MQlG0SCS3vtDoDUGQMpnK2dmushtSVVGrCZUKN2fMXuWSKkwNWRdCA23Dssn9JteJW+HRrLX3186+UJhZf2DwgQEhg0mSsrc3a4EdA1ESyqC1QajgxqY+m75q/hVav+HhhpnnZ6KYIC97r39H/dvctzC0/tH7Rx12dJDhMgBo5dfq2vhrZYiiiVXiIYeHXE69XHQlBtjZUWd71+uttbFcrsIwzJyVG2pcHqHeEATF5yvy8hS5uTKFgujTJ8hEGcfWPEIDqcQ8wupBTcsjXHF7xcIrCwGgf1j/kyNO6neQYUeGoXkyB47D1RE3gxxDqlYe4YaHG6afmw4AtR1rv5n1pqjO6rGXx8YcH6MklADgwHE4Ouxoj+Ae6QXprbe1zpHmAECwa/DdL+9qJVMWB6fwqWenbnu8TbPmmzbf/NHtj+JbVpM8QrFYUaMmGIwLRdEymcrRsYpNMFgOJEkplXjVeh63KHCcxHHSzq6mFAJrvqX5o/ePAGDfoH2jGo/S7yAStaT5lubJgmQAaODR4Na4O+6OVeZJQk2q662vh4J91vRcM+uzWVob3My42f9g/wJlAQCwGew1PddseLjhBf8FALjbut+Oua17marfbv32w7UfaKA/q/3ZrYm32IwSctWUShzDMC7XfHWsrHOEVqxYqbm8Eb4JWRcCADYsG958niNH/9e4BF5Cq62t5LgcAEY1HrVv0D6jtdLEbI3fOunMJADwtvdOnZVqxy5hWuE573mvfb2yxFlFV3KZ3MvjLrerUzFR5f0J++denHv3y7uBLpZSos6aPmFxkCSVm2tNn9AftZrIy7OmT+iPUlmD0ieOJBbG/fcK6WWIFwSAxl6NN/UpDLPcn7B/77O9hjbOLBAUsTxuOVqe23puiV4QABp5NboTcyfcM1yzBgNs54CdFfWCADCq8aiUmSlleEGxWCGVmjV9wiTvnlUood4CoWnaegINgaJopdKaUK8/BFGDEuo1CXA65tGXzbim425n3t7yaAsA/Hj9x2ENh3GYlj7CfPD5wTfCNwDgbus+rcW0Mrb0d/K/NeFW/4P9497GAcBvXX4b0WiEfkbLfubAcaLcsg0LFtyIjc3UWrl/f3RISFkj0jKZrF69eu/evdNab5I3wjp1rBkF+sNkMq2BHobA5bJqTqCHKbC351bFPGA9eJ3/Ov59PADYsmyjQ6ONcsyV3Vd62HkAQFpB2vbH241yTNNB0RQq+wAAs1vNRsnvZeBm63Zp7KUB9QdMipy06PNFJmqVi4t9uVHfycnChw9ztP4h4WhETEzMsWPHAEAoFAYGBhIEsWLFipCQkPfv3xc/mkkcIZtt0VVmLBwMAxbLegL1B8Mwy6n2XhXBMIzJrBEnUPM62KueoeOiGhw5jt+2/RYt/3brNxRsabEce3nsZd5LAHDmOs/4bIYuu9iybI8OO7qxz0bTtYrJZBgekz9s2LAjR44AwJEjRwYPHsxisb755pvMTO2XSIRJuntaGs8Uh60hEASVmSmo7FZUYVQq3DpLbQgymYrHqxGz1AefH0QLeg/xlci4+jG+DrUBIEuc9deDv4x4ZONC0dTi64UiZ3Nazym74EZRmBiTxTBhSGd+vlQkkht4kM6dO9+/f1+hUOzbt2/s2LEAwGQyWaySm10jnvusWLFiRYuXeS+f5T4DAHu2fZ96fYx4ZBuWzZzm89DyitsryhbqrEROvjqJXgddbFxmt5pd2c0xMmw2u3v37n///bdIJGratGnZG5vEEQYGepnisDUEFovh72+p1RyrAlwu29fXWgxLf+ztuZVVzdGcHH1xFC30Ce1TWqikfjg52c5qNz3INQgA8uR5Res5WA40Tf9681e0PK3FNN1fB82Am5uDUZShhg8fvmjRotGjR5e7pUkcobUIjiHQNNScmD1TQFG09QQaAkVROG7WIjiVgiZxYmi4EeJFi0KSFEYxNEWaVt5ZiUo6WBTnXp97kvMEABw4DnNbz63s5nwCQZAkSRl+nHbt2jEYjFGjyhdJMMk4b1ZWfvWTWDMbJEm+eye0SqzpDcojtEbe6o1crq72Emsv+C+QBrQDx6G41qWBSKVKHCfHNR33++3fX+W9KlAWrL672tIq9/56o/B1cErUFHdbyxqCEonk5Uqs7dnTu3ilIFfXj4JcBEGcPXu2bdu2tWt/ouhdooaMSd4IzSmWWv0ws9ps9YPBwGxsStBtsqIjLBaDwzGfupXRQdouZXPi1Qm00DOkp3HHRQGAxWKy2UwmxtQkGKy7v86iXgpj02PvZ98HAC6TO6f1nMpujjZsNqvc1ANHR46Hh63WPybzY6zp7t27Z86c+ccfJWiZFscqsWbFipXqA03TUVuiFITii4gvvoj4QlP0XIvGmxo/5z0HgKPDjg5uMNhEjaFoKvLvyKe5TwFgQdsFK7quMJGhitJxZ8cbGTcAYEbLGet6WeIUppkxyRuhWFwlqzNbCBRFm7k6czWDJCmZTFXZrajC4Dgpl1dVbaPLqZcf5zx+lfdq4ZWFAWsCxhwfcy3tGqoipCFJkIS8oD3bvmdIT6O3Qa0mkLYRA2N81+47tHLjw418Od/otvTgduZt5AXZDPa8NvMquzkloFTiKpVZp/lNMgDC54ut1Sf0hqIogUBirT6hNzhOCoUya/UJvVGpcKlUWUWrT2giIQFASSj3Jezbl7Av0CXwi4gvJjSbgGqsa8Jk+oT2sWcbv9aPQqHGcRKNzw8JH9LEu8mz3GdStXRF3IqV3Vca3ZwW+Yr8S28u5SvyhUphviI/X5EvVHxYUArzFfmaHP+xTcfWda5r6vbogUymZDAYVb76REGBzMXFWldWTyiKlkgU1rqyekMQlEKhqjl1ZY0OjhNqNVkVnySup1/vvKszAHCZ3CjfqDuZd4p+y8AY3YK6TWg2YcnNJeiN8MjQI0PChxi9GSoVTpK05kniVNKpAQcHAIAty/b1zNe+jr5Gt1iUb698+/vt38vdjIkxX01/pVVx3kJQKNQYZtaZfuscoRUrVqoJnXd1vp5+HQCmNp+6sc/GV3mvtj/evufZHlQ/Vgt7tj1vPs/okTLFoWn6s62fPXz3EAC+bvH1X71NqDUjUAgC1gRI1WUVD7Fh2bjauA5sMHBD7w2ma4mpoRQKGtfO02M6OEB5at0lYhJHyOeLa4horymgKEoolLm7V6Xy1hYFjpNSqdKc5a2rGSoVrlIRVW52I+5tXLsd7QCAw+Qkz0jWDPoRFHEu5dy2x9vOpZwjqI8zT8MbDj845KApWqJQqEmScnD4OLtx4fWFXvt6AQCXyU2ekVzHuY4p7ALAD9d/WHJzCQCEuIUMazjM1cbVzdbNzdbN1dbVzdYNfTSD7zcQmUyJYZidXVljEm8GDCg4dUprZfjTp7ZNmpS4fWJi4qRJk3g8noODw+bNm1u1alX0W5MMworFCqsj1BsULGN1hHqDgmWsjlBvcJyUy1VVzhEuji2UzZzYbGLRqS8Wg9UvrF+/sH4FyoLDiYe3PNqC6tEbV1+0KGo1geNkUUfYM6Rnp4BO19Ovq0jV4tjFO/rvMIXdPHnemntr0PKq7qv6hfUzhRUzoFTiDAajbEdYLjExMb179x48eLBQKIyMjHRzc1u8eHG/fv0OHz48fvz4pKSkohubJGrUKnBlCEwmw8fHguSOqhwcDsvT0/oYoT+2thw3t3LK8Vga97PvX0u7BgAsBuubNt+UuI2LjcvkqMn/Tf4vbmLclKgpPUJ6mKgx9vZcZ2ftx4gfO2lC/osAACAASURBVPyIFvY92/c6/7Up7G76bxMaFG3k1chYVaUqBScnO8OjBbWqT0yYMKFXr14AEBERQVHasjXWhHqLA8MwGxvrCdQfBgPjcq0J9frDZFa9hHpNFYVxTccFuwaXvXFb/7abozfbskz1ystiMdls7RPYMaAjStXAKfzH6z8a3WiBsmDVnVVo+ccOPzKwKlxQgc1mGl6KTqv6xPTp01ks1qVLl0aOHLl27VqtjU1ysjIy8kxx2BoCQVDZ2fmV3YoqjEqF5+QUVHYrqjByuYrPF1d2KyrAg+wHF99cBAAWg6XJ26tEJBJFfn4J4SpLOi/BAAOAQ4mHUJa9EfnrwV8ilQgAGnk1Mp1EgHkQCmWGJ6NrVZ/g8/n9+vU7efLkqVOnevfWFtUziSMkiOqv2GtK6JogeWw6aBoIwgiKvTUWiqKNInlsNlB4CACMbDSy3NdBM0BRNEWVEIQYVSsKzdtRNPVz7M9GtChRS1bfW42WF36+sEq/DgIARVFG6YFFq0+MGDFi+vTpGzdu9PPzK76lSaJGKYpi6BXDagVBUbThBZprLDQNNG09gfpTtU5gAi+h6aamNNAMjPFs6rOGng0ru0WFss4YVsIJjH8f33xLc9TaWxNutfFvYxSLf979c96leQAQ6BKYPCPZpFVzzUAZJ1BD5pw5kuvXtVYGHznCrVdP8xHHcRcXl+TkZAcHBxcXF3f3j9rieXmfDFuWf76ys7PHjh2blZVF0/Qff/wxYMAAXX6JFStWrJiBJTeX0EADwMD6Ay3BC5ZNZK3IQQ0GHXt5jKKpSWcmxU+J5zINFS5QEsqVdwoFaxZ+vrCqe0Ed8V+9uuwNtKpPlP3KV/572/Lly3v16pWcnLxr164pU6bo0sS0NIuQ1KuiEAT59q11klV/VCr83TsLUvqvcshkSh5PVNmt0Ilnuc+QXhoDY1hOnSOxWCEQlJrSvr73elcbVwB4wX+hifExhM3/bX4vfQ8AgS6BE5pNMPyAlU5+vrSgoPwSImVToeoT5TvCyZMnT5o0SS6XFxQUeHp+UiSPomiFQo3UUQmCRAp7AMBgMBQKNQpRVSpxhUINADQNCoUaadEK5QUP3z5C1VNxnFQo1GhSR6XCFQo1ct0KhRrt+MEKDoXqWYVW1GoCJa5qrND0J1ZIklIo1CVZIRQKNRrE11ih6QpYQTsiKxRV3AqpixXUvOJWVCoCw0BzEj5YoTVW0KlGVtCOyIpSWY4VHC9q5ZNTXREreHlWyNKtqPWzUvQPiuNE2VZUKpzFYpRnpdTOWXq3KaNzEuV2mwpZMVbnLMlK+Z2TwcAwDNPvEjBz5/z99u/odbBPvehwz3AdrJTROY1yCRDoIJrSssUvgVoOtX7uWDhB+OfdP5+8f2pI55SrlH/e/RMdbXar2WwGu5TO+fH+bJpLwJj3Z4Kg0Mi8VuesUPDExIkTMzMzmzZtqsvG5TvCxo0bu7i4NGnSpE+fPqtWrSr6FUmSAoFEIlGgcyQQSFCjnZ1tBQIJanRBgUwgkNA0TdO0QCB5l8f/9eavweuDhx0bKpLI0E8VCCToPIrFCoFAgk5Hfr5UKJSh8yUQSFBBhqJWZDKVxopIJBcIJAA0AC0QSAoKZACA46RAIEGFCIpakUgUAoEE/YWEQhmK70JWUKhS2VY0v6WoFalUqbGC/swfrJBlW5HLVQAgl6sEAgnqE1KpkslkUBRN0yAQSNBJwHGiDCvoKhIKZeg5lCRpgUAiEiErhMYK+i3ICvot6MLWWCEIUnOqFQp0EpAVZRErUoFAAgAUhazIAUCtJjSnGv0WdPmJROgkICvST60oAECp/HiqpVKl5lQLhbKiVsTi0qx87DboD5qfL5XJVD4+LsgKOtWlWdHqnOi3FO02ZVj5tHNqd5sKWfm0cyqLWkHdhiB0vQTK7Zy6XAJ2dlxHRxutboNu8R+sULpcAh8uZxIA8vM1VugSL4FyO2dxK4k5Lw8+L5SGWdhmUdFL4EPnVGi6TUlWFJ9akWp1ztIvgU86Z/FLgMHACIIs8RLIz5cBwKSIKS28WwEATuFfno7h5RWU3m2ApqkyLrTt8dszxZkA4GnrNaHpxE87Z8n3Z707p9nuzzhOoGx6rc6J/oimoPxgGZlMZmdnRxDE8ePHFy1alJqaWu5BFQp1aamEMlwWtDaIJ+MBwJa+WyZFTtKj0dUbmqZVKtyaSqg3FEXjOGFNJdQbkqRIkrL8VMKxJ8bufbYXAKJDo8+MPFPZzfkIQZA0TRdPJSxKSn5K001NFYQCAJZ2Waop4Vsh1KQ6ZF0IcoSre6ye3Wq2fg22NHCcxDAwPJVQd8p/Ixw8ePDBgwfZbLa/v79KpZNDLmOGxp5tP7/NfLS85OYSNVlVy56ZDpKkcnKqxgyNZaJWE3y+pLJbUYVRKNQlpsFZFMmC5AMJB9DyD+1/qNzGaCGTqdDLaBnUc6v3U8ef0PLPsT+/zHuph6HdT3cjL+hl7zU5arIeR7BMxGK5mWuylv9GmJiYGBMTk5eXx2az16xZ06NH+bpEZYtuKwll8Lrgd5J3ALCpz6avmn9V0UZXb6yi2wZiFd02kCohuh1zOmb74+0A0CO4x4UxFyq7OZ+gKCa6XSIkTbba2uq/d/8BQGu/1nET4yqU/0dQRNhfYanCVABY0XXFgrYLDGmzRaGL6PbdrLvIiRSlW1A3J64+MteVU4Zp9b3Vcy/OBQB/J/+UmSmGBxBbsWKl5pBWkBa2PgyncAC4E3OntV/rym6RnjzLfdZ8S3P0Qzb22Ti1+VTd9939dPf4k+MBwMPOI312uikqDFsyAw4OOJWkXX3i6VdPm3iXXH2i7DxAk6S9o7nQMpjafGptx9oAkCnO3Bq/1RRtqLpQFI2mrK3oB0FQKEDAin7gOIFCGCyWFXErkPPoFNDJAr2gSoXL5TpN+jTxbjK/beFU0cIrC9E4py4QFPHrzV/R8szPZlYzL6iJLDWEmJiYY8eOAYBQKAwMDFyyZEkZeYAmcYRl5NAgbFg2mhf5327+hmaMrSDQ0Ghlt6IKQxBkuTM0VspApSIs+UkiQ5SBBkUB4IcOljU7iFAqcd3jG3/s8GO4ZzgAiFXiKWd0StQGgCMvjqASFi42LjM/m6lfOy0WuVyFQk8NQav6xLRp00rLAwQTOUJdihFOippUy6EWALyXvt/x2CTVuaooDAbDOkFoCGw20zpBaAhcLtvJyRJrtyoJ5ZEXR0YfG41eB1v5teoU0KmyG1UCtraccicINXCZ3L96/4XEuM+/Pn/0xdFyd6FpekXcCrQ8JWqKM7e6VW2zt7cxsBghFKs+UUYeIJjIEeoyzW7Lsv3282/R8rK4ZUrCrDFClgyDgRlei6smw2Qy7O2ts876w2Yz7ewsKHuHoqlraddiTsf4rPQZdmTY7czbaP3/2v+vchtWGhwOy8amAtk7nQI6fRn5JVqecX5GvqKc4jOnk0+j4hV2bLu5refq3U6LxcaGzeUamr2jVX1CJpPRNP3y5cuDBw9Onao9F2sSR6ijwNWUqCm+jr4AkCXO+if+H1O0pCpCklRurjV9Qn/UaiIvz5o+oT9KpaWkTzzLfbbg8oK6a+p22d1l++PtqMwQonNg594h2sV0LASZTFXRaf4/uv+BboY50hwkn10ab4RvfrlRKCY3JWqKl72X3u20WMRiBVJOMJCi1SfKzgM0SdTomze5wcHeumz514O/ZpyfAQC+jr6vZ742XanMKsSLZOG79wVdOwRWdkOqKkolnpcn8fNzq+yGVFWkUqVUqvTxcamsBmSKM/cn7N/7bO9z3nOtr/yd/Ec0GjGmyZjSggMtAZFIjuOkh0fFJjhOvjo58NBAAMAAuzj2Yregbmg9TuHx7+PvZN65/fb27czbOdIctN6GZfNm5hvkPqsZAoGEwWCUPcGx6+mu4t1jXut5Pg4+mo+a6hO1a9cuOw/QJI5QpcJ11PVQkaqQdSFZ4iyoXsoIhvDT6vjnScL1v7Su5WWJ8zSWD1J6tHxhlDJQCh/auDYHqJxCSBRFkSTNZptP16Mom/7bNP3cdIr+pBydq43rkPAho5uMblenneUX2yNJiqZpPYRRhh8dfjjxMAAEuASs67XuXta9229vP3z3UI6X8H45rcW0Db03GKG5lgdBkBiGMZkG/aEJgjhz5symTZsuXbpU7saVk0dYlE3/bZr27zQA8HHweTPzjR27Rt/9s3PkE+ffomk6LMh55f9acjmVczOyUokQypyMK018W5+0dTdOsboqxK83f/3x+o+ajzYsm+jQ6NGNR/eq16smZBvnynLDN4SXPUdox7Zr4dvi8zqff93yaxRvaKVEtm/fvnjx4rNnz+qiu20SR5iWxgsM1HXkWk2q662v91b0FgBWdl85r3VZ4+PVnrXbE/+9VphL1PVz3wVfWe74j8WiUuECgdTX17WyG6IfdHZcb1nuBZeQmV5N11ZKC2QylUym9PIyaywiTdNzLs5Ze7/wJ4d7hs9vM39gg4FVMSRSLFbgOKFf7Peup7u+OPmF1kofB5+2/m3b1mnbxr9NZK1INqOa6+jm50uZTIazs/leiip/+IjD5CzusDjmdAwALLu1bHLUZEdODU0eEAhVl25maz5eiXvn7+swsl9QJTbJipkRpe+Q5V4AAGn2Ma8mq8HihwGNgpJQjjw28uSrk+hj9+Dux4cfr2ZJ4joyvun4Ey9PXHh9oblv88/rfN62TtsWvi2KzntZMQWVPzQKADiFh60PSytIg2onmlchdh5N2X/yDQBw2Aw1TgEAg4EtXdA8spF7ZTfNijnAZW8yrkRQRGHEpn+HG7Ye7Su3SWZAQSiGHRl2Nvks+hgdGn146OGaHDcnVAoBABXvtWIeTPK8WaHyiQDAZrAXdyys1LwsblmBssAEjbJ0ZHLi5MUMtLxoWpMWTT0BgKLon9c8zsiyiFj2qgJN06hkWtWCptTv7g3TeEEAEGfur5yW0DQqVWgG+HJ++x3tNV5wStSUkyNOVnUvSFEGnUBXG9ca7gVJkkJ1Is2GSRzh27d5Fd1lTJMxYe5hAFCgLFj/YL0JGmXpnI/NkisIAKhb297Xg7loWhNfbzsAUCiJn9c8lsoNVd6rOahURE5O1XuWyn+1VFUQDwCaYFFp9gmgK/ZMaRRkMhWfLzaDoUxxZocdHVD5BQBY3nX55ujNTKzKB4hJJAqrSqIhFBTIyk3E/Pda5rodiVr/8oTlZB/evXvXzq6EqUeTOMLSqvKWARNjanQiVt1ZhQYHag4EQR0/n46WB/cKtLPjONizf5kXaWfLAoCsHNlv65+a+RGp6sJgYBXS9bAE5PzrgleFGsqeTf5g2wUAAKniyXhXzN8YFothhuSTJEFSu+3tUB0+BsZY32v9t22/NbVR88BiMSsr+aR6wGazyj2BD5/yz17N1Ponlnx8YdAS3SYIIikpacmSJQpFCTq6JnGE+gXsjWw8soFHAwAQqURr71VOvFxlcfNBLnqWcXPmdmnr6+3tDAB1fB1mTWyIYQAAjxLy9p18Yyxz+QUWXVvAQDgcVkVzmSsXUi3MeTgOaAoA7Ly6uIbMcfAbir6SZB0yf3tsbDhubg4mNXE/+36bbW0yRBkAwGawdw/cPb3ldJNaNCf29lxzRjxWP5ycbHUXay0NLdHtvLy86dOn79hRsq61SRyhWKyPdD0TYy5qtwgtr7u/7m7WXaM2ynKhaTh4utDJDe4dwGRimurMnVrXGtU/GC3vPfH6+t33BtrCcWrboeTRs2Kv3TH0UBYLSVIWXkVIC96T6YQiCwCYHHef5rsAYzj6DUdfSbNP0JS5fwuOkzpWEdKPO5l3eu3thbLluEzugSEHRjcebTpz5ketJgyvIlSTUSpxlYow8CBFRbcHDhw4bty4jRs3enmVnNdnEkeo9wTDqMaj0EyhUClsv6P9T7E/EZShp8PyeZwoSM+SAoCtDatXRz+KogSCj1KZYweFtGjiAQA0DWu2PU/PkhIUcS/rnh6GMrKlc3+9f+hMKknSG3a/4Amqp9A5jpNVaIZGkrlf8iEoxjvqH5ZtbQCwcY3iONQDAAovkOVeNHOTVCpcLDZVRcw9z/Z029MNzX04chzPjT43uMFgE9mqLBQKtVGkMmssMplS9zpWpVFUdNve3v7y5cuhoaEYhgEAhmHp6elFNzaJI3Rx0TMBiIkxN0dv9rDzAACCIn6+8XO7He3eCI02JGiZHD6bihZ6dfJzsGczGJ9kkjIY2KLpTWv7oMAZ8qfV8evj/imqvqELFEUfPpv29f/uJKUWyhZLpPjSv54QZDWcd2SxGFWlfAcuz8h9PA0tO9X9wsF3oOYrB79haEGSae7RUQ6HZYryHQpC8eXpL8edGIcEwzztPK+Nv9Y5sLPRDVU6XC5bjzgJKxpsbTlGmebXiG5HRETQHwAAmqYDAgKKbmkSR+jurv8EQ8eAjs+mPusRXKiIei/rXrPNzXY+2Wmcllker9PF8c8FAMBiYoN6BgAAg4Fpqc062LF/mlMYOPMuV35ov/RaaqzuxayzcmRzf72/9WASyk1kMTEWEwOAFykFO48kG/XXWAQsFrNqzNDQZM7DMRQuAgCOQz2viE+CpTWjo7L3p2nSVO9nJcLhsBwdjZzAkCRIarW11bbH29DHcM/wuIlxzX2bG9eKhWBjw7YWAjMEOzuuUZ4k2rVrx2AwRo0aVe6WzJ9++slwe1rw+WJD+oEjx3F049Gutq6x6bEERahJ9amkU4n8xK5BXW3ZVTvBqDhb9r9Ky5QCQKc2vj3a1wYAiqLy86VadSldnDh1/Rxu3MsBAK7am0nZgnt6+7rlZFvTNH3iYsaSdU9z+IWztkF1HH/9JsrXx/5RQh4AvEgpqB/sXNunWkl44DgpFiss/5E8P/l3cfoOAMAwlm+bUxyH4KLfsmy8JdlHSRWfptRcl2Zcp3CzNUylwuVytY66+bpw8PnBfgf6aR7dxjUdd3LEyWqsk6lQqFUqvErLvlcuMpmSIEg2u6wT6O9r37a5d5e2vkX/BdVxYrMK3+4Igjh79mxubu7XX39ddMcSXZ5JHGFOToGBUWcYhrXya9W/fv+4t3E8GQ8AXvBf7E/YH+ETEehafeoT5fIVa3ck0jRgGCz4qomrMxcASJLKy5MUH172r2XPk+e+ea0GAGdl/dSnLmlpygKx2saG5ezIwYoVKniXK/9p9eNz17NIkgYAJhMb1T944dQmHm42DUJcXmeIs97LAODRc0HnNrXQ62b1AMdJkUiuS3XoSkSZ/yDn4RgACgDcG/zPqe644tuQ6jwFPxYAMJp2/DBSao62KXGZTGV42B4AKAnljPMzFl1dpCbVAGDLsv07+u9fOv3CYVr6Y4ohyOUqtZowvMZ6jUUiUVAUXfazrJsL19fbTuufxgsCwM6dO7/99tudO3f6+JQvUGcSiTWFQm2s53GCIpbcXLLk5hLyQ2bx2CZjN0Vvqh46hBv3vERqMs2beCxdUDhMRNO0SoXb2GifQJqm2277XP5fZy9pW62vXJw4TRu4NQ13jwh386tlT9Nw5srbrQeTlKrCkxbg5zB/SpN6gU6aXcRSfOr3t/kCJQA0aeD2+6IWDEblFP0xOhRF4zhhxBcao0MR0oyrzXDpawCwcWvl3/EWhpXwIKKWJqdfDAMAjGkT3CeXwXYqvo0pIEmKJCnDX2ie854PPTL0Vd4r9LGpd9PDQw+Huoca3EBLhyBImqbLfqGxUgY4TmIY6FHHSm8sQmu0XC6+uTjh5IT30sKI/wifiAODD9T3qF+5rTIQiRQfPSsW+aoVi1o0a1iOoOiB5wdGHRvFpGxD82LcFBF26tolbubuynV15r5OLwzcZTKxYX0CxwwMYbO154NfpBTMW3IfvS+OHhA8fkg9Q3+SFd3IfTxVlLoZABgsx7pdn7DtS9VVz7gaqSp4DAC1Wu5z9C9/qsNyOPri6Jenv9TUlB/dePTm6M0OHNOmJ1qxoh8mCZbJyhIY94A9gns8m/qsf1h/9PFJzpMOOzskC6p2oMeZK2+RFwwJcCrqBUmSev9eW1hHhssWXF4AACRDEdDmze26X94KGJfqt7FjGy8P10+GsARClcYL1vVzWLO41YRhocW9IACE13P54oPz238q9XGikf9qlYVaTfB4ospuhTYUIVMK/xNn7OQ9mSlK/Rut9Gi0vAwvCACOtYegBUnWEZM38QMKhbpoAk9FkaglM8/PHHpkKPKCNiybv6P/3jtob83xglKpsqCgyiTwWCAikVwi0ScZXW9M8vJueC5kcTzsPE6OOLnl0Za5F+fKcBlPxuu+p3vcxDg/Jz+j2zIpFE1dfHMxzLXRsQvpaM2Ivp/cCmmaLn4Cl8ctzxJnAUBtx9qHhx5u+U/Ll3kv37DP1Pl82HfTxuQXqJ4nCeMTBf895aPsQBaLMX5wyJDegUxmWQOew6KDXr4W3XmUS9P00g1PN/3WRsutVkUoilarTSjRKXy9Vpl/n8l2YXBcmWwXBtuVwXFhsl0ZbBcmx5XBdmVyXGhSqZa8VIkT1eJE9D8uSwf4ZPTF3qePS/DUsm05+g/PS/weAGS5FyhcxGCbozgfSVK66+ZnijOT8pKSBEkv+S+TBElJeUlF45lD3UMPDz3c1Lv8yqjVCZKkqqLsu+VAECSDYdYCZCYZGqUoynQ/40H2gy67u0jVUgBo4NHg5oSbKO/Q8pGqpbue7lp3f12yILkl9aXzm8EA4O1pu3Nley13RVF00Rm7VGFqw40NlYQSAPYO2ju68egVt1csvLIQALoEdrky7qMcJU3TqW8lT17kNwp1DQvW6aYpEqunfn8HCbxFNnJf9m1zrHjgTZWCpoGmadNMedL8Z/OFKat02BLTcntaMLleAd2eMbne5R7o7bWWSuFDAPBpvqvEmBqjU/YJlKgl6+6ve8F/gfwfuhJLZHjD4f/0+6cGlhdFN9Wqfh1VIuY/gVXPEQLAldQr0fujVaQKAFrWbnll3BUzXGwilUiOy+W4vEBZYMOyqe9RX3eZ/LSCtL8e/LUtfhsaLMJoZtuMrba4DwDM+CK8b9c6WttrOcKBhwaimqVt/dvemnALw7B3knd1VtchaZKBMdJmpdVx1j5ChUh6I5rz6330DFsNJgtN5QhpMid+Ekp40AOMweU4hnEc63OcwjmO4TZuLZCydrkIU1bxn30DAPY+vWu3/Vc/6xWijBOYr8jvva/3/ez7ZezuyHEM8wib2Gzi1OblvO9WV6yO0EB0OYG5j6fKcy9rrazd9l+OY1iJ2//111/ffvutra0tAIwfP37Vqk8eZ00yNJqWxg8OLv9RV2+6BnXdO2jviKMjSJp8kP1g4MGB/47+l8s0TrDy0RdH/370N/J5YpVYopLIcbkM1x7xd7FxaVenXafATh3qdmjq07Q0p3g9/fq6++vOJJ0hi9TT8ZS1Rl4QOMpObbVPFEGQWVn5AQGe6OPl1MvICzIwxrpe61Dn8HX07R7c/fzr8xRN7X66W1O4Qz/Cgp3HDAjeeTQFAA6eSY1s5N64vpshBzQEFalafHlph5BWPYN76ncrUanwvDyJn58xfwJNKt8/GCl9V1hC3d6nj51XZwovIHERhRdQuIjECyhcRKkLSLyAwgsYLHuOY32OYzjHKZzjWJ/j1JBjHwR6FRhyrD2U/2w+AC3nXSbV+UyOyf80MplSKlX6+Lhorc+R5nTf0z2Bl1B0pZ+TX5h7WJhHWLhnOFrwd/I3dQstHLFYgeNk1VJ+tyjy86UMBkNLV0QLUvkel2mLjhUV5o2Jiendu/fgwYOFQmFkZGSPHj327t07cOBAKAmTvBFmZOTVrWvy4cotj7Z8dfYrGmgAGNRg0OGhhw2sZKYm1fMvz193f11Fd9Q4xY4BHZt6N2VgDCWh3J+wf939dU9znxbdMsg1aEbLGXGH64p5tgDwxm1vu86sHf13FL3jEwSVm1tQu7YbAOAUHrE54gX/BQBMipy0pe8WzWaHEw8PPzocAELcQpKnJxv4+EnT8NPq+LvxPABwceJsXtrWzaUSsqDy5HkDDw0U32+X4PNHuFfY3NZzRzcZXdFHHJUKFwplxe/jekOqBdm3eyvzH6CPzkFfeUf8pZ9X04/MGx0UeTcBwLvZZuegKaY2J5erZDKVp+cn2RoZooxuu7ul5KcAAIvBWtplaaeATmEeYTVw5LNcJBIFjpOmruBRjREKZUwmo+xU4Hd3B0jfndJaWbfrU65zE7R88eLFHTt2HDx4cMuWLcnJyU+ePJFKpc+fP4+IiNi6dWv9+p8kHVSN9InSWBa37Lur36HlmGYx//T9R29/kCHKGHZk2IPsByV+y2b8n73rDI+iatvPzPaaTdn0nhBCDyT03jsICoKAIIJURYpdFF8FC0UEFUVBRIogihSR3iGBkEAISUhI75tke99p34+zLCGkbDZF3vfzvri4Zjcz58zMnpnnnKfcN0fMFUt4Ej6bL+FKlGZlvia/1j3d+e69AnvdKr1Vaaqs/v3g0MGv9XxtQtsJaZmalZ/cBAAat10JnW1jad7o88YXw7+otbUvE75ccWoFAMj4sqxXs+RCueNPFtLiv9EfkRdffuly/+D+rlx2Nai1tkXvXlNprQDQvbPXa3M7+Hi1ak16emX6+P3jC5Slg3J/S/VbVyGKBwBfse/SHksXxi30FDRQXtJCoKxVJddGW9R28Vj3NivknTc4tHNbB5qcrRV3XgMAofewwP413UGtgExl5vDdw1EWDI/F2/fsvsntJrf+afyL/w+walNYPG82vwHioQYNIUEQUVFR6enpo0aN2rJly969e0eNGtWjR49NmzadPn366tWr1Q982gvqG8TK0ys3xW9C2/VYlPpxPOv47D9nI10YAHi23bNv93tbxpfx2XwRVyTlSZ9caxZoC87nnb+Qd+F83vkSfUldLfPZ/Okdpy/rtQwlzpEk/eanifcy1QAgjcj/HbcHqOAUHwAAIABJREFUUTaM2LCy90q07SiorzBWtP26rcaiAYDNozYv67msRuOL/1q87dY2AJjbde6OCTtcuPAauJOufOvTW44h4eHGi450i46QtYuURYVLBfwWLBA+lXPq+d+e11q1Xsa4rqUf68XpCX4rHX8VcURzYuYs7708wj2inkYQmrGgnjQXFV8ZYdOjknDMq+Naj7bvNL3ZRp+GpSz3RBAwFGCsiLElzqTYNAU1CupTFCkjfhmBCJ6EHOEfz//hoAL+F7Xi34L6pqDwfHer5o7AZ5RPzFf1FBc1aAgBYMGCBe3atdu1a9edO3ccX+r1ej8/P4PhsSSvFqFYKyysajW3wIjwEWWGsqSyJAC4XnQdx/CBoQOdP9xG2RafWLzq9CozaQYAAVuwY8KOtUPX+kv8PQQeUp5UwBbgWC2JPzK+rKtv10ntJq3ovWJh3MKegT3dBe5KsxLZLQAIlYWuGbRm7+S9UztM9RX7AgBNM59+ezcxpQoAMAzb9s54FVmCfKdncs74S/1j/WIBgKLo0lKNTCZacmIJykro4tNlx8QdT56Gr8R3e9J2AMhSZr3a89WmR0l95UKGgbv37RMCs5UqKjPeTlOeuVJy8HjelZuK7HydVmdjs3E3CacZcwHWXFzzyrFXLJQFAKLMz4mMbXg2+bIJY4qtWej9S9BEYmnilhtbzuaelYvkUR5R9fRutZJVVfqmU6xZtSnFlwYSpnwAwHCOb9zPsojFTWzTNeBsibnqCmHMBWA4giC+R88W7c5ksmq1JkSxdjb37IhfRqBR7SX0Ojf7XNN9D//z0OstJpPtX4o1F2BRJyozPgKgSXOpZ/sPMbzOBZW++FebPrPGl7LwRWz+o2miSCSaO3fusmXL4uLiOnToMHLkSE9Pz+PHjxcXF8+ZM6f6gS2yIqys1NUIMLQoSJp89uCzRzOPAgAG2Pbx2+d1m+fMgaX60mmHpl0pvII+BkmDDkw50Duwt8tnwjBMWmXa+bzzHgKPqR2mVidUZBj4amfaiQv2Eqs5z7V54ZkIC2kZvXf0xfyLAMDBOX9O+3NMmzE0TavVxjxrZs8fe9IMDQBnZp0ZFj6s1h47fNsBRRB3T9o9q/Msl8/cAZpmfj2Wm5apzsjWGkx1iot6uvN2rh8g4Dc1TkbS5LKTy75N/BZ9jHCP6F+yvaTEBgBjBge9Nrfdn/f/3HB9Qw2V5t6BvT8d9unAkNpnPARBGQyW+iPtDcKiTiq5NpqyVgIAhnN9u++RPFSN/0egzf1ecXshAAi8+gcNvNyifVmthNVKSqWCc3nnJu6fiDLFvIReJ2eeRHO1BkGTRpz9v0CC6BrMZhtF0c1C1vr/DQ7SJWHgi4E9f65nT2dWhARByGSyrKysgICAv//++6233qIoys/Pb/v27eHhj601/7tjhA6YSfPoPaMvFVwCABbGOjDlQINqn2dzz874YwZacADAyIiReybvabmSxB/2Z/72Vx7anjw6dOEMe6hWa9UO2jXoTvkdABByhGdfPNs7sDfDMH139kVv/0nRk/54/o+6ml1/fT1inBkSNuTci+ea8YQZBorKDPeztRnZmoxsTX6xgaYfGyovTY2aPqE+VpQGobFonj/0/Omc0+jjgJABu0YfWLjqDhqSPC5r35ZBEjEHAK4VXdtwfcPRzKNoZgAAArbg75l/12ULmwhj+d+lCc8h8SOc4xbQ56jAqwGhj5YGZVPn/uXL0DYALGx0rpOlF03Bkcwjz//2PCpS8pf4n5l1pr3cKQUMizK+JH5CYL8zPFlMC5/jv/ifAk3ock/406QRAIKH3OS7d693dwaeNF7V3GYkSR47dmzbtm2nT59usOsWMYQajdFlbV6XobVqB+8afLv8NgBwcE57eftw9/Aw97AwWZhjg8/mAwDN0B9f/vg/l/6D3qosjPXBwA/eH/B+rS7QZsGvR3N3HrQTwo0cELBifqfqjr1yQ3nfnX1z1bkA4CHwuDT78rW8hIWn5gEAn81PX5IeJqtTcKPMUBb8ZTBJkziG57yWEyoLbaFLMFuorFxterYmJV2JBBTFIs7uLweIhS6G4nLUOeP3jc+oykAf58TM+X7c9/GJyrVfP8qznT+97ZSxj649S5m1KX7T7pTdyI8t5UkvzL7Qza9bjZZJkjabrS4r6hnKjpbdeJ6hLADA4noG9P2rpV2RTqLk6mij4iQAyDtvcm+zvOU6Igjyl5Q9C/6eT9IkAIS7h5+ZdSbc3alJD03qC8/F2gwP2IKgoEFXOMKQljvPpxZWK0FRjFD4v6yw0RLQ5v2oSJ4PABxJR78ByU3U5t25c+eHH354/PjxLl0aJjZqEUOYk6No0TrCuqAwKvrv7I8yvGuFv8Q/TBZmo2yJpYnoG2+R997Je+tyPDYLDp3I377PTsA/uLff24s7PxnfylZl99vZT2FUAECgNNBGEBVmBQC8P+D9jwd/XH/74/aN++vBXwDw0aCPPhjYOOV6F8AwzKL3rucW6gFg2oTwuVNdERO4XHD52YPPVpmqAADH8HVD173V9y0A2PTjvZMXix27ebnzd28eyH6cdidXnTvgpwEoQUkulF+Ze6Wt52MltBZLU+oImdwTQaS5BADYgsDAfqe4rSgEWD90BbvKb70EAHyPnsGDE1qoFzNp/ura1+9dehtNE9vL25+ZdcZf4u/k4WU3Z+iL9qFtrrhN4MDLbH7DIjj/Y9BqTf/WEboAB4mSqM0GYdDCJkY3GoUWWQO1ZoCwOnxEPqdnnQ6Q1C7LAACl+tJrRdccVrBfcL/kBcktagUvxJf9sN8e0e3W0XPVK51qzfKI9Ig8MeOElCcFgGJdMbKCgdLAt/u93WAXc2LmoI3dKbtbwdGNYZiDHPXI6UKt3ub8sVbKerv89obrG4b/MhxZQRFHdGjqIWQFASAl3Z6ngzjnqtSWG7crajQS7h5+etZp5MSuNFUO3z28UFtYfQcOh+XyI2RRJSIryOJ5BQ26+vRYQQAQ+z+D4TwAsKhuEsa85m1cY9HsTd373MHn5F/I37n4JrKCsX6xl+Zcct4KavN3OKwgANgMD0qujqBsquY91acfAgH33wBhY2HV3EFWEGMJ3cNebOVUo4ZXhGlpafPnz6+oqBCLxd99912vXr1a58xcBsMwpYbSPHVerjo3T5OXp85D/5foSxwRJgywlX1Wfjr0UzbeginOl2+Ur/smBYXWOkV7rHszlsetL7vkfN75MXvHoKgMAOx7dt/0jtMb7MVKWf03+qPaj0tzLjUoW990MAwsWX0daVxUj3c+sRuTr81PVaSmVqTeVdxNVaQ+UD1A3jaEAEnA0elHHb7NUoVpzsrLACAUsCcMD/71aC4AdGzrvml1LZ7JxNLEoT8P1dv0ANDWs+3lly57i7ybfmlV995VZX4KAG5h83y6/dD0BpsXpdcnGsqOAoBXx8882r7V9AbLDeVHMo8czjh8If8C0s51oF9wv+MvHHfjOUvzbdOlFZzvgQKrfM/eFtVNYCgA4Hv0DOx/Fmf/W13+L+pDxe3FmtxtACANme0bt6uVe2/YEPbs2fO9996bMGHCwYMHV69enZlZM2P1SZSWqv393ZvpDJsNNspWoC1AdjFUFtrStVCJd6s+3JSMCDzbhEnXv9vDGRX439J/m3ZoGs3Q/YP7X5pzyckShaUnln6T+A0AvBTz0s6JO5t45s7gxu3K1RuTAIDLwXdtHODl8Wj+ey7v3MG0g6mK1HsV95ChqhWxfrFHpx+tvtr463zRVzvTAKBnjHz5vI4zX7+E7t7XH/eOCqvldXwh/8KYvWMQF3k3v27nZ59Hb22bjdTpzK45pvJPRdkMDwAgoO8Jke9oF1poUeiLD5TdmAYAPLdOIcPuutxOrjr38P3DhzMOxxfHO2aHDnT27jwmbPzqoe8KOUInG6QJXcH5WCQ1zHPrEjw4QV/ye/mtF4GhAYDv2Tuw3+n/P7bQaLSSJOXm5uzd+xc0ocs9EUCTBgAIHpxgY3fGcaw1V9UNu0ZnzZo1evRoAIiJiaHpx54ZmmbMZhvSDCJJymy2IfUWo9FqNtvQzhYLYTbbAIBhwGy2WSwEAOgNtowHKpuNBACCoMxmG3rlWa2E2WxDttlstqEDH/ZCgD0Pwt6LzUaiNGVHLwzzWC8URZvNNkcvlA3CpBEjIkbM6fjyAP/BaKHm6IVhGtELOhD1QtOP9WI220iSys7Xrfv6Droofx/he0s6Y0DX6AWdXo1eprSfsnHoJhbG2jxqM4Zh1XphHL2gW02Sjw58sfNs9IscSj9kJIx19UIQj66lxq12phd0x9BN6BEjR8bJRtAH/8pDvSSV3B61Z9Sw3cO2J22PL45/0gqiJKYp7af+Z8AnZ2ec95f4V+8F5eAAQJf2nkI+3ivGnsF79HRh9R+UIOy3updP3/2Tf0Vr+uSy5An7J5hJM/pBLRaioWupZXDqq1KRFcQ5UrZsQGMGJ9ngsKnxCNQYnDV6qWtwiv3GI3Ni1abadGkNDs7aeqEm7J8QsSVi1elV14quVfeR9ArstXbQp+kL71+bdePVzisxku38I1CaOA9ZQYwldO/8M8VwpMEzPDpuQRQ8FmV88bWJJqO+nkegmQZnLY/z471QzfUI1NELiVo2merqxeZELy4Om3oH56P3c8v00qT3s6ZgH7KCPFlXTBRrMlnQ9zUeAefVwRqLhg3h0qVL2Wz26dOnp0+f/tVXX1X/E0XRGo3RaLQAgM1GajRGdDtkMqFGYyQIGgD0erNGY2QYhmEYjcZYWWXc+2fOnFVXPv3mrtFoBQCLxabRGNFlG41WjcaI7p1Wa9JqTQBA06gXa41ezGabRmNEAwj1AsAAMBqNEYk6kiSl0RjRfbRaCY3GaLMRAGA0WjQaIxoHOp0Z9fLwWqwAQBCkRmNEQ7Z6L0hv03EtD3uhNRqjyfSol/wi3Ttf3DKaSADwkPE+fSuOhVEPe2E0GqPB8OhaqveCfuYZUXMPjj0S49OVYUCjMep0j67FZEJ3jNBojGh8ozvW1adbR++OAKC36Q+lH6Jp1Muj3wXdBLOZcPSi16ObwACgXkyOXtBNsFrJGr2gm6DTmTQaI4bBrMl2kpcT54tuZT948fCLPXbEnco5VX2EBEmChgWPeKvvW3sm7zn73JW8+SVpi9P2PrN3XvRixsaq1gvBMHA3w24Iu3bw0OnMA3vYDeHFhLJyhQEACIJy3Go0bEaGjt45cSdK971ccHnqb1MrVVqzmfD2lqIftPpNQI+fyYSupfrgBPSDaorsnNq4dKDFijl6QW+3GoMT/S4PByfqhahncD4xbB4NTvSDVn8E0OB0PAKOwYmxhHy53ZOhL/7NiV5qDs7LeVePZR1z/EAsjNUvYMDavl8UrSi6MvvaS1ELvNkBQiFXIhHUOjirPQKPBqe2YK+pzK4bLG37mZEKRsOGJZ/DDXoTfW+pOl9+ay4w9JOD82EvNQcneuHW+giga6k+OCkKDU6zRoNeGo96QY/zw0fApmmmR8DRi15vcQxOs5kAABzHaZpCPyi6Yw97MWm15hpvG9TLk4NTp3tscD68lurD5tHgNBjQTWCqD8663s8mk62u93Ntg7M13s/afLsfyy1kjtFooShaJOLBE+9nNFRaAg27RisrK+fOnRsUFPTuu+8GBjZVBddkJme+fslgJADg7UWdh/R1Ng7/34KCYsO7629VKi0AIBFzNr7fMzSwNTxCG+M3rjq9CgAGhw4+P/t8K/QIAMv/cyMtSw0AZbLT9+Rfoi85OOflbi/P6jyro3dHlP7jDHIL9QvfvQYAblLuwW+GIJfw4vftkch509pOHVdnDcnWm1tf+/s1tD2j04zdk3a7VglTeLGPRRkPAL7df5EGz3ShhVaAofRwafxkAGALgsJH5zWW+9sh6RXrF7u4++IJbSc0sXbWZnhQeC6WJvUAIAmc4tfzYI0dKu+uUD+wjw238AU+Xbe1MlPrv3jKYdWmFJyNAQCMJQgfU8Li/gNhtYbfF9OmTVu6dOm3337rvBXMy6uZ6eeAUMCePMpeWrTvSO7/Rjm/A5cSyl5bE4+soIDPWvtGrAtWkCTpoiJlY496scuLHJwDABfzL2arsht7uAvQWXVE2EW07asdIiB8WRjrldhXcpblbBu7rU9QH+etIADcTrNfckx7T0dg9JkR9qFy7GxhjXL+6ni1x6ubR21G23tT9774x+ySkkZnKpLmYosyAQAwnCv2G9/Yw1sNIr/xbEEAAJDmIkPZ8UYde6/i3pH7RwAAx/B9z+6b23VurVbQaLRWVGidaZChTKXxk5AV5EqifWJriU9Xr3rU5n5fcefVRp3zfyN0OrNSWWd0/F/UAMqRAQBJ0DRkBVUqA1oIthoaMIRarfb8+fMzZszweghnGq3nnQUAz4wMEQnZAFBYarh8U+H8uT7NoCjm+733136dYrZQAMDl4GuWd4uOcE0JiEHOh0ZBLpSPjRoLAAwwu1N2u9Svs7BS1s+vfR6xJeKb3LdVghQAwBj2EOq9lEUp34/73jU5Ooch7NrhUf3foN5+blIuACiqzNeT6pxdAcCynsscpSZ77+35IL7R1NiGsmNIU14gH4RznE2VbH1gGNstdC7a1uZtr3/nGtgYvxHJlk1sOzHKs84CUIZh6n+EHahIWW7TpQEAxhL49TxYVzqMvPNGt9CX0bYm5xtleotXu/6zQK7jf+EMaFKvL9yLtmWh89GG8yOwudCAIXRzc2MYpqoanGm0/mp6sZDz7OhQtP3L79n/A0NGUWV+bU3873/no48hAeJta/t27eCibBCbzXKo8jYKMzvbvXl77u6p565SDPVA9YCg6+QRrR+3y2/HbY97++zbqBDwgdcOwBgAIIrbCMzBrrVJELSjgjC206PJFpeDTxhmb/OPk/n1N7JuyDpHSeXOtO1Il8N5GB/yFor9Jt4ouVFPvus/Drew+cgjalScJEwFTh5Vbijfn7ofbS/vXR8xjVjMd0bNUVe412GJ5Z2+4Ll1qntfzKfb9w6yVmXGx6osV1Ri/lvg5ib8t5reSeiLfn2YJhPD97TzPHt6Slqzmh5aqKC+wdyeicNDUC1BYanh2q36ZvouQKm2nrlSpy5SsyP9gWb5Rzce5OnQx+5d5JtW9wzyd/1XZBhAEebGYnzUeCTal6fJQ7SrCEW6opPZJ9dfXz/7z9mx22PF68RRW6NWnlpZd0t1QmlWPvPrM/cq7qGPAZKATVPf6t5FDgAMw+w/mutCmwCQmau12igA8JULaoggjh4ciJhl7mWqEZ1NXcAw7IfxP0yKtitQLz+5HPHtOQOa1JsqL6JmtOKuE/dP3Hpja2OvotXAFgSJvIcBADC0rmCXk0dtubEFlaj2CuxVv4IEwzTskyBM+ZUpdienyG+cLGJJA91jLN+4nx2UrVX33nHkR/zvgaZdcer8/4RjGEhDZju+pCj66VoRuobCwgYWjhIxZ/KoULT986EHzbgo1BuItz9L3PTjvfQHmuZqsy4wDBw4lrvykxtVagsAsFnYolntPlkVi3iiXQZFUcXFrpBxcFncFzq9gLY/vPjhwuML+//U3/1z9+Avg0fvHf3mmTd3p+xOLktGhXdbb279OaU+cvcnQTP0zD9mIhoXCVeybui6B689eLnry/OnRaN6x8s3yjJznYot1UBSqn3AVF8OIni58wf0skt0Hm5oUcjG2fuf29/drwcAWCnrtEPTDDZD/YcgGMv/ZmgrAHBlMRMPL1IYFZviNz3di8JX0IY2bweqW68fepvesUR+o88b9e9sNForK3X17MDQRNmN6ZRNDQBsQaBv3C5n8l8wliCgzzG+exxqQpE0T5n+IXJH/49Brzer1cZ/+iz+C2DV3rWoEgAAY/GlwS86vtdojE9XjNA1OKPKO3FEMBLxKSgxJNyubHB/Z0CS9Cdb7xSUGCiK+eK7u2YL2fAxrsJqozZsT91xIAulLEvEnI9WdJs0MqTpIn0Yhrksa+zwDV4uuPx90vdXC6869BGfxMLjCx1sc85g7ZW1J7NPAgCO4QemHHin3zsCtgAAQgPFfeO8AYBhYP8RVxaFKRl2wx/TvhaC0PFD7UHHiwnlOkMDHl0ei/fLM3ukXCkAZCmzFv/llIKgodReOHFMaUYKkUqz8mleFIr8xiMOT9JcZCz/u8H9f0j6AY2EKM+oZ6KfqX9nNht3qPLWiqq09+zvL4zt12Mfi+tsFADnSAP6/v1QlYJRZvyn7OYMxG/+vwQ2m8XhNFWh7P8DtHl28iZJwHMs7qNnn8Nht/INbBFD6AytjJuEO/5h+Gfv4Zymd8owsOGHe46ci1KFaeuu9KY3WyvKK83L/3PD4YCNDJV+83Ef5CFsOlgs3MfHxWSNbn7dOvt0rvFlgCRgRMSIVX1W/TTxp1uv3FK+qUSsZhbSMvnAZMT03SDO5p796OJHaPvd/u+OjnyMdeXFZ9ugRWF8siIrr3GLQrOFup+tAQAMgy7ta3mldohybxMmBQCrjfr7oaBjPWjr3Wb7BHvs6pe7vzS48GVom7H8BNr+Ove+4/uneVGI4Rzpw5QZTUMpMwRNbE6wZ9Wu7L2ywdoSPp9bp7A2Q6kfbFJnbUCfPNuvEXg1TqeXxfMKGnhF5DsWfdQX7S++MgzpPv7PQCTi/Usr0yAYyqQr3IO23cLmV/+TVCpoZbLWFjGEqPazQTw3JozPYwFAVp725p2mPgk//pp5/lpp9W/OXi09e7W0rv1dRuLdKgfTJgCMHBi4+cNevvKm6qE7wDAMqk51DYviFvUP7r8wbuG3Y7+9NOeS6i1V8YriUzNPrR++fk7MnFi/WA+Bx+HnD8uFcgAo1hVPOTilwcSZYl3xC7+/QDEUAAwLH7Zm0JoaO4QGigf18gUAhoGff6tT/aNWpN5XkRQDAGFBEpm09qWwk3UUCBRFTwif5BBnXnpiaaayPl5Ac+VFmtACQKENsqwAAEhRWWlWfn3z60ZdS2vCLXQeUl8zlp8gzcX17PnrvV+LdEUA4CPyebHLi/XsiUCSFKrvrgGLOqnwQs/KuyuRP1PoPcyjbaOzcwEAZ4sD+hyRRdhDjGbltcILvWz6+/Uf9V8EgqBQUfm/qAf64oM0oQEArqRdjemUzUaiEv5WQ4sYQoXCqTWBTMod99DrtffPJi0K/zxV4JC9HTc0aHh/uwDF1l3ppYrm9DXfy1Sv3pCkNxAAwOXgy+d1XDm/I5fTnLeRouj6IzT1Y2HcwssvXd42dtuiuEUDQga482tZnQe7BR+ZfoTH4gHAlcIr847Oq/5XJL/ggJWyTj4wudJUCQBhsrCDUw6yaivinvVsJJKMSLxbharsnUS1wok6PWyDevkhG1mhtNRfRwEABEEplYavx3zd1bcrABhshskHJpuIOoeBwy96TgcAML3j9B/G2z02n1/9vB7f8j8LjihM5D0cAIChtPk76tqNZuh1V9ah7eW9lyNJzvqBmG4ea4TQVaQsK7zQ06JOcvTu2/0XcFnCE2N5x2zx7vIVSn8ljLlFF/uYKluJCKKlYTJZEd3MU4sbzRSNagocngy3sPk1Ysx6vbkpiwEX0CKG0HlV3ufGhiFBhoxsjSNjorG4crN82x77dLJPrM/S2e2Xzm4f4CsEALOFXPd1CqIsajqMJvLz7+6iFYmPl2DTBz1HD2oq1c6TwHG8FfwqvQN7fzXaTpi3O2X3t4nfOv5UkfKaWXnN8XHFqRUolMhj8Q5MOVCrZQWAQF/RsIc8QbsONWJR6Iwh5HDwMUPsc6Y/TzdQMMBm4xIJH52thCsBgPTK9OWn6igYYGhNkZ0e7LQOegT02DFxx4zOM5DGodaq3XJji/PX0spwC1+ENrS53zN1LOtPPDhxv+o+ALjx3BbFLXKmWS6XjQiuAACA0eZtzzsZpsnegrJyMBbfq+NnoSMymy40KIt8LbDfKZwjAwDKpi6+MkKT8/TGZZ0Hj8dxOczfCth/NHf1xqRf/mgN2o26YNXcRixOGEvoFvpSjb8KBNwmqvI2Fi1iCD09naVT8XDjjRlstyWuLQpT76s+33YX5Z12iHJ/Z0lnHMcEfNa7S2LYbBwAsvK0PzXSWVcXtvyUpqg0A4BYyNm4umetkghNB45jrVNDsyB2wewu9pTlFadWJBQnAABDW02K05V3VyH316H0Q9sS7dmGnw77tLt/93oanDkpEt3zlHTVnXSnyHE0OltekR4A2CysU3R9UrrjhgahOoq7Gap66ijUWtu5a2XHL5RdTVSIiIAvhq9H3/+Q9AOiFqu5v+IiEFUAUEVCKeZ9cMpBAVvAwlhv9LWnVm65saXZI4WVSkuD5rwe0AytNCsBQOQ31s4yYylzhDlrYFP8JrTxUteXnOT64XLZEokAAGz6jKLLgxXJCxyagiKfkaHD73m0fQvDm+c9JfQeGjzoKkcYCgDAUBV3XlMkL2CYVnWLNTv4fE61mcTThePnin46mAUAv/yRffiU64OwidDm/Yg2JIHPoZlQdQiFvFaeSbDWrFnT7I1WVuqcHwfhwdJjZwspmqlQWjpFu/vKG7EYKig2vP35LUTmEuwv/vzt7g6pI093HpeDI0GDjGxNu0iZv0+Tlllnr5Y6TPUbCzt3aOMaa0zDoGlapTK0ji7l2KixlwouFWgLKIY6nnX8+Y7Pc3S3tfk/kuZinqzLAws9bt84G20DgFmdZ30xvIEiaLGIo9JYs3K1AFBUaho1KLDBHNqE5IorNxUA0D7K3eEnrxVCAbug1JhfbAAAimJ6d3ukPsgwkFOgO3Gh6If9md/vy7yeVJGSrrp0o/zP0wX5dzwjyBFsQxCflJ/IPD0qerBc8sjckjS5668RESw1AJzRs9+ffLGdVzv0py6+XQ7cO6A0K82kWcARDAwZ2MCVOAeaZg6fKvh4y517meqpY8OclNlygGKoH5N/nPLblA3XN/QK7BUqC6esVWblVQCgKaM0qKZ6ZXxx/Oq8VfC9AAAgAElEQVQLqwGAy+IemHLASUNotRJGo8lcuKU8cQZhsE8iWTwvn5iv5Z03VM/uaxaweN6SwCmmyguUpRwArJokQpch9hvfXLbWFTCU615fAKTGUH/m7T+CSwllG3+45/iYlFrl6y2ICG5tHXWGMpffmsPQFgDw7vIVRxRaYwej0UKSFIfTejewRQxhebmmzqyzJyAUsFVaK6o/q6iyjBhQp758DVSpLW+su6nR2gDA0523/r0eHrLHjEf7Nu73czQoRph8r2pYvwBUsOECyipMH25KJkgaAEYMCHhhYoRr7TgDiqKrqvTOu5ebAhbGGh4+fF/qPiNhNBLGGyU3nhHrrOqbAGBW35p+/UihvgQA2ni0OTztsDPhpYgQCZrWVKktgb7CsOAG+DUOnypAaUcjBwZ2adfAG9bTnX/yUjEAFJUaxw0NZhi4mVL1+9/5W35KO3QiPyVDpVTXjCuQJEObhVJrGy9jD7l60MkzqlNXiu+kq8oUJgGfvTHp4y6GYx7ocQt7dVD7Ry4aHMMFHMHRzKMAkFqRuqj7IhRSbQqy83UfbEo+fbmEJGmbje4b51NjxNaPEw9OzPh9xvbk7RqLxkyaD6YdjPaK7hI6TpOzFYAhjDluoXNxzmMvtVWnV6VVpgHAtI7THKU1DUJfflWZPNlQvO+huxVzC33Zv88RgWefFuLLxjlSafAMq+4eYcgCAJs+3Vj+F87ic0ThWJNvuwuoTH2T7x6Ls1ycOptMVpuNbGWN9QaReLfqk612nXAuB6doBgBu3K4MD5Y2hQDEBeiL9uuLfwUArqStvPP6JweVXm+maaY1F4UtYgi5XHajZkNhQRKUDaioMse096jBLVIrjCbyrU8TS8pNACASsj9/p0eQX83fEsOga0fPs1dLLVbKYqXyi/VD+vi7UOdHUcwHm5KRQfX3EX60ohuH3SIuZQQMwxp7A5sCKU/aM7Dnnrt7aIYu0hVN4d4XgBUAaEL9QFdxxwwCtuD0rNMhbiHOtCYUsC026l6mGgDu52rHDgli13uvtv2SYTCRADDnuTbeDf3uck/+jduVSo2VopiE5MqdB7POXSt9kK9DLgEEFgtr38Y9pr0Hl8MymgmSrJliajSRxWXGO+mqv84XmfMNz0WeBgAS4/QderbGEqSTT6c9d/doLBoTYZLypP2C+wGA2ULlFurzCvVyTwFKDnIGZgu140DWph/vVTfVQX6ids75FS7kX5j1x6zPrn1WZihzfEnQxKH0QyKhXzcRRhhzABic4yaUD3LskKvOXfzXYgYYDLDdk3f7iu0hvVKFqVJlcXer/TVtUd0ouzaAsdkzknjSjv69fpdFLnXZKjgJDOdKA6fShNaiugEAlKXcUHpEnb3Zpr2L4RyOKAzDWumJIM3F5Ykzcba4sZUhDrBYOJfLYrOfolLC9Aea1RuSkPRSeLBk85reqZkqlcbKMHA9SdE+StYoV1xjwVBm0lxs02dYNUmminOa7C2UtQIAPKLfEXj2eXJ/NpvF5bJZrBZ8zdZASxnCRu0vErKVaktWng4AqlSWYf0aWBQSBL16Y9L9HC0AsNn4xyu7tYus/YUi4LNDA8UX4ssAoFRhEvBZHaIarfHxyx/Z56+XAQCbhX2yKs7Xu4XfCBjWyk6VELcQL5HXXw/+CuPCfM9Hb+ouIvhNBVvH/TAycqTzrUVHyE5fLjFbKJOZZLHwLrXVyCOUKkx7DucAgIDPWjK7PY43bFc4XPz6rQoA0OptVLU6CpmU27+77/QJ4cvmdpgwPLhvnM/owYHTxocP6xfQqZ1HsL+4zJqnNGo4tKj69LNf8KVo79sAcK+s18/nu2l0NomY4yaxz0NZGIuPiy/fy/Awd81N5xameO4+lLPjQOaJC8Xnr5cdO1eoVFk9ZLwGV3UJyRWrNyTduluFCJQcUzEOBx/c26+BY4sT5vw5Z83FNaj+AQCEHOGSHktUZpXSrGSAOZt71s8tNJrOAwDCkOMe+ZrDp7f6wuobJTcAYGTEyFV9VjnaPHKm4Offs0cMCKx1PleeOJsw5gIAzhZ5dVjrE/cTR1SnAFYzA8NFvqNYPLlRccrOOMOQNl26vviANvcbwpiDsyUcYTA0nbSiXlSlvWdRxdv092WRr2KNVLlCYLHwp8oK5hbq3/78FiIY8fcRrn+vJ894dMiQIQm3K3R6gqKZq4kV3Tp6erk3T+meRZ2kzvpCV/izJnurOuuLqrT3lOkfaLK/0uXv1BcfMJafQFYQw3m+cbtxdi2vUxYLb00rCM7oEbqA4mJlYGDjKKcVVeaXVl1B6Z2bP+zVvu6ZMsMw6765eymhDAAwDHtncedBDb1Nvtt7/4+/8wGAzcY3f9i4JJd7mepVa28if8JLU6OmTwh3/ljXQFF0RYXWz6+1RbnmHZ3HFO146/FMwCS8/fRJaY1t6vTlkg3bUwGAx2XtWN/f27P2B+zE+aLNO9MAoEeM/JNVsc60TBD0zNcvqrU2AMAwLCpc2qOLvEeMPCpM6oi3IXVQb+/HfmWaoUfuGXkx+5rYFhYAXYSGtiJdu7f6rQn3yACAX26tulE0FO3pKxd0ae+p09sKSgxlFeYGH5DIUOmogYFD+viJRTVjWkq19dvd6VcSH1EW9Owqnzwq9K1PEwFALOIc2jakLvN/p/zO6gurj2c9ElrisrivxL7ybv93/cR+KrNq8oHJiFGWDRDfgSvFbAAQ0OeYyG8cAFSZqkI2h6CikbMvnh0aNtTRzrw3rxaWGob09X97UU3uBVPFmeIrIwAAw7khw+5wJe3qv/YWAmkp1Rf9qi/a56jWcIAtCJQETZcGz+C5dWmhrvNORiCyG5dlKQ0GC0lSrRPdaBClCtOKj2+oNFYA8HLnb/qgpzv3QeG52IB+J4ys/sv/k1ChtACAVMzZuLpnSEBTxVNJS3nh+bgaJVi1QhI0za/H/lr/pNWacBxDGVutgxZKltE7HyNEEAs5FVVmFC5Sqi1DnxDsNVvItCz1hfjy3X9kO4pgFsyIHjO4YdGfLu08bqZUqjRWmmbupKtGDgxw0rdpMBHvfH4LyQh3buex/OUOjc1ucAE0TavVxtZ/ikZGjmTnb/HCrQBwUgeRPACAAEwjCZzK4jVOuzU8WJKYUqVUWymKUWmt/XvUnmd/8HheQYkBAMYNDa5n6lMdyBspEXOnjgtbNrfD5FGhXdp5eLnzq/8uBEHp9Rap9LGnCMOwEREjdqf+pGTyK9n3SoUXjV5/LA+uxAAYhrU/ZZmNsi/sDCYyp0BXXGbUG2spSOBy8LBgCZ/HcvxVpbHeTKk8fKqgsNQgEnJ85QIMwxiGOXa26KPNt3MK7BmnHjLeqlc6zZkS5ect/PtisclM2gi6T2wtYcKMqowlfy1ZdnJZljILfcPG2XNi5hyaemh6x+moIETAEbzQ6YUCTcFdxV0aQIJTcSIAAJo0oJSZL659cTb3LAB08+v22bDPHI3nFOj2HckBgLwivZcHv01o9ZgiU3ZjOmkpBQCuzxzPyJed+UVaAjhbIvDs7Rb2iiRoOovrQVpK6IdpqzSpsyiva3O/s6gSJEHTsCaktNQKZdpqR+0QaS50cLo2CmazjSTppyFGqNJY31iXWPnQ1H3xbo9AP2FZwnOEqcCmv+/fYWGPrt6XEsotVspqo+OTKvp193lyPuc8GNpWem0sUuaqDozF5wiDeNIOfI/uQu9hYv8J0pBZbqEv16XBazRaGMYpqs7mQousCGmaxvFGD9CyCtPLb1xBJCNbP+odFS4tLDHez9GkP9Dcz9EWlBhqUIo8Ozp0wYxoJxsvLjMufv+6xUoBwNC+/m89MReuFZ9+k4LcqmIR57t1feta2TQ7aJpxxk/YzJ0SmuzjcqBJCqBfBmwNYccJSQAQ+Y0P6HO0sa2lZalXfHyDYQDDYOP7PTu2rTniGYaZuuSCVmcDgO/W9Q1vKK3GeTAMMEztN/BUzqkxe8fQDA0AM7zYH/iSACCUD5bEnExKrbp5tyoptQqdEgKbjQf6CVONlxTYPSO3aMGgZ9eMfh3HMYaBe5mqkxdLLt8sR7oZDvjKBUP7+ielKu/n2CvxMQwbNzRo7tQoJMMJAJ9vu3vuWikALJgR7ZAkQ6gwVkRtjdJa7ZQUOIZP6zjtw4Ef1iofyDDMx5c/XnNxTQCHOdMWcAAGwyNGF9jYHiGbQ5BO1v5n90/rOM1xyI4DWQeO2flgeVzWlo96hQXZ77yh5PfShOcAAGMJQ0Y84AprTkb/QVhUN/VF+/TFB0hLueNL98jX5V2+bMZeSEtZ3skIhjI7vgkaeNmFSCF6qbbCpLl+GIzEyk9uovIkAZ/1+TvdoyNk2vydiiT7FMe/1+/igMnZ+bo31t00muyO000f9PSoI37cIBS3F2pzvwcAwFjyzht4bp3ZPF8W36+xovOtfwNbZEXo2gVIRJzySjOaQd9MqdxzOOePk/nxyRXZ+TqNzlbDXg/q7ff63Easz6QSroc7Pz6pAgDyivR+3sIG37xnrpY46iXeXNjZySVLs+AfeYQMZUcMxQcB4K4Z26PE5g3Y4K45A8AQhiyBV3+OqHE+YW9PQXGZvdoht0g/ZnBgjYvKLdQjBUeZlDt/enQzXjGG1XkDIz0iTYTpWtE1APihYwcBUQEAsjavy/z6hgVL+nX3mTImtGeMd0igeNTAwFnPRi6YET1xeAjjk/lL0adGblG6JmlJj8VcFhfDwMdL0DfO55kRIT5ygUZnc2TBGExk6n01EiQBgNBA8Zrl3cYNDapOP2QwEvHJFQDAZmND+jxmb1aeXolODwPsmehnDk45uChukaew9kADhmEDQwdGekbuv/9XZwEVzAUMmHR10Wml5lD6IQAIk4VtG7fNQS7KMPDlj/fQKw8AKIpJyVCN6B/IYePAUKU3piLOT4+oFZKASS7d+5YCWxAg8h3l3ma5wKsfQ1tsunQAsKgSOOJInptTk1pnoEz/0Fx1BQAcgWSa0EiCnm9sOxiG1ToCGcpEkwaGsjCUBQOmRetDLFbq3S9uIXk4Dhv/aEVsp2gPyqYsjX+GoewsS1bdPVn4Qg93Qcco94sJ5RTF6I1E8j3loN5+3MZzXmvztivT16Btr46fekSt4ojCWDw5zmq0h7OuG9hyaJEVYU6Oon5t3rpQqjC9/OYVpOdQA1wOHhkqjY6QRUe4tYuU+bjE7bn26xQUXGSz8R5dvAb39uvVzRtR29RAWYVp0XvXTWYSAEYOCFj5Sj2io80MkqSKi1WuafM2BeWJsxAHbp77M2epyPXD15cnzdXl/wQAPLcuIUOToJGJA5VKy9w3rqAF08pXOo18vDDm0In87fvuA8DAXn7vLW3OeI/FQlRV6QMDa0/SIWii/87+g4N7zDVuR9JLYaPzOcL6cmIJmojaGpWvyQeAz4Z99lbft57cJ7/YcPJi8blrpVq9fUHJ47KmTwyfOi6c/URyaanCNGflZQAQCdm/fzfUsXhNrUjt+l1XxOl6aOqhZ9s96+QlXy28+tWxMWt99QBQRsDkfDeVVQsAW0dvXdpjqWO39Aea1z9KQP1SFFPdQaIr2FV+6yUAwDky7/7pJqvAGW3efwhMWcJUfckhAMBYguBB13iyrk1vlLIqcv8OR0ZC3nmTnVIVY4WNzGrULJC0lBacjWVoC3qV06ShVtIfjjAkZNjdGuUuzQWSpFdvTEZcXTiOvfdqTP/uPgCgSH7FIfiA4Bu3CwkB3rhT+dGXycgh176N7PN3utf6YqwLZuX14suDGdoGAJLA5/167m9KpY1SqcdxvDW1eVtkRajXW2QyV1IrJWJOqcLk4A3x9xF2j5GPHhz44uQ2i2e1GzMkKK6zV2iQxGUvdmxHr4sJZUYTSdNMUZnxyk3Fn6cKCkuMHA7uKxc63kcUxazemFxW4aiXiG3ReokaoGkwm201QlwtDoZSJC9ATqGYfgdGtpuBYRjfo7s273uGJiirgi0M5su6NapJ9La9m6ECgMxs7dihQdVv497D2agiZfKo0McjVU0FRdE2G1kXez0LY42LGjdYTBmKDwAAT9bVo20thq3GIUKOEOWt3Cm/s7j7YsTKXR0yKTeus9ekkSHhwRKzhfSVCz5ZFdsn1qdWD61EzDl5qdhkJgmC7tXN2/Nhtt7MP2bmqHMAYGTEyHVD1zl/ycFuwd3CJ6nzvudjtIQFtwzWfBt4Cjx3T9rNYT16WA4ez0UFu8P6+k8YHnLtlgIA8or03h64sGwuYkD2bPce13MYSdJPLTcKACbyHWMsO0ZZK4AhTYqT0uCZtSYfNgrKjI/MVZcAgO8e5xu306JOJAwPABgMMJHvKOfbqUhZZlFeZWgLWvkBUzu/I01oKWul2H9CE0+7lpZp5rNv7yKXA4bB6y93RCkXFlVCxZ2lDwnTh6PcYKs2RRa+CMNYgb4iPx8RkkmvVFke5OkG9vR1MkBDWkpLrgxDzPU8ty7+fY5geJPCe1YryWLhPF7rMSq0iCF0zQoihAZKJCLOlHFhi2e1mzY+vF93n+gImZcHv1liZlwO3i5Slpal1untczSSZPKK9Beulx07W1heaRYK2N6e/MfqJd6Ia0ZlCWeA41hrW0EAsypek/MNALCFwfKOn6HJLM6WMAxprrwIAFZ1olv4gsaO7+gItzNXSk1m0mylgIGuHe0uPpKkt+5KR9PPxbPaNSU+/yTYbFb9Gi5irliduc6muwcAsvCF1Wvv6kInn06/pPyitWpNhMmN74ZqCp8Ei4WFBIqH9vUf1i+gfn3m3AI9mvAF+IpQSc+xrGNrr6wFADbOPjztsLfIu57Dn4SH0Ism1KQ6AQCELPhLC2/0fWNExAjHDjTNbPrxHloFvvJC2z6xPhVV9kiEyLAryv0MALB43n499nN5wqfYCgIAYDhX5DNCX7SHoSw0obVqkiXBLzQlcYayVpQnzkJLN59u33Elbdl8b13hLwBg02fIwpc4Wddv1dypuLO4LrVhnCPF2UKcJUBZqVbNbb5HD664jcunXSt2HMg6ccGuRjJvWlu7cgtDlcQ/Q1nKAEDsP8mv535t/o8MZaIJDZvvy/foAQ/lX5AQUKnClJGt6d5FjgSC6gFDW0uujkHiISyuZ+DA82xe44bukxAIuK1pBaGFuEbNZlvDO9WBAF/hi89G9oyRO8q5mhftImU7vui/bW2f58eHV/ev6gzE8XNFKz+5OWPZpf1H7dkELz7bpm14ixCK1gOGYSwW12+gazCW2dP0xQ+F4hA8olaxBYEAQFrKVJmfN7ZZHpc1b1pbtP373/lokQ0AGdka9Eb28xY2+zyDppn6RXCqCxCK/RtQqUXgsrgfDPwAbX929bOmS1J0flheiVbMVsr6+snX0TdLui/pIO/gQpu+bV5FRYQDJRAhFC3ruaz6X++kq1DZiYeM1znaAwCWzmkfEijmsc1DIuxZ7B7R7+JsMVpSu3hhrQWOONK3+150vaaKc1WpDSzr64c6ayNNGgGAJ+uG6k+E3kN5bp0AgCZ09Yh71EDl3ZVoCSj0nRAxXhUxXhU50RD1LIP+RU7Qoi+lwTPQ/oqk+Q4e12bBnXTlb3/lo+3nx4dPHWevAdXkfGPV3AYAnC3y7rIZZ0scElqq+2sdUcPxw4LnPGc3zMn3lEvev56Z04CUUMXtJY9UmnsesNPGNg0EQZEk1fB+zYcWMYSlpY1Q4flHEBEiffn5qN2bBn61ptekkSGe7o+me1UqC0pP7dLO4/nxrVVKXA0URZeXN07btukwlNnzQkWP+2owllDeyW7/1FlfEMZGE6MP7u2H8owIkv5hv10X8Haa/eGvR3HCZdhsZGVlfTTZpopzyI3DFbdxvhxtVpdZ4e7hAKCxaL5J/KaJJ+ngk0vNVFMUs/XG1lx1LgB4Cjw/HPSha21yROEin1EAwAL4OLqjh+CxKCnKfwYAh8uLx2W9/2rMyOjDUr4aAIxUkCx8MQCYzTaVyuDihbUiRL6j5Z3s/LfqB5ucN1c1QFkV6hy78KRXh/88DG5h7m1WPWx8Y13iHtVhKPkdKUlhOI8bspbFdWdx3XF2LYEu75hv2cJgACAtpY4czqZDbyC++C4VpX30jJHPnWrPNCZMBZX37GbPs/3HqGtZxFIU+yQtZeoHmxyNvPBMxLxpbdEIqVBaVnx846/zdaphqx986bjt8i5fCb2H1rVno6DTmVpZx6pFDOFT7ldxAMOgXaRs0ax2+7YMWv9ej7FDgqQP3VliEefNhZ3/kexNDMNa+QYSpnyUhoexhEKvmuzSksBpfPdYAGBomzK90e9oDINFM9uhG3k1UZGSroLHpJeamcEZAFgsTCisz51gLDuGNkSPL3/rBwfnvNn3TbT9VcJXBluTTIWvXICoBE1mMimzyCEZ+E7/d+oSunIGbg9l63uwShzTfAAgCPraw7r+6gQUgXLbsKgjaPtwynOnrygAgM1mtbIIjstwb7NCHGBPKaq485pVc8eFRtQPvkL3iieLEfmOcXwvCZzK4nkDAGkuMZY1UEHE0ERV2ntoWxw8ny+tj44Y50h9utqFzwylfxpK/nDhtJ/E5p1pVSoLAMik3BXzOzneXlX33kEXyJW2l0XYk6cwnONYFKoffIkixAhTx4V9+lacm5QLAARJf7Uzbf33qTXKhADAXHWl6p59IS4NniWLWNwsVwEAXC6nldm1WsQQPsX5ZrUDw7Au7TyWze3w6zdD1r4RO7xfwIp5HeWtVTVYAywWLpe3Kh+8sewvtCH0Hoo9meuM4fJOG9GmrnCfRXWzse23jXAb1teeMrptT4bBRGTmaAAAwyCmffOvCDkcdr18Doxj+eukX9SBl2JeQpyrlabKF35/AQlXuQwH+dyWvw+rLWoAiPSIfLXHq01pU+Q3AckEUubiwov9SLN9Lp94t8pgIgDAVy6Ijnj0eKqzvsAZHQBUGAJvFg39+ueM/GIDn895SlhRnADmG7eLK+0AAAxlKk2YTNmc0v9ygLIpNQ+Xg57tPqie64ix+LKHio/q7M31t6PN+86mzwQAFtfdu9NHDYb5Rb5jHbMWxe1FqHClKTh1ueTKzXIAwDBYOb+Tu5t9LmiqOKcvQq5vzCfm2+o1G9LQOVxxFABQNpUqa0P11rp28Pz24z5tI+yBoTNXSl7/6IYjtAEApLmoNGEKWijz3eN8um1v4vlXh0TCb+XFQIsYwhry1v9FYLOw7l3kbyzs1K+7K+UfzQKaZrTaOuXUWwKPAoR+42rdQSAfKPZHhWVM5d0VdeUC1IO5z0ch6Y/cQv3671JRmkx4sBTNOpsXJEnr9ea6/mpRJSL+JxbXk+/Vt1Etc1ncd/rbJ9HHso713tE7dnvsj8k/IiazxsLhHc3Isi8u1w9f/2Q+aqOA4Rz3KLuSolVzu+Bcd7PyOlTziw7q7edYKJCWUnW2XQg3ofwVmmZZbdQnW+7oDdZW1gdvCnC22L/3YaRpRxjzym5MRwLCTkL94Eua1AMAz63zkxMjWcQiDOcBgLnqqkWdWFcjNKFRpn+Etj2iV5OMxGRqOMwv7/wl8lJS1grFbac0kxH0RftU99dV99aWKkzf7k5H2+OGBvfsai++YmhbxZ0laFsaPFMgf8zfg2Fsz/b209Zkf0VZFdX/Kvfkb3q/p0McLadAt2R1/I07lQDAUJbS+GfR/iyej3/vPzBWcy4bzGabxdKwL7oZ0SKGUKl03Wtk1d3LOxmhuv9J06dI/6VAFGut1x1pNFVdBAAArB5XoVenz1HKqFl5TV98qLG9eLrzZjwTibZRYjcAdOvY/MtBACBJSqut0xAayuyeQJHfeBcEDV6KeSnOP87xMbksef6x+QGbApafWp6pzGxUU474qMzcHmPYg0MHPxPduBVqrXBvs8Kn2w/ox6KsiuLLQyof7IxPsr/jhldjtFdlfPLQJdht+uwVSMuzsNSw6Yd79cwknkJwxW38ejgSZ8444mENgrKpNTn2qUCN5SACi+cjCX4Bbasf1LkoVGZ8glaiHHGkLGKJxUKYTA3PJHCO1Dd2B+rUUPK7vmhfg4cwlEVxe2HZzRlVae8VnOuK2OBIkv5k6x2kwRIeLFlYjW9LnbUBrVNxjkzeef2TDUoCp6IwOU0aVPc/rfFXDgd/7aUOa5Z3RaRIBiPxwcakb3/JKE9eiKYFGM7x7/UbW9Awz2WjYDJZm5Jx6QJaxBC67NmjSWPZjecJY25V2urcv0MUya+g2NX/K+A47unZbHxjDcJUcRYlc/NkMUjuvFZwxW1QJgUAVN17G5WiNwqTR4UE+D5WV9MSmTIAwOGw6i7FZfRFB9CWJMDZcvXq4LK4ifMTb71y65XYV0Qcey8ai2Zzwubor6PjtsdtT9puJp2yIl4efJkHAACLFnjY2n0ztqkJOA64hc0L7H8GMcQytFV99+Vx0d/jGB0eLHEozxHGHG2+XSXcq+PaAF/R8pftqarXkiqv337a891qQOQ7xqv9f9C2OmuDvviAM0dpsjfThA4AeG6dHvo8asI90p7Nayj5rVYuacKY47Cm8k5fYDhXIODWX8DjgNB7mCx8IdquuPMqaSmrZ2fCmFN4sY+dwwzApksrujRAcXvh3t+TEUszj8t6Z3EXzkMOI8KYp7y/Fm17dfiExavNy4XhXh3t+2hyvyNNhU/u0ifWZ+tHvREfNwsjBIqV+sKf7dfb5SuXxarqgUjEb2Wm1hapI3S5BERxe6FJccb+gSGtmmRN7jaLKp7Fk3PFEc0lCkoT2uZdyDcvMAzj8VovUKx+sNGqSQYAWdh8oXxwPXvyPXro8n9kKDNNqFkcqcCzcX5FHMc83HiXb9q5ItlsfOns9i3BVIDjdepYWVQ31VnrAYDF9fTuus01kR0A8Jf4j48aPz92vqfQM1ediyJ8AFBmKDuedXzXnV1m0tzNr1v9fk6SJreePcAxBgBAdIjv4uETXTuZWsERhkgCppgrzyPJmzCPjBD3rOB2kztE2zNlKoNUIp0AACAASURBVFOWodQSgdcArw5rASA0UFJWYaezSM3U9IyRN0o3+B+HwKu/VZdq02cAgEnxN9+zz5PS59VBE5qym9PRlM47ZivPrWOtu7H5PuaqK4QpDxgaw7lC72E1dlAkv4JqUgVeA1CKdaNkmATygfriAzShZiizTX9f+nABWgOGkj9Kro0lTfn2zxgOwAAwVnWSjDikNsvLdCFzp0b1iXtk7cpvzUb813z3WJ9u30MddZZccZSp4ixpLgKGokmd2L+WcSiVcIf08VOU5U5qs6qzvz00XmCZrGAvd5fxGqw1bCzYbFb9OqbNjpZSqHdyQlQdusJfHEmJbGEwSnAHAMKYoy/coy/5DcO5PGn7phL0MXTRpQEccWTrqaw1EhRFK5X61ooVMxXJC2nSAADyTl+gksG6gLMEGItvUpwEAIsqgcXz5Mti6nq6akVIoPhOuqqiygwA7dvIHOGH5gVBkFqtqVbqenXWBqT7Kg2Z3XRSDxFH1C+436s9Xu0V2Etn1eWochhgAEBv05/PO//TnZ/c+G4xvjF4Hbfou1vfHUk76W3sAwBRXpEj+wc38XxqgMV1lwbPNKlSSVMWAMjFpf6882K/kSyup1WbWnFnCYr1+nXfwxHau+7W0evaLYVOT1AUc+lGeadoj38qZcwlYCLfMYayI5S1kqEJXcFumz5D4NED59ReCqzK+tykOAUAXGkHn5it9cgcsrieKN/Epk93j3y1+ivIXHW1KvUNAAAM9+/1G1vgD3bPHuHkegDDuXxZV13hbgCGMDxgC4P5jzPGMbSt6u6qyrsrGdoCABjG9ur0qU/Mtzb9fcQOw2NbugZc7RScN2LMZAe9taH0iCrjPw9P7DBbWN+zxhVF6Ap2AYBNmyoJfL5WtRlKdz3UMtONk48+JpcM+P7K4suJVYdO5MUnVygqzTgL83LnNQvziV5vIUmqNRNHW8QQKhTaxsow2fT3S+OfeUhVNzV40FWBZx/KWuUoXKOslcayY9q872lCz5W2w9kuOg91hbs1ud8ay09Jg19wuZEWBU3TSqWhddL2LOokVELE4vl4d97UoOQpXxZrKD5A2ZQMbTOWHTeU/MERh3PFkc73GBEsQbQXIwcGOrJFmhcEQWm15lrS9hhKkfQysvrenTfWzy/qPDAMa+PRZnqn6QviFngJvbJV2ajc3mAzHMs6tj91v6/Et71X+xqlOEqzctKvk/R0ZYhmEgDo9dSUseHNLjmC4bz43H6JKaURnmkAwJAqfdFevqyrOvNzRAUi8h3jEf0oosZh452jPc5eLSMp2kbQFxPKosLd/H1aVom6GYHhPKHPcF3hHmQzbLo0Td73QFv57j1qkCLRhLb85nQUFPDusgXVztcFrjhSX/QrZVMylJktCOK7O4LETFnCFCRcJQ2eKYuwp6WYTDaCoJx37nGEIbRNg8rSzVWXpEEvOIw3aSosuTbWUGKPyrMFAQF9jkmDXmBxPaQhs07d4EnhFpdtBQA3bpEu/0cM5/I9egBtKb0+Hq0l3MIXyMIXNHAColCLKoEw5gDQlFUhCZxSYwdN9pbyxJnIjQzAPp3zyoHbL9OMfSGo0ljvZanPXCn542R+RrZWbyDEIo60Xmal+mEwmGmaaU0ZphYxhCIRr1ECzQxlLrk6CqV6c8SRAX2OYyw+RxwhDZ4pCZzCMIRNnwEMCQAMZTJXXdbkbMUwTOA1oLEnxlCm0vhJNKlnKKNFfUsaMss1WibClM/itFSJCIbhIhGvdQSatfk/IAY1SdBUZ2oJMIzFk8WYK8+jZ4yyVugL95pV8Ty3GDbfqTxbDxmvSmXJztfNea6Nt1eLMMnhOC4QcJ+8gabKc5rcbQDAFgQ5Y/UbCzFX3C+435IeS8Lcw26V3tLb9ACgMqt+S/8tvjg+xjfGR/ToFq2+sPpC/gWSZQo2jWSRIpJkuneRt8Tya/v+rEvpbSuN/p0DkjCgGMqiK9qPrCBguH/PA6jcwgF3N17Xju7XkyutVoqkmEs3yoP8RCGBTdVrbTWwuJ6SoOmUpdSeXsCQ5qrLusKfWTxvnlsnR3hF/WADYhfiStr5dP2mgcGAYYCx0P6EMUcWsQS1oyvch0ovMJYwoM+fDgZtDofF53MaJUUnlA80lByibEqGtlp196QhswAwY/mJkqujCMMD+z7ewwP7n+JK26OP56+XfX0Qiy8YIebrgtxyAYChCVPFGWPZMYvqBpLRYPHk/r0PO6P/wJVEa/N+BACbLkPsP57Nt7vQGcqsSHpZlfU5Ysxh8eQBfY/0Gf5q724+Pl4CimaUaotDH48kmeIy482UyiOnCzKyNf17+LKeYJx3Blwum8/ntKYUXYsYwkZZQQCoSHkVDTIM5wX2O1nds8/iycV+42VhC1gcqU2fgabzwFDmqiti/4k1nuEGocr81FEYS5oKgLIKfYY3qgUAsKhvFV/qJwl6voVsIYZB61hBAKhKfQPNZz2j33c8YPWDIwyRhS/E2WKLOhHFVwhjjjZvO2ku4rt3d2aRHR0huxhfNv+F6BYa6BiG1XoDlffXoqiYLHyh0GfEkzs0C1gYq6tv16U9lnoJveKL4q2UFQBy1Dnf3fourTItLiDOne+eVpn20pGXkCziBP+5VeU4APj5CDs9odrYRKg01m9/yWAYKNOHvzBzHqU6SZMGR/WLJHCqLHLpk0d5eQh6d/VOSK4wmkmaZq7eUnjIeG3CWptr0GWwODJJ4BSh9xCb7i5KP6FJvaH0sFFxkufWkS0IpAld2c1piGLeO+YrZ4ScuNL22rxtDGWhbFWIIJShzKUJk9CM0KPtW9XnkTiONVaQFcM5fPc4bcEuAIYw5hptEqLqeMXtxXZWBIzl2f5D324/4Gz7jERRZf5wY7KNoAmK5/d/7Z13fBzF9cDflis63al3S7Zky70XXMGAsTE2gRBKIIVAAgTID0gA00NCCcUEE1OSEJLQQhJCCRC66caAwTbuvUi2eru6fXd2fn/M6Xw+teuypPn+weewdvftvp3dtzOvjT7/tDO+r7jXk8hVpDSrvu1ks+Lpf8zInxfNCfAZZSEPqyHXkSJwulRbv24pWUAGAHvuCRULP7JlT2MYyMuxTRqbe/rCYecuqxw3KtuZafELuiAdrczX2CLV1AVOmh1t5e5wWJZNc0PWlBjCmprW6DtoBOr/094Z7lw0dXW3rlqWd2QULMypvtbqrNb8O5HmBjA1/47syp9GH0FjKI3N3/yArL4S5I4vbTnTrK5ou/sCgOrb1vD5YqR5WN7lKFoU/Y7RYxhmQ4M7Ozvl61GG0tS2bQUAMKy1eMZfSL5UNDAsn1FwYnblZaYhaN4tACYAVr3f+mr+gjHKyDuhdz9uhp2bPD63MC9VzidV1Vtb/S7XMV/BGCktmy7rjIx4ItZPqFjhWG5u+dyLp17slt3bWrYR3+Gutl1/3/x3wzSe3/r8nvY9ALCgYsFVU68lJf9ZBhaf2GPUbny891nDhq1tADB1fN73zprnqrhQbl9LbAPD8KXzXuGs3QTuiqJqIu2MUys3bmv3BTSM4estbTYrR4qDDxQsjhHZlZfzjhGq5xvyAW3IDb7ap3XxgOL+Rmr7BACsrrHF0/8UjZ+bYa2m7iHpCkhtzRrxE8++h4TG1wCAt5eWzvlP+NKr3y8LghJr3COfUY6RFMyI8KyRO9aRfzeYfK38+byRl9ntQZ+ZaeLfPvJtfbMIAKVFjntumOHIHplddQXDsIp7fSiNMqPgxKKpj0b/hrRlT/YeehIA68IBR9FpemBvw7qlxA0JANmVl5XNfbnrgLHwbEWZc870ou+dUXnq/NJhxZnIxE2tMgDUN4lNrdKCWcWxluhyuwVNM9JZ3iglhtDtFqL0EerCgYYvzyKvJ+ewcwunrOplY4bhbTnTMgpP9tf8DcA0pCMW56joa0W2bf0VCZSwZU/JyJ9PVoek1vdd5RdE2UBZC+ypX7sIae0AoIsHc6t/GVOoSJSYpunzSWnwEQbq/kPmx47CRdlVl8e6O8tnOku/4xp2vi7V6MIBAMCmJrd94j/8HGfNs2VP6WW5KdR4KBUYhimKaoSPUGx6gzQTsGZNKJh4b+qkh5Nlyzpn3Dlnjz17X8c+0s5QQ9qntZ/u69gHAAwwL3//5fHDqkiDYo9Pu+DMquR+CD/5wh5Sc+sHZ48cXZXNWrKyhv9YFw5o/p3ZVT/LHvHTbvfSNENVjeIi58lzS7btdpOew9/u6NB0c/rE/P7uux4LDGPPmZ498koArHg3EveK6ttGvHEAUDh1tS1nWpQHs7rGeg8+AdjUxZqMggWtW64jX9WFU1dn5M0N31JRdIRwHAkAGQUnddS8yqD20L8caJ/0h7X3vflF9stv17z54ZGN29oPHg6s/bqZJONyHHPPjTOJE5dheEfhqa7y81TfNkM6wjB82fz/RemwIHC2Ql2sUX1bAEBq/dBb8yRGIgAwrK14+p/yJ9zNsH1Er2Q5reOqcxafOExWjF37vQBQUye4fdqcaUUxDRtJUgGYAe8jjNIKYlNt+GK5LtYCgCWzqnzBO9FkNfD2YqR1EJOmuNdnV10RTYcU1be1ZfPVwTC52f/IGfV/gYZXTM2NkSK3r8secUmf91gXD9avXYSUYPS/aQTsubOsrrF9io4VlmXTEynj3nMv+RrIqb4u4kmOHs5WmDX8RxkFC1TfFhKpbxoBofEN1bc9jtbeSYHnua6RMu27fkOWfXKrr4vDu5wIpc7SS6ZdMr10+uamzR3y0QJgF0+5+JrZ1zgy+I+/bAwIuoHwrCkFRflJ85s2tUp/e3EvAPAcc8PPJ5M+qwxrcZWfz7CW3OrregqntFp5EvVtt3Gnzivde9DX3CYDwM59HrdXnT2tsF9q8MYNw9ocRYuzKn5oyA1kDBCsztHFM56M/luWtWRrgV0kUyLQ8CoxErbsqcXT/xxxELvdEl8aHMPw//ogtyrzfyxjYsx8uP+Cf3y7QtGDbwNFRc1t8u4DXtI8CwB+/L3qxSeWhR+BsxVmV17KZ5Tbcme4yr8f6wnYcqb5Dv2Z5FGQtyWfUV5+4rvdLtT1woxJBR6fur/GDwD7a/yKasyc3E0kak84HLZ0WkFIkSHUdRSNl6tt6w1C4+sAwLDWYQvesTh7K1MbTkb+PF/tsxiJpiFgU80sXtrnLs0bfkzm+Jkly/PH38lwdkfBQv+R5wAbSGlCWntP1cUIhnSkfu2pocqNBGyIroofRHnO0YMxIIRi9THELMVUWzdfGWzANv0JzppQAKclc1RO1c/5jArVs4EsQ2mBPZmlZ/aSoZ86MMYI4fCplan7WjZfCdgAYIpnPpXgxcbHuIJxvzjhF6NyR62vXy9oQpYt680fvum0OgGgtl4gr4zSIsfkcUk7t7c/qiPFzU+YWrjslPDEGCajYGFPVhAAMMamGVSghWdPmVta1ygcaRQBYH+t/0ijOH9mUZpdOInDWXNd5d/PKDxF9W0ln7OFUx6JtbW9JWN4sAoBDhYAK539gqVL1LRpHlVgTDS3yb9/uo0FY1hWrWXM88MmXVddlVuYb+c5VpR0wzimtOGE0Tkrfj65OymMPXeGozCyen40cJYcpLYqnmA94YzCkytO+iCOz32GgTnTChtb5Zq6AACQ2WH0UeIImQCQzu+tlBjC2tq2PieFQuNrxEEFAIVTHo6pzAfD2XlbITGiqneTa9i5XK+tIMWmt9x77gMAhuHL5v2XsxUCAG8v4W0lpBGB6tlkcVb35DM3lKb6tYuIHWV5Z/HMvxHRungwu+rypOdgIITq692pnhRKrR/6a58BAKtrfP74O5NwRIa1587IHnmV6t+uC/sAwFCas1LwodAnqmq0tvrDJ4WBun8LDa8CgD1vbl5nKc70wzDM1JKpl824TDf1JSOXLKteRv5dVtC6DS1kgyUnJe3T4fFnd3n9GgBc/L3qquExjFJRVL1eMZQKzHHMSbNLOjwqKV9yuEHYe8i3YFZxmlOek4IlszKn6go+o9zUOgqnPhJr0DifMUxq/SD0QZxZcmb++F933czvl0VRjWNS+M/XD+7a7z3UMVHPuuCc751TXJgxblT23OlFy04pv+isUUtOKps2IW9EuSvbZeV59o5rpmaloGmrLWeGr+ZJbOq51b8qmf0Cy8dZJoxhmHkzimrqhLomEQC27XZnZvDjR0cVYOjxCJpmDPilUUXRI0IVItCl2sYvziRRW87Ss4umro61aowtZ2pwRGJTC+zOGnFJT1tibDR+dS5x7OWMvDKr8tLQn+y5M3SpVvVtBQCpdY2z7LtdDSpS2+o/X0Tq9TFcxrAFbzrLzpE7PtfFGgCTs+YlfZ0NY9B1FEdFgpjwHniUfPdlVV6ambwQSoa12rOneWuIy31/HJG9iWOaGCEz/DXUtv0W8h2TN+Yme96cNJ9PBBl8xtJRS08acbQwVbbL+so7tUDchMur4os4j+BwvfD8fw8AgM3K3XDFpJgq+JimGZHFxTDM3OlFumHu3OcBgMYW6eOvmnbv9x5pFHwBjWEg05HWYPeEYFh77szsysviS51iLdlC/ctAvqrnv0a+qiNAyGQYiDXWQ1aMlU9u03UTA3vlxSdEpG8yDLgyLRVlzinj8hbOKfnOaRWuzJTEkrC8E8DMrroid8yK+FR09FAss2BW8d5DPtK2YtOO9oI8++jKvi2rYZg8z6YzoT5aSaIojh49urGxMZqNy8p6iz3BSGn88rtI8wCA1TmmZPYLcdVOY4pnPHX4o+nY1KW2T/xH/pE1/OJut/Me/CNxDHDW/PyJ90X8tXj6k5p/h+LZZBpiw1fnjFi0MXzJCKktdZ+d3GkF7cMWvOUoXAQA2SOvklo/AgDvob/kjb0V4q3U1S0cxxYXpzpUHQuNwdrTztJEC6xEYM2a4Cq/MFD3bwDcsfuusnmvJ/f4fZ+AlS8oODoBMuQGqe0jIO6x/pih9klejq28NLO+SVQ1tPeQb1IykihC7SbmTi/MsMf2QrHbrXZ75Mc4w8BlF47Jclr+9uJejKGlTW5pk+Hr4F95ni0vcYwY5hxR7iT/LSvO5JNh0Y83XGXntmeO0sWDOaOusbrGd7tNfGWh1nzeKEoGAIwY5pwxKQaPWtLJG9fNNDc+LBb2ruun37Zy4469Hozh0ad3Zti48I6Y3dJnE6ukE5XBX7lyZXV1dVNTbwVhwxGE3poLt22/WfVtAwCGtZXM/lfcS4vWrImhMtBt224KlWQLB2kd7t2h9ii3d40OZTh76Zz/BHu4CAeaN/wklGWFNHf950uDVpC1DZv3BrGCAOAsPbuzY2ed2PoBJBWMcaqb4Ki+bWR5h7PmZ+TPT/rx88ffScIHhMb/KZ5NST9+7yBkhpeuD9T/h+QCO4oWd/v9fjwwrbM34dbd7sSPhjF8uv5o36VYdzcM1FMTnAvOrLrhisld56yGYdbWC5993fz8qwfufWzL5Tev+/XvN+q6GavoAQDD5lRfy1nz88b/pqdNdB2pamxdhDDGb7x/mPw+Z+mIARWN1Ac2K3fvjTNHV2UBgGnih57ctr6z/0xPaJqhaUbv2ySXqAzhihUr6urquv67aWJZ1lTVAADDQLKs6ToCgKYmryxrpmkCgKLo5K2EMciyJksiCc8FgNxxd9tzZ+o6kmXNMEwAUFVdljWMMQDIskZ27JSiA4BhmCEpmmY4qm4jrzaktrTuuBfjoBTyGCNktu18gEw9+YxKW+nlnVIMWdZMMyjFYCuKZzxJTklo+p/34J8MwxQDnoYvv0tWTYFhi2b83VF8OrkWjIFhrY6yi8guvpqnZVkjt63zWlBXKZ1KOHot5H0duhZZ1oiLWJLU5mZvSAnkWogSiBSiaiKF7EikKEofUnQ9KEVsfpecvKN4CTBcjFL0vqQgxI/KLCHBR7h9z0Nh16LFJyV0Q2VZ0/WjqiYaixg2gqB0dAghKYH6l8jFZpadHyalm8EZLuXYG9rn4DS6Ds7Q6UUjZfyo4HrR5h0dvQ+b3qVgDACwfXd7Y4sEAJkOftKY7FgHp6LobrfQk5SFJxS+9tTiP/1u/vWXTTh/WeXcGUWlRY6ucQ3f7ui474ktoqjGOji7qjqpj0CPwyZ6KbbiH2WNuYuz5nYnxQCAQEB2u8UepHT/CHz1bSvJC3RmWhbNL0nB4Dz6fk7NI9Db4ORY/NtfTiX1iQyEf/f4li27OnqWYrjdATKbihic5MipICpDyHEcz3ezuoKQ6fWKoqgAgKYZXq9I1GG3W71ekXwPBgKy1ytijDHGXq8oiKji5M9yxt1nKfiupexaAFAUzesViTqIl57ozueTSH9a0yRS1Agpsqz5RWvu+JXkZAI1j6q+rQDY6xVJNzXZt9dfE2yPkjX2AV8AaZoOAKKoeL0iGQd+v+zzSa7yC7NH3UC2bNv6q0DTO81fnaGQhFaGs4/+u73k+wAgCEroWszci8mKrtj4mrv1EOnDqap62LUooWshUgAAIez1ioJw9FrIgyHLmtcrktssSTrLMsSoe72i3y8DgGEgr1ckTc4URfd6RTK+j9WY7PUSjREpR+8LGUyyrBMpoRbtjuKzAIgUKSSFqFpVjQgp5I3g90uk8TKREggoAKDrKEyK5vWKruo7iX6kxpcV33YA8Holci0IdZWiA4AkhUuRiZTgsBGOSiGqDh825L4ghIkUSVJdLjsZnL7W7STTBtgMLu+sMCnhg/MYKUQJ5FqIFPJ2ixic5Fo6BydRtR4+OEPXEvEIkMF5rBS9vMRGTMmeg7729gAZnKFHoPNBCx82vUn54PNgt6C50wslUY51cFqtvNXKdzs4iaqtFnbUiKxp41znLCm754YZf31w/lP3zXrw5uk3XTX5nNMrJo4OGvUvN7U+8rcdRNW9DM5OKXpISiAQfNA6B2fkI0Cu5dhHIDRsIqXoevgjoEVIIbYtpkdAkC1G1o96eASINQVdN8IHZ6cUiXTKDL+hRMpr79USpS08oYBjmdAjEDE4wx+08MEpCGroEQgNzp7ez5Kk9fR+7m5wxv9+Dh+cSNcevGUWcXxquvnbR77dsdcdktI5OIPvZ00LVtwOG5xmaKikAoaMtqg2ZWLYuG+wmZxsdGwe+XQ+edk5ipaUn7Qm9Jemry8ibcnseXOHn/pl755IbGp1n52kuL8BAGBYspgGAEXTHssZdW23u9R9eiIpA1E45eHc0Tcm4VrSAtI6Dr5VDBgBw436Tku3tUWSQsMXZ5LKeVkjflIy67nodxQa38goWBhllYPe6dh9D2lp4hp2funclxM/YOq4/OZ1RxoFAHj4jtlTEihHjjH+4XWfkiz4B26ZFVP+VrJ4+qV9L/4vWJHkvGWVV/4ohuJNQ5DD9cLPb1uHMXAc89wjJxcNpI4fsdHSLt9w79dtHQoAOB2WVXfOrqo4LjofpCQAuq3N3/dGyarJwrBF054INacmUfIAoHR81bkmxhROWdVnPA7DWkvnvBTMMOu0ggWTV/ZkBQEgu+oK8oMUq00Wpml2dASSeMAIxOZ3SRGmjPx5qbOCAJDf6XIPHPlXqItIn0itHzV9fUH954uQ2hafXF1HHo8YFF33b/Lj+AyTCWdqktyE23Z7iBXMybJOmxDP/VVVnUwp4uanF4wJ9dh69d3af70R7d0fHJD1+ei3f23NYTLFWDCreBBbQQAoLshYedsJ2VlWABAk/faHNra0dTPSRFEhU/+0kRJDmOBTFCv23FnZlcEKYa3bbsBIAsCt228kYS+u8guijAexOEaUnPCPkIXOH/+bvDE397K9q/wCEmKqBfbI7esSuoYwTBOTxZYUITa/TX50uvFShT1/HuliirHh3vNANLtogb1NX1+ATV31bqlbe0rvDbt7AiEzuOjk/ZaUzmEtOZkly+M4VDoJpRtvS8AQ6rr54pvBqdjCOXHW/td1lOBriGHg2ksnhOJ0nn15/5sfdtP6fLCiaUZP0UZd8Qv6R+uC0fjfW5qc1mDHM+UlmffdNJNEMnd41NtWbvT5Ixc8FUUnK9JpIwZDGP26aOqj/yMpmHQ/mdwY0pGOPfcH6l9SOr4CAIa1FUx6MPrjZJYszxt7KwDkjlmRP+Hu3jdmOEdWxY/Ib1/tX+M89S5wHFtYGGcSa59gpIjN75HfmaVnpkhKiFCqvv/I87p0uPeNkdbR8OV3SHATAGj+XfWfnWxIMb9ALRYuP98JAP7QdHDYudFU7+tfpozPI27C3Qe8WlzxlqqGfvuHbzdtD1aqPGVuzPGiBLvdkng9B4Zhbr5qyuxpwTDdJ57bHcroGPQ4HDaXK9rx9s4ndaqGAGBMVfbAKmseN2Oqsu+6fjrJba1vFu/4/SZZOcbsuVwZ6epMHiQlM8JUJ4N3hbPmF3TmCHr2PRyqWZNTfV2snegLJtxTNP3PhZMfimbjUK3qQP0rpu6NSVBPMAyTukHgPfg4OU+Lo9KWNSlFUkJkFCwkBQewqXv2ruxlS2xqjV+dS4p3s7yT9K/QhP11n50cqn8fJRzHZmRYAZuBuhfJvxz/66IAkJNlHT7MCQCabu7eH/NYkmTjtpUbN24LWsHzllXG/VbleS4phf95jrnzumkkLRJj/Psnt329Jc7l7oGFxcJF2Z4eIRyaK58zBKaDIaZPzL/l6imkCMO+Gt/dqzeToCoCCddK5/mkxBDW13f0vVGyya66gnSOxqZqyPUAwNkK8sfdHvOBGC5n5FVR5vjbcqbbc2cCAEaS/8g/o9kFqe2e/X/QOpttdrMBMpuaPFGebEwgze3eG1yizB1zQypEdCU0KfTVPm3IDT1t1vLtlXL7WgAAhiud85+yua+StlC6VFv32cJgI9no0DSjtdUnta8lw4C3lzoKT03kEtLG9IlBl97mXbE9QR0e9Zd3rd+x1wMADAOXXzT2yh+NizsXTZa1ZHmpbVbugVtmEZNsIHz36s0hUz2IIZGi0Wz52dfNJHKkIM8eR8bngGbhnJKbrpxMRum3B9cZuQAAIABJREFUOzrueWwLiXoFAJ9PIvGraSMlhjDNy7tBwqJmCPnj72JT1kc+RHZlZ8hMbd8hM6bua/jijLZtN9S+P6b2g4ntO25X3F+HUvgJGOMUKdC95z6y8GhxVmdXXZkKEV1xFC22588DAGyq7n3dz7Pdex/0H36W/C6csiqzZHlm6VnDFrzJcA4AMOSGus9OCfUa7RPTxJqGjobJlF+Y3NI/qSM+N2Fbh3LT/d8cbhAAgGGYay+d+P3vxLYKEgFCZhITtmxW7t4VM0aNyAIAwzDvXr2Z1GkbxCBkhs9veuHVd2vIj7MWDx+UhXh657QFZZdfFKzovf7b1lV/3U78b4aBolRgskiJIRw+vH/qA9nz5oRarFld47JHpuNd76r4ActnAoDq3aJ4NvayJUZSw5dnhSqtaP5d7r0PHPlk7qG3y1s2XyW2vEf6MnIcV16e/PYIulTrPfhH8rtg4v3hfURTTSh81FfzV6Ozj1UIoeG/7TvvIL9zRl6dW/1L8ttRtKT8xHdJ4SGkttSvPTXKIjU2G19c5BAaXiH/OyDWRQmTxuaSD+S9B33Eb9QnLW3yTfd/U98kAgDDML/86YRQuGbcZGbakuuldjosd98wg8RDqhq6e/Vmkjw+WHG5MqLpTL73kI90HbHw7LHtQYYQF5xZdc7pwTXhD9c1/vP1AwCQk5OZhs7k4aTEEFos/fYBXjDpAZJ/Vjj59wyTjlVm1pLlKg823vPV9BgyQ3xgcvvnAADAsPzR7hyG0ug79JeGdcsOvlXU9PWFQv2/WZz89ImOnb8mhtaeN8dVfn7Sj98LmSXLg6vWSPbsP6b3suLZ1LTh4mAJtOLTC6c9Fv7XjIKF5Sd9SG4o0jrqPz9N7viyT3EMw6gda5DmBgCLs9qeNzuJ15JSsl3WynIXAOiGuftA327C+ibxht99TYrIcBxzy9VTli9K1AoCAMMw0bRRi4mifPuDt56Qk2UFAK9fu/WBDWRJMBUYCD/wx60eX6qSr/uEZaNS4GudNdVOnV9KNDM0ufricYvmB5eFn3/1wNsf13Ecm+Ya7inpPnHwYEuUvXmTDstnsrwTm2rBxN+lTShvK/LV/h0AdHF/zqhru062MDaavrlIbHqL/G/RtMdKZ7+Ykb+AtTiR3GQaQbOHTVXz7xQaXnXvXek9+Jj/yPNCwytS64dyxzrNt00XDyGlxTRlBoDMQaNH9W5u3XpdZ1/if1kclQlecqxwtuJA/YsAoPm2ZlddQc7fkOvr155m6m4AsGZNKD/xPZaL/AzkM4ZlFi8VGv+LkYRNVah/yZ4/35LZ2/krit609U4s7waA3FHXDBQHIaGuSdxz0AcAdhs/ZVxeL10jDh0J3PzANyRl0MKzv75u+sI5yWn0IQiK2y0kPeQty2WdPjH/0/VNum6KsnGkUThtQVnfu8WIrpv3PLp53YaWnCxrfwVh+nySICi9t2Hq8Kir/76TVJy58YrJeTlpDZI8rmAYZu6M4n2HfOSTbsPW9rxsviDHMuDbMAUCSk5OWie24dhzZyarLkmU8I4KoeFVpLZiU7U4q+0R3T6x2bLpZ6EIxoKJ9+WOWcGwvNU52ln6ndwxN2SWLOfsRabmIR3egzshBaltulSr+rYr7vVS6wdC42v+Iy/4Dv3Zs+9hz/5HMkuXR9/hqHnDT0hKu7P0bJIfkmasrrFC42tIbcGmzjC8o+g00xDr152uC/sBgLMVViz8mLd3HyzA20ucJWcKja+bRgCbWqD+JXvuTGuXbqghdNXv3Xk1YAMAimc8ydn6s5B/rGi6+dn6ZgDYd8j30ls16za0HDgc8AV0C89muyyhkp57DnpveXCjP6ADgN3G3XPjzFCiQuIQD00qQpfzcmwTR+d89EUjxtDYIo2vzoloNpQgqoZ++4fNG7a2A0Bru3L2kv6pXq3rBsa49/f4S2/XbN3lBoDJ4/J+cPbIdJ3acQpp2LRll7vdrWAMm7a7J4zOqShLX9GZlBjCfrSCAAAMm04rSMBYl1reAwCktoZyKgitW68NlZ7JG3tLl/REhs8Y5ig6LWfUL7JGXGxxVIKpIq2N9I7vUZypiU1vuSouiqZ3h9jyvnv3PRDsS/xqP3VgYDhrgdDwMgCo/m3ZlVe0bLpUbvsUSGePBW/bcqb2sjNnK3SWfVdoesPUfYANof4V0/Ajud40RJazha8zA4Dc/KrQ8BIA2HJm5I+7I4XXlAJysmwvv11LfmMMHp+2v8b/1abWNz888tr7h7fucje2SPXN4so/b5dkAwCcDsv9t8xKpCRbVywWPnUJPMUFGW6vuq/GDwA1dYHlp1YkqxG5rBi/fvjbLTuDAbd+QZ8+Ma+4IN0NfQDAZutjNqPp5oN/3qaqCACu+tE4kjYzxOF5dsGs4q83t/kCmmni+mZ5+anlaWtSn9TyoZ2oqh5lGs2gAWnuQ+8Mw0gBgBFLtodS9Np33B7KWMgZ9X9F057o81AYg64bPKsacj1SWwy5wVBbDLkBKS2G0mgoTbpwkHj7bDnTK05eG2EGuhzOPPzRDNJGI7vqiuIZTyV2oQmAzdoPJ2v+XQBgdY7uTCBhSk54rqdekhHo0uH6zxeTXMNwWN5lcY62Oqstzmqrc7Sv9hmSiVE4+fe5Y1Yk9yLSwMdfNu3Y6959wFdbHwgFlHdLdpb1gZtnVUfR6TQmTNNECKfO0+/xaZfeuJbkUN94xaSlJychTkSQ9Dse2hThWF18YtnNV01J/OCxgpCJMeb5HhX4/mf1q/66AwCKCzOeW7VwwPQ0Tj3tbuVXd693OS333jizIC99+egpMYQHD7aMGlWc9MMe5zR986NA3b8AIKf6uqKpjwKAe++D7TtuI3/NGvGTkpnPRFNh1TBQfb27srLHeZvY9GbDV98j9UIzS78zbN7rvaQH+A8/37zxEgBg+czKpft7Wn5MD/4j/2ze8OPwf8kb9+uCifdGfwRDaaz/fAmxpn3AsCOXHeYzBnAwnqqh/TX+3Qe8ew549xzyRUSX5OfaVt52wvCy5E8mBEERBKWkJIWpR/96/eCzr+wHgPxc2zMPL7TbEjK6fkG/9cENB2r9AMAwsOyUinc+qQMAm5X79xOnOB3p/ij3+SRdR+HdoSO46vYvDh0JAMDPfzju/OWV6TuzgUBTq4R0LdNhiSbyNlmkxBA2N3tT+hQdn0htn9avPRUAOGveyOUNvtqnW7f8H/mTc9h5ZXP+E2U2G0Km2y30Hr/uPfhE65ZgNfCcUdcUTXu8280wUmrWjCVVyvLH35k/4Z7oLyclYFS7ZnyomICr/ILSOf+JsnZBCKR1SK0f6+IBTdivB/Zpwv5w32oIR+Ep5Qs/ScI5Hzd0eNQ9B717Dvr2HPD6Bf2u66eXFqXEB6EouqJoiVdZ6wVVQz+98fN2jwIAPzmv+sff69Hj2ycen3brgxtq6gIAwDBwzSUTzlo8/Be//pLYxWsumXD2kuHJOu0+QQiv29D82vu1HR7NZuVsNtZm5awW1m7jeZ7JzODJ5O/tj+sAIMPO/fOxfrDTxz+BgMKyKSyw1ZWUGMKhCq59fyx5y7vKLwg0vEqyAjKLzyib/0bS8/batl7vObCa/C6cujqUfheOZ9/v27bfDACcrajqjAPROBRTjf/ws80bfwoA9rzZFQs/ZbgkuHBM3acJ+3VhvyYc0IW9mnBAF/YXTHogu+rniR+ckiLeX9uw6qntAJBh555ZtTAvO563XrtHufn+DSSNkmWZ6y+ftHThMAB488Mjjz+7CwBGjcj6831R1dxPEFEy3v20/o01h1vaoy2JcvaS4ddcMiGlZ0WJkpQYQq9XTOnn5HGLZ/+qUJlTQmbJsrJ5r8dkBU0TBwJyFPmkuHnDxZ113ZjS2S+4Kn4Y/mekttS8N5rkZhTP+MvxYhUwql0zAYM5/NT1KWoCZRimLKsuVz9ESQwOdN3QNJTq73GM4drffLWvxgcASxcOu/Hnk2M9QkOzdMsD37R2KABgtbB3Xjd9zvSgQ0FW0EXXfCwrCAAeu3vuuFEpXKA6XC/8561Dn61v1mMphsIwzDMPn5TcoNlBgyxrDMMkpeBtlKQk5byjQxiahjBr+I/bd9wWCvi0555QOvvFWOeCpml6PGIUhpApnvGUFtineDYA4JZvf25xjiF56wT33oeIFbQ6x2R1Ftzpfxgub/xvbNmTUtcK0TCQzydTQxg3qmoIgpJqQ8gw8LMLx9z64AYA+GBd4/nLq0aUx+DvDLeCFp69/ZqpISsIABl2bsGs4g/XNQLAmrUNKTKEu/Z7X3239ouNLSQdkJDp4E+bX7JgZkFxUZYoGSbGomRgjEXJME0syQYysSQb2S4rtYI9IUkqy7LpNIR0RphkGtefJzT8FwBsWZPKT/40jtd91DNCAACkthz5eK4u1QIAby8dfup63jEcAHSptvb9cSS4tGzuq85h58Z6GgMXOiNMkPTMCAl3rtr09eY2AJg2If+h20+Icq9DRwK3PLiB9LHLsPO/WzFj8rjIBJJd+72/uns9AGTYuRefOJU0wEsKmm5++HnD/z48QgJeQlSWOy/4TtUpc0pNEyGEHY6hWywmQdI/I0xJibUhawUBIGfkVUDqpCz8JL5JD8sy0dfZ42zF5Qs/IqmBhtJUv24pKavdvv1WYgUdhYuGlBUEAJ5nqRVMhJTmEUbws++PIfEjW3Z1bN4ZVc+N/TX+MCvI3XNjN1YQAMZX55SXZgKArKDPv2lJ1gkjhP/v11+ufnpnuBWcNDb3t7+a/pcHFiw5cZjFwtpsFmoFEyEjw5pOKwgpMoTNzcnpzDcQcRQtdhQtKT/pg7gLmiBktrX5o9/ekjmybO5/SeNZLbCn8atzpLZPA/UvAQAAUzApqtbwgwldN9xuob/PYgCjKHqUXYQSp6rCdfrCYeT3X/+9t88Fqnc/rb/+nvXECjodlgduOWFqD8UEGAZClazf/bQ+WSe8bmMLafQBADzHLJpf+sS98x65c86CWcWh7G9JUv3+tHYRGmQEAoooqumUmBJDmOZrOM5ghi14m7fHX0QRYxyrAjMKTiye/iTJQ5Db1zZ+eRYpK+osO2cAlZxOFghhSeq3gsuDAMNAitJbYaPkcsl5o0ke4YFaP/HqdYuqoVVPbf/D33ZougkAWU7LyttOmDC6N+ffkpOG8TwLADv3eY40Jufb6LX3asmPU+aVPr/65Ft/MXVMVXbENrqONK0/WtENFjRNT7MCU2IIU9FFaABBuqvHDcdxZWUxl4jLGnFJqAWuaZDWdPwQnA4CgNXKFxUludjKkMLhsObnpy/TJj/Xdv7yYAPFZ17e323/qcYW6Vd3f/3+2mBj55HDXY/eNW90VR93OSfLOq8zgubdT5IwKdx70LdrvxcALDx79Y/HF+R2X/rE6bT3c5nJAU52tiMrK63ejZQYwqFWXy25MAxYrfE49vMn3JU1/Gjdlqyqy62usck7rwEDyzLxKZBCYFk2zZ3ULjyrqjDfDgDtbuWlt2oi/vrZ+qar7/ji4OGgv+CcpSMev3vesJKoLM2ZpwWz6dd83kCmkonwyjvBczvtxLLc7B69gBzH9lJfjdInPM8lvRFY76RE2OHD7ak47BDBMMyGhhgalIfBFM982lF8OgCwluyCCTGULhtMqKo+lL3UiSNJakxe6sSxWbmfnDea/H7lnRq3N+gaMAxz9dM773tiK8kItFm5W66e8ouLx1ss0b64pk/MJ1kKAUH/YmNCITOtHcq6jS0AwDBw7hmVvWwZCMjUS50IHo+YZidrSgyhYUTVXJvSA1jX41Qgw1rK5r5iy56SN+amgdV+KIlgDEYsqc2UCEwTI5RuBZ5+UhmpHi4r6PlXDwBAh0e96f4N73xcRzYoK3Y8etfcWFsYMgycflIwGOe9xEJm3vzwCKmBPnV8fmWvKY+micMzCymxYppmmkcgLbE2CNHFGs5W2EdXCgrlOOPrLW13PrwJADiOuf6ySc++vJ8UIwWAmZMLbv3FlGxXPDkJrR3KT67/zDQxwzDPP7KwuDAe55OqoR//8jNfQAOA3/5q+oJZQ66pwOAmJTPCuCc0FAhOaBJSoCWzaihbQYwxnREmAsb9MCMEgDnTCqdNyAcAhPDDT20nVpBhmB+dM+r+m2fGZwUBoCjfPnNyAQBgjN/7LM5J4UdfNBIrWFKYMW9GUe8b98uUejCBkJnmKXVKDOGRI9RHGD8Iofr6+HyEFAAAVTWojzARRDHdPsIQP//h2PBerC6n5d4bZ1xy/ugEG7SGEgrfX9sQxxsWY3jt/cPk93dPH9Fn+8BAQPZ40pSIOSjxekWfT0qnxBRFjdKYvfhhGIYqMBFYlrFaacxe/HBcuqNGQ1RXZp22oDT0+4/3zp89rcfGnNEzd0YRCfJsdysbtsX8mb55Z8fhegEAMuz8GVG0EeY4luQvUuKD57k0KzBFeYSpqqc8FOA4trQ05jxCSgirlS8qisxxpkRPRkZa8wgjuOzCsXYbd+FZIx+/e15JXP68rvAcs7TTgL3dGX0TPaGsiWWnlmc6+v5IdTrtQ7nMZOJkZzvSXCUxJYZQEJS+N6L0QByVZSjhIGTKMq0sEz9priwTQX6u7bG751124RiOS2g5NILTFw4jy6sbt7a5fTE8X/XN4qbtHQDAMMxZp0XV41fXkar2mwIHAZpmDIbKMi0tvlQcdogQa61RSgS6jjo6aBZX/KSz1mi39J6cEB/lJZlTx+cDgIFwTHkUr75TS0Lr580oijKLX5LUQIBOBuInEJAHQ61RuiyQCCzLRt99gtIVnmddru5rX1GiwWpNX/eJdHJGZ8jMe5/WR5k25hf0UPnT750xIkpBNpslI4N2n4ifQdJ9Ij9/6MbuJw7LMrm59Esifnieo18SiWC18oOyj9VJJxSTHIzmNnnLrqgCs9/5pI7UPh01IqunNhddsdstg/JLIm04HLY0f0mkxBDShalEME1MY68TwTBQmmOvBxmaZgQCg7CLkMXCLpofDEmNpjGTgfD/1hwhv89ZGu10EAAURadu/kSQJDXNbv6UGML+dTAMdEzTpO/xRDAMk3poEkHTjMH6Hg/1PvxyY4tf6COe5atNLSSpP9tlPWVuSfRSVFWn4VqJIMtamsO1UmIIi4tp8Hr8cBxbWEi7CMWPxcLRxflEsNstg9XNP2pEFmkfqOnmdb/9auvu3hZIQ0n0y08tt8WSmepw2KiXOhFcrow0ry2nxBA6nXQQxA/DMNTBkAgcx9JQhUTgeS7NoQrpZPmpwZCZxhbp5vu/eeyZnZLcTaT+vhrfjr0eAOA55qwlUWVNhLBYONqKLhGsVj7NndRSYgjr6ztScdghAkJmU5Onv89iAKNpRmsrTeCJH1nWOjoC/X0WqWL5oopfXzstO8sKABjDWx/V/XTF2s+/aY7Y7JV3asmPU+aV9tSAtycEQaHuoUTw+aQ0e6lTYghVNa25kIMMjDFVYCKYJta663JOiRKEzMFdN3/hnJJnfn/S8kUV5H89Pu3ex7bcuWpThyfoGW3rUEKmsffWg92CkEnLvieCYaA0K7DvNkyNjY2XXHJJXV1deXn5888/X1bWdz8wXUf9VatwEIAxIIRoh+u4wRgjhGmxx7jBGJsmTnOL8H7h6y1tjz69s90dDK1yZlouv3DM8kUVT7+078X/HQKASWNzH7lzTqyHNU2M8ZBQYIpAyGQYps/i5kmkb0N46aWXTpo0acWKFatWrdqxY8czzzyTnjOjUCiUVOMLaH/+x+6Pv2wK/cvCOSVbd7t9fg0A7rhm6slzS/vv7Chpgrvrrrt63+Laa699/PHHXS5XVVXV7bfffv3114f+ZJqmIKimaVosnK4jSdIYBjiO3b+/2WrleZ5lWUYUVVU1rFYeAAuCihCyWHjDMEVRxRjzPKdphiRpLMtwHEuiZi0WjmEYQVA0zbBaedPE3UpRFF2WdY6LkAKCoBgGslqTL0WSVEUxrFYOgAlJQah3KSzDMKLYjRTDQKKoAQDPs6pKpDAsywYCcl1dR25uJsMwgUAvUsjpabKsh1QdLgWhcCmY57lwKZKkKYputXK9SwlXQvgNtdl4jGOTIgiKrodLMXme0/UopZBhEy7FkGWNSIm4oaKodHQITqetlxvaqxRTFFUiJcFh0+URAEFQUvQIxDU4u5eiqnp7ewCAIVI6b+gxUvoanEeldCpB6XlwRj4CUUvp8RGIfnC6nNaTZpdUlGTsOuCTFQQAhxsEVUUAUJBnv+yCanItMQ3O9vaAxyM6HNaQlJCqdd0IXUvnDU3oEej1hnb/fu5hcB5H7+fWVp9hoIwMa4QUMlRSYQj7PmhLS0tBQQEA5Ofnt7S0hP8JISwIMsmY0XVDEOTOSqmMIMhkkVeSVEGQATDGIAjBCnIIIUGQSV1aVdUFQSY+CVnWBEE2TRMABEEhxbtN0wyTgkJSyI4IoXApAFgQZEmKlKJphiDIum5ESBFFtasUw4g8vU4pmiDIGMOxUkxBkEnWS1cpCGEAEISQFLJj+LXoAKAoepjGdIwxxnCsxogULSSFuMFkWRcEmbRYEwSF5M9hTO6LGpJCnI6qakTcl84dZVFUQlLCVR1+X0ivUVFUBEEOuxYVAAzD7CKF7HhUSiCgECmdqiYaQyGNKUq4FHJDg9dCNEakdKr66LAJv5ZAQJEkjefZngZnuBSyY0jVRAoZNkQKufud13LM4CT35djBeVRK+I5hjwDu4REwYn0EOlV9dHASjUUMzmM11nVwRjwCQVWTJanQ6XUOzmMegb4GpxHasXOMqT0NTvIIHDs4iZTQ4IyU0qnq8EcgODiJFHItRErn49zbIzC2yvHAiqnLF1WE9z1cdnKZLCtRPAJHByeRgpCpqnrnjmroWgIBhbzNyY6d9wUJ3Q3O0A0NH5xdH4Hw+xJ6D3RqrKdHQBeO7/ezphmkA2XE+5kMlVTQ99JoWVnZli1bioqKmpubZ86c2dDQkKJToVAolP5l137vH/6243CDkGHn/vnYKU4HzYIYEvQ9I1y8ePHLL78MAK+88sqSJUuiOShtQZIIGEOaW5AMMkwTUwUmgmkO8qjRXpgwOufP9y+47MIxy06piNsKImSSiRolPgwDkWlx2ogqavTSSy/1eDx5eXnPPvtsaWnfruODB1tGjSpO0hkOOQwD1de7KyuT0Jh7aKIoent7oLw82hLJlAjIqldJSU5/n0h/gjFmmDijFn0+SddRQUG/NTce6HR0BFiWTWfvgb6z98vKytasWRPTQWlhlESglWUShOMYh4NWlomfwV1ZJkritoIAQMJJkngyQw2r1ZLO3AmIZkZIoVAoFMogJiWhqH7/IOzhkjZME9PmCYlAYtP7+ywGMCQIvr/PYgCjaUaamycMMhRFT3N1rZQYwrY2fyoOO0QwTXMQV3pMA7qOaEPHRFBV3e+njcDiR5Y1EvRPiQ9RVEiKRdpISYVv2gQnEdLsJR588DyXnT0IG6ynDZuNZxiqwPix2y0WS1qbJwwyHA5bmp2s1EdIoVAolCFNSpZGm5u9qTjsEAEhk64tJ4KuG2630N9nMYBRFJ12EUoESVJpnEQiBAJKmt38KTGENFQhETDGVIGJgBCmsR6JYBiIxnokgq4jWtIhETRNT7MCU7I0KssabREeNxhjVdXtdqrAODFNrOsGbREeNwiZCJlpbhE+mDAMhDGmbsK40XXEMJDOVnTUR0ihUCiUIU1KlkYPH25PxWGHCIZhNjS4+/ssBjCqqlMvdSJIkkq91IkQCMjUS50IHo+YZidrSibvtOBsYuAhW/I4KWAMpMUMJT5ME6e55PEgwzQx6YhEiQ/S6Smd0KVRCoVCoQxpUrI0mn57Psign5OJgDFVYEJQBSYIJp21KfGSfgWmxBDW1LSl4rBDBMNAR45QJ2v8qKre2Ojp77MYwIii0trq6++zGMD4/XJHB/URxo/bLXi9aS3ylxIfoc1G44bjh2EYqsBEYFnGak1f4PXgg+NYi4UqMH44jqUzwkTgeY62YaJQKBQKJX2kZGmUVl5PBFpZJkEQMmWZVpaJH1pZJkF0HakqVWD8aJqR5soyKTGELS3UwRA/tNZogug6oh6aRKC1RhNEklTaUjQRAgE5zZOBlPiisrJoD5f4YVnG5bL391kMYDiOzcy09fdZDGAsFs7hoAqMH6uV57iUzDGGCHa7hbZholAoFAolfaTks4UuTCWCaWLaYD0RDAP5fLTBevxomhEI0C5C8aMoOnXzJ4IkqWl286fEEFIHQyKYpknf44lgGCb10CSCphn0PZ4IqqrTcK1EkGUtzeFaKVkaFQTF6aRerjjBGEuSRr1ccYOQqWkGbQQWN4aBDMO022kfqzjRdWSaJm0EFjckZDSdjcCoj5BCoVAoQ5qULI3SAleJgJBJ808SQdOM9vZAf5/FAEZRNNpFKBFEUaXejUTw++U0J6OnZO5J18cTAWNMFZgIpolpPngiGIaZ5nTmQYZhINpJLRF03WDZtOafpGRpVNcRrVUYNxgDQojnqQLjBGOMEOZ5msgVJxhj08Q0Ey5uTBNjTBUYPwiZDMOks9wo9RFSKBQKZUiTkm+WgwdbUnHYIYJhoNpa2scqfhRFr6939/dZDGAEQWlu9vb3WQxgfD6JeqkToaMjkOZc6pQYwjR30Bh0MHRRJREYho7AhEjzqtTgg2HSXCBssJH+EUiXRikUCoUypEnJzIO2IEkEjIHG7CWCaWKqwEQwTZMGPSYCQqZhUAXGj2EghMx0SkyJIaQemkRACNFEzETQNKO1lfaxih9J0jo6qIsrfgRB8XppHmH8+HyS35/WarcpySOk5cESgWEYqsBE4DjG4aD11eKH5zlaXy0RLBaOOgkTwWq1UB8hhUKhUCjpIyVLo2me1Q4yTBPT5gmJgJBJmyckgq4jSaK1jeJH0wxa2ygRFEVX1bS6+VNiCNvaqIcmfkzTpB6aRNB1RBs6JoKq6n4/dXHFjyyc0t27AAAHQ0lEQVRraS6VOcgQRUWS0votG60hFEWxrKwsyo3z853xng8FWJbNzc3s77MYwPA8l52d0d9nMYCx2XiXiyowfux2i8NB3fzx43DY0txGLSof4cqVK1evXt3c3EwdihQKhUIZZEQ1I1yxYkVdXV3XfzdNMxBQSKsEXUeBgELyt+rr3YGAQhJBRFENBBSMAWMcCAQnvKSHOFlG1zQjEFBI3pIsa4GAYpoYAARBIcsLxGfWVYqi6IGAYhgRUiAQUIiLKOlSJIlIweFSEOpdCjm9bqQYBgoEFLIUrqpECgIAQZDr693km6NXKeT0tHBVh0shbp5OKXqEFEnSyLX0LiVcCeE3FCB0Q6OVIggRUoiqo5SidpFihKRE3FCfT3S7hZ4GZxRSzJCUBIdNl0cAUvcIxDU4u5eiKHpHRyAkpfOGHiOlr8F5VEqnEpSeB2fkIxC1lB4fgVgHZxcpWiyPQOTg9PnElhZfuJSQqkVRCUnpvKEJPQK93tBoH4Hj7f3c2uon1x4hJXWOw6gMIcdxPN9NooVpYlnWyGUbBpJljVyJKKqyrBFFK4ouyxoABgDyjAGAaZqyrJFxrOsotLGq6rKsEUXLskaUS6QQFSB0VIquG7KsEUtDdgTAAGTj7qWQoamqR3fsPL2QFB0AEDK7lUI2xhiIFHItZGOihHApmmaEXUtQCmmxRKQYxtHT0zQUrjFRDA4aWdbIM0muJVzVZIR1XktQY+TJ704K6lbV5C0QJiVyx04p3dyXcCnHaqz7GypJ3dzQTimRGlOUkBToouqj94WcXud9CSlBlySt6+AMlxI+OMNUrUeomkjpQWNHN+68lqODM1xKxODs+REIH5wxPwKhkRz+CPQ1OI/ZMXRDDQOREds5OPvQWLiUrqru1FgMjwBRAll+ihicx75tenwEen6ce3wEeh6ckSM5YnB23pejg1NRjIgdiRRJ0mRZDymh81q6PgJmSEoXVR/dMYrB2f37uesNPd7ez5Kkkm0i3s9k41TQ/dLouHHj9u7dS27Y0U2ZaHMtZFlL8wrvYAJjrKq63U4VGCemiXXdsNloJlycIGQiZFqtKUkyHgoYBsIYWyxUgXGi64hhIJ2t6GLII4zeEFIoFAqFMlBISfrE4cPtqTjsEMEwzIYGWqMuflRVp12EEkGSVJoBlQiBgOx2C/19FgMYj0c8fkusRT8dpAVnEwPTkseJgDEQ9wwlPkwTp7nk8SDDNDFxpFHig3gW0wld7aRQKBTKkCYlS6Ppt+eDDPo5mQgYUwUmBFVggmCSxUKJl/QrMCWGkDbBSQSEaIm1hDAMw+ulJdbih5ZYSxBZ1gK0XHACCIKa5mq3dGmUQqFQKEOalMwIKRQKhUIZKFBDSKFQKJQhDTWEFAqFQhnSUENIoVAolCENNYQUCoVCGdJQQ0ihUCiUIU0yDWFjY+OSJUvGjRu3ePHixsbGJB55KCCKYllZGflNNRkTO3funD9/fnV19bRp09avXw9UgTHS0NCwaNGiMWPGjB49+vXXXweqwLj46quvHA4H+U0VGBNPPPFEZmZmQUFBQUHBjTfeCGlXYDIN4e2337506dI9e/YsW7bsjjvuSOKRBz0rV66srq5uamoi/0s1GRM/+9nPbr311gMHDtx+++2XXHIJUAXGyIMPPrhs2bJ9+/Y999xzV155JVAFxs7evXt/97vfyXKwVDRVYEzs2bPnhRdeaG9vb29vX7VqFaRfgTh5lJeXNzY2YowbGxsrKiqSeORBj2EYuq6HbgfVZEw8/vjjmqZhjPfu3VtdXY2pAmNk27ZtHo9HFMW333574sSJmCowRpqamhYvXtzS0kIf4fg47bTT5syZk5mZuWDBgt27d+O0KzCZhtBisZD3kaqqVqs1iUceIoSeIqrJWDFN8/33358xY8bbb7+NqQLjYtSoUQDw3nvvYarAWAgEAkuWLNm3bx+mj3C83HTTTR999FEgELj77rsXLFiA067AZC6NFhQUeDweAHC73QUFBUk88lCDajIm2trazj777Ndff/2NN95Yvnw5UAXGiCiKGOPdu3e/+OKLV199NVAFxsKBAwc++OCDMWPGMAwDAAzD1NbWUgXGxEMPPbRo0SKn03n99ddv2bIF0j4Ck2kIFy9e/PLLLwPAK6+8smTJkiQeeahBNRkTF1100TXXXPOnP/2pvLyc/AtVYEycd955L774osViqaioUFUVqAJjYdq0aaGJBQBgjCsrK6kCo0dV1bFjx+7btw8A1qxZM2vWLEj7CExm0e3GxsZLL73U4/Hk5eU9++yzpaWlyTryEIFhgreDajJ6fD5fTk5Ofn5+6F/a29upAmNi586dl112WXt7u8ViWb169dKlS6kC44M+wvHx7rvv3nLLLQih0tLSp556auTIkWlWIO0+QaFQKJQhDU2op1AoFMqQhhpCCoVCoQxpqCGkUCgUypCGGkIKhUKhDGmoIaRQKBTKkIYaQgqFQqEMaf4f1rnTitbz4NQAAAAASUVORK5CYII=",
"image/svg+xml": [],
"text/plain": [
"Plot{Plots.GadflyPackage() n=5}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# plot a few colors (it's important that these look ok)\n",
"gadfly()\n",
"default(size=(600,400))\n",
"plot(Plots.fakedata(50,5)/3 .+ reverse(1:5)', l=(3, newgrad_newcolors'))"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFFFFF\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-3\">\n",
" <text x=\"9.07\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"36.73\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"64.39\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"92.05\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.71\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-5\">\n",
" <text x=\"153.18\" y=\"17.89\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"21.53\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"25.16\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"28.79\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"32.43\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y10</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y11</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y12</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y13</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y14</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y15</text>\n",
" <text x=\"153.18\" y=\"72.39\" dy=\"0.35em\">y16</text>\n",
" <text x=\"153.18\" y=\"76.03\" dy=\"0.35em\">y17</text>\n",
" <text x=\"153.18\" y=\"79.66\" dy=\"0.35em\">y18</text>\n",
" <text x=\"153.18\" y=\"83.29\" dy=\"0.35em\">y19</text>\n",
" <text x=\"153.18\" y=\"86.93\" dy=\"0.35em\">y20</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-6\">\n",
" <rect x=\"150.37\" y=\"16.99\" width=\"1.82\" height=\"1.82\" fill=\"#00008B\"/>\n",
" <rect x=\"150.37\" y=\"20.62\" width=\"1.82\" height=\"1.82\" fill=\"#CC0000\"/>\n",
" <rect x=\"150.37\" y=\"24.25\" width=\"1.82\" height=\"1.82\" fill=\"#008000\"/>\n",
" <rect x=\"150.37\" y=\"27.89\" width=\"1.82\" height=\"1.82\" fill=\"#455BB6\"/>\n",
" <rect x=\"150.37\" y=\"31.52\" width=\"1.82\" height=\"1.82\" fill=\"#D9AC00\"/>\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#6820CC\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#86A600\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#008868\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#F27C00\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#3410AC\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#439300\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#117F96\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#F5A700\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#7937D7\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#BCB100\"/>\n",
" <rect x=\"150.37\" y=\"71.49\" width=\"1.82\" height=\"1.82\" fill=\"#008434\"/>\n",
" <rect x=\"150.37\" y=\"75.12\" width=\"1.82\" height=\"1.82\" fill=\"#DF3E00\"/>\n",
" <rect x=\"150.37\" y=\"78.75\" width=\"1.82\" height=\"1.82\" fill=\"#1A089B\"/>\n",
" <rect x=\"150.37\" y=\"82.39\" width=\"1.82\" height=\"1.82\" fill=\"#218900\"/>\n",
" <rect x=\"150.37\" y=\"86.02\" width=\"1.82\" height=\"1.82\" fill=\"#2B6DA6\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-7\">\n",
" <text x=\"150.37\" y=\"14.07\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-6f21a912dafb4951acd02242cc8cbe94-element-9)\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-10\">\n",
" <rect x=\"7.07\" y=\"1\" width=\"142.29\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-11\">\n",
" <path fill=\"none\" d=\"M7.07,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M7.07,74.39 L 149.37 74.39\"/>\n",
" <path fill=\"none\" d=\"M7.07,50.59 L 149.37 50.59\"/>\n",
" <path fill=\"none\" d=\"M7.07,26.8 L 149.37 26.8\"/>\n",
" <path fill=\"none\" d=\"M7.07,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-12\">\n",
" <path fill=\"none\" d=\"M9.07,1 L 9.07 100.19\"/>\n",
" <path fill=\"none\" d=\"M36.73,1 L 36.73 100.19\"/>\n",
" <path fill=\"none\" d=\"M64.39,1 L 64.39 100.19\"/>\n",
" <path fill=\"none\" d=\"M92.05,1 L 92.05 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.71,1 L 119.71 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00008B\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-14\">\n",
" <path fill=\"none\" d=\"M11.84,26.8 L 14.61 27.74 17.37 27.56 20.14 27.67 22.9 27.05 25.67 27.83 28.43 26.21 31.2 25.22 33.97 25.17 36.73 25.97 39.5 26.31 42.26 26.12 45.03 25.67 47.8 25.15 50.56 25.36 53.33 24.67 56.09 23.57 58.86 23.33 61.62 22.74 64.39 22.84 67.16 21.91 69.92 22.83 72.69 23.34 75.45 23.31 78.22 24.03 80.99 23.98 83.75 24.8 86.52 24.64 89.28 24.61 92.05 24.08 94.82 22.07 97.58 21.69 100.35 22.62 103.11 20.66 105.88 20.27 108.64 20.14 111.41 18.89 114.18 18.93 116.94 18.92 119.71 18.66 122.47 18.33 125.24 19.07 128.01 19.66 130.77 20.06 133.54 20.54 136.3 21.2 139.07 20.73 141.84 21.15 144.6 21.5 147.37 21.83\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#CC0000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-15\">\n",
" <path fill=\"none\" d=\"M11.84,29.18 L 14.61 27.89 17.37 27.7 20.14 27.38 22.9 28.15 25.67 29.18 28.43 29.53 31.2 27.44 33.97 27.66 36.73 27.85 39.5 29.58 42.26 29.7 45.03 30.17 47.8 30.79 50.56 29.73 53.33 30.14 56.09 31.18 58.86 32.68 61.62 32.66 64.39 32.55 67.16 31.72 69.92 31.31 72.69 31.76 75.45 32.6 78.22 32.79 80.99 31.62 83.75 31.91 86.52 33.55 89.28 33.4 92.05 32.97 94.82 33.08 97.58 32.61 100.35 31.14 103.11 30.17 105.88 29.92 108.64 30.16 111.41 29.8 114.18 30.38 116.94 30.39 119.71 29.74 122.47 29.07 125.24 29.63 128.01 30.23 130.77 29.88 133.54 30.86 136.3 31.18 139.07 29.15 141.84 29.2 144.6 29.24 147.37 28.93\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-16\">\n",
" <path fill=\"none\" d=\"M11.84,31.56 L 14.61 30.76 17.37 30.83 20.14 31.37 22.9 30.91 25.67 31.43 28.43 31.31 31.2 32.37 33.97 32.86 36.73 32.32 39.5 32.02 42.26 32.48 45.03 32.33 47.8 32.3 50.56 32.74 53.33 33.07 56.09 32.88 58.86 32.66 61.62 33.09 64.39 33.41 67.16 32.03 69.92 32.88 72.69 32.48 75.45 34.02 78.22 35.24 80.99 34.97 83.75 34.61 86.52 35.67 89.28 34.84 92.05 35.1 94.82 34.78 97.58 33.13 100.35 33.34 103.11 34.04 105.88 33.93 108.64 34.05 111.41 35.09 114.18 34.83 116.94 35.28 119.71 35.01 122.47 35.08 125.24 34.28 128.01 33.54 130.77 32.07 133.54 31.68 136.3 30.64 139.07 30.03 141.84 30.28 144.6 29.7 147.37 29.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#455BB6\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-17\">\n",
" <path fill=\"none\" d=\"M11.84,33.94 L 14.61 34.66 17.37 34.35 20.14 34.09 22.9 33.45 25.67 31.22 28.43 31.47 31.2 30.91 33.97 32.3 36.73 32.23 39.5 32.44 42.26 32.39 45.03 34.09 47.8 34.64 50.56 35.79 53.33 34.92 56.09 35.73 58.86 36.01 61.62 35.47 64.39 35.89 67.16 36.5 69.92 36.88 72.69 36.08 75.45 35.92 78.22 35.86 80.99 36.16 83.75 35.43 86.52 36.29 89.28 35.64 92.05 35 94.82 35.03 97.58 34.27 100.35 34.61 103.11 33.57 105.88 34.18 108.64 33.47 111.41 33.6 114.18 33.25 116.94 34.1 119.71 33.78 122.47 33.79 125.24 34.71 128.01 36.99 130.77 37.05 133.54 36.75 136.3 38.88 139.07 39.34 141.84 38.27 144.6 39.39 147.37 39.13\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D9AC00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-18\">\n",
" <path fill=\"none\" d=\"M11.84,36.32 L 14.61 35.92 17.37 38.04 20.14 38.81 22.9 40 25.67 40.07 28.43 40.31 31.2 39.06 33.97 40.13 36.73 40.96 39.5 40.07 42.26 39.66 45.03 38.93 47.8 37.9 50.56 36.25 53.33 37.58 56.09 37.77 58.86 36.84 61.62 35.41 64.39 36.48 67.16 36.02 69.92 37.92 72.69 36.68 75.45 37.66 78.22 37.28 80.99 37.26 83.75 36.93 86.52 36.47 89.28 35.61 92.05 37.36 94.82 37.5 97.58 37.68 100.35 37 103.11 37.69 105.88 37.04 108.64 36.17 111.41 35.69 114.18 34.79 116.94 35.18 119.71 35.29 122.47 35.76 125.24 36.83 128.01 36.98 130.77 36.5 133.54 35.69 136.3 35.65 139.07 34.15 141.84 34.75 144.6 35.34 147.37 35.21\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6820CC\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-19\">\n",
" <path fill=\"none\" d=\"M11.84,38.7 L 14.61 38.59 17.37 39.01 20.14 38.73 22.9 39.73 25.67 40.6 28.43 38.78 31.2 40.63 33.97 40.49 36.73 39.44 39.5 39.49 42.26 40.46 45.03 41.52 47.8 42.24 50.56 43.31 53.33 42.73 56.09 41.82 58.86 42.15 61.62 41.6 64.39 42.23 67.16 42.31 69.92 41.46 72.69 41.95 75.45 41.89 78.22 42 80.99 40.69 83.75 40.3 86.52 41.49 89.28 41.91 92.05 41.66 94.82 42.25 97.58 42.45 100.35 41.57 103.11 41.59 105.88 42.13 108.64 43.16 111.41 40.5 114.18 40.11 116.94 39.55 119.71 38.1 122.47 38.2 125.24 39.33 128.01 38.42 130.77 39.26 133.54 37.49 136.3 38.51 139.07 38.8 141.84 38.65 144.6 39.66 147.37 39.8\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#86A600\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-20\">\n",
" <path fill=\"none\" d=\"M11.84,41.07 L 14.61 41.97 17.37 41.07 20.14 42.01 22.9 41.33 25.67 42.26 28.43 41.76 31.2 40.92 33.97 41.01 36.73 41.92 39.5 41.72 42.26 42.18 45.03 43.13 47.8 42.37 50.56 42.64 53.33 42.47 56.09 42.49 58.86 41.53 61.62 41.29 64.39 42.54 67.16 41.55 69.92 40.54 72.69 40.06 75.45 40.31 78.22 39.47 80.99 39.91 83.75 40.25 86.52 39.46 89.28 39 92.05 40.16 94.82 41.56 97.58 41.7 100.35 41.16 103.11 41.4 105.88 41.75 108.64 42 111.41 40.71 114.18 40.85 116.94 39.86 119.71 40.43 122.47 39.57 125.24 40.08 128.01 40.27 130.77 40.96 133.54 40.89 136.3 39.88 139.07 38.02 141.84 39.22 144.6 39.39 147.37 41.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008868\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-21\">\n",
" <path fill=\"none\" d=\"M11.84,43.45 L 14.61 41.93 17.37 43.09 20.14 43.18 22.9 43.23 25.67 42.31 28.43 43.38 31.2 42.44 33.97 43.16 36.73 42.28 39.5 42.69 42.26 42.74 45.03 42.45 47.8 42.78 50.56 44 53.33 43.39 56.09 44.42 58.86 44.36 61.62 44.17 64.39 44.82 67.16 44.59 69.92 44.31 72.69 43.65 75.45 43.39 78.22 44.28 80.99 44.11 83.75 44.36 86.52 45.26 89.28 44.53 92.05 44.88 94.82 43.93 97.58 44.76 100.35 45.71 103.11 44.49 105.88 43.67 108.64 43.31 111.41 42.36 114.18 42.12 116.94 42.36 119.71 41.24 122.47 39.78 125.24 40.37 128.01 41.26 130.77 42.72 133.54 43.97 136.3 42.23 139.07 42.39 141.84 42.21 144.6 42.77 147.37 42.62\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#F27C00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-22\">\n",
" <path fill=\"none\" d=\"M11.84,45.83 L 14.61 45.6 17.37 45.42 20.14 45.54 22.9 45.8 25.67 44.55 28.43 43.28 31.2 43.8 33.97 44.41 36.73 43.79 39.5 44.86 42.26 46.05 45.03 46.45 47.8 46.19 50.56 47.23 53.33 46.78 56.09 47.32 58.86 48.11 61.62 47.89 64.39 48.74 67.16 49.01 69.92 49.78 72.69 50.62 75.45 50.87 78.22 50.96 80.99 49.66 83.75 48.93 86.52 47.82 89.28 46.97 92.05 47.68 94.82 46.87 97.58 47.28 100.35 47.15 103.11 47.39 105.88 48.91 108.64 47.53 111.41 47.06 114.18 48.06 116.94 46.3 119.71 45.69 122.47 44.6 125.24 43.93 128.01 45.26 130.77 45.4 133.54 45.75 136.3 45.14 139.07 43.61 141.84 43.57 144.6 43.66 147.37 44.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#3410AC\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-23\">\n",
" <path fill=\"none\" d=\"M11.84,48.21 L 14.61 48.41 17.37 48.32 20.14 49.34 22.9 49.68 25.67 49.78 28.43 51.19 31.2 52.35 33.97 51.67 36.73 51.65 39.5 51.72 42.26 51.81 45.03 51.76 47.8 52.52 50.56 53.37 53.33 52.64 56.09 51.76 58.86 51.41 61.62 51.03 64.39 50.81 67.16 50.59 69.92 50.51 72.69 50.33 75.45 49.91 78.22 50.19 80.99 49.63 83.75 48.81 86.52 49.23 89.28 50.01 92.05 49.96 94.82 50.78 97.58 49.99 100.35 48.58 103.11 47.34 105.88 48.2 108.64 48.48 111.41 49.94 114.18 50.51 116.94 50.52 119.71 50.75 122.47 51.19 125.24 51.24 128.01 49.97 130.77 51.1 133.54 49.45 136.3 49.38 139.07 49.65 141.84 48.9 144.6 46.98 147.37 46.25\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#439300\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-24\">\n",
" <path fill=\"none\" d=\"M11.84,50.59 L 14.61 50.79 17.37 50.37 20.14 50.74 22.9 50.25 25.67 49.98 28.43 51.02 31.2 50.11 33.97 50.15 36.73 49.24 39.5 49.18 42.26 49.67 45.03 49.74 47.8 48.73 50.56 47.04 53.33 46.38 56.09 45.25 58.86 45.88 61.62 45.63 64.39 45.96 67.16 46.78 69.92 47.94 72.69 47.66 75.45 48.99 78.22 48.7 80.99 46.79 83.75 47.61 86.52 47.24 89.28 47.28 92.05 46.94 94.82 46.35 97.58 45.23 100.35 46.43 103.11 47 105.88 48.46 108.64 48.5 111.41 47.28 114.18 46.36 116.94 48.07 119.71 49.5 122.47 50.17 125.24 51.8 128.01 52.35 130.77 51.37 133.54 52.01 136.3 52.22 139.07 52.06 141.84 51.03 144.6 51.96 147.37 52.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#117F96\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-25\">\n",
" <path fill=\"none\" d=\"M11.84,52.97 L 14.61 52.4 17.37 51.62 20.14 53.32 22.9 53.32 25.67 54.12 28.43 54.8 31.2 54.32 33.97 51.78 36.73 52.34 39.5 51.69 42.26 50.71 45.03 49.51 47.8 50.54 50.56 50.32 53.33 50.7 56.09 50.5 58.86 51.84 61.62 52.35 64.39 52.86 67.16 53.62 69.92 52.94 72.69 52.51 75.45 52.9 78.22 53.39 80.99 53.02 83.75 52.45 86.52 52.65 89.28 51.99 92.05 53.32 94.82 52.98 97.58 52 100.35 52.14 103.11 53.14 105.88 53.29 108.64 53.75 111.41 52.18 114.18 52.25 116.94 51.8 119.71 51.06 122.47 50.65 125.24 50.06 128.01 49.14 130.77 49.94 133.54 50.48 136.3 50.06 139.07 51.7 141.84 50.61 144.6 50.27 147.37 50.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#F5A700\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-26\">\n",
" <path fill=\"none\" d=\"M11.84,55.35 L 14.61 55.49 17.37 54.8 20.14 54.28 22.9 55.3 25.67 55.82 28.43 54.64 31.2 55.15 33.97 56.95 36.73 56.4 39.5 56.51 42.26 58.04 45.03 57.97 47.8 58.4 50.56 57.35 53.33 57.17 56.09 57.23 58.86 56.16 61.62 57.15 64.39 57.14 67.16 57.53 69.92 57.24 72.69 57.93 75.45 56.61 78.22 57.86 80.99 56.87 83.75 56.55 86.52 56.58 89.28 55.76 92.05 54.16 94.82 53.6 97.58 52.92 100.35 52.5 103.11 52.03 105.88 51.96 108.64 53.25 111.41 53.72 114.18 53.96 116.94 52.54 119.71 53.02 122.47 54.18 125.24 54.5 128.01 54 130.77 53.71 133.54 54.73 136.3 53.67 139.07 53.51 141.84 53.1 144.6 53.16 147.37 54.69\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#7937D7\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-27\">\n",
" <path fill=\"none\" d=\"M11.84,57.73 L 14.61 58.08 17.37 57.65 20.14 57.15 22.9 56.34 25.67 57.62 28.43 57.22 31.2 59.09 33.97 59.5 36.73 59.68 39.5 58.96 42.26 58.2 45.03 56.91 47.8 56.6 50.56 56.79 53.33 55.5 56.09 56.28 58.86 57.05 61.62 58.37 64.39 57.96 67.16 58.62 69.92 58.52 72.69 58.47 75.45 58.64 78.22 56.93 80.99 59.6 83.75 59.22 86.52 59.02 89.28 58.88 92.05 58.37 94.82 57.52 97.58 57.24 100.35 59.19 103.11 60.9 105.88 60.7 108.64 61 111.41 59.57 114.18 58.6 116.94 59.18 119.71 60.96 122.47 61.52 125.24 62.02 128.01 63.25 130.77 63.27 133.54 63.04 136.3 62.64 139.07 62.09 141.84 62.74 144.6 62.77 147.37 62.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#BCB100\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-28\">\n",
" <path fill=\"none\" d=\"M11.84,60.11 L 14.61 60.23 17.37 59.9 20.14 60.46 22.9 60.34 25.67 59.65 28.43 59.25 31.2 60.17 33.97 60.12 36.73 62.89 39.5 63.52 42.26 63.27 45.03 62.38 47.8 62.42 50.56 62.94 53.33 62.6 56.09 63.41 58.86 63.76 61.62 61.68 64.39 60.66 67.16 61.53 69.92 60.93 72.69 60.08 75.45 60.26 78.22 59.72 80.99 59.85 83.75 59.11 86.52 58.52 89.28 58 92.05 59.09 94.82 58.57 97.58 57.95 100.35 59.25 103.11 59.25 105.88 58.69 108.64 57.5 111.41 56.98 114.18 57.46 116.94 58.59 119.71 58.36 122.47 57.45 125.24 57.73 128.01 56.54 130.77 55.81 133.54 56.37 136.3 56.28 139.07 56.77 141.84 56.82 144.6 55.96 147.37 56.7\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008434\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-29\">\n",
" <path fill=\"none\" d=\"M11.84,62.49 L 14.61 62.5 17.37 62.91 20.14 64.14 22.9 64.95 25.67 64.36 28.43 64.08 31.2 63.83 33.97 64.03 36.73 63.81 39.5 61.66 42.26 61.76 45.03 61.18 47.8 60.05 50.56 61.08 53.33 59.79 56.09 60.19 58.86 60.43 61.62 60.46 64.39 59.74 67.16 58.82 69.92 57.15 72.69 57.9 75.45 58.14 78.22 59.16 80.99 59.14 83.75 58.88 86.52 59.92 89.28 59.32 92.05 59.36 94.82 60.32 97.58 60.05 100.35 60.29 103.11 59.72 105.88 60.39 108.64 59.96 111.41 60.36 114.18 61.49 116.94 61.7 119.71 60.57 122.47 61.79 125.24 61.45 128.01 60.8 130.77 60.88 133.54 61.12 136.3 60.13 139.07 60.6 141.84 60.34 144.6 61.06 147.37 61.17\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#DF3E00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-30\">\n",
" <path fill=\"none\" d=\"M11.84,64.87 L 14.61 65.45 17.37 65.11 20.14 65.09 22.9 65.09 25.67 65.3 28.43 64.85 31.2 64.68 33.97 63.88 36.73 63.5 39.5 63.69 42.26 64.43 45.03 64.02 47.8 64.07 50.56 63.56 53.33 63.19 56.09 61.81 58.86 62.35 61.62 63.24 64.39 61.55 67.16 62.43 69.92 62.65 72.69 61.09 75.45 61.33 78.22 60.94 80.99 60.91 83.75 61.9 86.52 62.4 89.28 61.82 92.05 62.27 94.82 62.78 97.58 63.3 100.35 62.1 103.11 60.22 105.88 60.93 108.64 62.24 111.41 62.21 114.18 63.08 116.94 63.68 119.71 62.76 122.47 62.59 125.24 63.43 128.01 63.08 130.77 63.1 133.54 64 136.3 64.57 139.07 65.04 141.84 66.75 144.6 66.83 147.37 66.72\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#1A089B\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-31\">\n",
" <path fill=\"none\" d=\"M11.84,67.25 L 14.61 67.99 17.37 67.42 20.14 65.83 22.9 65.04 25.67 64.29 28.43 65.09 31.2 64.06 33.97 63.54 36.73 64.23 39.5 65.18 42.26 63.52 45.03 62.97 47.8 63.32 50.56 63.25 53.33 62.42 56.09 64.27 58.86 64.3 61.62 64.95 64.39 65.46 67.16 64.9 69.92 64.86 72.69 65.6 75.45 65.26 78.22 65.53 80.99 64.73 83.75 64.23 86.52 64.65 89.28 63.71 92.05 64.11 94.82 64.95 97.58 66.33 100.35 66.28 103.11 65.55 105.88 65.86 108.64 64.83 111.41 64.76 114.18 64.74 116.94 64.43 119.71 65.25 122.47 63.4 125.24 63.44 128.01 64.35 130.77 63.79 133.54 63.51 136.3 62.27 139.07 62.95 141.84 63.84 144.6 62.74 147.37 63.27\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#218900\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-32\">\n",
" <path fill=\"none\" d=\"M11.84,69.63 L 14.61 68.37 17.37 69.08 20.14 69.95 22.9 70.63 25.67 70.14 28.43 68.26 31.2 68.56 33.97 68.71 36.73 68.08 39.5 66.99 42.26 66.28 45.03 65.08 47.8 65.96 50.56 66.01 53.33 66.58 56.09 67.37 58.86 68.65 61.62 67.91 64.39 67.8 67.16 69.54 69.92 68.09 72.69 69.17 75.45 68.8 78.22 68.56 80.99 67.89 83.75 67.61 86.52 69 89.28 68.38 92.05 67.83 94.82 68.3 97.58 67.37 100.35 68.03 103.11 68.65 105.88 69.99 108.64 70.21 111.41 69.44 114.18 70.49 116.94 70.16 119.71 71.52 122.47 71.91 125.24 72.58 128.01 72.39 130.77 71.39 133.54 72.16 136.3 71.97 139.07 73.2 141.84 72.55 144.6 72.22 147.37 72.32\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#2B6DA6\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-33\">\n",
" <path fill=\"none\" d=\"M11.84,72.01 L 14.61 73.68 17.37 73.3 20.14 72.81 22.9 73.27 25.67 72.38 28.43 72.91 31.2 74.51 33.97 75.11 36.73 74.51 39.5 74.56 42.26 74.17 45.03 73.31 47.8 73.86 50.56 72.38 53.33 72.57 56.09 73.51 58.86 72.67 61.62 74.39 64.39 73.34 67.16 72.25 69.92 72.25 72.69 71.13 75.45 71.2 78.22 69.95 80.99 69.98 83.75 68.54 86.52 69.16 89.28 69.91 92.05 68.69 94.82 70.41 97.58 70.48 100.35 70.51 103.11 71.08 105.88 71.05 108.64 71.71 111.41 72.36 114.18 70.59 116.94 68.9 119.71 69.12 122.47 68.23 125.24 69.11 128.01 70.29 130.77 69.17 133.54 69.39 136.3 69.53 139.07 69.69 141.84 69.96 144.6 69.99 147.37 68.92\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-34\">\n",
" <text x=\"6.07\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-10</text>\n",
" <text x=\"6.07\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"6.07\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"6.07\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">20</text>\n",
" <text x=\"6.07\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">30</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-9\">\n",
" <path d=\"M7.07,1 L 149.37 1 149.37 100.19 7.07 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/html": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFFFFF\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-3\">\n",
" <text x=\"9.07\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"36.73\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"64.39\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"92.05\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.71\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-5\">\n",
" <text x=\"153.18\" y=\"17.89\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"21.53\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"25.16\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"28.79\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"32.43\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y10</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y11</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y12</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y13</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y14</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y15</text>\n",
" <text x=\"153.18\" y=\"72.39\" dy=\"0.35em\">y16</text>\n",
" <text x=\"153.18\" y=\"76.03\" dy=\"0.35em\">y17</text>\n",
" <text x=\"153.18\" y=\"79.66\" dy=\"0.35em\">y18</text>\n",
" <text x=\"153.18\" y=\"83.29\" dy=\"0.35em\">y19</text>\n",
" <text x=\"153.18\" y=\"86.93\" dy=\"0.35em\">y20</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-6\">\n",
" <rect x=\"150.37\" y=\"16.99\" width=\"1.82\" height=\"1.82\" fill=\"#00008B\"/>\n",
" <rect x=\"150.37\" y=\"20.62\" width=\"1.82\" height=\"1.82\" fill=\"#CC0000\"/>\n",
" <rect x=\"150.37\" y=\"24.25\" width=\"1.82\" height=\"1.82\" fill=\"#008000\"/>\n",
" <rect x=\"150.37\" y=\"27.89\" width=\"1.82\" height=\"1.82\" fill=\"#455BB6\"/>\n",
" <rect x=\"150.37\" y=\"31.52\" width=\"1.82\" height=\"1.82\" fill=\"#D9AC00\"/>\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#6820CC\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#86A600\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#008868\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#F27C00\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#3410AC\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#439300\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#117F96\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#F5A700\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#7937D7\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#BCB100\"/>\n",
" <rect x=\"150.37\" y=\"71.49\" width=\"1.82\" height=\"1.82\" fill=\"#008434\"/>\n",
" <rect x=\"150.37\" y=\"75.12\" width=\"1.82\" height=\"1.82\" fill=\"#DF3E00\"/>\n",
" <rect x=\"150.37\" y=\"78.75\" width=\"1.82\" height=\"1.82\" fill=\"#1A089B\"/>\n",
" <rect x=\"150.37\" y=\"82.39\" width=\"1.82\" height=\"1.82\" fill=\"#218900\"/>\n",
" <rect x=\"150.37\" y=\"86.02\" width=\"1.82\" height=\"1.82\" fill=\"#2B6DA6\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-7\">\n",
" <text x=\"150.37\" y=\"14.07\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-6f21a912dafb4951acd02242cc8cbe94-element-9)\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-10\">\n",
" <rect x=\"7.07\" y=\"1\" width=\"142.29\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-11\">\n",
" <path fill=\"none\" d=\"M7.07,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M7.07,74.39 L 149.37 74.39\"/>\n",
" <path fill=\"none\" d=\"M7.07,50.59 L 149.37 50.59\"/>\n",
" <path fill=\"none\" d=\"M7.07,26.8 L 149.37 26.8\"/>\n",
" <path fill=\"none\" d=\"M7.07,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-12\">\n",
" <path fill=\"none\" d=\"M9.07,1 L 9.07 100.19\"/>\n",
" <path fill=\"none\" d=\"M36.73,1 L 36.73 100.19\"/>\n",
" <path fill=\"none\" d=\"M64.39,1 L 64.39 100.19\"/>\n",
" <path fill=\"none\" d=\"M92.05,1 L 92.05 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.71,1 L 119.71 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00008B\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-14\">\n",
" <path fill=\"none\" d=\"M11.84,26.8 L 14.61 27.74 17.37 27.56 20.14 27.67 22.9 27.05 25.67 27.83 28.43 26.21 31.2 25.22 33.97 25.17 36.73 25.97 39.5 26.31 42.26 26.12 45.03 25.67 47.8 25.15 50.56 25.36 53.33 24.67 56.09 23.57 58.86 23.33 61.62 22.74 64.39 22.84 67.16 21.91 69.92 22.83 72.69 23.34 75.45 23.31 78.22 24.03 80.99 23.98 83.75 24.8 86.52 24.64 89.28 24.61 92.05 24.08 94.82 22.07 97.58 21.69 100.35 22.62 103.11 20.66 105.88 20.27 108.64 20.14 111.41 18.89 114.18 18.93 116.94 18.92 119.71 18.66 122.47 18.33 125.24 19.07 128.01 19.66 130.77 20.06 133.54 20.54 136.3 21.2 139.07 20.73 141.84 21.15 144.6 21.5 147.37 21.83\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#CC0000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-15\">\n",
" <path fill=\"none\" d=\"M11.84,29.18 L 14.61 27.89 17.37 27.7 20.14 27.38 22.9 28.15 25.67 29.18 28.43 29.53 31.2 27.44 33.97 27.66 36.73 27.85 39.5 29.58 42.26 29.7 45.03 30.17 47.8 30.79 50.56 29.73 53.33 30.14 56.09 31.18 58.86 32.68 61.62 32.66 64.39 32.55 67.16 31.72 69.92 31.31 72.69 31.76 75.45 32.6 78.22 32.79 80.99 31.62 83.75 31.91 86.52 33.55 89.28 33.4 92.05 32.97 94.82 33.08 97.58 32.61 100.35 31.14 103.11 30.17 105.88 29.92 108.64 30.16 111.41 29.8 114.18 30.38 116.94 30.39 119.71 29.74 122.47 29.07 125.24 29.63 128.01 30.23 130.77 29.88 133.54 30.86 136.3 31.18 139.07 29.15 141.84 29.2 144.6 29.24 147.37 28.93\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-16\">\n",
" <path fill=\"none\" d=\"M11.84,31.56 L 14.61 30.76 17.37 30.83 20.14 31.37 22.9 30.91 25.67 31.43 28.43 31.31 31.2 32.37 33.97 32.86 36.73 32.32 39.5 32.02 42.26 32.48 45.03 32.33 47.8 32.3 50.56 32.74 53.33 33.07 56.09 32.88 58.86 32.66 61.62 33.09 64.39 33.41 67.16 32.03 69.92 32.88 72.69 32.48 75.45 34.02 78.22 35.24 80.99 34.97 83.75 34.61 86.52 35.67 89.28 34.84 92.05 35.1 94.82 34.78 97.58 33.13 100.35 33.34 103.11 34.04 105.88 33.93 108.64 34.05 111.41 35.09 114.18 34.83 116.94 35.28 119.71 35.01 122.47 35.08 125.24 34.28 128.01 33.54 130.77 32.07 133.54 31.68 136.3 30.64 139.07 30.03 141.84 30.28 144.6 29.7 147.37 29.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#455BB6\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-17\">\n",
" <path fill=\"none\" d=\"M11.84,33.94 L 14.61 34.66 17.37 34.35 20.14 34.09 22.9 33.45 25.67 31.22 28.43 31.47 31.2 30.91 33.97 32.3 36.73 32.23 39.5 32.44 42.26 32.39 45.03 34.09 47.8 34.64 50.56 35.79 53.33 34.92 56.09 35.73 58.86 36.01 61.62 35.47 64.39 35.89 67.16 36.5 69.92 36.88 72.69 36.08 75.45 35.92 78.22 35.86 80.99 36.16 83.75 35.43 86.52 36.29 89.28 35.64 92.05 35 94.82 35.03 97.58 34.27 100.35 34.61 103.11 33.57 105.88 34.18 108.64 33.47 111.41 33.6 114.18 33.25 116.94 34.1 119.71 33.78 122.47 33.79 125.24 34.71 128.01 36.99 130.77 37.05 133.54 36.75 136.3 38.88 139.07 39.34 141.84 38.27 144.6 39.39 147.37 39.13\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D9AC00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-18\">\n",
" <path fill=\"none\" d=\"M11.84,36.32 L 14.61 35.92 17.37 38.04 20.14 38.81 22.9 40 25.67 40.07 28.43 40.31 31.2 39.06 33.97 40.13 36.73 40.96 39.5 40.07 42.26 39.66 45.03 38.93 47.8 37.9 50.56 36.25 53.33 37.58 56.09 37.77 58.86 36.84 61.62 35.41 64.39 36.48 67.16 36.02 69.92 37.92 72.69 36.68 75.45 37.66 78.22 37.28 80.99 37.26 83.75 36.93 86.52 36.47 89.28 35.61 92.05 37.36 94.82 37.5 97.58 37.68 100.35 37 103.11 37.69 105.88 37.04 108.64 36.17 111.41 35.69 114.18 34.79 116.94 35.18 119.71 35.29 122.47 35.76 125.24 36.83 128.01 36.98 130.77 36.5 133.54 35.69 136.3 35.65 139.07 34.15 141.84 34.75 144.6 35.34 147.37 35.21\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6820CC\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-19\">\n",
" <path fill=\"none\" d=\"M11.84,38.7 L 14.61 38.59 17.37 39.01 20.14 38.73 22.9 39.73 25.67 40.6 28.43 38.78 31.2 40.63 33.97 40.49 36.73 39.44 39.5 39.49 42.26 40.46 45.03 41.52 47.8 42.24 50.56 43.31 53.33 42.73 56.09 41.82 58.86 42.15 61.62 41.6 64.39 42.23 67.16 42.31 69.92 41.46 72.69 41.95 75.45 41.89 78.22 42 80.99 40.69 83.75 40.3 86.52 41.49 89.28 41.91 92.05 41.66 94.82 42.25 97.58 42.45 100.35 41.57 103.11 41.59 105.88 42.13 108.64 43.16 111.41 40.5 114.18 40.11 116.94 39.55 119.71 38.1 122.47 38.2 125.24 39.33 128.01 38.42 130.77 39.26 133.54 37.49 136.3 38.51 139.07 38.8 141.84 38.65 144.6 39.66 147.37 39.8\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#86A600\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-20\">\n",
" <path fill=\"none\" d=\"M11.84,41.07 L 14.61 41.97 17.37 41.07 20.14 42.01 22.9 41.33 25.67 42.26 28.43 41.76 31.2 40.92 33.97 41.01 36.73 41.92 39.5 41.72 42.26 42.18 45.03 43.13 47.8 42.37 50.56 42.64 53.33 42.47 56.09 42.49 58.86 41.53 61.62 41.29 64.39 42.54 67.16 41.55 69.92 40.54 72.69 40.06 75.45 40.31 78.22 39.47 80.99 39.91 83.75 40.25 86.52 39.46 89.28 39 92.05 40.16 94.82 41.56 97.58 41.7 100.35 41.16 103.11 41.4 105.88 41.75 108.64 42 111.41 40.71 114.18 40.85 116.94 39.86 119.71 40.43 122.47 39.57 125.24 40.08 128.01 40.27 130.77 40.96 133.54 40.89 136.3 39.88 139.07 38.02 141.84 39.22 144.6 39.39 147.37 41.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008868\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-21\">\n",
" <path fill=\"none\" d=\"M11.84,43.45 L 14.61 41.93 17.37 43.09 20.14 43.18 22.9 43.23 25.67 42.31 28.43 43.38 31.2 42.44 33.97 43.16 36.73 42.28 39.5 42.69 42.26 42.74 45.03 42.45 47.8 42.78 50.56 44 53.33 43.39 56.09 44.42 58.86 44.36 61.62 44.17 64.39 44.82 67.16 44.59 69.92 44.31 72.69 43.65 75.45 43.39 78.22 44.28 80.99 44.11 83.75 44.36 86.52 45.26 89.28 44.53 92.05 44.88 94.82 43.93 97.58 44.76 100.35 45.71 103.11 44.49 105.88 43.67 108.64 43.31 111.41 42.36 114.18 42.12 116.94 42.36 119.71 41.24 122.47 39.78 125.24 40.37 128.01 41.26 130.77 42.72 133.54 43.97 136.3 42.23 139.07 42.39 141.84 42.21 144.6 42.77 147.37 42.62\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#F27C00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-22\">\n",
" <path fill=\"none\" d=\"M11.84,45.83 L 14.61 45.6 17.37 45.42 20.14 45.54 22.9 45.8 25.67 44.55 28.43 43.28 31.2 43.8 33.97 44.41 36.73 43.79 39.5 44.86 42.26 46.05 45.03 46.45 47.8 46.19 50.56 47.23 53.33 46.78 56.09 47.32 58.86 48.11 61.62 47.89 64.39 48.74 67.16 49.01 69.92 49.78 72.69 50.62 75.45 50.87 78.22 50.96 80.99 49.66 83.75 48.93 86.52 47.82 89.28 46.97 92.05 47.68 94.82 46.87 97.58 47.28 100.35 47.15 103.11 47.39 105.88 48.91 108.64 47.53 111.41 47.06 114.18 48.06 116.94 46.3 119.71 45.69 122.47 44.6 125.24 43.93 128.01 45.26 130.77 45.4 133.54 45.75 136.3 45.14 139.07 43.61 141.84 43.57 144.6 43.66 147.37 44.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#3410AC\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-23\">\n",
" <path fill=\"none\" d=\"M11.84,48.21 L 14.61 48.41 17.37 48.32 20.14 49.34 22.9 49.68 25.67 49.78 28.43 51.19 31.2 52.35 33.97 51.67 36.73 51.65 39.5 51.72 42.26 51.81 45.03 51.76 47.8 52.52 50.56 53.37 53.33 52.64 56.09 51.76 58.86 51.41 61.62 51.03 64.39 50.81 67.16 50.59 69.92 50.51 72.69 50.33 75.45 49.91 78.22 50.19 80.99 49.63 83.75 48.81 86.52 49.23 89.28 50.01 92.05 49.96 94.82 50.78 97.58 49.99 100.35 48.58 103.11 47.34 105.88 48.2 108.64 48.48 111.41 49.94 114.18 50.51 116.94 50.52 119.71 50.75 122.47 51.19 125.24 51.24 128.01 49.97 130.77 51.1 133.54 49.45 136.3 49.38 139.07 49.65 141.84 48.9 144.6 46.98 147.37 46.25\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#439300\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-24\">\n",
" <path fill=\"none\" d=\"M11.84,50.59 L 14.61 50.79 17.37 50.37 20.14 50.74 22.9 50.25 25.67 49.98 28.43 51.02 31.2 50.11 33.97 50.15 36.73 49.24 39.5 49.18 42.26 49.67 45.03 49.74 47.8 48.73 50.56 47.04 53.33 46.38 56.09 45.25 58.86 45.88 61.62 45.63 64.39 45.96 67.16 46.78 69.92 47.94 72.69 47.66 75.45 48.99 78.22 48.7 80.99 46.79 83.75 47.61 86.52 47.24 89.28 47.28 92.05 46.94 94.82 46.35 97.58 45.23 100.35 46.43 103.11 47 105.88 48.46 108.64 48.5 111.41 47.28 114.18 46.36 116.94 48.07 119.71 49.5 122.47 50.17 125.24 51.8 128.01 52.35 130.77 51.37 133.54 52.01 136.3 52.22 139.07 52.06 141.84 51.03 144.6 51.96 147.37 52.57\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#117F96\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-25\">\n",
" <path fill=\"none\" d=\"M11.84,52.97 L 14.61 52.4 17.37 51.62 20.14 53.32 22.9 53.32 25.67 54.12 28.43 54.8 31.2 54.32 33.97 51.78 36.73 52.34 39.5 51.69 42.26 50.71 45.03 49.51 47.8 50.54 50.56 50.32 53.33 50.7 56.09 50.5 58.86 51.84 61.62 52.35 64.39 52.86 67.16 53.62 69.92 52.94 72.69 52.51 75.45 52.9 78.22 53.39 80.99 53.02 83.75 52.45 86.52 52.65 89.28 51.99 92.05 53.32 94.82 52.98 97.58 52 100.35 52.14 103.11 53.14 105.88 53.29 108.64 53.75 111.41 52.18 114.18 52.25 116.94 51.8 119.71 51.06 122.47 50.65 125.24 50.06 128.01 49.14 130.77 49.94 133.54 50.48 136.3 50.06 139.07 51.7 141.84 50.61 144.6 50.27 147.37 50.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#F5A700\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-26\">\n",
" <path fill=\"none\" d=\"M11.84,55.35 L 14.61 55.49 17.37 54.8 20.14 54.28 22.9 55.3 25.67 55.82 28.43 54.64 31.2 55.15 33.97 56.95 36.73 56.4 39.5 56.51 42.26 58.04 45.03 57.97 47.8 58.4 50.56 57.35 53.33 57.17 56.09 57.23 58.86 56.16 61.62 57.15 64.39 57.14 67.16 57.53 69.92 57.24 72.69 57.93 75.45 56.61 78.22 57.86 80.99 56.87 83.75 56.55 86.52 56.58 89.28 55.76 92.05 54.16 94.82 53.6 97.58 52.92 100.35 52.5 103.11 52.03 105.88 51.96 108.64 53.25 111.41 53.72 114.18 53.96 116.94 52.54 119.71 53.02 122.47 54.18 125.24 54.5 128.01 54 130.77 53.71 133.54 54.73 136.3 53.67 139.07 53.51 141.84 53.1 144.6 53.16 147.37 54.69\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#7937D7\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-27\">\n",
" <path fill=\"none\" d=\"M11.84,57.73 L 14.61 58.08 17.37 57.65 20.14 57.15 22.9 56.34 25.67 57.62 28.43 57.22 31.2 59.09 33.97 59.5 36.73 59.68 39.5 58.96 42.26 58.2 45.03 56.91 47.8 56.6 50.56 56.79 53.33 55.5 56.09 56.28 58.86 57.05 61.62 58.37 64.39 57.96 67.16 58.62 69.92 58.52 72.69 58.47 75.45 58.64 78.22 56.93 80.99 59.6 83.75 59.22 86.52 59.02 89.28 58.88 92.05 58.37 94.82 57.52 97.58 57.24 100.35 59.19 103.11 60.9 105.88 60.7 108.64 61 111.41 59.57 114.18 58.6 116.94 59.18 119.71 60.96 122.47 61.52 125.24 62.02 128.01 63.25 130.77 63.27 133.54 63.04 136.3 62.64 139.07 62.09 141.84 62.74 144.6 62.77 147.37 62.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#BCB100\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-28\">\n",
" <path fill=\"none\" d=\"M11.84,60.11 L 14.61 60.23 17.37 59.9 20.14 60.46 22.9 60.34 25.67 59.65 28.43 59.25 31.2 60.17 33.97 60.12 36.73 62.89 39.5 63.52 42.26 63.27 45.03 62.38 47.8 62.42 50.56 62.94 53.33 62.6 56.09 63.41 58.86 63.76 61.62 61.68 64.39 60.66 67.16 61.53 69.92 60.93 72.69 60.08 75.45 60.26 78.22 59.72 80.99 59.85 83.75 59.11 86.52 58.52 89.28 58 92.05 59.09 94.82 58.57 97.58 57.95 100.35 59.25 103.11 59.25 105.88 58.69 108.64 57.5 111.41 56.98 114.18 57.46 116.94 58.59 119.71 58.36 122.47 57.45 125.24 57.73 128.01 56.54 130.77 55.81 133.54 56.37 136.3 56.28 139.07 56.77 141.84 56.82 144.6 55.96 147.37 56.7\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#008434\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-29\">\n",
" <path fill=\"none\" d=\"M11.84,62.49 L 14.61 62.5 17.37 62.91 20.14 64.14 22.9 64.95 25.67 64.36 28.43 64.08 31.2 63.83 33.97 64.03 36.73 63.81 39.5 61.66 42.26 61.76 45.03 61.18 47.8 60.05 50.56 61.08 53.33 59.79 56.09 60.19 58.86 60.43 61.62 60.46 64.39 59.74 67.16 58.82 69.92 57.15 72.69 57.9 75.45 58.14 78.22 59.16 80.99 59.14 83.75 58.88 86.52 59.92 89.28 59.32 92.05 59.36 94.82 60.32 97.58 60.05 100.35 60.29 103.11 59.72 105.88 60.39 108.64 59.96 111.41 60.36 114.18 61.49 116.94 61.7 119.71 60.57 122.47 61.79 125.24 61.45 128.01 60.8 130.77 60.88 133.54 61.12 136.3 60.13 139.07 60.6 141.84 60.34 144.6 61.06 147.37 61.17\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#DF3E00\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-30\">\n",
" <path fill=\"none\" d=\"M11.84,64.87 L 14.61 65.45 17.37 65.11 20.14 65.09 22.9 65.09 25.67 65.3 28.43 64.85 31.2 64.68 33.97 63.88 36.73 63.5 39.5 63.69 42.26 64.43 45.03 64.02 47.8 64.07 50.56 63.56 53.33 63.19 56.09 61.81 58.86 62.35 61.62 63.24 64.39 61.55 67.16 62.43 69.92 62.65 72.69 61.09 75.45 61.33 78.22 60.94 80.99 60.91 83.75 61.9 86.52 62.4 89.28 61.82 92.05 62.27 94.82 62.78 97.58 63.3 100.35 62.1 103.11 60.22 105.88 60.93 108.64 62.24 111.41 62.21 114.18 63.08 116.94 63.68 119.71 62.76 122.47 62.59 125.24 63.43 128.01 63.08 130.77 63.1 133.54 64 136.3 64.57 139.07 65.04 141.84 66.75 144.6 66.83 147.37 66.72\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#1A089B\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-31\">\n",
" <path fill=\"none\" d=\"M11.84,67.25 L 14.61 67.99 17.37 67.42 20.14 65.83 22.9 65.04 25.67 64.29 28.43 65.09 31.2 64.06 33.97 63.54 36.73 64.23 39.5 65.18 42.26 63.52 45.03 62.97 47.8 63.32 50.56 63.25 53.33 62.42 56.09 64.27 58.86 64.3 61.62 64.95 64.39 65.46 67.16 64.9 69.92 64.86 72.69 65.6 75.45 65.26 78.22 65.53 80.99 64.73 83.75 64.23 86.52 64.65 89.28 63.71 92.05 64.11 94.82 64.95 97.58 66.33 100.35 66.28 103.11 65.55 105.88 65.86 108.64 64.83 111.41 64.76 114.18 64.74 116.94 64.43 119.71 65.25 122.47 63.4 125.24 63.44 128.01 64.35 130.77 63.79 133.54 63.51 136.3 62.27 139.07 62.95 141.84 63.84 144.6 62.74 147.37 63.27\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#218900\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-32\">\n",
" <path fill=\"none\" d=\"M11.84,69.63 L 14.61 68.37 17.37 69.08 20.14 69.95 22.9 70.63 25.67 70.14 28.43 68.26 31.2 68.56 33.97 68.71 36.73 68.08 39.5 66.99 42.26 66.28 45.03 65.08 47.8 65.96 50.56 66.01 53.33 66.58 56.09 67.37 58.86 68.65 61.62 67.91 64.39 67.8 67.16 69.54 69.92 68.09 72.69 69.17 75.45 68.8 78.22 68.56 80.99 67.89 83.75 67.61 86.52 69 89.28 68.38 92.05 67.83 94.82 68.3 97.58 67.37 100.35 68.03 103.11 68.65 105.88 69.99 108.64 70.21 111.41 69.44 114.18 70.49 116.94 70.16 119.71 71.52 122.47 71.91 125.24 72.58 128.01 72.39 130.77 71.39 133.54 72.16 136.3 71.97 139.07 73.2 141.84 72.55 144.6 72.22 147.37 72.32\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#2B6DA6\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-33\">\n",
" <path fill=\"none\" d=\"M11.84,72.01 L 14.61 73.68 17.37 73.3 20.14 72.81 22.9 73.27 25.67 72.38 28.43 72.91 31.2 74.51 33.97 75.11 36.73 74.51 39.5 74.56 42.26 74.17 45.03 73.31 47.8 73.86 50.56 72.38 53.33 72.57 56.09 73.51 58.86 72.67 61.62 74.39 64.39 73.34 67.16 72.25 69.92 72.25 72.69 71.13 75.45 71.2 78.22 69.95 80.99 69.98 83.75 68.54 86.52 69.16 89.28 69.91 92.05 68.69 94.82 70.41 97.58 70.48 100.35 70.51 103.11 71.08 105.88 71.05 108.64 71.71 111.41 72.36 114.18 70.59 116.94 68.9 119.71 69.12 122.47 68.23 125.24 69.11 128.01 70.29 130.77 69.17 133.54 69.39 136.3 69.53 139.07 69.69 141.84 69.96 144.6 69.99 147.37 68.92\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-34\">\n",
" <text x=\"6.07\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-10</text>\n",
" <text x=\"6.07\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"6.07\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"6.07\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">20</text>\n",
" <text x=\"6.07\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">30</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-6f21a912dafb4951acd02242cc8cbe94-element-9\">\n",
" <path d=\"M7.07,1 L 149.37 1 149.37 100.19 7.07 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/plain": [
"Compose.SVG(158.73015873015876,105.82010582010584,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=22996, maxsize=Inf, ptr=22997, mark=-1),nothing,\"fig-6f21a912dafb4951acd02242cc8cbe94\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(Compose.Property{Compose.FillPrimitive}=>nothing),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(7.0733333333333235,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(7.0733333333333235,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-6f21a912dafb4951acd02242cc8cbe94-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-6f21a912dafb4951acd02242cc8cbe94-element-34\",false,34,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-6f21a912dafb4951acd02242cc8cbe94-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-6f21a912dafb4951acd02242cc8cbe94-element-8\\\")\\n .init_gadfly();\"],false,:none)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd5hU9bn4v6dM7217ZytLWVhYUBAN0jEaQ8QuXNRritfkWh81/tSbxHjjJddrSaLRgF0hGhUVBVFEpCML23ubnd7O1HPmtN8fZx2WLbO7Z5eZHTifZx+emcPMvN/Zfc95z/etEMuyQEBAQEBA4GIFTvYCBAQEBAQEkolgCAUEBAQELmoSYQhZlsXxaAIEXXgQBEXTTLJXkZKEw4LK8YEkKYqik72KlERQOX5QFE2SVHLXkAhDSNOMzYYlQNCFh8cTwHEy2atISSwWb7KXkJJgWCQUIpK9ipREUDl+hEIEhkWSuwY0ATIgCFIoJAkQdOEhlYpRVHBf80GpFFSODxIJiiCCyvFBUDl+iEQIDEPJXQMkZI0KCAgICFzMJOLWj2FYDAsnQNCFRzCIk6QQsOGD1xtK9hJSkkgkShCCN54PgsrxgyDISCTJ4dWxDWF/f//y5ctLS0tLSko+/PBDAIDFYlm5cmV5efmKFSssFsuYn8AwjKAi/AgEItFoksPIKYrbHUz2ElKSUIgQwtL8EFSOHzhOJj0sPbYhfPrpp9euXdva2vraa6/dddddAIBHHnlk9erVzc3Na9euffTRR8eWAcMGg2oKFnvxodHIJZJExHEvPNLS1MleQkqiVEplMnGyV5GSCCrHD5lMrFRKk7uGsWOEdXV1ubm5YrF4//79Dz74YH19fW5u7rFjxzIzM61W66JFi3p7e2MvZlmWYVgIgmAY4h7DMARBEMOwLMvCMAxBgKsHQBCYZQHDMBAEYBge/MYfXgxBEBR7MQDD3zguKdwb40thGIZlBSkj/qqTKyWO2pyVMm614aGcPKRM8R9UOAWmq3IyLAvGVJtzpYxLOafZKZA05QQAJCyJZuwd4ezZs7Va7Zw5c9avX79161YAgN1uNxqNAACDwWC32we/mCAos9nt8QQBAH5/xGx2B4METTM9PU6z2c0Vi1gs3v5+DwCAomiz2e10BgAA4TBhNrv9/jAAwOcLmc1uzj/jcGBms5umGZZlzWa3zeYDABAEOUwKDgBwuQKDpZjNZ6U4HH4AQDgcNZvdXMCSk8L5pu12PycFABCTEo2SZrPb7Q4AAAIB3Gx2BwI4AMDtDpjN7miUBABYrT6z2Q0AoChmTCkOh99sdlPUgBSrdWwpTqefIEibbUAKTTNms9tu9wMAIpGo2ez2+UIAAAwLm81urozpByk0AMBs9litXgAASVJms9vlCgAAgkHcbHb7/REAgMcTNJvdXEyIk8KyLCfF4cAAAJEIOUwKAQBwOrlfNQ0A6O/3cInjP0jxAwCCQSK+FIZhzWa33Y4BAHCcNJvdnP+c+4NyrhKn8+x3iUmhqLNSQqGzUrzeYExt7Hasvd3GMOdI4dTG6w0OkeJy+UdXzsFSwgAArzc0WIrZ7GYYPso5WMroajPkFAAjSuHUhpPCqQ0nxWrlcwoEApGeHud4lHPEU4CHckajVEwKp5yclJHUBvygnP5RlHOolGHKOa5TgGHOngLnKmd4kHIGhkix2XzjOQV+UJsRT4GhyvnDKTCmco5wCnBSOOX84RQY4fo81ilw3q/PPT1O7vEQ5eR+G4lh7B1hKBSSy+UURX3wwQcPP/xwZ2dnVlZWbW1tWlqazWarrq7u7++P/wkURZvNnoIC09Qt+2LBavWq1XKh+IQH7e324uL0ZK8i9XC5AiIRotHIk72Q1ENQOX5gWJgkaaMxmeGzsXeEGzZsePfdd0UiUW5uLkEQAIAVK1bs3LkTAPDPf/5z5cqVY34CgiBZWbrJr/UixGhUCwEbfuTm6pO9hJREq5UnPWCToggqxw+lUqrVJvnGa+wdYUNDw+233+5yuUQi0bPPPrt69WqLxbJ582av16vX67dv356ZmZmYtQoICAgICEw5iSiopyjGavXm5hrOt6ALD7sdU6lkcrmwKZwwXV2OwsK0ZK8i9XC7gyIRolbLkr2Q1ENQOX74/RGSpA0GZRLXkJheSqzQOZofXCJGsleRktC08HvjA8uygsrxQ1A5fkwHlRNarAkICAgIXNQkZgwTEAa78IPLS072KlISoTUdP2ia4Uq4BCaKoHL8YJjkuwwTM4aJ5spEBCaKw4EJQ8740dPjSvYSUhKvNxQIJHkmTooiqBw/AoFI0ntwJmgMk1ADwA+JRCTMxOGHkGHED5EIQVEk2atISQSV48d00DchRiggICAgcFGTmBghm/Tm4ikKjpNcSzaBicJ1dRKYKARBCrEufggqxw+SpJM++SsxMUKGa4snMFG83mDSVSRFsdmwZC8hJQkEcK6drMBEEVSOH+EwwXWXTSKJiBHCMCy0LuSHUikViZLvQE9FdDpB5fggk4mFsDQ/BJXjh0QiSnqYUIgRCggICAhc1CTi1o9hGG7GisBEwbCwMKGeH4I3nh/BIM4NZhKYKILK8SMSiSY9vJoYQ8gm3QWcooTDhJC5wA8ME4rh+IDjpHDvxQ9B5fgRjVLcdMMkkgjXKMuy4XBUGKrHAxwnURRBUSFmM2GCQVwYJ8QDgiBhGBYi0zwQVI4fJEkzDCORiJK4BiFGKCAgICBwUZOg8gmr1ZsAQRceLlcg6U6DFKWvz53sJaQkPl8o6QGbFEVQOX4Eg7jPdxG0WGNZliCEqAMfSJJKejvaFEVQOX5QFANBULJXkZIIKscPmmaS3jYkQa5RhmFhWDi7JgzDsBAkXJf4wDAMDAux1QnDXRAEneOBoHL8mA4qJ8QIBQQEBAQuahJx/0JRdHe3MwGCLjysVq/QppUf7e32ZC8hJXG5AhgWTvYqUhJB5fiBYWGXK8mF5onZyENCNjY/EAQRXMr8EFSOHzAMCSrHD0Hl+DEdVE5wjQoICAgIXNQkaAwTjgtNm/hAEELWKE/CYUHl+ECSFEUJzYz4IKgcPyiKJskkJ9wmqI5QGFDCD49HqCPkicUilK7yAcMiQliaH4LK8SMUIpLenS4RdYQQBAn91fghlYqF/mr8UCoFleODRIIKY5j4IagcP0Si5GdCCDFCAQEBAYGLmgRNnxASsvkRDOLC9Al+eL1JbtqUokQiUYIQvPF8EFSOHwRBJn3yV4LmEQoqwo9AICLMxOGH2x1M9hJSklCIEMLS/BBUjh84TiY9LJ2IGCEMwwaDKgGCLjw0GrlYnIi/0YVHWpo62UtISZRKadIDNimKoHL8kMnEEkmSI3RCjFBAQEBA4KImQeUTTqc/AYIuPLzekBCw4YfN5kv2ElKSQCASDgvlE3wQVI4f4TARCCS5fCJBBfVJdwGnKDgeTfqAkhQlGBRUjg8EQQn5WfwQVI4fJEknfYJVIlyjLAtIkhJiXTwgSRpBYCFmwwOCICUSUbJXkXpQFA1BkFBKyANB5fhB0wzLsiiazE6tQoxQQEBAQOCiJjFjmJj+fk8CBF14OBz+pFfYpCg9Pa5kLyEl8XiCSQ/YpCiCyvEjEIh4PEmuPEmMA4QVog78oGmaYYQtOx8EleMHw7CCyvFDUDl+TAeVE1yjAgICAgIXNYnJGgXCYBd+cGHkZK8iJRFuz/lB00zSb89TFEHl+MEwbNKHzSWmjpA2m4UYIR8cDkwYcsYPIWDDD683JMQI+SGoHD8CgUjSe3AmaAyTRCLUTvBBJBJm4vBEUDl+oCgsqBw/BJXjB4LASfd7CTFCAQEBAYGLGqGzzLQGx0mhsww/gkE82UtISQiCFGJd/BBUjh8kSSe9kaTQa3Ra4/UGk64iKYrNhiV7CSlJIIALvUb5IagcP8JhIhBI8j1EgsYwaTTyBAi68FAqpSJRMjsPpS46naByfJDJxEKMkB+CyvFDIhElt78aEGKEAgICAgIXOYmZUM8mPTs2RREm1PPG7Q4kewkpiTChnjeCyvFjOkyoT4whZDAsnABBFx7BIC5kLvDD6xVUjg+RSFQIS/NDUDl+EASZ9I7KiRnDxIbDUYVCcr4FXXjgOImiCIoKMZsJEwziSqU02atIPQiChGFYiEzzQFA5fpAkzTBMcidYCTFCAQEBAYGLmkRkjdI043BgmZm6BMi6wHC5AkqlVCoVpn1OmL4+d26uIdmrSD18vhCKIsLOhgeCyvEjGMQpitZqFXFe88c/Hv3oo/YhB198cUV1dXqcd4VCoZKSEovFMuYaEmEIWZYlCCHjgw8kSSW9HW2KIqgcPyiKgSAo2atISQSV4wdNM2O2Deno8B09ah1yEMPOptjcfvvt69at27Bhg9frnT9/fltb29atW5999lmbzTaeNSQi+IQgSE6OPgGCLjzS0jRyuTjZq0hJ8vONyV5CSqLTKVQqWbJXkZIIKscPlUqm08XbDo6HjRs37ty5EwCwc+fODRs2oCh6//339/X1jfPtiTCEEASSXi+ZoiAILNye80NI9+AHgsAwLKgcH+KoXDBINja6+/qE+ooRgGFo8j0cli9ffvTo0Ugk8tZbb916660AAARBUHS8Ls9EuEYpijabPQUFpgTIusCwWr1qtVxIuOVBe7u9uDhe/EBgRFyugEiECK2geFBX1w/DEqs11NmJdXb6OjsxiyVotQb7+4MEMVAElZGhuOyynBUr8tevL8rOViZ3wdMEDAuTJG00qibzISKRaNWqVS+99BKGYXPnzp3o2xMzNwQSbs/5gSCIcHvOD0Hl+AHD0IWqctEoHQqdUyKpUoknVJtEELTDEe7vDzocYYslaLOFbLaQ1Rq028P9/UG7PTxm1a/NFtq5s2XnzhYEgRYuzFixIn/FivxLLskSiy9edZ0qlbv++uvXr1//X//1XzzeK5RPCAgIXOA4HOG//KX2L3+pdTqTU/Muk6G5uaqeHn9sazgYhUK0bFnOihX5y5blzJ2bJhIJdcNDueOOL159tW7IwX37Ni5fnhd7SpKkVqttbW3Nzs6OHYSgcdm4xBTUA5KkxGJhauWEIUlaiNnwgyDI5JbopigURUPQFMRspgktLZ4///nE66834ngiUjr1emlenjo/X52fry4o0OTlqbinaWlyAEA4TH73nWXfvp59+3pPnbLT9AjXXqkUraoyLVyYWVOTsXBhRmmp/oJPEqBphmXZ+HkkgUA0Ehn6F9TppLGbBoqidu3a9de//nXPnj081pAIQyjECHkjxAh5I8QI+XHBxAgPHDBv3Xr8k086GebsJU6pFA32mYdCZDQ6gRaGCAKlpckzMhSZmcq0NHl2tjI9feBperocx8OzZ2eP/SkAAAC8Xnz//r59+3q/+qq3qck92su0WsnChRk1NZkLF2bMn5+emzupQNr0ZEpihP/4xz8ef/zxTz75hEeAECTGENI04/EETSb1+RZ04eH1huRysbCz4YHN5svI0CZ7FalHIBBBEFguT9V7L5pm33+/devWE8eOnVN2VlOTef/9C37601IEOV87LN4qZ7EE9+3r/fzzrmPHrO3tvjivVChEJSW6khJdSYm2tFRfWqorKdEZjald7hIOEzTNJLdoR4gRCggIpB4YRkQiVDhM/fCAxDCiu9v/4ounurrODsiFYeiqq4ruu2/hsmU5SVzt+PF48OPHbceP244ftx4/brNax57bo9NJOYs4c6Zh1ixjZaWxsFBzwTtUp5ZEGEKGYQOByAXgbEk8wSAukYiEBEgeeL2hyVfpXoREIlEYhqaDE4JlgdkcaG/3dnRg7e3e9nZfe7vXbA5yZm/Mt0ul6K23zrz33gXl5Qnq5nE+VK6vLxCziy0tXrN5XJWICoVo5kzD7NmmmTMNs2cbKyuN07lUgyBIhmFlsmR2DhFihNMaIUbIGyFGyI8kxggjEeqNNxpbWz3t7b72dl9Hh49fhovBIPvFL+befff89PSEfosEqFwoRLa1eX/48bW2elpbvS5XZMw36nTS6ur0yy7LWbYsZ9GiTJlsAqmL3B2JTidVKs/L7dGUxAgnibAjnNYIO0LeCDtCfiRrR1hb67j55k8bG0dNGxmCQiGSSlGNRiyXi6RSVKuVyGSoVIpefnnOv/3bLLk8CTvaZKmc14u3tXkbG90NDe66OmdDgzv+xlEsRhYuzFi2LOeyy3KWLMlWq4duxRyOcF2dq67O2dDgOnPG1djoCgZJAEB2tpILTJaW6srK9KWlusJCzeSHxI1nR8gSBEsOdQNAMhmETM21UYgRCggIJBOWBf/7vyceeeTb4TV2Op20uFhbXKydMUNbXKzjHsjlouHXboHB+HxEfb2L+2locNXVudzukXeNCALNnZu2bFlOSYmutdVTX+86c8Y1/mpLkQguKtKWlelKSnSFhZrCQk1BgaawUDOhHed46LnjDterrw45WLpvn2r58hFf39DQcOeddzocDqVS+be//W3x4sXxPz9BY5iErFF+CFmjvBGyRvmR4KxRqzW0adNne/f2cE8VCtE998yfNctYXKwtLtbp9ak0DWr6qJxWK1m6NHvp0rO1HL29/gMHzAcOmL/91tzc7Ikdp2n2++/t339vj/+BRqPM748OLzUhSaalxdPS4hlyPCNDUVCgjtnFggINV1spkYywgZuSrNEh0yf0ev3jjz9+9dVX79ixY9OmTS0tLfHfnqAxTKEQYRJChBMHx6NiMSoRQoQTJxgkxn6RwDAIguLhinc4wh0dPu4nM1P505+WjCen/6OP2u+444tYiGvBgow331xXVpaqk2qms8rl5alvuWXmLbfMBADY7eGDB82cXTxzxjm4zpJDrRZXVhpnzTJyiTZz5piMRhlFMV1dWEuLp7nZ09rq5R44HCPvHbnmc0eODB2clJmpyM9X5+dr8vJUsbYDWq1IKoVVkwsRbty4cdu2bRs2bOCmTxQUFKxduxYAUFVVxTBjT7ITOstMa4TOMrwZrbMMjlOff979/vut6enyjRvLFi7MFBLNBxO/swxNs319/o4OLGb2uJ9AIDr4ZSgKr1iRv3Fj2bXXlmi1I9zHhcPkvffuf+ml09xTGIYefLDmv/5rSUp3F0vFZkY+H/Hdd/0HDpit1iBXfTFrlrGgQDP+t3M7ws5OrKsL6+rCurux/v7gcOMan1OnbquqSovzgjFdoyRJlpaWNjY2rlmz5rnnnps7dy7Lsnv37n344Yd/97vfrVu3Lv4ChBihwEUBjlNffNG9c2fLxx93DL5qFxRorruu9LrryhYuzEji8lKC7m7sxhs/GX6bHwexGFm9umDjxrJrrilWqQYCe6dOOW666ZOYgy4vT/3662svvzx36lcskAyiUbq3N9DdPWAXu7qw7m5/T4/fag2OZm0w7J74cd/xxAjvuuuuioqK7du319bWOp3OLVu25ObmPvLIIzk5Y5eQJqZ8grHbfdnZqerxSCIOh1+lkia3wiZF6elx5ecbCYLes6d7x46Wjz9u9/ujcV5fWKi57rqyjRvLqqsv6qILjycoEiHDAzY7d7bceeeewTPBByORIIWFmqIibV6e6uhR66lTjiEvkErRdesKN24s6+sLPProwVi06frry//2t5Uj7hpTDk7lkr2K6QtB0H19gZ4ef2+vv6fH392NcY+DwWhT0ya9Pl6l43gM4VdffcVNn3jggQeuvPLKBx98cPXq1eNcm1BHOK0R6giH4/MRR49ajx+3BYNRiQSRy0UKhUgsRjQaMYrCGo1EJIKVSvHJk+bvvnN89FH78Gt3WZn+Zz8rtdlCH37YPjybrqhIs3Fj+U9/WlJVdTHOARheRxgOk7/5zdd///sZ7imKwgsWpBcVaYuKNDNmaLkH2dmqwR7m9nbfjh3NO3e21tYOtYgx1Grx889fedttleftqyQaoXSVH+OpI7Q++aT3/feHHMx/5RVFTU3saWz6hFKp1Gq1BoMh9l8ulyv+GgTXqMB0h6bZhgbX4cOWI0esR49am5vd/HS2pER33XWlGzeWz507cE9GksxXX/Xu2NHy4YdtHg8+5PViMVJZaZg7N23OHNPcuaaqqrTUSmKcEurqXDfcsCtW3ldYqHn77asWL84c59vb2rw7d7YMt4iXXpr15pvrCwvHG4sSEIhPCkyfYFlA03T8KRsCI0LTDAxD0MWUzhEMkjZbyOEI2+2h48dtR45Yjx+3cvW8/JgxQ8v5POfNGzUaT5LMvn09O3e2jmgRY+TmqubOTZs71zR3rkmnk8YWzI1jpWk25n2VSpFLLskqKdHxXnayoGkGggYGpf71r7X33bc/Nv7m+uvLX3pppUbDxz/BWcQdO1oaGty//e3iRx9dPPlC7OkGSdJC7wseMAzLsuwkJ3+lwPQJwTXKmwvVNUrT7N693S0tXocjZLOFHY6w0xnm7N/wqWNDQFF41izjokWZhYUabuZ4JELhOBUIRCmK9flwimL9foIk6TVriiYa8yNJ5ssve3bubNm/v29w72Z+5OWpr7wy78or86+8Mi8jIzXa3HCuUYaB77jjiw8+aOMOKhSi555bvmXL7Ml/PoYR/Ezp9EdwjfLjYmmxRtOMw4FlZqbe3XHScbkCSqVUKk2xnOw49Pb6X3217h//qB9n+2COvDz1okWZixZl1tRkVFenj6eBVl+fOzfXMObL4uDzEadPO06fdtbWOk6fdtbXuyY0u24IlZXGK6/MW7Ei//LLc6dzYxSfL3TihOP22/f29vq5I1VVae+8c1XCWlenLpNXuYuTYBCnKFqrTeadohAjFEgEJMns2tXx97+f2bOnO36NkUyGmkzytDR5Wpq8qspUU5NZU5OZmZn87RRJMk1N7tpaR22to7nZQ5IDVbpqtZjz6ohEcKwrcXu779Ahy4g9o7lkk9zcgUZLfj/BTSqnKCZW16FQiFauLFi3rnDevPSE+cVxnKqrc330Uft///cximIAABAE7rln/n//9+UjNgQRELhgSEyMkA2Hoxeefy8B4DiJokhKR1Pa2ryvvFL32mv1dvs5TSjS0+U/+1lZYaHGaJRxPxkZCqNRplBMzfY3GMSVymTmtkQi1Hff9e/b17tvX8/339s5azdRsrKU69YVrltXtHJlwZT3/vf5iFOn7LW1zlOn7KdOOZqbPZz94zCZ5P/4x+qrrpoxtUIvYJKucikKSdIMwyS3F4EQI5zWpG6M0OcjPv2085VXznzzTd9gFYNhaMWK/DvvnHPNNcXntThhWgVsvF58//4+zigO7vQ4fiQSZNmynPXrZ6xfX1RcfE5DSwwj/P6o30/4/VHusc93TsVIIBAdbOEiEaquznnqlCNOEHT58rw33liXlTV9h9hNQ6aVyqUQ44kRnrKd6vZ1Dzl4Wd5lRvnUFG4mZgwT4/WGDIZkxkJTFAwLy2TiVOlOFwhEv/3W/PXXfV9/3Vtb6xiyB8rMVGzePOuOO+YUFSUiad7p9E/PPu/9/cFjx6wxy6TVSjnnJ1cTyR3s7PR9+mnn7t1dI/ZyLCrSKBQivz/q90e93lFzXCcKisIVFfpZswyXXZZz111VQmO/iTJtVW6aE4lEaZqJv5m+4+M7Xj01tKB+3237lheOPH2iv7//1ltvNZvNLMs+88wzP/nJT+KvQYgRnl/6+4M2W4h7HAxGucASywKfb+D6hSDw4sWZ0+3WOxCInjnjbGnxiESIwSA1GGQGg8xolA3vABIOk4cOWb7+uvfrr/uOH7cN3nlwwDC0alXBnXfO+fGPZ1yE9emTgWHYEydsn37a+dlnXSdP2qb8TFWpxHPmmKqq0qqq0ubNS5s1yyjEAgWmJ2MawiHTJ9asWVNUVPTAAw8cOnTo2muvtdvHGK+RiK0Gw7AYFr6opqR6vfg//9n61ltN335rHrP/LASBefPS160rvOqqGQsXZgy+Ew8EIhKJKAE7QoslyKWB1NY6a2sdHR2+EZeNIBBnFDnr6PHgR49aR8ylhCAwc6bx2muLb7999vh7+E4hbncg1Z0QMAxxuUJPPrnEZgt99lnnZ5917d3bPaRXnFotVqslarVYpRKr1WKtVqrRiAdrEdd5J/ZUIkFmzTJWVaXNmKEdvu0LhQgEgS+kROWEcQGoXFLAcZKmmUkGgIZMn9i0aVNubm44HPb5fKZxTD5KjCFkLhJDSBD0p592vvlm42efdQ6fMjoaLAu4kWC///0Rk0m+dm3h+vVFq1YVaLWSYBCHYXjKDWEoRDY3e5qa3GfOODnjN85RnDTNOhzh0WavwDBUWWm44oq8yy/PWbYsx2SSj/iyxOD1hi+kq1JGhmLLltlbtsyORunGRjeKwpzli9X1TxWRSFQkQgRDyIMLTOUSBkGQJElP0hAuX7785z//eSQSeeutt5577rnZs2cDAIqLizs6Oj7//PMx354IQ4gg8IXtOmcY9sAB81tvNf7zn61D8hRgGJo1y8i5BGUyVCpFAQAQBLTageuX14sfPNgfy7N3OsOvv97w+usNKAovXZq9alX+JZdkFRVps7KUvHNHnc5wU5OHs3xNTe7mZk9vrz++nw1F4bIy/ezZRhSFPR7c7Y643RGnMzK8bycMQ3PnmpYty7niirzLLss2GCY1XXMKyci4MNt3icVI/IE1k0SlksKw4MHmw4WqcucbuVwynpGB8RGJRKtWrXrppZcwDJs7d24oFJLL5U1NTR988MEvfvGLzs7O+G9PhCGEICgV8x7HQ1cX9re/nX7nnaa+vqHl4XPnmm65ZeYNN5Tn5IxxkxgOk/v29XKOr1gVM0Ux+/f37d/fxz1FUTg7W5mXpy4oUA+ebJmWJvf7ox4Pzpkrjwf3eCJeL8E9cDojzc2e4X2lh6PVSgY31aysNHA2ewgUxbjduMcTcbtxtzsiFiOXXJI1PUcHCIns/Ei5iXrTB0Hl+CESIQBMQXD6+uuv56ZPAAA47+iNN96Ym5tLEGMPTB47WaahoeHOO+90OBxKpfJvf/vb4sWLLRbLpk2b+vr6cnJyXn/99aysrPifQNOMyxVIT7+gbpdCIfLpp4/+z/+cGFI0nZenvummiptvrpg1i09eb329i7OI333XPzzxZKoQi5Hycn1FhaGy0sAZv6SE8c4rFos3K0toZjRhMCyMosiFepXkrBoAACAASURBVOd6XhFUjh+hEEFR9OCBJ8PZ2bjziPnIkIO/WPCLYn1x7Gls+kR2dnZDQ8Ptt9/ucrlEItGzzz475jymsQ3hokWLHn300auvvnrHjh2PPfZYS0vL5s2bZ82adf/992/durW+vn7btm3xP2E8dYQUxaRQ2fh77zU/8MA3g3eBOp30uutKb7555tKl2VOSd+7zEXv3dn/4YUtPT9BsDvb3B3nbRZkMjZm9igpDZaWxqEiTQr9tfghFXfwYPoZJYJwIKsePKek1et6nT7zwwgt33XWXSCRqbW1dv359W1tbbm7usWPHMjMzrVbrokWLent7Yy9mGJaiaBiGUBShaYamGQSBYRgmiCgMwyIRAkFQNEoBAMRilGVZkqQhCKJptrDw75demrVxY9mPfzxDLEYYhkFRBIYhkqRZlhWJUAgC0SgFQUAkQkeUgiAwRdEMw44mRSRCuDf+8GKGYZhQiGpocJeV6TQacUzK4DcOkVJf777nnn0HDphjX3nBgvRHH71kzZpCGGYHS4FhGEUHpIz4XeJIiX0XGIYQBCZJmqIYhyPS1eXv7PT29Pj7+oJdXVhPD4ZhUS5jQquVGAwyvV6i1Uq1WrHRqDAYpCqVKD9fXVqqhyAQRwr3GyNJimW5JQGSpIZ/F+6N536XEX7Vo0n54Y0DUgDg/qCjSYFhGB5TCsMwFDWiFJokKblcMpKUs8vjpIxDbQZLGfUPOuXKGUdK/F/1MCkj/0FHlMIwDPfJY/5BJyNl/KfAOKVMrXKOJWVk5YQgCEXhyZ0CQ5UzzncZSTnPOQVYlh0kJXHKOVEpBEEBAKRS0RApALDjn1k0yekTY8cI7777bpZl9+zZ8/DDD//f//0fAMButxuNRgCAwWAYUp8RjVJ2u0+hkBqNqmAQ9/lCer1KpZL6/ZFIJJqZqROLUbsdY1k2L89IUYzV6pVKxQcO2Gy20AcftH3wQZtEglxxRc6qVbk33zwrPV3pcvmjUSonxwDDkNXqRVEkO1s/khSlSiXzeEKRCBGTwjBsfr6Rphmr1SuRiDIytJFI1GLxtbcHW1uxr7/uOXzY4nAMxM9KSrTXXluycmVBYaFUKhVxUmw2n1wuMZnUoRDR2urcuvX0e++1xO4c8vLUTzxRs3x5dn6+iaKY/n5PTIrL5Ver5Tqdwu8PBwIRk0ktl0vc7gBBkNnZBhSFrVYvgiA5OUOleL1BnU6pVsu83lA4TGRkaFEUcTr9FEUXFJhyc1VFRVKxOC8zUxsOE06nX6WS6fVKrzfk94eNRrVCIbHZfARBZmfrURTp6XEhCIBhKBqlrFavTCZJS1OHw4THE9RqFRqN3OcLh0J4erpWKhU5HH6KovPyjAzDWq1esRjNzNThOOl0YpwUvz/i94eNRpVCIfV4gjgezcrSi0SIzeaDICg310CStNXqlcnEaWmacDjq8QTiSGFZYLV6RSI0K0tHEKTDgSmVMoNBGQjgGBYyGFRK5chSKOocKW53QKNRaLVyDAsHg3hamkYmEzudfpKkcnONAJyVEo2SdjumVEoNhgG1iUmJo5zp6TEpcq1WgWHhYDByrhQDABNWTk7KEOUcpjYauVw86BSAY1II4qwUTm04KZzacFIcDoymuVOAjitFLZdLXK5ANErm5BgQBDab3eNUTolE5HD4aZrOzzdx30UsFmVmanE8GlPOQCASU84fTgE9iiJWqw9BoJwcQzRK22xeTgqnnJyUwWrDnQJ5eSaGGSxluHIOlTJMOcd1CrDs2VPgXOWMYFg4jnL+cKKNdgpopFKx0xkYrpw/SJEaDKqRTgGdSBRfOUc9BSBo8Ckw8vV5zFMgEiFcroFTgFMbTsqUXJ/tdt+Iysmy7PizcLds2bJly5Zxvng4Y+8InU7nli1bcnNzH3nkkZycHABAVlZWbW1tWlqazWarrq7u7++P/wljukYfffTbP/7x6JCFqFTiq6+esXFj+erVBcPrfMNh0ucjuJ9wmAQAyCWQBHMqgg7I2if22lmrmbGYoz090d5eFkCR2Ze06Ofs8RfuPk0NT30cTHq6fPXqwrVrC1euzOdyIGmaffnl04899l0s6wRF4V/9quqJJ5bEzxMh+/v77ruPxXHUaETT0lCjETUYBv41mVCTCVGPkUybui3Wko7gp+KH4BrljaBy/EiNMUxXXnnlgw8+ODjYeNttty1atOhXv/rVCy+8cOLEie3bt8f/BO7OIv6Aku5ubMeOlnffbT51yjHkv3Qa0dpLtEjQR3k8APMiAa8ojCmooBaENSCkAWEZiBpAwAgCMBg7itYLTIdB6SFQ/j0oigCxSAQXFGhGrB9HEGjhwowVK/J37eo4fdo56BeS93//t7yycoxcGP/nn3fddhvldMZ5DSQWowYDqtcjOh2i03EP0EGP/axIO2umKj97zO8lMISuLkdh4XksM7hQcbuDIhGiVk+XMpgUQlA5fvj9EZKkDYZkdtcawxBiGKbVag2GszbM5XJZLJbNmzd7vV69Xr99+/bMzMwpXFBrq/e995rfe6+locElBeTV4Ngt4EAW4NOnOD4MKmbn1mT99CrDVWsD6TP27O3Zvbtrz55ul2vUYoP8fPXWrVds2FAa/5NZirI8/rjt6afBpItjAACIWp31+9+bfvlLCBHaXwkICAhMPYkZwwRIkppQexTK6ax//JnIay+Lw+OdEk7BIo/Y4IS1TlhnpjQ2VtNLKG1A5wCaHNh7TXr/EqQt094AkSP4RSUlJYbbbjPcdhuak3vihO3zz7t37+48ftwWaxstk6EPPljz0EM1MtkY34K0WDpvvDF44AD3VJyTk/300yzD0G43xf04nZTLRf3wlB1HjQsAQLFwYd5LL8nnzRvnb0OAIEihJI4HFEVDEMRNWBSYEILK8YOmGZYdIy/mq0PWhlbvkIPXrsnPyYjXsOzw4cNXXnllODx226xpN4aJ6Oy0//nP7m3bmEGrZ5QaJi0L0elFBr3EZJBnmMRpxgFHol6P6vWizEw0bQSnRCRC4TgllaKcAWMikeCBA/49e/x79kTq64e+GoZVP/qRcfNm7U9/CsvlHg++d2/35593EwT11FOXjafSzr9nT9ctt8TcoZp16wpeew01xnOiMsEg5fFQHg/t8VBeL+12n33q8QROnaa7B3oiQCiads89WU8+CSunV4fu6YkQsOGHECPkjaBy/BhPjPDPr9R/vt885OCfHllYNXPAWzmk6XZbW1tHR8e999772WefjcfGJcIQ0jTj8QTH7LIWPnnS9swzvn/+k6XPdumUlpWlP/CA4dZbIbF4aldFWiycRfTt2sUEg4P/C1GrdT/7mWHzZuXSpWB8A8JZmrY+8YT1qac4dyiEoll/+EPGAw+M8+2j4XH4wi+94PzjU0xkwGErzsvLff557dVXT+ZjLwZsNl9Ghnbs1wmcSyAQQRCYqzwRmBCCyvEj6PSwUplKFS8sPaYh/OKLL7Zt2/buu+++/PLLra2t999//6233vrWW2+lp6dPF0M4Jv4vv7Q9/XRg377BBxWLFmU89JD2mmvAee58yASD3vffd7/2WuCbb4ZE9SQzZhg2bdJt3CiZMQNCR3WKkhZL1003Bb75hnsqzs0tfOcd5ZIlU7VCorOz95e/9H/xReyI9tpr855/XpQtJNEICEx3aAwLfvdd8OBBCIblCxbIFywQ5+Qke1ETgMFx7NNPAcMACEK0WgAAJBIhSiUAAJbLIYkEAICo1YOTGGLHY1AOR9RiIc3maF8fabFE+/rI/v5of3+0rw+CoCq/P/4axjSEJEmWlpY2NjauWbPmqaeeevLJJ1988cWSkhIIGpeNS8xgXjYUIlSqURvx9dx5p+uVV35YEaRevTrjoYdUV1xxvhc2hGhvr/v11z1vvIG3tg75LwhFRTk5koICcWHhwL+FheKCAnFWln/fvq5bbqEcA8mumvXrC157DTXES5EdP+EwIRajnPfc8+675v/8T9Jm4/4LUamyfv97069+JSTRjIjfHxFSH3mA4yRXTZ/shaQeg1WOcjgC334b/Pbb4IEDkTNnBnu5AACijAz5ggWKBQs4uyhKn74OVby5ufOGGyKnT59XKeVWhyIjXuxsTEMIALjrrrsqKiq2b9++ffv2eeemU3R1dRUUFMT5/GkRI8RbWhpmzoRgWLdxY8aDD8p4tQaYQoKHDnlef93z3nu0zxf/lZBYzFLU1LpDBzOkjpD2+fofftj58suxnatszhxpRQWi0SAKBSSVIhoNLJfDMtnAA6mUs9znY1fNhEJMOIyOY9ZXUhACNvwQYoS8aT3wvbG3kbN/eFPT+N8ozs0dsIs1NYqamjHLixOG+7XXen/1KyYUmsyHhMWgLQPgIhCQAlwEoigISAGBAlwEglKAo4BSSLbffThzUbxMwPEYwq+++opruv3AAw/EDk6vHWEgEIl/arn+/nfVihWSwsLzvZjxw+A49vHH7jffxOvro319LEXFebE4N7fw3XeVl146tWsIBnGJRCQSnbPnCx0+3PPzn0fOnBnnh8AKhbSiQjZ7tmzmTNns2dKZM8W5uZNa1Xffuf/xD+/OnXQggOh00rIy7kdSWiotLZWWlg7xiiQFrzd0MYzAnHIikSgMQ9Mo+5FlSYeDcjhIq5W029lIhGtGgaaliTIzEdWoGRYsQRBdXURXV7SzM/aApWl5dbWipkZRUyObMwcSTe5rsmyksTH47bfBgweD334bHdRscjCwVKpYtEh5xRVMOBw+cSL8/fc0NnoyPAzLKioUixYpFi1SLF4srayM4/KhXK5oT0+0p4fo6aExTLN+vWLhwkl9ox+gA4HeX/7S8+abZ7/CkiUQBAEAaAxjGQYAwEajMRsZOwgAYGDQJg/Vm6J1OaAhG3SaADPWfbj7Xp9eFS8bcTyGcHDT7djBaWQILwBYmibN5mhPD9HdHe3qInp6ot3d0e7uqNnMkuTUukPHtR6StP/v/1qffJIZR2bwcBCNRlZZKa2slM2erVi0SD5v3niuCKTF4n7jDfe2bXhLS7zXwbAkP19SWiotK1OvXq1evVpw3gqMB7K/3/fRR9G+PtJqpZxO0mIh7XbK4RjiVxwMLJWiJhOXNI6aTCKTibTZiM5OoquLtFhA3IsbLJXK5s3jjKKipkZSXBznxTHYaDR04kTw4MHgwYOh776jPCOXOMMymWLxYtXllyuvuEKxaBEsHRQYYlm8tTV84kToxInwiRPhU6fibLlgpVKxYIFi0SJFTQ1LUZzNi/b0cFehIVl+AABJSYn+ppv0N94oLSsbz9cZkfCpU1033NDlaD2TC+pyQEOxtNlISUTSbFV2miItQ5mRocxIU6Rlq88+pRn6hOXE0f6jR81HT1pPBqNDFxYfxwMOkzyeb6nbHHQOGydXPkOrUg5cuM570+3JM86s0VSEpWnSahVnZ0+hO3QwXm9ILhePdnse7e4OHT/OhMMMjtM+HxOJsNwDHGfCYRrDmGAw0tREe4fW3wwBlsnk1dWKxYuVl16qWLxYdG6HBDYaxT75xLVtm3/37iGXJAhF42+UAQCizEz9zTcbNm+WVVaO4xtPGUIKHz8SnzVKe73e99/3vP328Gy1RIIaDPIFC+K7JUm7PXz8eCyFewiQTKa85BLV5ZerfvQjRU3NOP0iLE3jTU3hEydCx46FjhyJ1NWNeU6NB3l1tf6mm/TXXz/+lDqcwk9aTnz53tYDpz4+k8W4pqjlGQSgUkNpriZXLVHLUJlCrNBINFJUGnuAsuJVBavTdJPaSEyy6fa0iBHGxx6ym/1mAIAIFinFSgCAXCSXoBIAgEaigaELufJ3SnqNklYr3tgYaWzEGxq4f0e7jeUQ5+dzFlE6cyb26aeet94a0igOUat1N9xgvP12eXV1tKeHaGvDW1uJ1la8rY1oa4v29Ix4Cy9fsMCwaZP+xhsTs3UWYoT8SFiMkIlEsE8+8bz9NrZ7d7y2EjAs4hyh6eloRgYskVBOJ+l0UnY7abfH2UtBKCrOyxMXFkqKiiSFhZKiInFREYvjoePHw8ePh44fJzo6Jv8tRBkZiksvVS5dqlyyxKrOKi6fbDooEwqFT54MHT0aPHIkdOQIabHEeTGsUEgKC7nvyIRC3vffH3rXC8Oqyy/X33STbsMGRDfyrMQ2T9vrp1/f27H3e+v3JENOcv0ceZq8hVkLF2YvXJi1sDqrWiOJ5/ZMjV6jk4dlWYIgpdIJFALSLH2s/9hnbZ/tbtv9vfV7FsRbJAIhZcay+ZnzuZ95GfPUkjF2nwzLdPu6m1xNjc7Gbl93via/KqOqKqMqTTE1rQIZhu2zhFq7sbZOv0KOXrumQK3kE40gCApF4Slv80Ha7XhDQ6ShIXTsWOjQIaKzc1xvgyDlZZcZb79d97OfwfJRL5RsNEp0dOCtrZEzZzxvvTXEjwqJxZqrrjJu3qxes2ayEZq4hMNRuXyKa08vBrjxQ+MffzNRWJoO7Nvneftt37/+RZ+bNA+JxepVq1Q/+pEoLQ1NTxdlZKAmkygtLU6qFxMOk3Y7ZbORTiflcFBuN6rXS4qKxIWF4ry8OCVPAADK4+EsIvcvabWO6wtAkLSiQrlkCfcz2KF6PlQu2tcXOnIkdORI+ORJgCAxs8c9GJJuyhIE9vnnnrffxnbtGrJthSQSRXW1OC9PlJsrzs0V5+dH0jUfRU680fnBob5DI4pWILIFOTWX5l56Se4li3MWS1GpJWBxhBzWgNUWtNlD9thTe8gOAagqo2ph9sIFWQsWZi2c0IWUogZmOfH4/UwV0ytG6Aw7P2//fHfb7j0de9wRN78PgQA0Qz8jZhfnZ85XS9Rt7rYmV1OTs6nR2djsam52NUeoEfwbmcrMuRlzOaNYlVE1Q1e8/5A9FKG0arFOLdaoxBq1WKMSQxCI0tEQGfITfpZl8zX5LAv6rKHWLqyty9/W5e/o8ePE2V2RTIpeuzp/w9oCFS9zeL4hbbbQ4cPB774LHT4cOnly+O25KDPTsGmTccsWSUnJRD88dPiwa/t273vvDUkQEKWn62+9NeOBB0ZsCZRcmGCQ8nrF2dnnu4b1ooL2em3PPOPeti1WAjQADKsuu0x34426665D9fokrQ6Q/f3hU6dGc3tywEqloqYmkdkA/KADAd+HH3refjvw5ZdDHK0MDI4UgU+qwP5yEB1merK9YE4fuLRo2Zq7/7sqdwEKXyxVNIlxjTJ2uy87e1QVr3fU/7Pxn7vbd5+wnGDYoUECCSKpMFUgEEIxVCAaAACEyTBBEQAALz5G9IsDhVGKmbDbHWGkc5wPGP1DE0FZwJKoL4r4SRgjUC8N4wamWIEX0OQYN9E8zKHD4VeppDJZ4nY2LEGETp4MHT4cPHQofPy4vLrauGWLeu3a+DfXY8JEIr5//cu9fbt/377BcSBEpUq///70++6DFVOc4dnT48rPH2NCCOD2r52dZ127ra14ayvnj4KlUml5ubS8XFpRMfBTWjrlHY6mGx5PUCRC4rf5mChMOOx47jnbn/40xHEnnz9ff+ONuhtuSK0C89EYp8olEsrh8OzY4X3nneDhw51G9pMqsHsOcJ7rg0RpcGk7WHsGVPcAE6rNf+UV3YYNiVxkIBAhSVqvn8bTJ6aEMWOEfzz4x0f2PTLkYL4mf03xmrUla1cUrVCI4l0lMQI7ZT11ynaK+7fZ1Twes5epzJxpmlluLC8zllkCltO207W2WmtwwD0iIzOqrP9PSfAs54AgKDtDXlqoLshVHTrhaO44W48ol6E/WTVec3jhzSOM9vW5X3/d/dprRFtb7KAoIyPz8ceNd9wxSXM7mNFihCxJBr/9Ftu9G29owFtboz09489NgFBUXFgoq6yUlpcrFi1Sr1oVx0XMAxrD3Nu3O158kezrE+XkiDIzxXl5oqwscU6OOCdHlJUlzs1FMzLOaxbu1MYIWZJ0vfqq9Xe/GxzrkpSU6G+8UX/jjdLy8imRMk2YVmHpEBlq97S3udvaPe3tnvaTfcdqXXVDXlPmRNafpNfUAX0IAAAUixcXvfOOOG7h+fngYokRjslp++mqv1UBAMSIeGne0rXFa9eWrK008UwyjFCRM/YznFH83vp9vaOeoIgCbUG5sbwyrbLcWD7TNLPCWKGVjpBSaA/Za221Xx3vqN2TzUYHzI9deYCBKDGtldA6Ea0R0xqIHXolYgEbFvcHJG1+aTukdlxds+jOhZtnpc3i/vdYrfONf7W3dJz1Dcpl6E9W529Yw8dZ6ol4+gP9Pb4es98cIkMl+pJZabMKtAWplDfEsv69e/sffjj8/fexY9KysuynntL+9KfnQyDt82G7d2Mff4x9/nkw7NtVBYwBcEkHkEVHeDEkkaBaLWm3x/9MWCZTLV+uvfpqzVVXibKyJrM8vLHR8cIL7jfeGJ4QP3RtCIKmp+s2bMh68snR0h+mBSzree89y2OPEe3tsWOyysqsP/xBe801SVzXBYk9ZD/YezBm9to8bZbAqFk2GcqMm2bftGnupjnpc2gMi/b2Rnt6aJ9Pd/315zVsPxlcDb8NmncMOZix8HWpfvGIr3/hhRceeughmUwGANi0adPWrVvjf36CDCHDsDA8aoEBy7L3771/ad7SFUUrVOIpvi+gGIpkSBk6LlcPy4Kdn3b9Y0crN6dXIkau3iArrMBlIpkMlWmlWplIJkWlcFThC0Qxf9TjI7BwpC1y7DPHtv19e4ck9dRk12yZt2Vj5UadVAdGMYdrr8jRqsWc6FBkYGuC4xRJsziFu8KuEBkgIMzPODHG7ib7bURXgHWRcIBEAgx09iouF8krjBWz0mbNNM3k/i3QFgz/ghEq4if8fsKP4ZgP92EENtgXHSEjOIUPfr1JYao0VRbpis5LtIBhPO++a/ntb4murtgxxSWX5PzpT8qlSyf92QwMw0RHB7Zrl2/XruCBAyxF4SLw/gLw2lLgUQAAgIQEi7ugFW7TKtGszMJKaVmZpKREUlIizsuDEIT2+fDm5khjI9HSEmlqwpuaol1dI9e0QZC8upqziBMalcXSNPbJJ47nnw989VX8orfhoCZT9h/+YLz99qkNZHIXBGhy5UD+zz/vf+SR8KlTsSPigoKsJ5803HLLBRx25VQuwUIxAnvmu2eePfJsiByj/4sUlV5ddvVtc29bPWP1tAr+jUfl7CfvwLpfHXIwZ9k+uWk593jI9InVq1evXr362muvHecapoVrdJqAE/TWl+u+OToQyU8zSJ/4z/nFBeMtf+zwdmw7te21069xxR4xIAAV6grnpM+ZnTZ7dvpsxF381ZeR1o4xmsyOBwaO0tA5OxqYRRDmHJPPqhyBGR86xac548cvPVqMiMuN5RXGipmmmRWmipmmmaWGUhE8NTePLEE4/vIX2x/+QLnPpkdpr7km+49/lFZUjPo2hqExjIlGmVCICYXYaJTGMJYkab+fJQgmHLZ9Xw8f/CrS0MC9nOBM4BLgHikSgUDIZfmX/aT8Jz8p/0m+Jn9EgZaApcXW0NR0sLm3ttXeWNDkuXmXRz5sQynOy9NcdZV61SpRejqi13NjwoZf/SmPx/3qq46//CXa3T34uLSiIu3uuzU//jHt8UTNZtJqJfv7Sas1arFwD0i7fXCQVb5gQd7zzysWj3xfzIPJuEZZmg4dPmx57LHA/v2xg2haWuajj5p+/vMLPryaYNdohIq8cOyFpw8+7YmMUA0lQSRFuqJSQ2mxvrjEUFKiL5mXOY+7I59ujMc1OqYhHDJ9ora2NhgM1tfXV1VVvfLKK+VjOeETVFDvcGCZmdPxbxDD6gg/+eypzt4A93R2uf6xe6q4vdqEoFn6i/YvttVu+7jl4yg9kt8NABkqq0Ku1VvWRz2JyJFjAWtRf9Fm3EYiU2B9OUSwaIZ+RoWxIk+Tl6/Nz1Hn5Kpz8zR5GcqMMT20PtzniXjcEbc77I49cGHW/pMH7b3NHimDyQEmA7gIZGAg3w0KXKDQOfDAGJjwUgkR+KAavLYEDC4QzlBm6KS6JtcIDSHnZ87/SflPluQu6cV62zxtbe427t/hd9zpUuP9zOXrvnDgBw/F6X4CAEC0WlSvj9lFlmWxjz8+J0ERhrVXXWW6+271ihXxmzOwFIV99pn53nvPlsFBkOG227KfflqUkRH/VzEefL4QiiJK5agt8gevhOjowBsaIk1NeH19pKkJb24enHKMqNXp992Xfu+9F8kEzb4+d25uIhJKKYbaVrvtyf1P9gf6YwcrjBVritfEzF6eJi9VYiXBIE5RtFYbLxFkTEM4ePrEc88999Zbb61Zs6ampubPf/7znj17Dh48GH8N0yJGmHRO1rmeevF0IDiwW/rxirxf3FqBIpPyDrnCrjfPvPnGmTfq7HWj7cOMoYU6fDb3mAEkDQ24JWkYZyFKikhzNbk6qVEFm2SsTkyrIVpGE6JImA2GSH+IpKgJtOEgEX+b4R8u3TdqqUotUWulWo1Uo5aoB2/sOMdv7CnN0Fy1ZZx4wxBEsChbnZ2rzs3X5mcoMwiK8EQ8XtzriXhiP8MTg8ePEgf5blDoBAUukOcBGRhIx4BhlLBaFAX/ukT82jLYITrr781UZj645MG7FtwlQ2VtnrYPmz/8uOXjw32HaTaeJYtDpany6cWPXdpI+nbt8n/xRbw2kiOB6HTGLVtMv/ylpKho/O9icNy+davtqadiPfYQtTrz8cfT/uM/JhrmoTEMb2nBm5rw5ma8pQVvaWFxfHDrdkgqRbRaroc7otWyOM45ivHmZjY69FavMRtQMNDTkpIbbi99+Mn4U6kFJgrLsjsbdz729WOt7rMTcgq0BU9e8eTNc25GoAu2l+GYhhAMmj5RW1sbOxgIBDIzM4Njht4TU1AfDkenZ+rjkKCgCIXv3jxz7RVTmcwdpaONzsZ6R32do+607XS9o37wfdxg1BL1vIx51VnV8zPnV2dWlxpKowSNogiKjnxnF8Fpmj7HqIhEr7jqNAAAIABJREFUsEQ8cDL0B/pre9q+/JxsqD17iZ9Zor3n3yqL8iYWiMUIrMXVEivBbHQ2dvm6eFSknCfENJSOizNJWVZUlg00mYwyS2zsEYVf1jdYybPu1ixV1oNLHvz36n8fHjB2hp27WnZ93PLxno49IxaYcm8vNZSWGkpL9CVSVPqn7/7U5++L/e/KopXPrHpmjn5m8MAB365dkbo6yu2mPR7K7R6tH6xs9uy0u+/W33IL79TTaF+f+f77vTvOJhFIKypyn3tOvWLFkFcykQgTCtF+P41hlMuFNzfjTU14Swve3By/d8n46dOD/1kHfVd89nqCwqhRbjTIDEa50Sg3pinSDHJDuiJ9Sd6Suelzk75fCYZJuzNid+F2V8TujNhdEbeXKC5QXVKdXlWhF4kmvLxgEB/PTpo3ezr2PLLvkZPWk7Ej6Yr0R5c9elf1XWIkhd3OJEkzDBO/z/t4DGFs+sQ999wzZ86cXbt2lZaWvv/++88///z+Qb76EblIY4R9llBDq7euxVvf4rU6Bq5Teq3k//163syS896g0hPxnLGfqXPU1dnrzH7zTNNMzviV6EuGXB2mpHziVIP7+W2NZtuAZw9BoGtW5t+2oVgu4x8wj9LRNk9bp7ez29fdi/VyPz2+HlvQFr8NEABAJVbpZXqdTKeX6blLpEFmMMgNsQcmuckoN0pQSae3s8nZ1OpubXW3NruaW9wtrrCLx2qzVFkPLXno36v/ffB+d0TCZHhv596Pmj9qdjXP0M+IWb5SQynX3i9GhIo8e+TZpw8+7ScGHM4wBG+u2vy7H/0uS3VOBimD47TbTXk8A6bR46HcbkVNjepHP+LxXYYT+PrrvnvuidTXx45wIUMmGKSDQRrDGL8/vueWN+KCAlllJZhV9tesjhex3QQzcixgODqpbln+sh8V/uiKgitmp83m1L6ty//NUatWLSmfoSkpVMdu6eJD02x7t/9Ms+d0k6elE6NpVilHxSJEIoEVMpFYDEsliFyGSkSwVIoSUZqzeXZXJBQe9U5OLkMXzjFeUp1eU2VUyse7wz5PMcIGZ8Pejr3vN71/sPesf08r1d5/6f2/Wfyb+KVlKcGUxAjBudMndu/e/dBDD9E0nZmZ+fLLLxeN5W5JzBgmxusNGQzxvmc4Qk3mujwm3NnCGb+GVq/PP/SMLZuhefw384y683hDxwMMC8tk4slPSSVJ5t1dne/t6oySAztIg07y85vLL1+cGf+NE4WgCbPfzNlFW9AmRaV6mV4v0+ukuoEHMt1ksmw8EU+Lu6XZ1dzqbu32dfdhfT1YjzVgHc2xma3KfmjpQ3fOv3NME8gPR8jxxP4n/v7932P7Y4VIcd+l9z1w6QNDDOd5haUo54svWp54YswJmsOBRCLJjBnSmTOlZWXSigomr0hsMooZksVxyudjwmH2h5buDI7TXi+AYUlhITfPC1Gr3296/94v7u3FBiYQIRBSk12DEZg77HZH3ONxG6SLihaAWyX2eQH32Rs+BIEKclQVxZqcPFFhvlStJ3Ea51KaURhVICqXDW5tj7S2h+uavRH8fDknUASaU6G/pDr9kvlpaYZzVMiDEU437vLgDjfudEecHsJiC8aP72amyS+ryaiZa5JJx7Dx1qB1b8feLzu//LLzy1hxM4cMlf3Hov94aMlDelnSuvBMLZFIlKaZMTbTLMOCoSEVCEIAGPiFp8D0iTEJhsmNv/iqIFc1r9JQNVM/u1wvlfB0dlM06/MTbi/h9REejPD4CJ8/2mcJNbX7Bvc8GwyKwiuWZt29aaZ44s6Q1KLfFn5+e8P39We9hXNn6i+tTi8tVM/IV/P+nScdiqEsAQtnffv8fX1YXy/W6wq7bp5z8x3z75Ag590n3+RqenDvg5+0fhI7kqnM/PXiX985/85EXq0oh6P/4Ydd27cPn+EAS6WwQoFoNLBSCSsU0pISaUWFtKxMOnOmpKiIX/VYs6v5P3b/x5edX8aOLM1b+sK6F+amn23/78N9zrCTM4rusNsVdp2yndrfvd/sN8OMyBRanBVYYQhXDy/MHfrV4LBf2opJmikkoovM0kZmocxke99IJUi6SZZhkmUYZekmebpJplKgp+rdh7539JhHCCkVF6jzs5VOD87ZP3IiEfrBSMTIgjnGy2oyFs8zDb77D0aD3/R8w9m/BmfD8DeKYNHt829/bNljQ1wO5xuGxPx974gVRVL9IlgUr312EkmB6RMMw2JYOM6U1EMn7U/879mSIxSByou18yoN8yoN5cXaIUkrLAu8fsLtIVxe3OnGXV7c5cG9WNTtxX3+6PCt3ogoFaLKEm1lqW5Wma60SDNtTWAgEJFIRJPfEQ7m68PWl95s9mDnNBSFYSg3S1FaoCkpUpcWambkq8bpmJq2uN2B+E6IKeerrq/u33P/KdtZTVaIFLfNve3Xi39dZuA/HG6i4I2NUYsF1WphhQJWKBCVClarx9+MJhQiEASWSuOZxkA08LtvfvfskWdjWWA50tI7838vw8pPN7ohGMowytKMsgyTLN0oSzfJ0o0yo14aO5FbOrCdXzYeOeGNRs457ygkZFd+ywJag1coo/ljWscYEbHVIzvjlZ3xyuppKIwyinLdrGtKfrYsZ4UC1uAEHY5QBMngOIWisEkvTTfJMowyzeg54RZ7+NBJx6GT9sY2H5c9cD4Qi+Dq2caiCrpfcmBP765DfYdGzKrTSDTLC5evKFqxvnT9aLU95wmGCnia/+DreJGhBu4MUGmmRFctMyyVGZZIdQsgZAocLThO0jST3CSSaREj/PCLnlffayWiI+zYpBJkdrk+N1MRc0S4fcSEsiVjZJhks8p0laW6WaW6vGzFJEuGE8N5arEWDJPbdrR9sq9vtL8+gkB5WcqSQvXCOcYlCzMmmUCbFJLS74phmTfOvPHbr347uJYUhuC1xWt/s/g3VxZeyU/rCJro8fV0+bq6vF1dvi6z33xp7qU3zb7pfJSFxa8jZFn23YZ3799zvyVggRmRFq804QvK2FW4VxX/QgLDkFEnSTPKAkGyp/+c/RYEQWl5ETz9+6Pkm33BgdYKCCNVE8UavNwUnS2PFIvJoRvrqNjlk9c5pCe9sjocdYwoFIXRtcVrN1dtvqr0Kn7pJJg/eqTWefik/WSde/AFCoIgg1aSZpSmGWUmvTTNKEs3SIOBUH7eqOUTJMWcrHMdOGob8vUBAAxEeuSn7MqDduW3NDzg/l2cs3hl0cqVM1bWZNckIR2UZfx977gbHyNDXaO9BEaVUt1CqX6x1LBYpl+ESHiebhdLi7XxZI1GSaapzXeqwV3b6OYi3rzFadRinVqs10r0WolOIzFoJSaDdGaJzqCbjmmr8cFxMk7W6CTp7A0cP+1s6/a3dfljGUPD0Wsla6/IWX9l7vgDqCzLNrb5Tjd6SgrVcyr0Sdlcnu8UvjgQNPF23dvPHnn2jP3M4OOz02b/evGvb55982gBSx/uswat9qC9B+vhbB73ryVgGV5zIkWl15Zf+2/z/u3KwivHk4EZpaPf9HzzccvHR81H9TJ9ujI9XZGeqcpMU6RlKjO5p0a50eEKEVGGhihLwGIL2KxBa7+/3xq0WoNWS8BiCViiBNCH5+oj83Xh2Qg7qXMqO0O+8rLslUuzTT+E3/oD/QRFcANH1RJ1zAC4vHhzO9bc4cP80Vnl+rkV+gzTgGsUIzCcwkPREEZgnojn3fp3dzTsiGUwcRhkhptm37SpalN1ZjUAwBPx2II2R8jRH+h3hpwerEMfPllEthUj7gCQ4kgarCjU6uZkpi1WaWaJlcUQIiOi9Kl6dzBMpRulaQaZYdAGl8MT8Vg8dm6gsUaqgSE4Nj81Ri/W+1nbZ7tOHepoRPTYImW0YMgvhFRYyle0rJu79IqCK6a8x9b4CTv2OuseInyDvHSyXERiiGL1LDtqOBaV5/1/9r47vo367v97W7qTTluWPOS97SxnkIRsCAkQ9miBltFSOunzQPv8oOvpppOnpe3Tp7SlUEah7ASSEMjew4m3He8pW3vr9t3vDxlbkeWRxElMn+f98ssv+3R3Okmn72e/32rDUpVxqcqwlDDUwOhMa+Qz6Rq91JgTNcIUxBmxodV/ptlX1+LvHYxMvEBagxn1hMWkNuoJq0llStg8PWEyEHqa+CSGL1cc0ZjQ3hPu7A139IQ6esNOV6pdRBBoxSLrlmsd88tNk0U1oqTUt/gOnXQdrXWPpV4JHFlQaVy2wLpsgcVimlu9SJcau3t2/9fR/9rRuSPZjFkp6yM1jzh0joSc21BkyB1zOyPOkehICr/dDOHQOR5Y8MADCx7I16fhiPcz/u0d27e1b9vZuTPFPCQAKYiWK9Cx5Xq2zMBWEcKFdHcTOFJVaqipNtdUmwgccfsYl5d1e5kRN+PyMS4v4/WzY94tqUZXL7NtXJVVWWK4FHmZuBB/s/XN5+ue39e7L8WBsFLWEBviJA4AYEbBtTS4TgeWUmAKT00BIA5pRSKToEtwwhoV+SDP+QXBz0XdTNTJhEeYQH/U6+d5TgEuIU3PNIVRiXg0RS2H4nMyoqvs0TUk5xjbqKPx7z26oLrsyjTCcMEznsb/F3d/OLYFwY3G0if1hV+FEJUsxrhgLeM/xvqOsf7jIjv54A2EENpywrhEZViqNi7F6WoIxgAAshCSpZgsRmUhIgtBWYzKYlSR4rr8hy/Dq5sCl4lZxuuNZGRcSJU1EOLrW3y+IGegcatZbdQTJgPxSS9fzRx+f5QkiakLNpcC0bjQ0RM+1eDddWAoFDmn7JqTSW25xnHt1VkUOVq55HjpZL338CnX8TOeaHwqCrcCh3bpAsvS+ZaKYv0U3LNTQ5aVgf4OX9vPFViry30wK7dSrUpTQ3U6A5mZc4LM6Kzv7G+O/ebv9X+PC5OG3VMDhdEcOqfAUJCnLqdjlRGvtpXde1x4VYTHyW4gAK3LX/fgggdvr7hdjao7/Z1bz27d1r7tUP+hia2bmETr2XIdU6ZnK2iuBJEv0EHJz9HWVJtqqs1VpYapv5WSpHgDrNvLxOLiwirT5fkK9wZ7X6h/4YW6F3qC4/m9DBRs1IHraFBDgVnPtMRl0MWBdg50saO/nZN8IUpMJZuLNl9ffP3q3NUet7T7iPOf27pFSQEAoCj81fvLr1+XM9tXNxWEeK+v+TvhgX+Aj10HCFEbih41lj4BY+knykRmgPEfZ33H2MBxNnBakSa9vSGYgBBCFiZltrKuD+gNU82txYIiF09NitBmDMVnx5OaEzXC/8NkuOIyTLwgHzg+8t7u/paOc/ry1Spk/YrM0gLd8TrPqQbvxPquUUfMrzB2D0TSNuDRGmzxPHN1mdFsUJkMiSQ2Pln9TBTl3sFoR2+4szc8PNRbSPz1qtz3MJgHACgK1OmrbvTeEII2Z9iMWRlktp3KsVM2K9nb4547mjgAAD/j/1Ptn/5w4g+T0SkAAFSoKoPKyKKz7Bp7gaEg8ZNN5YdGNI0toTPN/u7+8Nj3FUGAyuo9i7zfg33EouPjlTpCZ9PYzvrOppzcKtvu1pes1bGFZNuhnk072u7lpTRlMxGJCXAEAhACIyiMpvlB4JJ8XU21uaba/IkoN8iycKT9lUOtf/O4jywlhflkqv1TABwmy3jjOrX9Rk9keMh1JBxskuO9atGThUm5BFBfxGIblUEnCzo40MmCNp4wZqzfXHz95uLNhYbClD0bWv0/eqZuzO+8ZWPuI/eWIRed35LFSNy1K+baJQvj8aiiyLKQRIGkyIzvsCKPZnEgCKXzHjCVfx9VZ83wWRRF5ENNrP84GzjB+k9wkVZwPlRN+hV9Vrtjih1efKLv8GupUu3//nJx6Yr0CWSPx/PII490dnZqtdrHHnvs9ukUFi9PjRBIkoSi5+EDykJIiHXx0U4h1iVEuyQhYK76Ga45b3n0TzokSYZhaC709XT2ht/bPbDniHOyKZQEMjPIlYszVtRYK4r1icse8TDH6zzHz7gbWv1jU4wTgSCQgSbMRpVRj5uNKqOOUKmQnoFoZ2+4bzAiSgqFh68tfmN14TYcSZM/ZATq1ODaY30b+wIlibNlmNVlhbqyIn1Fsb7AQY8nzBWJj3Xz4SZUlakyLruwdyMU5oMRPhYXY3EhGhejMSEWF6Mf/534V1YUAIAkKQw7+o7FWVGSFF7ieYmHUUGlEWkdMBpxu0WTZzMWZ9oK7NYEva0kKW1dwTPNvjPN/tbO4NTdYRAEAO3qwnaNUIdieP/4dgXW8gXFcskWE7WI7ioyNiDweGjoiWW+euZrZz0LAACZGWRFsb6i2FBUqMa1ERzFM2n7FWd+uUAoshDv4UJNfKSFCzXy4WY+0qakm/SHYExtWafNukOTeStCpKGCkxW5O9Dd7Gnuch13e06ykXYKMCaCNOKUAUNpDCNhhIQlApIxoAAxLEu8xA5OPE8ycG0pnfeQLvf+tK0lIx7mP58+3TMwyqi7qMr07a8uuAClNgAAH+2IDb8XG9nOeA+kffmTQZN5i7nqp7h2cr77GUAWI2yglg2cYP3HWf8JkRl9W2BMByMUjFIwRsOoDkIpGNVAiNZU+RSmmiobPK0hTFGfWLly5dKlSx999FG/3+90Oquqqqa+4DlRIxTj/XHPPiHWNWb8JC6VQATG6IxFf9Fm33lFrvD/kEAsLn54cGjb7v7B4ejSnN16lfdAzxZGoIry6BU11hU1GVOQt7GcdLrJe6LOe7zO7Qtwk+02ESQWW1/81rrCtwl0nPzMxS7iZHOWai8Cn5N7cobzjvZdd7J/fZSnAQAQpJhIl8M4UOkYyTcPGlU9qNQBJBYAACDYUPy4ufJHEDyjsEaWlZaO4Il6z8l6b3JkNrvAMdhiUvmDfNohcRSByosNxfl0c3ugvTs08RoktXdAtU+CmYVY1nKDa17GcYe+HYImu1aIpe7MXPwbs3mWeRUuP7jgmajznZhrJxdqmiJHBwCAYJy0XqPNuoPKvBnBZ7kUJ4sRPtycMMBcuIkLNUlcGlVLCMYo2426/M9RGZvAuR2hDCv9/I8NR2pHj8qykT94bJEjc0aNJ4rMM94DsZHtseH3+GjH9AecC7V5laXq5yrT8vM9cFokkqIwNlMln4mY1hCmqE+8/PLL99xzz9/+9rfCwsLnn3++snIadds5kRoN9780cvIzMzmVvuhRS/UvIfgTTKx3XrjiqdG0YANneo9+EWZOAAAkQJOOL2fPezytT50WigK6+sLH6zyDwzFfgAuEOF+AS1tcJFBmXdE764veJLHxYhiqW2Kb91PSeg0AQOJ9wd4XA91/kWPnDCBLMtrumU8RYZt2IG0EOQaYrLQv+TtlXjTZDsEwf7LBc7LeW9voHaNlv8zIy9YsqjIvrDLNKzOOkZL4g9yx0+4jp911zT5ekLVE0Eb32TQDmXRvqbXOqklNwCoK5OMrePUma4YR9/5iLDOGEBbLvKdpx32Jf2dXof7SQpEY3+Go853o0NtCvHeKHVFVJqGrxnXzVPqFlG3zZEWvi0TaiR2J83LhRj7czAZORZ1vp9TJUHW2Lu9BOvdBjBpvdFIU5YU3Ov+xtSuxNlMk+q2vzF8yP/36KQshLtzEhRrj7o/irl2yOFGfBSL0CzX2G3C6OnkrjGkhaLy4DqPaC06QXCRmMj4xrSFMUZ9YsmTJk08++Y1vfOOZZ57Zvn374cOHp76Gy2MI5eHhwBQCJaz/WP/ec9wQCMYxMg/TFGGaIozKD3X/iY+0JR5SGZfZl72GkZd1sPRKweUKabVqkpwrhl/iA76W7wa7/yelAACjGl3+I4aSx1HVBcYWHC/5g5wvwPmDnD/IBYNBk/T3QtXfUGW8sEHo5psrf0TZt0w8nPWfCPU9Fxn4xxQF+TGEGFNM0GbSvaMvSkYP9D/Qy3/elqHJzCATPzwvn6j3nKj3tHeHk78jBMosz921Kn97kM/tCm/2SKvVJKUhMQ2FakiMIlENhWkoTEOiKAIDABAEGjNdpAodK/mEIoLXz7r9jMfH+gKc28ckxmTDH9tak4FYVGVeVGVaWGky6lM9IZEd4SMtfLiFCzezoRYm0AjLAZAOsoIz2Apt9s25FXdiH5d8RNbprns0OvTm2G5kxsaMhX/EqAKfL4phCE1fLG/LpYMisXHP7ujQ29HhrRLnmbgDjGpwuorQVRO6apyuJnTzZj3yS4ueHnd+vnWKHWQxFh16PdT7V8Z7rioQBJOW9XTu/RjpgFEaxmgYMxyqjf/qzy2J6jsMQ5+7u+TOG/IVieHCLYlwkw81cpEWMd6f9rkghET06zjVNT5pjTtscPvYvGzNplmVE5gthMOMIEgm01RR70xqhMnqE5mZmbW1tXa7fWRkpLCwMBabRrV4TqRGJd7vqn0Io4owTRGuKcSoIox0JGcMZDHiqn04Mvha4l8EN9qW/J2y3XCFrvd/JRQ51Pe8t+mJsaUHgnFUlZnsiUOISpf3OUPJNy/YTVEkJjayIzL4z9jIe7I4fu/i2jJTxQ+02XeOUQtOcng8Mji20Ize2Kg6G1aXhsXCwUBO86DtVLspEFUDAFbm7byt+tmxdGu3v/zF2sc90Um7A/Qq36bK95flvIdB4043jOm1WbdrHfeR5tVgNopqHC95fCyAQLaNAgDIQlCI94nxfiHWI8T7xXifwPQL0U6JT6PFmgwZolXWzaa82yjbZhhN72vHhre5znxFZEY1NCCENFd8X1/878mBwmxBkRjGf4zx7BfifWrTcrVlLa4pOa8ziMwQ490fdb4bG9kxMe6BUQ2VsYnKvFltWoFR+VPfJ1ccfORsuPe5cP/fRXZkqv1gKsKo4jzJiCQrkJl6rxYfgiZQbiYjJtm6AyvqnUvO9FVwYqoDvX5l5r89VPlJJFOciSEcU5/45je/ef/99y9fvvyLX/zic8899/zzzx84cGDq81+mZhlBEC+eJyzY9TtPwzc+LvxCxtInTJU/vBRf2rkDQZAQBL7gSYPZAhuoddd9lfUfG9tCWq+1LvgdrimKDL7ma/spHx7PTEIwRjs+Yyh9YubNTYrMxVwfRAf/GXVuTVnjMKrAVP6ftONecD7kGny0Peo6ROrLcboihR1RkpSegUhrZ3BwOBb2dSzRfzdbOzr2zkuqt5s+f6jnekUZf8NhGFpZ4b6m5C0TeB8ok6ZGUXU2nXOP1nEvoZs3yWsUxHgfH+sSol1CrDPZzE/cV2SHxXifEO+bSYA7ep0ohWsrcF0Voa1IkGBBMyA3l8Wor/k7ga7fj4X4uG6Bsex7uNoGoRoY1cCYPiWHNnPIYoz1H4179jPe/az/xFhTYgKoOou0rFNb1pKWtRiV2kIJAABA4cOtjO8Q4z3EeA+mTX6iKjtl36LJvJm0rJ8Vuq+LAccJ5zUVrshCbGR7qPev8ZEdUwyqTw1RwoYjjuFwnjOc3+peOBSaRmYhN1vzvUcX5mTOIc0KSZIVRZm6m3LXs66mPalKn3d+NzuncjyHn6w+4XQ6H3jggaGhIYvF8uyzz5aUTON1zYka4czB+o85j9015sOqLWvsS/9xwem4uY8rXiOUeL+3+duhnmfHpotQdY5l/tParDvGd1LkqPNtX9tPkqkoAIRos++iMjbCuBHBjAhuhHEjghuT67uKzMfdH0YG/xl1vntOMzcAAABCV60v+Aqd99BMFvSJmCnFmiL723/lbf4eUEaX6WFm+Ttt3xwO6ueVG9aUN2VBf+X9+5KPwDRFhqJHZSESHniZD7dMvGxtzr2kdYPIOoVopxAdbQET430XvNhNBAQTOF2OaysIXTVBV+J05cWEQWzglOv0F875+FKeDlHBCAVjOhijYYRKfJSJHxgzIrhhbAuM0mywlvHsZ7wH2MBJZRJJ6hSg6hzSuo60rFObV0msm/EdZrwHGd9hiU8NAhLAteWazJs1mbeoDEtmJRCfFVwwq5/IOsN9L8Tde2UxIothWYjIYkQW0giJKADyxuxDofyRSO5QKM8ZzvPEMmU5jQmBIGCgCaOBMBtV6iDm3CH64XjUwjE6Qa1GHvt85awrz1wwZoVi7ROgPnExA/VpzsZ5R07eF3N9kPgXITLsy15JVqX6V8KVGqgHACiKGO79m7f5W2MdvBCMG4ofM5Z9B0bTupNKbGS7r/XHyYHjRMAoBWOJRdPAheolPrWyhWvLtdl3aXPuvsgG7vMaqOdCjSOnPssFR4WtEdygK/hKdOhNPtKavJvavNpQ/O8a+01jiy8XPBPufyky8OpULBsXAQhRYWoHSjowMhclHRiZ9/HfObObC1EUMdjxG1/r96cMVS8KuLZMbVmLUfms93DceyDtQj8FENykNq1UW9ZQ9i1zc5Jq1jkcZCEkixFZCMtipLV9kBU0IlYSYVCgAElW4owIABBEmeNHnVQDjZsMhNmoMhtVJj2BonA0IL7x48Fjb40n0kVCjliZqIW74ZasL3y69BLRN54XYjFOFKWL7M/6BKhPzD4U2df2I1/rD0fDFAjR5X1Ok3kzaVkLIZ+Ebre5DS7cFO79W7j/5eTObzJjo3X+M7h2ehWFuPsjX9uPGc/+83pSXFOsyb5bm30Xoauefu9LAEXmfa0/8J/9+cRBYAjGNFl3GIofUxkWT3KwFPfsDfe/FB16K13b3uhpUHUWpinEqAKcKkSIqRIkMGZIWD5UZbuA13LBEOK93qZvS+ywLIZlISyLMVmKTQzWZw5cW662rCHNa9SWtee8FkVig3WMd1/cs4/xHpgsA4yqs9Tm1WrT1WrLaoKunMuVv+EOtnFPSFEAqUMgGKi1CIJCBIVgOISrYFwNozikNWMEefkMz4l3/K//aDDiT5+HYLWCuhz65k8qCoqmmc3oHt65p+4/Cu2bFhV/RUf9a3YpXiYZpliM02pnOYMfd384fOLe5LYxCFGR5jWkbTOVsWkmS/bcRzzO4Th6XlwEFwyJ90cGXgn3vcAGTiVvR0mHdd7TmqxpqBlGxU60AAAgAElEQVRSwHgPRgZelQS/zAckIfDx72BKehCj8rUJ+6dfOAuvIQnhMHMBrY+s7+jIqfvHZrBgTK/Lf9hQ9DVUPSO+K0Vios53wwMvC7FujMzHNIU4VYhRBZimECPzr3gRayZgWQGGoZSKvixGZDGmSDGJDypiVBICEu+XE7/5gMT7JSEg836JD8iCHyFsassa0rJWbV4zI0OuSGzwdNyzl/HsY7wHUZVdbV6lNq9Wm1dh1DQVr7kA7wD/3m+cJ94NyNNJBRAkvOxW4+p7Ldnl53dnypLSVRuj9GhmyYxuId8g/8p3+pv3j7sXNTcY9BnYiXf9Ed+5dhEGBcvJzQ/ZK1fTMJrqZ3BCePeZx+u7/ppoPYMgpCT7liWlX8+xrErsIIry0TOenfsGfQH2+nU5G1ZmjjEvzhw8L8qyckXyXmOYEzXCiF8cbGUEVhY4mYvKkqTEQ5IsKmxMEjhFYGUEg0zZuK1QlVGgMmfjYx+YyAw6j9/F+o5OPCdGFVAZmyjbZky/FoJJjLhUjlg0IGoMl6ph53LUCBUp5toZ7n0+OrwtpZ0BISy6/EeMpU9Mkgu9EMhiJGEUJT6AYLpZt39juOCCjSzGvI3fjLl2GYoepfMemjmJ/r8GPklzhFcaIbew4w8jh/7hFYXzW0ULa6jV91lqrjdMTZUpS0r7sejpHYG6D0JhrwAAsOQS867Rzb9GV7RYM9FuJQ7Z+7xn69POMWZOgx3/9I9y5m3QAQBkUWk+ED76hq/uw2AKAS2lR615BG1BDXactmAGO8bRhxrCX4vxAxOfxaxZYCcebq9bcao2woRFWIQVWIkbOZyE1y2337jBUZx/HrPz/1tkmGRZiUSYKb5azfvDv3ugc4ZnQ1DI7CAyCghbgcpaQFhzUQ11MDx0yNvVEHKLkbA5HjHHQpZoxBQNWZmIMR4zoJhYeTW/4lOVlev0KDZr2RUuLr/1s6GDr3jXP2i5+fFMTDX7tjYaZQkCw7BLEBEqEhuojQy9Eel/SWSHkx+BYIKy30jnfpbK2HxhjSpzAYFAbAot6P/NEKQ4NnkFgWF4GIaurCbO3EcsKO76k2vvCx6eGR9mKFpGFS7UsFFZEhUmLImCzMdlnpUFXmEjEs/KwZFzWoc0BnTFXabV95jNjnM8XVlUzh6LnN4erPsgOFlik9KjVWvpedfqKtfQKmp0fRhoYV56oq+vcZRYB4LBmvsst3wzU6VJXUDiIWnbc86PXhxBAmnWFhiPG67/DbXkrTFOIqFrI4ywSO4hAI2/XilqjBy/I3riDiliAgDIsBI3clEry+j54gLdDRty1i23z2RUg+MEWVbU6is5LT0naoQdJ6K/vrv9MjwRqRVrbjQsu81eWKO5SP7OtsORF5/o8w2Okvhl5BOf/WVeYU3SyqtIkaE3Ax1Pwyity/+cJvOWGVJ5XVLw4ea4e3fcvTvu3T+x9qMyLqMdn9XmfOryDCD/Hy4D4pzHE2zyhdu8oWZvuNUbao6xLod1zaLiL5Vm3wZ/Yh2dKwUuLu9+zv3Rn13x8HgtuXCx5uZvZJYsmyZ50HMmduBl76n3AwI7bk4gGFSsotfcZylfpR2N/3aFYoFU+6c1oUxEEvnU5RrFoZKrtPOv0fmd/Id/do+lZ+3Fqvueyj1nRZqAUJj/8VMN/YcZrVuNcqN+vKrwpOm2H6KG0eYvKWb0v/tEvGkDAAA1DtArXtPUbIWI8Y4qRcLiDRujtTeJYYvCaWRGK8BozMxGrBxmUTaszLxxgyMve/ydURQQivDBMB8Mc/4AF4zwDCvde0va+ZlxDHoO+cKpPPKFmddr1LPT+3p5IkI5EIiZTJNGvq5u9tXvDaAEjKtggoIRFFLTCIJBKgrBCAhTwVxMdvWw7h7O1cOmeFXTAkEESUr9tpuywLJbbUtvMdoKz7tsw0alN386dOhVb8o7ByPQhoesNz1mR9B4uPe5QOdvksWdEdyoddyny3uI0M20qYmJSMff8yginOjsUlEIjAIAAAxBKnrUz1KRcN58auoGciHelzB+jGdP2gFeVJ1D536GdnwG15bN8NrmPjyesMVy4dyGlw6cEBpwHyRVFhNdRmCz00o9BlkRnd7jI4HT3lCLL9zqCTUzE2h7x0CpbAuKHl5Y+AUtOU44Eo2yCAJfWfd8bkLklQMve3b8YSS5zOaoIm96zF61TgdmfMvFQ9LRN3wHXvG6us8h/4MRaGKV0WDHF27SL7peX7hIw7Nyy4Fw455Q455QaqkvCSgGbfqybdOXbTORKJJl5cW3Ol95pwfmAS7z+VV/sZZsHQsEo63r/e8+qYTPdYvVMWrxVt3Sf2Km9KQ2iojLrEZmtTKv4WSSg9SUxgjxq90jS4NhPhjmZfmclwlB0Gu/X63XTVU33X7i8/Vdf03ZeM/63bkZ6ecFzOZRxkdFUUKhkChOM7k0J2qE5wU2Jrl7OHcPN9LNurpZVw/nH+RxNWywY1ozZrBhtBnT2zHajBnsGG3BCGKo69ArJ972tZxaHfSmMgw5qslltxiXbDHQlhm5xi0Hwi892e93jgaClAFdcYfp4CteNjbqHpqzohvv+rYt69BkZ1AZFtN5D9E5n56M8FCRwdmjkSNv+M7sDCZ7jpNBb8OWbDEuvcWYU6FOHC/E+4RYJx/p4EJ1cfceIdaV9kCMzCUzrtVmf4q0rJs7w1izhQuuEV4ihOMDnUPb2gff6Xfvlz5WA9Cqs0y6chNdZqYrTHSZWVdBqS7kmqOMs2t4Z/fwzt6RD1n+/MYSYAgtytpSU/zlPNsGAKD/qxEmI+gS+pvifQ3xvsZ4T10sOVCzFalueixz4Sb9WG4p7S2nKNKQ92jH0NaG/u0oJGUaqzP0C6yG+Vbd/OEG3YGXvfW7ghNLjKZsfNFmw6LN+rwF1MTclSKD3vpYw+5Qw+7QUBuT/FBhDXXfU7n24vPz75vOBg7Xve8TnoCQUYpaQaDbm77idq4GAEAShAowgICEKDIqZ9nITWuyr1llDzL7Tp19pnv4A5BGjTgNAl3rB459jeP1AFYkTJERWYYBQBQJUX77o0WlxVORFU9rCFPUJzo6OlAUBQC8/vrrtbW1P/vZz6a+tsvDLKNwnKBSXUkfU5HYyMA/mnZtbzhQ0F63MR47Z9wHgpW8aql6LVS9DrbmIgmWdAhRQ7AKAIDgegAgJiK9/uPBo6/7xt6whZv0n/5RDm3GfIP8C99oaT8+arRgWF60+pUV1/03odHqC74MoVS49zk+ck5cDyFqbdYddN5DpGXNWFO4t587+qb/6Js+/9B5yKaMwZLtKa/ZV1r9qlbfO9k+CGEmLetIywbSugHTFF3As3xSEI/zl46jlRejCIwhM8h1u4P1HYNb24feHfGfnsl6ocINZrrcSJfpqTyaytVTeTTl0JLZ8ISpQVkWBr1Huod3dg/vdAXqJzu5CjeYdRVmXaWZrjDrKsy6CgjA9V1/OdP1bCR+jmaQiS5dWPTFsuz71ITh8jQqz0FE/GJfQ7yvMZYwfiGXAACAUF5deohasAPCWH6oguCr129Zv+qWSvhcscDkW06Q4j3DuzqGtnYOveeKx3aHFtfGyhQFMmPBLNyThXsycU+xVsoyzNOrqv3NBW3b7d4GhzmHqrnesGiz3lE9U0fEP8QnLOJAU/yGr9vX3Gc5X5/WFThzuuOP9d1/VT4mzcg03GBS/djpVPUMRPsGo94ACwDAMfjqJRmb1+bMKzcm22Zf+Ozpjj+4g40s72f5AMsHeDGNBGkCMkP7d/xbvPamZPImAMCTu4pzi6dqlpnWEKaoT/zqV78CAPh8vltvvfWDDz5Qq6dp050TNcLLCcZ7yN/+++a9wy2nN3Y1rRX41DfIbOsqrNxfWLUvI7tlNEUAIf2dm3e9+vVwYDRFQOn5W/9tZOF1OKqySbw/0PFf0eGdDUdvO/De1wV+9A625LAPPF1WuNg49ryhvueig6/L594lGFWAG27rar351E5rx4loyqeRWaIqrBlNr3NxWRISEncyE/CJrEfi3SMDeWzsnPQaBCn2vIbyBTtKF+xSUSEAAIxSatMq0rqBtG4gdPP/9YK/Sw1RYryhFnew0Rtq9oQaPaHmhAlR40ZKbSMJq5bMoggrpbZTqgxKlaFVZ8Y5T8fQ1vbBd0Ox3oknNOsqRIkJxfrGlp6pAUGIVp2ZsIsU7pDjdEg50ef+iEs3fqdRZxbYN2YYFiYsn0admfacsiJ2DG493fnH3pHdyUYUQ8jK/PuWlz+h1+SnPfBfBqKg+AZ5Ty/r6efdPaynnx/uYMaq/gAAAMmq/DPUgu1k1W5YlToeSqlsdmONzbjYZqyxGxcnilVx1t0xtK1jaGvPyIeixAgyeiRafSC8gJHT+EwEzGfjnhzcnU24szG3HuNJlUWNG1W4QUUY1bhBhRtH/8WNasKo1xQaNNPU0maOSHywufflxt4XvaFxfkQVbri25pmqvPuS94zGhL6hqCNTM0NlREnmWT4Q9HnO7B9oPtLvdrpVhSeohe+PZVzZ7sW+t78t+saVeH/bvGDqCctpDWGK+kRirP7+++9/+OGHr7766mmv+TKpT7hcwaysOdR/ITKDwe4/es++dLa2qr3u2r72q8QJBLVanaug8kBBxcH2uo3Np24c216+aOfaW36pJtMkoEL+rN1vP93bOhppjVYNH7djBCywMhuXmVDY274z0Lcj6ukReDUbp0cGKtvrruW5c2raai2yeIthxZ0mKlPSalWJgo0iC3HPnujQW1HnOxLnTuwpy2jv2eVnz2zqbFqTYtQRRC5eHFhyI7Xk9kW4+hMwwTa76Ovz5ubOVBkqBVFmeMBz0BNq8oaa3cGGYLR7hhZrCiAw7rCuKcraUpy1RUflAQBEifGFz/rCbb5wqzfc6gu3+cPtknweSo1JJydyrKsK7NcV2K6z6M+PkcAXPnum84+NPS8k51RhGJtX8ODKym/T5FS64Z8sdJ6M9tTFvP28u5fz9LF+pzDZ5B9ub6cW7CDnf4DSadQE00KrzsIQcyDWmLhVJAU+EavYF1oUkcZjOxiC5MnXWxqNlar6K9U9hapBBEp/v2nVWY6MtQ7L6hzrGhN9IaPSvBA5O/hWU8+Lfe69KXd1UeYNm5c+O5nndMFw93KNe0J+8UC/+ps82ju6VVJhnV/hzzwgMDDPyo+9nTe1+sRMaoTJ6hMAgK6urnvuuef48eMzuchPXo1wFpHIl0aG3uAYqKuhpO1kSWd9NcdMGkRTOs+1tz1VUJmGMwWCUE3W7YaSxwn9kv0vet7++dDYHA9BwgKnTDtsCwCAIDm7qLZ6ybbqtXFd7iaN7UZfzK6lIBDdFx16Kzby3kRCMghR4ZpSXFuioJWd9Yvq92WePQanlBxIGllyk3HFXabcGedb/gVwATVCQYq3D7zd1PtSz8iHygR+mWQgMA4AkGYg/K3CDYWZ1xdn3VRgv27a1hhFkfp7Ow68d3xkpCMu9IvYMKofRnQuRJu+4UX05erEtUuW3rx46Ubs4mY9BSne0vtKbcd/uwLjjKMITCwo/Pzyyie16klFOT4p2PuPrp0f/BYxDiksJfNqhVcrrEbmSZlXK4JaZrQyR8KIqKk+RC/eodCpqrYmurwq7z4TXToSOD3sOzXiP8VMIgAiA6guVrI7tDggjuf6qiyZP1l98zW5Zadd/cedvcecPceHewbC6ZWzVDBfqu6rVPeUqPtxaNIuD0plc1jXOKyrHdY1Zl3FNMIsitQ9squ556X2wXeEc4WLcUxblnN7df79DuvaKc5w8RAl5mDTD060/lr+mFXDqp+3eemfKbRq2jnCmRjCZPUJAMAPf/hDtVqd+HtaXKbUqCwrU0soCGLswr7JosQOeA5a9dXUbJBRiYLSfjRy5oNg/YehsOec9tSlN0E3fc2D4y6J80isS+TcEueReI/E+zX2LfqirydrD3n7uRd+eMDFb1cXH4HVEQAgidUCABRGowBI4UhFRoFAyCKhCDjTvoJkrOWL3q1cvI02nkNZiZG5Eu+dSP+IEGaN/SZN5q2k9ZoUvpJYUDy9I3jyXX/HyWhKGJNVql5xl2nZrcZLxwAwdyDLMgzPKAmsKHK/e39T79/bBt7khTQEaRCEGDSFFn21RVdp0VVZ9FUGbTEMoQznjbGuGOuKMsMxzh1jhhP/RhgnUJR827VFWVtyrKsmlvfSwt3L7fqT69hbvokt8hDKI7QL1btQ/QhqHMb1fmagkGlfLgZG7VNhDbXuAevCTXok3ZD1eaF7+IODjf/p9I370SiiWlj0yPKKJ2blK3b5EWWG33zjJ0PS88lN/zMEpbJV5H6qKu8+m7Em5aFgtGfYf3LEXzvsPzXir+WEkAyg2mjFwegyLz+eXppnyfr1+juuyUvTjx3m2AbP4OHB7kODncecPV4mtbQGQ1CVAV9lAVeZY7g4NOQ7xk5whRMgCYtFXw1BMABAlkX+Y54/XogkrA7HB1MsNwQheRkbqvM/W5Jz6xRzpbMOV6Bux4mHh/2nxi5jccnXVlX/kMCmMoRdzu3JLloClXn3JVO+JatPKIpSWlq6c+fOgoIZkRPNCUMoiLFn3rHbjYtLc24vzb51JrG5IMW7nTvaBt7odL7PCxEIQhzWNRWOu0tzblcTkyoAp31qd7DBoq/GzyUQUWTQfTpatytUtysoCcq9P3VUrpm+MVpRpCHvsY6hrR1DW33htplfBk06ijPW5uAaTaSB8R2dSHeZAKrO0WTeosm6lTSvnlaWKDAiHH/Ld/QNn6vnXPkbDKq+RrfiDlPlGjql2j/HIUpMnPPEGFec88Q5D6XKyLdthCYpec7EEPrCrY09Lzb3vhxOVTeFcixXZ5mXm3WVFn2Vma5ALyU7Wn9j/IP/cZ3eGUhxXBAUMmXjllzCkktY80Z/m3IIAMDp7YG9z3t66s5Z2fU2bM29lqvvMWuNF+7oJBaE7uEdh5p+4PSdGNuOIeSi4i9fVfEf5JQsqRMhSowrUD8SqB3x1474a8PxAZKwkCoLSVg0ajtJWEjCQqltlCqDJCykyqqevRnWQKTzWNsv6zueV6Dz6z7DUKo0+9bKvHvzbddCM9D/EmTxlYYPfnXyYJN/fDbXrtF9d8X1n5+/EoOnP4Moy2dcA2+1n3m7ve6sPzUfi8HIWkfJp8sXX5dNOr0H+t0HBtwH4ulEiWcCs66yOv+zlXn3XqlAX1Gkk+3PHGj4rvCxi1+df/+NVz1/Mef8BKhPTJsaPTvw5luHRmV9IAjOMl1VmnN7ac7tEwleBTHW6Xy/beCNLud2IR1NPgxj+RnXlOfeXZJ9y2SZKF6IDHgPDbgPDLgPOP0nZVlAEXVR5g3ljrsKs26Y6BxJojK1oy2IsZ6RXR1D2zqH3rvguzMBmswpzb45j8rRxDrjI++J7DAAkNq0grJv0dhvxOnKCzhn56no0Td8te8Fx2Y8EtBlYMtuMVasogtrqEtBi3PBUBSp17W7z7Uvxo4wnDfOeWKsO866J3ajmejSpaWPVeV/BkVSE9pTpEYZztvc94+mnheH/SdTHtJriqzKnZFTN3haLfYiVXa5OrNUnV2mJnWXpIvy7JHIzj+6Wg+d0/NStESz4UFrdoXalIWnpdEaQ09dbM/f3Ke3ByUxqduFgKvW0fYila1QlVGoysgnJhKLTIHk8YlO5/uHGr8/5rwDAHBUs6j4S0a6jEC1BK7DUA2OanBUo8INOKpJjOenWD5vqEU+H/0pFKZ0mjyDNl9H5empfB2Vp9Pk6ai88zKQrsCZoy0/bxt4IznFDUVK1iz/IozJvBDhhTAnhjkhzPFBTghzQpgXI4IYyzQtrcy7rzT71hkmqHpC3r/UH36u4chIbPxDNKqo/3fVxq8uWktiF9K33OIdfruj7u32utqR1EG9EqP1R6tuurNsEQSAN9Q64DnQ7z7Q794fZaYXPyEJS0Xup6vzPzsxur0iCMV6d578UvfwThQm71hxLD/notj2PwHqE5Iku90hu31SgZKDjf95uPnHE/sREjFicfZtMGIa8e5qG3ijy7lDlJiU3WjSEWEGUw5HYKIgc1OF4+6irC04qmH5wIDnYL97/4D7wEjgzGQVIAylijJvLHfcVZi5eeLamgQlGO1xB+tdgfph/8k+1x5RYlP2IDA6335dcdZNZrocAJDIabBCECgKJ4QVReLEiCKLvkhb++C7EzMeWnVWafatVsRhz1iKaDJYPsCMdif7WT7AcP7EH7Ii6TX5Zl2liS4z0+VTBNNcXD69I3D0dd/E3lSMgAsWUaUrtGUrtHnzyKkX31mBwMmthyJMWDJl4wY7rrdhCAopijzoPdzS92rbwBtx1j3zs6GyqdjwhbXLH9UbxnN3AwO+nJxzcgOixHYObWvqfbFreKd8rk4egemN0k3RUzd2bC/i4mm+EQY7nlWmzi5TZ5Wps8pUGQWqMd+IjUkJ2kZJUrjoOfcVqUNhFIwxYI1BkUHdruAHfxzpbRiv1kAQqFqn2/SljMLF58duGnQJB17yHHzFOxkdly4DsxWoMgqIjHyVrUhlzsG5mBz2ChG/GPGJYY8Q8YlRvxhyCxG/GPWJOAnlL9Dkz6fyFpB588kRduehph+M+GunvRIExjGUGkvHzS4ITKej8nRUrpbMolQZGpU90aarVWeSKivysc5lv3vf0ZafdQ9/kHws27fA4P/KV374IKaaHYdGlOVtnQ3P1h/a1dOS3P+iwYmv16z/xrJr9cR5E75PRF/Y/3Z73dvtdYcHu6Sk9W1RhuMnq2/aVDDuFgcinWP9yTCM4uhomhFDybEhH5rMmYNEQk29L0VjwbKsB/X6K0mIOFfGJ6LMcPvg22cH3upz70u2Uh1Mzo7gVQGJXki2X6VtsmLjBsOiqypz3FGWc4dZVxllhtsGXm/pe3XIeyxloApDSJ0mzxduS9v4B0GInsoLRLtTjsIxbXHmlnLHXQWZmxCYECXGE2xyBevcgXp3sMEdrE/buQ4A0FF5RVk3Fmfd5LCuQeAZ+YOyLPS6drcNvNE++A7DpVcinSFUuN5El31sFytMdLmOyk1JHnr6uGOJaUVnmnyRikKKl2nKVmhLV2izytQXSUSXAp6Rm/eFa3cEmvaEk8NTlaPVsPRDonyXoh6e4nBFxKW4QY6YpIhRZrXqkiMwGUp+FPTd4oC/VFY9v3AxZbCPvfnKgPtgY++LZwfeSBk2hyCEFtfGTt/Yu325xJ3HGgHB4LzaSDEVjBGQikJgFCJ1SNQvJo+Kwgi0ZIvhui9lZJZc+OopcPLJrYG9z7sHWlI9xYuEKRvPW0Aaag576F8HufrzPVxRYMGdLzjLuOFSYahMDNkQKgBTQYQMwlQA0fhgKoCQQZgKIho/QvkhPNWnnAlIwpLgIvCEmpKeGmLbrw7te7C8dM3nf5c/GdMKKwqeeHQkFg5xDIXhNg2dQdKTBXN9Yf9f6g8913DEGT2HoTCHNjw8/+pHFqyykrNPHu2OR/5Sf/hXJz4MsOOe05qc4qfW3LI86xMg0DH3MecG6hnO2z747tnBt44OnH7fV9PBniN/U0AMXWeLfapqXaXjDhOdpv4civW19r/W0vfqxMrqGGAItRlrHNbVOdY1OZarCUwXjve39r/e1v/P5KIIAMAlGFvYChShK4hjJiR9kxgAAIJgu3FxcdZNRVlbrPp5yQ+FORZDEDU6o0VWVsQ+1962gTfaB94OMYF2NqeddSBANmNBMxoyY0E9EoUn6aueDFoyuyznjnLH3VnmZcl9ZQn+msY9obYjEedZZuJdgFB+fWVzbpVpyYbSspqC86q8poCLy417Qqe3B5r2hZNJijFrNzn/A828XegEriYprmeaNvAjhVLUJEVNcswgRUwyO7rEQDCw5hIsF5Mdb9JXv4wah8aPVGCmfWX44GdU8avogkEobxtUsFUhh1LOjzGVbOMNw7uvSfAFJ8OaR8y/Vp87j/T0cc52ZriDHelkz1deYIbAVPDKu0zXPpxhyp612f+u2lh/U9zVPUpJ6HfyFz36MQoIUsjK/cYlxwkth6hYiIhDWASgjAwxEhQW5agCRAAADHAkVhLuLGH6SrihMsFVrPCjFVa1FileqplCCoaLS86+oajQjxmHUL0TNTpRgxM1OBH9MISeR50PUtBo/cbQ/gcEV+HiGw0P/lcehID9Ax1NniFPPOqOR0ZiYU88krB/ET6N6aUwIoPSZlC0Ra3JoGgbRRtU5Ed9bTu7m5NDQBiCNhdUPrJg1fWFVRwjXjoOBwBAgI3/8viHz9TujQnjVf+biub9ZPXNVZYLn3kYCAf+fc/rZ1wDeoLU4gRNqBO/dYRKR6i1uIrGVWoU52UxyDJBLh5kmRDHBLl4gI2PbcERZL41u8bmqLHl1mQ4cujzECgWRUlRFAy7kh18c6JGmAJnNPTdg1tfaDwmTfINztYaHlmw6uH5KzOoSRtY/JH2lr5XW/tf84ZaAAAIjNtNSxPdxlnmFfgk2jrBaE9b/z/3dry7Z4RvjBe6+NGyBARAvsq5mGqrJLsxSAQAUCqbVT8vw7DAqp+XZ9uQ0lAX5bmtnQ2vtZ76oKcFgqCVWYUb8ko35JbV2BzIlPPsfja2rbPxnfYzH/Q0M2Jq/haFgU0F5WnxPFpTqNMXG63ZGm041u8LtwWjHfFYUyLiwWEBAaNvHSfjIYmKyqSA5Kq1SySsOCyphiLBkVhoKBIUZMmu0WWRBj2rxVxqsRvF+CGzpc3iOEHbW8YGYAEAMCAolU2nyaLUNq06i1LZtGQWhpCsEGT5IJf4zQdZYfQ3ywcEkZVERRIUSVQm0p7AiALw1BZNmdUwLetiDRuZzmVAHs9iQTDIyFc5qsncKtJRTeZUqhP5Rk8f13kq1NTxpof6I2RuTD6VFLIiutT8qhjIitVtitVvEtzn+NEwAuUvpOZfo5t3jW4i/awsKu4+ztnOOtuZ4XZ2qJ1x93Bj8zAqDZJohkgIsY4fpvVLnEIAACAASURBVCjxsCSLIKU0mwCpQ9Z8xrL+AavWdGm//yKvuHs5dw/r6uHcvayrmwu6BLUW0VlQjRHVmjDagmpNmMaI6qyY1oiyCiOxkK9b7q2L9dTFe+tjTGSqSZJkQCgPYexoU3QSaDM2/1rdguv0pSu0M5F/ifjEgZb4QDPT3xQfbIm7+zigKLDWixqcqM6FaPww5UdoD50VpmxBReVheM/YKAuGkNjQne1/v1MK2gEAV91hLPm6/M+ztf9sqx2OXrjC8ETYNbqHqlc8vODqXHp0lbg8rH4jsfBPjux4tv4QL43mn2EIurdi6Q9W3ZivO7/BWUmRf1e773sHt6V1BS4GVlJbY3OktYsBNh7m2RDHhDkmzLFhnvWEIp8uWvy/QYZpGtLtMUR57hfHdz19cveYy4NA8GcqF2905Lze2bWts0GUx00jjqB3lC78yqK1K6ZMDriDDSzvzzQtm7LmBwAAPSHvP1tPv9Z26owrjQRXAhoUvrUo74uLrl2Rs2Dio6wobO9uerX11HudjYyYhhxcT6jXOko25JVtyC0rNyUVtMKBdzvr326vOzDQkfwaryBwWDAgkQLCuYJuNKGzuYJMBIZSucYbM5Bb8eDqoBMKDAt+Jx/xCtYCVYrlmwIdXXsP1v/SxX0AQOobKMd1scZrY3XX8/3zkrmdCBIuX0XP26Cr3qC7mE7LaSHyCs/IHCNLvMxEZUVSrAXEtK/oiiCFdFtRgKuL7amP9dbFe+piQ21McmPO1DDn4Auu0y+4Tl+4SHMxdEZsTBpsZQZbmP6meOPuUEopFFfDCzfpF98GbJXxKOPa+TNt/TYYAOAz+bibhhut7b2hacoNGIxYSI2V1JpJTYTnhqMhTzyS9vsLAIAAdE1e2SMLVt1UPC+lHfRy8rz3hnzfP/TeS80nxqIFHEHvLF30+NJrFmbMSET6tKv/CztfntiPcylgITUEgoV5Jsylt7j+L/3KQE9VI/xz/aE9fanqE99ZcX2leVL1iVdfffXJJ58EADz11FOf+tSnpr7CuVIjFGX5rw2Hv3/oveTmq+sLq36+5taxqH8gHPhT3cG/NBx2xc6pzy3MyFliz1WjuApFaVyNwrCeIDEE0WAEieEEgtKEKjkOozAcR8ZXPVYUdvY0/7Pt9Alnb0rkQiDo2hyHokh7BgZS7NOiDMfn5q+4p2KpnlALsrSrp/W11lPvdtZP9klPRKZGtyG3LF9v3t7VVDvSPzFoWpiRc1vJQr1Kfdbn6gx6OvzuvrDv8ptJCChl+ODVhtP5xFQFvAsAiqgK7Jsrcu8uytoyW5NMvnDbibanm3pfFCUWgdRZ9A12/E6b6hpZQDhGBgDwcTmR5zTYsNLl2jnVLjv3IbDySDcXD4oRvxgLirGgFAt8/EdQjAXEaFAy2LAFG/XzN+pHWeBnFZKoNO0NH3nd27Q3nGKSzTm41oyd6XF2FXV1FXYFDKncTw7auCG3NFOjT5g9u0ZnJbUWUmsh0+SHojzniofdsYiHibpjo6lUmlDdX7W8yDBXuEFavMPfPbjt7fa65NVjQ27Z40uv2VRQAU0yYh/lue8e3Pq72n1jRrTCbP/F2tt0hCrKcxGeC3FMVOBiAhfh2SDLRHmOl0UURvSEWk+QBhWpV53zh16ldscita7+2pH+UyN9da7B5OTtTOB99Fcm9VSG8PM7Xvprw+GUjbs/9W/rc0fpdSaSbtvt9v379wMA1qxZ4/FM08x/mYR5Q6H4FCqp73c1/ce+t1q84+vsogzHL9fdNvYik8FL4ptnz/zhzP7Dg+lFFS4eKhTblF9xR9miLYXzaEIFAHBGQy80HX2u4UhnYPwNLZaDj4mN18uDrZDuFGRohMwNiKkD1osABgBUWTLvLlt8d3kNAGBvX/ue/rN7+86642nmtZMBQ9CKrMJbS+bfWrIgX2eORBiCwHAcHXvtPSFfR8Dd7nd1BDydAXdfyJ+4mwVZivKjN1+U5wR5NJ2lRrFMjd5GaXVoHBF6Fa6ZBCEajWnguA6NIkAOS1RI0gRFTVDShCVNDFijitnHoREhtfHPEqBr+i2lMRHT+FCdG9V6EbUoREiZ0cisVmZpmdHKrFZmtHEFd2oFrzY2j8q+dWnZ/Gt0puw0XIsoor5E83kx1tXa/eG84pvxKad0ZxFRnhuOhVyxsDsecUZDiqJsLqiaOyvmzBGLcQgCq1Rzrr0wBRGfePxd3wfv9rd7PBE6EtaGI3TEZ/L5TKm1/AyKvrN00afKF6/ILpjMNswKfL7ITPJes46Tw33fOfjurp7W5I2VZvvjS6+9p2IJgZyT6tja2fDVD18dI7VRodi3l2/+j2XX4sisZUQkRW7zuWpH+mpH+mtd/Sl2UU+oaUJNEyoaV9GEmsZVWoz4/lU3ZBunGo+Z1hBOJN2eN2/eU089pSjKt771rYaGhqmveU7UCG9/+9m32kd7W3Jp40/W3Pzp8iXwdA2L9e7B/z6z/+Xmk+frfUwGNYptLqi6o3ThjUXVWjzNAq0AZV9/x1/rD/e3bP8yW3u92AtPCONYCA3Q+dqcZab8FbB9AZwxD8KpscObPcMJi7h/oCO5AQxH0HWOkltLFtxcPN+WVPgcHg7QNElRs6boqyhSn2tvY8/fO4a2ch8L89JkTkHm5vyMaxzWNaTKmtgY4dnakf7f1e57p6MuuTtAG9dUNFSUt5YR3PhVybDsM/lcGW5/jtdjd3vxcWfcQRs/W7Xs8vvRl6hgExf448O9R4a6nJGQMxpMtF2MxMJxIU0rxzxL1u2lC28rWXgxvQyXGXNWhkmU5SNDXbUj/d1Bb3fI2xP09oR87CQJTACAnlDfVrrwU+WL1+eWTl2Yny1cWeWv067+X5346PW22uSkkV2j+1rN2i8uWG1QkUOR4Nc+eu3t9rqxR9fnlv7PdfcUG6xTn1keOskf+x0QWQAAUBSF/fjbLbKKkNSiDEGQSg9gDCI0AFVDqAoQWghGZZU+LAiyqZjMXEhb08Q2oVB8Woq1aQ3hRNLtvXv3rl+/HgCwf//+1atXT/0aL1NEGItxWu2kvn9HwF311x9RGP6t5Zu+VrOOOB/fJMQxWzsbGEEIcYyoSCGOESQ5KrCMILCSkIiNgiyTnDpgRCHl+1Njc9xRuuiGwioKm9LkKLLYtk049EupP/UjmRQQDJtLkOyrYMdyJGc5bK1MiD9IilznGtzTd7bVN7w+t+zGouqxwSOFj8nOU1LfYXngqNh/BNJm4jWfQxfcB5EXSCGdFoIY6xjaFo715WastxlrJuNnAQB0BT2/PbX3b41HxiJOAAAuYyWtxfahTF+Wx5/rdWpcPJhqdAwC0MrswvurrrqrrCYRZF9qhMMMTc9Oai7IMYcGOw8OdB4a7Dw53DcWbc8cJUbrbSULby9dWGNzXNKg5OLBsgIMQ2NJiBScGuk7Mdy7zlGaXOG+pPAy0R3dze93Ne3qaUn2HSeDCsJvKZv36Yol1+VXnNdKcvG48FtOZKWhk7KrEa24DdJc1BvbH/b/9tTeP9cfSu5/0eDEzUXzt3U1jBVuzGrNr9bf/tmqZVPfjXKwl//wW2Ljq2CWzASk0sHWKjijGrbNgzOq4IxqSKXneVGWlamTENMaQjCBdLuiouLnP/85AOCJJ55obm4GU2Ku1Ajf7ahflVNkVF3JmcqpIHJC/YvC4V/LniTiNAiK5a7/MGNDjSWrkHPKw6fl4TrZ3znFTQMRNJy9DHEsT5hGSDWqzauE+qW+w9LAUWngqDxcB+QJRgXB0fKbsUUPIYXXghkwNs06ghzzbN3B39XuG4ykZztMBoURS+y5WRr9e12NIe6csTY1it1WsvD+6qs25JZNG/QnoADFx8QSP3428UfUx8T0BLkyu3CxzTGLWZ0xDEdDBwc7Dw127e9vb/I6pxANSECNYjZKZ9fQGRSdpdGPxMLbu5smhom5tPG20oW3liywqDVBjgmy8fHfH/ejB9g4BAGzWmMhtVZSa6NoC6mxkFobRVtJ7YWRlVwkGj1Dr7XWvtZ2aqw0UKi33FhUfWNh9eqcoll//xWg1LkGt3c3vd/VdMLZO1n3OASgTK0uX2cu0JsL9OZ8nalAb16YkTONOzs3oHAReeCI1HtQ6j0gDZ0cjbdQFbboIWzVN2F93sWcPMQxf6o7+Ezt3qFIaqEUAtBnqpb9ev3tZvVUvA0KE+D3/0Q4/nsgzk6+bTJAOgecUUVs+jVsSTMON4aZGMIU0m2r1bp3715FUdavX+92T0PQcZmYZbzeSEbGNNT7cxMKGxRO/FE4+owSHRnfiuDY/HuxlY/D1lTOM4WLyCN1svOMPFInDZ+R3c1AmiR7A0GwpRw2FEjDZ5Rw6qDbZIB0OdjCB9BFD8CGKzBIK8jS622nnz750cRms1zauDK78KrM/BVZhfOt2SgMAwAYUXinve6FpmMf9balLGc5tOHavHIUhjlRjIs8ACDCc6IsSbIc/tiZjfJcwv6lGb/4GGoUW2rPW5VTdHV20YqsgrGcttMZyMycapgpLvDOaGgkFhqJhYejIVcsMhQNuuMRZySYyHamPQqGoCpz5uqc4kKDxUpqs7R6K6nN1Oh0E5hE4gK/s6f5rbN1E72Bi0Fivm1lVuEdZYs25pWrZjaiOgZZUQYjASupnezAUCiOokgiG9/ud73WVvtq66nk+n0KaEJ1XX7FjYXV1xdWTb22TgtBlnZ0N7/X2bi9u2niCg4AKDPZNuaVFxutBTpzvt6crzOd78u/pJj2llPiXqnvkNR7QOo7mN7fTQBG0Xmfxlc9AVsrLuZ6BFl6tfXUr098VO8eVWAuNlj/57p70vZejEPkhOO/5/f/VGE+rrZCEFpxO1p1Z2IQGVLRo0THCAbh45+4IkuACysiB4S4wkeBLChMEMgi4MKKLMieNtnVqITSN+TLX2ilcy7WECaTbgMAXnvttSeeeEJRlF/84hd33XXXVC95jtQI5yaUYB9/9Ldi7V8UbrzDBVLpsCWPYMu/DmlnVvURWclZKw8ck/qPSAPHlMj0lIAARuCMeYhjJeJY7iNKNcF6uOkFqe/gOYEmBCH567BFD6EVtwFs9nvzpsX+gY7/OrnbHY8szyxYkVWwPKsgUzOVozMUCb7UfOKFpqOtvpEpdrtIIBA835q9Kqfo6uxCG6+1ZtGJ6enhWMgdi3ji0eFYyB2PeOIRZzSUnOmdGhiMLLbnrsouWpVTtDKr0KA6v/oZJ4m7e9veaq97t6N+osLAxUCLq24orLq9dOH1BVVTR4pn/a49fWd397Xt62/3MTEAgF2jy6WNeTpTrs6YR5tydaY8nSlPZ4oF2WE2tH2wJe0ckY5QL8vMO+HsDU4w7QgEL8vM21I07+bi+eebOE3kG35/et9EZSIMRlblFN1YWL2laN4cbz6arEaoxL1i3YvCmRdkV0P6dBGMwLb5AECyM4nHDoLR8pvx1U/CWUsu8sI+7G19+uTuxTbHt5dvnsp1UBSx8VX+w2/Jwd6xbYhjJb7pl0jO8ou8htFnYAKyq1F2NcojDbKrQXY1KXwUEDT7yIB5ysmTnpDXHUvtNCw32cfqLJ8A0m1FAZIkoehcnJpKC9lZyx/+tdj0erLLBtFZ2PKvY0segYgLHxVSgn2j+c+BY9LwmbFgESJoOGc54liB5K6Es5eN+VmSJMMwBEGQ7G0XTz8nnHnhnMAUAEilR2sewpZ95YoEiBeA486eF5qOvdp6aib1ngRIDDeqKKOKNKhIo5oyqiijmtQR6hbv8MHBzslE3S4SFEZclZm/KqdodU7xMnverCQkJUXe19/+1tm6Pf1nYQjSEWo9odarSD2h1p3bmC4rsjse8cSjzmjIE4+445HhaMjDRD3xSNr5GRLDNxdUJurcYzHxYCSwp+/s7r6ze/rOziShnYBZrZkYgmtwYkvRvLvKajblV6hQTJClgwOd73U1/n/2vjs8rupM/5xbp/cuzah3S5ar5CZ3DJiSQILpZUOAQBI2m2STbDaQbLK/9E1CCiEkhIATEsCAwQYDNu69yLYkq2tUp/d+57bfHyOkURuNikvK++iZZ3Tnzm1zzvnO+b73e793ui6m86hHUK3NubNi6baKJUWKaUxXl9/9izMfvdh8fNy8RCUQ31BYdXNx9ZbCqnnR7bwCoGkWx9MVFTi25yP67O+Z1rcmcTCiOJqzDM1bg+Y3IHmrU6MK2703efD/sdb9Y3Ys2kQ0fAMt3DD+CPMKtvcgteer3NCoDD2iKSU2fx+rvO0ynpXnOX8PGxhA8hpQdE6Epr8D0e2/G/A80/EuffSn4xoiol+Ar/oyXnM3QOc1PEPHWdtZ3teNmBaPkGimAccw7buZs79nOt8D6ZQNiGDlN+P1X7zcvWW+EE3Gnj35G18iqJEu0ErzBSgOAEile6IIIiMEAAABhqeMX2b3V1/Il6KxHB7savU4MjhRx4FAMb1YmitVGsSy1GuOVGEQy3IkCqNEnjmr6WqBB7w7Fun0ud7sPL+jvXFiqrgAw6/LrzBJFfv72idW80lBL5YFEjGKnV4XW4jhNxYt2Fa+dGvRlCvONq/jna6mXd1NRwe7URAxYe0JXuxiijmAAACWGfO2lS+9o3zJRM2tlFPhna6L6fFXnUh6/4L6m4urV+UWXRmq5+UAHxqiG19kzv6B81vHfICL0Nw6NL8BzW9AzfUAn9y1wA4cpw/+P6Zjd/ryETXXYwvvgUI1IMSQkECBHBBSSEoAIZn11JyPeYcn5b0H2b4jI9uhWEusfwpf+ihAryHP82XFlXGNcna7f1wpgKy/TPExNx9x8VSQjwf4RAAkAnzqL+4HiQAfD/B0DAAASRnAhZAQQ1IGMCEkxICUQVwICDEkZVBqgmIdlOVAcjKSLkPRF7bTx/6Pc11K34wWbSZWfxktug7Mr/h01nA6g1KpcKKAIR+20edSPa0nfTuir8ZXfBGvueeq+EuzgT3Us7v5d3ta/xiID4evlSJ9pWFFlWFlpXFFqW4pMYfMQm88enSoO2UXWz0OrViSyphO0Uy0IoleLEupR+rE0jkGtK4FnHX072hv3NFxrsM3DRdAJ5JuyCvbmFe+Mb+sQK7hAW+PhKwBT1/I1xfy9ga9fUFfX8jXG/QmGJpEsS0Fldsqlt5SXCMhpiee8IBvHNj3xsVfn+rdNVwGlhcN0VVDTGWSF4KPs2O3VSz5dNlipUD0atu5n53ed845Jsxco815cumGuyuXXVNhvxmht8eWmzzDnHl+/DwVADRvNb70s1jVp7PvmJzjQvLQ95mW10EWLGVIygAhQZQFUJmPKAugIh9R5kNlASIzjzFmHMu5WkacUpxnvFYLwIXEin/HG74+F7/XTBEKxWmaVauvZn+8JgwhH7azg6f4qJMPO/iom484+IiTj7n5sGM0Z2W+gIsQqRFKDFBqSFlHwNH06d+N48Jg1XcSq76MGGqmPtCVwFSGcBg8x7Tvpk/8ku3Zmz55hCI1vvSz+PLHoTwrsaUrAJZjjlvf3tXy3NmBvZOWAUkBQ4kS7eKUXSzU1MSSIX/cFYi5AnGXL+YIxt2BuMsXdQQS7kDMhSG4TmrRSS06iVknzdNL83RSs05i0UrNBCqwWl0FBdMkSP3DoMk99EbH+R3tjU3uUdaVhCAbzCUb88o25VdUa01Zpm20DtplAkGOJivR5GDC8/6lP+5u+d1QsGvipxxAnUzJAL0gzA1n/qAQUQpE6YFSBMKbiqqfXLphGgbHNQue49yt7MAJrv8Y1bYbiY1ZhUORGqu9D1/6CKKtmN3hOU8HffiH9IXtgJ1ZbeFhICiU5qQMJB8a4gZPpjMexgAiWO195MbvXvlB45/FEE4L5tKbiVcupyc6a0ChEl/2KF7/hWy5MNcGOHcrfeJXzPmX+GQaFwPBsMrbsPJbEE0pVJeMpGpcYbjC/bsvPb/n0gve6BiikEGWX6iuueQ4MbI0nEeoRAa9NG9h7voV+TdXGuozZEn+g6HD59zR0Zhk2Y15ZXWmgmxqo88OF22HdjU/d7h7B82ORr8ggDU5a23BLndkMH3nAJfTTy/wMPl8mjGWEoKHqld8Ycn6a5wCMxE8FeIGT7L9w+uqSSbrEKL5a/Gln8UqbwPYPGTN8sF++tRv+aiLp0J8IgToKJ+MgkSQT4b5ZATQs+QkQ0KMmJailhVIbj1qrptjCuPfNa4QWYammalSdAEAbP/R+POrJ/8MQaFIC8VaKFRCgQIIlVCgGP4TKoFAAYWKFLWETwR5Og7oGJ8IACbB0zGQCPB0HNBxPurioy4+7OAiDkBPztFAlIX4iiexJf+WTgi+6qBpFkURBMku3y4RZBpfpE/+mvN2TvwUirWIujRlFJGP/wAuAkyCjzi5sI2PuvmwnY84+IiLD9v4qIuPuBDTIqz2AaxkC0BmlitGs9SZ/g92tTx3um8Pl14lHCLL8264ZcHnlufdkLJPg4GOFvuxZvuRFvuxAX9b9kG+LCEXauvybqzPv2mpZYuIuJoK938XYBgWQjgpc4HnuT7fpXOD+3Y1P9fvHyPoJRdqt5Q/sLXqkRxFCcsxR3reeOPCL1rsx9L3QTFtD1XeS5WUa/K/unzztoqlVzjhPTMYjm6xHy3TLRPgk4WHeZ5peZ3t3ssOHOdcLVOVo4RiLbboAXzJw4jmCi5weY5PBPmYhw/0cv5ePtDHBXp5fy8X6OXD9jGXCiGiLkVy61BzPWpegegXzLRfzy9CgeSZw263I377QwVXl015TaRP8MGBxNuPIWIdlOihxADFWig1QLEeirVQrM2KRZI1+GSED9v5iJOPOPmInY+4+KgbLdqIVXzyqiSqZ8ZsJNZ4ju18P3niGbbrg2mrx0JSOqWrJH03iQFbeDde+0BmXzHFxC45jjfZDl8YOtjmPEkxYyaqCqHuhsrPbK16xCDLn+oIoYS3xX6sxX602X60398qJZUKkV4p0mvEJoVQpxIblUK9UqRXi01KoS7JJpzhPme4zxHqdUX6naE+V6TfGe7zRSdPesNQYqFp7YqCm+vzb85wDf/kGCex5o85W50n25wnWx0n2l2nY8kxrQUCWJ3TcFPVo2uKbsPR8a203XX6jQu/ONj1GpPm1sMQskRbW6ZfVqpbWqZbZlGWX931OsMmzw7uPdz1+lHrznDCp5fmPdHwzMqCW9L34dxt1NuPsr2HJj0CFGlQcz2SW+dAyy0rb5lnSt0cwSa5YD/v7+WCA4hEj5jroTCTpOcVQDRMH9/nPHXQdfKAa6g3CgAQCLHXzqwzmjLlX1HvfYk5//K4jYK730LzJl9BHT58+MknnwwGg0ql8vnnn1+0aFHmq/pXQv01DZ8vIhKRs1NA5jwdzIXtnLuV83Zy3o5Z+0/SgRhr8doHsIV3Q/Fw+C2WDDXZjzTZDjfZDrU7TzPcJOoB1bplN9d+qaHoduyKjBE0SznDfec6T3SED57qfdcXmyRzMV+9YE3hbVsXPKIR51yBS8oeDEf/+fT3QglvXf7WhTnrSOxKk548Pn9fsKk3dK7deeqS47gj1DvpblKB8rryB2+qesSszJQHDQDwRe1vNz+7q/m5SX3gIkJarF1cpltapltWpl9mlF2hLKCUx+JQ9+vHrW9HqPG+zZUFt36+4Rmd1AIYKnn4B8lD3x+T/4BgiL4aNa9AzXVIbj2iKU1tnjah/p8WDM2dO+o5edB16oCrozkwsZLXz16tW7M5N8MRqLceps/+YdxG4UP7Rnjy46pPUBS1ffv2DRs27Nmz5+mnnz558mTmK7wmYoT/wmUHz/OhAc7byXk7OU8H52nnvZ2c3wo4BmAkFOsQWQ4U62CKRiTRQWkOFGshitPNrzLnt49LXgQoThdvelMhPh1u7/a1cFOsO1UcqE+A6+PAwgAoUiPGxWjOEsS0BDEtvmJZjzzgO11nT/a9e7J3d7vrzDieDopgKwtuvbX6iYW5664FCdBeX8sPPryvyz0sQE9iokW5G+ryt9bl3aiTWuZ4cD44wLTtZFp3sv3HUNNitqDBoy/3iFWumM0Z6XeF+hzhXme4zxu1sVMpngAg40AJDVZTYFUCkNJcRFOKqEsQdSnUlCLqUkRZMJFwzycCIBlNJnz7u3e80bG9J5ypaIxMoF6ed8N9y57KUZTM8X5HLyAZ4VyXUunbFB05r8s7Em490bs7lhwvHoRAdMSNL8DF9xbfd2PLfsT9MbUSxfH6L2LlNyOmpSNK+v9CZnAc/8qzXX96pt3nmkS/AieQmuXqunW6G+6wGM2ZdCqmNYTjqk+89tpr3/rWt26//fZXXnnly1/+cjw+zTLgmhDd/hemQixGEQR2ubznLM3TMSiYbqXOMUznHqbxT0z7O6l58VEB+KMUeCZzaBlZUJkEVUlQSQPD1KxvKFQixsWouQ4tvg41r7wc6UoTFZADcdfJ3ndP9u0+2/9hNDmm1HCeqvKW6sc3l90nIq4cazwdPM+9fv5nfzzx30l28nqWheqa5fk31udvrTSsQOBoewgnfEPBLluw2x7sHgp2DQW77KEemhk+CIEJCYDwySigY5KP1zQcAD4EBLLzR5IQLWBgaYIpYUAZDXSZmfwojijyASkDiSCfjAA6OtHx7kNAFw468dQrjMBJxh8MwbdUPHTf8qdms15nac7bwTmbOedFztXCOZq4gBXwfBcOdonACRIkJkx49NK8huJPNRR/2iQv+v2xr++59MJIoNrCgM+FQUUSoOYV5K2/Q/QLMpx5HnXe/zFgH4h9+/EzZ4+MkVyAEBRVyOvW6+rW6Rat1AhFWDai29MawnHVJ3w+3+OPP2632x977LHf/e53Pt/44lzjcE3ECP+FqTDvZZjmAj7u6z/1i181/7yRH51KQwDyGVCZBJU0qEwCJUARZSGiX4BoK6CykPe0s7ZznP0cH59S2QSSUrRwA1q8BS3ZMo8rxQw1cRiOPj/40dtNz57o3ZVO5BER0k1l991S/Xi+aryE7PAXZpPAigAAIABJREFU2aQ/7nRHBgNxl0VZkasonZdLdYSsP9r74EXbcAiKxEQbSu+65Dje57s0cWepQLXEvBkCOBTssge7w9Q8C+tgEDXgqjIWKQ66SygunwVY+giBkWjOMj7u53xd8yLH7EBBJw5OJJXnOXFE5Yb46DExINhc+OhnN3xLJsgiBZlJ0Gd/T5/9A+e6lJ5pwANwkgRvi8GlCcOsjgOrUP3asnsq67+KpBEmLxz5zjPnvteHDC+LIQCbtSseu2WnTDidSs5VLcN0rWH3X/t+/LULkdBwrERnFC5fp6tbr1u+VqfWjVkUZVOGaVpDCMZWn4jFYgKBAEGQlpaWe++9t7GxMfPVXqEVYTgcvwYrnF37iEQSJImP0W26SqCY+Ctnv/+3cz8aocureOS+CKwXFUp11Yi2ImX8EE05wCYx25y/hxs6y9nPsbZznO0sHxsviZICoi5JWUS0YP047xOfjKakFUDMw8c8fNQDRWq0bOtU1an8/miGWtApOELWt5uffe/SH8KJMRPG2tz1G0ruopi4N2b3Rm3+mMMTtfljzmB8dG4LIbK2+NN3LflGkWY2kk4jeO/SH5498qUREkq5fvnXNr1kVpYBAOyhnpO9u0/07rowdDA9S2FegAFEwyM6mtFyQMcCHQv0DNBxQMUBZMKQABV5WMkNaOmNaOGG4d+FY7lgH+/p4DztnKed83Rw3o5JJZWhQJESQwGEJJXDw0ddfNTNx9wUjX7Quvatpuu7vXkAAIBwWEGzcOMrqDmN9kyLiuMP3FP3lRUN+Rg+2TKWjtNnnk8e/uE4Id84BHuFYJcIOMf2Hj2HrIxzKylQMhLORjC0+Dp84b2IYSG15yts53sMBLuE4BUJoD5ePsoE6kdW/mhL5UMZXOjZNLl/Brjs8f/5/NkTHw2nVBIk8oVvV9/5aPFUqiQURXMcLxRmIhBkYwjTq0/ccccdDQ0NTzzxxBe/+EWLxZKqR5EB10SMMJlgezvDMiUhUxIi8TXEqP4XUjjRu+tXh77oCA3rRSEQvbXmiYeWPS3CJbPjyPGBPtbeyPYdYTve5dytk+yBEqhlJUDJjwdND2Am8xkiKGpZhZXfilZ+YtarSYqJ7ev4y1sXftnjnaaM9URAAOvyt96z9JsVhvqZftcfc/7f/s8et76T+hdD8HuXfeuuJd9AJzDa43TkbP8HJ/p2n+zd7R+bsi0ipEZZoVFiMVBxraNN7xs0skD8cZ+mAUiKlGjheqxwY8xYAz6m3ihFOrXYhECU83Wz1gOs9QBr3T++BAqKo5bVaOkNWOmNE6usTAo+GeX9PYBNAoEcEhKAiycXcgIgEqLffLHnb7/rdAyNMfC1xQ6MdjZLYsSGVxHdqFnlojKscdvanM+s2mA25YnVOlKlFUAmRp9+Lnnkx3w4jSeM4h5V3m4x8gHVF+XS1pcIvrbkjk/UfKFCvZBpe4e5sJ3p3JMhSx3KcoObnv6tbdcx686RjVXGlZ9d+cMFxilyvf4FAI5+6Pifz5/1uoZ7a36J9H+eW1a5aK4cImrXF5jzfxq3UXDvLjR/tOJuevWJnp6eO+64IxwOr1+//pe//CWOTxN8uTIrQs7vj6rVU6582y4E7l23L/UeJxCZgpArCakClyuJlHXECQQAEI8wDMMl4myS4pIUm4izLMPHIgwAoGSB/KY7LYtWaq+SFNrlQjAYEwqJDCmYlxvOcN+vDz2ZPhZUGOqfXPubYu00dOTswQV62c49bMd7bM8+Phmd9XEQfTVWcStWfitiWgIgdLtD2ox69hNxcejgW02/Otrz1lRsEQzBlSK9VmLGELzJdjg95XFR7oa7l35zUW62Wq+Hu3f8fP9jwYQn9W++quprm18q0S7O/C2e59pdZ5rtR5RCvVFeaJIXST09zJnfMc2vjnt0iLoErbgVK7sZtazKMi+I83ay1gNU5z6EEBHlW9HizZdDZ2vQGv3rc11v/7k31XNTwAnkutvMd3+uuKxGwfYd8e/872PHmJ1Q2lt1FipGV+FcUJM4eBvnMwAAUBRIiYgMi8uxmFIYkgnDSgUU1tRac7pO2d5J/wVlAvXWqkc+UfN5tXiMSgYf9zFNf2Mu/JkdODa2tAuCL3+c2Py/qds/Zn3714e+6Az3jXy+1LLlofrvlunGF4WYRZP7R0I8xvzsv5vefLEn9SwhBHd8tuiL36kmBdM0v3g8ybKcRDInEsnfQfWJaWOEpw64Hv/k4bmfyGgW3bjNsnVbnqX4GkqKnwuuYowwQUffvPjM9tPfo5hhCQKpQPXwiu/fWPnw5Ur8Yii27zDT+R7b8e6YAsgAAAAgIYFiLRTroFgDRBooUnP282zvoYlF3aAsFyu/xSVbnVO1BMpyZkrwc0cG32l+tsvdmLJ5arFRI85Vi00asUkpNox4xnq9zX85+/0DnX9LjzJWGOrvXvJf9QU3TXSgcTzriznc4QFv1Ha454197X8evlqIfKr2Sw/Vf29GIqt8IsBc2E6feZ5zjFnFQlKKVd+JL3sUMS2Z0V2PYFwe4Tyipz30ux+0fvT2EMeNjjlKDXnbgwWffrhIo0+7fZ5nWl5PfviNmKf3Rdrwkc6fFGRbqyQdFmXFbQuf3Fx+H4lluh3Ob2Uu/Jm5+GfO3YYYashbnkPNY9b3CTr60unvvHH+5yPZQRDAFQW3PFT/3QJ19chu/8wxwounvU8/dmagZ1jZSmcSPv2rpXXrs9I4zCZGOC3+DqpP8DxPUbRAMKUP7dQB10//60LInwwFaCoxvcLstKheqrrxTsuW28wy5bWU3DpzUBSDYcgcC5TMCDzPXbQd+qDtT4e7d4wEriCA11U88MjKH8mn4wvMF7hALzd0FpISKNZDsQaKNJNKVfFxP9vxLtO2k+3cM5UyACTEUGKEUgOU6Ee118U6RFeJKAvmeJ22YPdfz/3wg7Y/peeMF6prti54hGLinsigOzLojdpc4X5/3DlxoWmQFfznphdrTA0gC/R3RQ7t7jnyTueFC5xa5DUrbGbFkEU5ZFbYzEq7oSwfX/pZrPquqbyRWYKmGQjh/BKV+7sjv/9R657XB9JNYFGF7K7Him+8w0JMtWJgk/SpZ5MHvpuIe3eLwOtCJIZOIxAxDB6Cgdrr8p548jMPkIIZeFM4ZxOiKZ+KwzwY6Hjp1Hf2d/51JAkHQmRd8R33L/92KqYbiyWnlAX+BwXL8M1nfXvfGvzb890cO/zjbrnd/LWf1MoU2T4KhmF5nsfxqxkUuyZihOmgEmzQnwwH6KA/GfInQ4FkyE+zDAcAEEowDEMEIpQgEFKIkiSKk4hAiCYp7uC7tvde7Xc7xoSRcAJZfZ1h6515qzYbUs7Vvy+kIkMp71mcjqRmo5GEHwDAcHScjgAAUATLVZQWqmuKNAulgjlpRgwFOj9sf/nDtpfSvUAAgHz1gifX/qbatGYuB7/sYCjWup9p3cm0vzM+1jU1EE0ZWnoDVnI9mr92LpqQ7sjga40/2d3y/MjqORvcUPmZz63+WWbVN4bmGo84Dr/ReHhfcMCeyTEgEmOWYklesTSvRFpSJV/WoJXIrn4ZB1t/7Pc/bt391770HOqVmwz3PF6yfJ0um0AGnwjQh76fPP5MlE28JQYdI/eECVhJQQyTJJIUQ3MMzTMMF4sw0Z486vhWzmUGAOhzhI98rfKmu/JQbN5CJr2+lpdOfftw144RxziKYJvK7r1v2dOXSa4oEKd2t1nfvtStEJKbS/LWF5nVoqucimbtCJ864Dq533nmiDvdxS1TEF//ae11t10rWv/Z4wpVn3A6Azk5l1fah2P5Ewdcu1/pO7DbNm5ZKRJjpjyxySIymEVGs8iQKzKaRQazaIw35ppBhAqc6N11uHvHmf73x6mUZYZWYi7U1BSqa4q1tYXqmhxFSXrC2UQ0Drk6vYF1BapTfTs+bH9pnDIkACBHXnxL9eO31nweQ67+kJoteJ6znWFad0Y7D5G0hw8N8dT4vOlJgIvQ/LVY6Q1o6Q2Iqnh2Zw7G3Tsu/HznxV+PS1JMAYGoUqTXScwqsVErMS/Lu74u78apDhXwxI+8furw7t4TZ4hoYjaLDBSDC+s0KzfpV27UlyxQZB879/kiOI5KpXPNh3PZ4y/8pG3n9l46ObqMq9+gf/QbldVLZzwU8MF+6sNvMhf/AngOyi3E2m/gi/9tIlGL4/j3Xu1/7gettr7RiGl+ifRz36zacEvOPBIIuj3nXzz51AjRCQCAocTq3Hs+tfyxEu3iiXSnWSCYoN5t632rpetgz2CSHX2GKAIXmXSbS/I2lVgWGjVIFnflssX//JvOeJQBAISDNM8DjuUjYRoAkExwI6OlUkOqtKTWIFDrBSqtQGsUqDSk1iRMERi9rsSpg65TB1wn97tc9knGpfoN+qd+tURnnHHLCYfjNM2qVP/o1SeucB5hJETvfWtw1yv9F056Mt8cQaIGs9BoFknlhECIEiQikmAohsjkOIJCsRQnSEQgRHU5wpplsyqmOBMEE55jPTsPd+84N7iPmV3JlbEgMWGeqkpCKgAAAkyUkoKUkEqGhS0e3ZkhtS1MAAAQyEjxVjV5Uk6eh4ADAMgE6nUl2zaW3lNpXHEt6K3MDqMBGzrGhYb4iIMPDvIRJxca5CMOPjjADp2eVHYOURWjJdejJddjheunKp2aAREqsLPp1wP+NrXYpBHnaKVmtciolZpVIkOGeQnL8NaOUNuFQOvx7uajPa29co4b78MgUHpRbsuqRZ66jTkJw+ahkKmvK9LfFenviQx0R0KBKduMRi9YudmwcqO+br1eKp9mTjP3GKHPRb3487bXX7AmqdH56JLV2s99s7K2fvJclyzB2c6x9nN47f2Zucp0knvzJesfftw2wl0EAFQuUj7xrQVZRq2yRJvz1IsnnzrT/376RiEuqTKuqjE11OQ0lOmWTZRgzQx3JL6juXPnpe7TA05uusFZROBr8k3Xl+VfV5JnlE0SC6eT3CvPdv3+x62x6PR1mKeCQIjKlITbHp/0cvJLpMvX6VZs1K++zji7qca8xAjniCvkGuU4PssSCvOIQWv03b/17fprf/r0cFpAYQRK/YjUn3pFpH6eEpbhn/jCk1tm0Y0pJj5OK0RCKtKtiy/mONrz5qGuHRdtByfGkPLVCyr19RAiJCZMkSnEpBxCBENwIS4BAESToT5fi9Xb1OttmUqUZAQML/bGV7mptUl2EjYzifpqDcFH6upurrr5yoiCXlZwHIcgGf3hTILtPcR07mE790yewoELscINaNlNWNlNUJZJCJHjeMdArK8r0tcV7usM93VHomFGpSG1RoFGL9AYhBqDQGsQaI1ClYZEUAgAYGiupy3UdiHQet7fdiHQ0RycKjquFvlXVPSsbiDrbl4oqVg/lRJQwEv1d0f6uiLW9tCJ/a7O5sDEno1isHqpeukarVA0bJJDwWH2B02xifjwBShU5MrN+ppl6tSlZgmO5ZvP+va9PfTGH63x2GhLXlin/tw3q5auudJ6GvEY89fnul9+piN9irBohWbFRn1FrbJykVKump9G3mw/8uLJp84P7p/4EYkJy/V1C3PWVpsaKg31GTg79lD0SK/trZauj7oHKGZMS4AAVGk0mgGxUI661NHzThfLjf9pUQQuyzWsyDPWGrU1Rk2eUgYAOHXA9aP/PN/bOY2qPo/wjIzjBDzpyHYhq9KRyxt0dev1det0OtNcnQcpGwQzWlHnUDzoG59Km1soma90u2wNYTQaLSkpsdlsAACbzfbAAw8MDAzk5ua+9NJLJtP0pfsuqyGMJUMCXJxhuh0J0bb+mGMgZuuP2vpj9tSryxMju1B9H6obhFIfIg1AqQ9KAhCbRDYa8JDpL8+NfeJL9z++pC7TmJhCmPIft759sOu1cwN7Z5EKXapbsrrwtjVFt+fISyHM3EKGwfHsUKCrx3vR6m3q9Tb3eC/aQ9aRqH6CMbgS631UHcePdn4EMBgaHmcUIQCr8k131ZbfUlkoJiZZPXA8740lfLGENxYHAOQpZCaZ5BrMWpneEKaBD/Yzne+znXvYnn18YoJjE0LEUIuV3cQV3BQVV4eCTMif7OsK93dF+rsjfV3hgZ5IksqKx4GgUK0lpQpi0JrpKxDwpYbBVcuia260VN2wAZHPWGnM60oc2+s8vs958oAz6JuNg0GmJFZs0K+53rhigz6DzfC5qeP7HEc/dJ7Y7wz5x5xowVLVo1+vXLHxahIpQ4Hky890/PW57nTbnIIpT1y5SFlZq6xYpKyoVcwxpNo4+NH7rS822w9PJVOOIXhNztqHV3y/VLcUABCnmQt299lB1+lB55lBpy0UmfiVxTm6ZRKD9126cbc3NU5jOFJ/ky7nBmE36t/X1e+NTT73lZOEJEhGm1nSjRMuDA+ghWWyTz1ciGEITbIeLmajoh4+PhQPD8TDjniU5jgAwEK59g5ZOe5DfW7K40z4XJTPnXDbE6lHJxCii1dq6tbrl6/TFVfKp+3yDMfZQ9H+QHggGHaGYziKSElCRhJyASklcSlJpP4kJJ6NIfzuF8/ufHn8g312Z8OyhkwTrOzNVlaG8Ic//OHPf/5zh8OR2vnBBx9csGDBV77ylZ/+9KfNzc1//OMfM399Wtdokk0M+NukpEoqUKUWOhn2HAx0DPo7BgMdg4GOgUD7YKAjnPBhKKGX5hllBUZZoWH0tWCEP8Jw9KC/3epr7vZc6PU2W71N4ygh2SIpVPo2Prj581vXbpn4YTjhO2rdeajrtVm4NyFEKvR1a4puX1N0+0jUfS7pE3E60uu9dLDH/salwNnBWPrPLCPB6jyqIZ/WiEiSWPN+V3BnS3eYGnPBYgK/tbIoRy72xhLuSNwbS3hjcW8s4Y3Gx7UYEkPzlLJClbxAKctXyQuUsgKV3KyQEh+TXcNU0hdL+GIJf5zyxYff+OMJuYD4zLIFOsllkRyalMueTLABX9LvobxuKhamAQCptFQAQDiQBADQSSbmHOB8PVFbf8hPRShxJCmOUKIwJYlQ4iR7GWOlWrGvRNddqrNWLNJU33GnbtH8sJM4lr/U6D+2z3l8r6Ol0T9C7cseCAqrl6pWbzGu2mwoXSBPHbOl0X/0A8exvY62CwFuwgKlfKHi0W9UrtlinJdbmDu8rsQfftz25kvW9IBlOiAE5iJJZa1Sn5upNUrluEpDKjSkQk0o1aRaJxBJRlckqSbnCvdfsB1sGjp00XZoMNAx+mUeUpwuyhRopDcm2JI2d5DhJr+YRSbtrZVFOqfk/d8ONp2ZXCQzr0R624P5uRtER222Dzv7L9rdGX5XIYItsegSDNvtDfjjmeblOIo8vGzBf65bKheMjjmJOOtzUxq9gCAnn1l6Y4lLTm9/IDwYDPf5wwPBcH8gbA9Fp7rBdEAAZAJi9103VeZlmjBNawjHVZ/o7Oz86U9/mr3ZysoQsmyK3jpsus1m86lTp4xGo91ur6ur6+/vT9uTSyYZFEUIAqNplmFYHEcBgDabT6uVkSSOIDAeTwIAhEKC5/lEgkYQ2B9q+tzfhtOeMJSQEiqpQCkhVXKhSoQpJKQSQHYw0DHgb3dHBmZUuFVCKgyyApblBoKtWVomESFVi3LUEqNGlCsX6NRi47neQ2ft7/FgzEqRjOfdUPnQ7Sv/TSHQ0zB8pPvN/R2vNtkPTKxDJCGUI3MdngcJJpK+DwLRKsOq1YW3ry29XUEaaJrFcRTD0GSSYVkuJeMLIeR5Pv2JkSSeetQYhuD48KMmCAxFkZReUZCm37rU/cLp5i7vmPVNlV792WVVt5QVSoTEyFlIEqNY7s2LXa81dxzutU0bmcgGKAL1EhHNcYE4RbNT9gcBjt2/uOKJ+hqNQDC22WAYNnwvAgEO4Wiz4TieooYfAsNwNM1gGIrjaDhEeV2JSJAJ+mi3I9ZvDQIOC3iSHmc86EsG/Umfi5pLpCQz9Kq4JSeRnwfziwlzgVggV4YjuN2Det2c2wMCPs5pp7zOhN9DjTxdvTxQou4o0/WUaHvKtD1KaRRWbsNX/ydhqk79LqkfNJGgeX70IUAIBQI89RBST4xh2HHNJtXREokkz4/paIkof/wjZ9sFH0QQBIGA54RiLFX5GSMghkMMQ2OxZPel0OmDHufQJAFUfY6wrFpx4ZR30lWmSkvWb9Bt+oR55SY9TU/ZONPuBQgERHb3Qqd3gdRDyNwFJjabwb7wxZO+jovBpjO+jqYpfdEzAkEiChUpU+IqHSkQIWXVqtwCUV6JTJVP9ASCjYO9Z+3tHW7PYIiJ0jKen9JrJcSxar3muhLLLWWFjbu8f3m2a6BnNKCDIHDN9cZYNHnm0BjeAylAN38y95Z7zbpy0Rm7a/dx60fnB0OSBCuYQRfGEMSikA6FIiMuWY1I8NSm+rtqy5IUM7GjjTROiMC9bX3bL7R90NmXnLqPZ4MzD3+6MFfz8Q+K4jhK0wzPgxEtkWkN4bjqEz/5yU+yN1tgRjHC1HAMACAIIhqN4jieTCalUilFjU4xEgna4wmJRKRKJQmF4qFQTKkUi8UCjyecSCT1egWOozabn+f5nBwVw7AOR4Ak8f7Eya/tvG42zw8AAACBCqYNj00EimA6UWGRtrpYt1AMDDLcUJRbbJBbPM4EiqJGo4KiGLc7mLqXIffgjhMv7GvfHhWMKf4OedQoqnRSrePCexDAEs3SdaWfrtVtFQG9Wi0VCgmXK5RM0kajEkWRwUEfikKjUZlMMi5XUCgk1GppJJIIBKJyuVgqFXi9kXic0unkBIHZ7QGWZXNz1SzL2e1+gsB0Onk8nvR6wxKJQKEQB4OxcDiuUklphP/LyUvvdFhP28cEEhAIGyzGhxZV3Fxb+vFZRFKp0OeLxGJUao7icAQYhoVS8tWLHdvPtloDk5MtIQBqsVBOEnIChyjSFwh7onOtdEigyK2l+U/ULazJN3zcbCRiMel2hyiKTjWboSEfxwKEI/u6wq1NHq8zGQ9zHmfc606EfHTQR0/0fc07UISVkDEJGZUSUZ3UY1EMWVSDFuVQnnJIiGfRAgkJCwQBLtfrATqyRyEcfsI8JiSWPswu/oKPVUmlQrlcFAhEI5FEqtk4nUGaZoxGJYIgQ0Pejxsn7XYPd7RwOB4MxhQKsUQi8HrD8Xjy42bjZ1k+N1fFMJzD4ScIXKeTxWJJny888SwuVzCZZD5unF4URaN+ePA924HdtvaLwQzrSBSDZTWydVtzV2zQSdQ8SaY3TqFCIRppnCLRcBcwGJQYlrkLpDdOOUkOd4GcHDXHZe4CEpFouNkYDAoMQ4eGfBBCk2n4LAIBodFII5GE1xPxOVhrW+zccWfb+WB/d3QWa+UR8ChIGGjKRNNKJqlkaSXDkdMcDQJeQviXGnMb8qrWV+QXyqWDVv/eN1xvv9zvc4+OqDiBrr9F95n/qCyqUAwN+Wx98SPvet/5S984L3RptdyQIzq0Z1hqjpaxysVo4RZxQMQ0OdzpHlQpQRSqZFUGjVkqNpCCRXn6CpM26I92uHw/P9e0t2tU1q7WpP3K0pplZoNWK4vFKJ8vkmo2fn+01+3/YND216bOPv+UlGwIgF4qzpGKtQLSopahGOYORkMJKs5xUZr2ReORJB1j2FiSRiBs+dxdep08/SyBQJTnwYh267SGcFz1iZG0+mzMFpidITSZTOfPn9fpdA6HY8mSJUND06RtTZtQf25g72+OfCmS8IcpX+aEAQSiBll+rqLUrCjLVZblKkpzFaVaSS7FxO2hHkfIag/2OEJWe6jHHrI6QtZUsl0KWom5QL2gQF2dr15QoFqQp6qcKaELAHDswvHf7nxmiHwXiidpARAilYb6hqJPrSm6fe4F5EDWCfUJmvmgs+/1ps4PO/vHRdolJH53bflnl1cXqWdWGPnsoPODzj4cRTUioUYsVIsEapFAJRKoRIJxjO1QImn1B3t9Ias/ZPUFrb6g1R+yBSMjDUtKEiPfVQkFKpFAKRRISfzNlq7TA6PKmTiKfLq69EtrFhWpFaFA0tYXG+qNDvVGB/uig9bIUG/UMRibWNJzRkAxqFSTCjWp1BByFQkASBGDAQASGQ4RiGEwFX4XijGJDJfIcakcl8pxmYKQyHGRELIDx9i2d5iuD/iwjY+6pznfdIBCJV73ebz+C1B8rdRmmZhQH/Qlj3/kPLzHfvyj0Sig1iBYscmwapNh+TrdtEzUax/xGNN2IdB+MUDFp1wm8gD4PVTAmwx4Kb+H8rkpOx8N6eMxC53ISfLY9C0TjSGiaESiPy6RNouwPhQmAABoTwN5+mEY0XqdiUTa2WVK4lMPFd75aLFKN36YohLs+zsGXn+h59K54dojiNyD6AbYoWI+JpUpiMf+q/JT/1Y4wnUaCIRbnF4JSZRplFpJJm7Le+2939xztPdj8wYBuLO27OlN9an4Bcvxe7v6Xz7X+kFH3zi3pxjrE2B2pZBZaCxdV7JmRd6SXPlocCQDWI4PxOIyksicUJ9NjDC9+sTIxizN1mwM4f33319XV/fEE0/86le/OnPmzIsvvpj5izNKn0iyiXDCF074wpQ/TPnCCX+Y8gEADLICs6IsR148jtBoC0X2dw/WWwxFasXEowXiLnvIynFsnqoylUgwL7B2+H7y/O9bEq9hJY0AYXkesn0VInvDrSvuvuueuuzlbEKBZEdTpun2cIV6IZ4aa6RyAkIglmIICsUSnIX8Yevgjqau3W3WcRE+FIGr83M+VV1yS2WhlLwKFFCKYR3hqBDHlEIBPnV/eL+l76cHz55xjZpDCIC8RyQ5JiC8M+ODYTiiVBMKNanUkioNCVC2oFipVBMqnUCR2q4m54soOAyOGdYEjzj4yPAbLurio24Q8/AcA+IBnmNAMswzFKDH5NpDWQ6x8kvY0kfmKAQz78iQPsGx/MXT3o7mYG29pqRqerrEPyQGAuGDPYMHegYPW4fcU/tCkCSCBxA8gOIBFPdjqVckVcw8XB7/AAAgAElEQVQCSwrW7CTXvDVSc4qnycTB26ijtwAGBwAYzaK7Hy+59b78aSmRZ05bX9j5h9bkW4j5EoQ84KGIzl9Rvm5J4doq46oc+WwyYimG/fmRxl8cbUzQwy4WKUn8x5rFcZrZ3tg2jtSDwahKcEpDHhFg9vTtJnnR2uI71pVsy6Y2SzbpE9kYwvTqEyMbszRbszGENpvtwQcf9Pv9KpXqxRdfNBqnCYlPK7o9UyRZ7nifbV/XwEfdA5ecXgAAiaH/vnrRv69eTF6mGraTwdoR/s3/HT7Wti/ZXclHhq2sQIhu+ZR522eLSqsnt7vhIN14zHPmiPvsEfdJkS2aR5EujHTipBPD/SjkphldOIJPGGkqh46baMpA8+j4n08RERaEFIVhpVowRi4gFmEYhgMAcCwfDQ83cYJEFq3Q1G/QL6xTXzHxHVt/bP87Qwd227pbQylqO2Vg/HXRWB41mlfCA3E3KeomSQ+G+zHIAgAAgkB9jtBcKMktlOTmi2UKXKkhFWpSoSJUOsG4dck1qIDMJ6OATQIqxPMsIsudXeGOuYNi2AzdJBJJoCiSuSbOVQDP8nQIAAARHGBXLvOa4bg+f+iSy9fh9re7/Y02V7d3UrUEWGPULNZpay26IrWiWK3QiIX2gVhfZ9jaHurtDPd2RqztIb9n1B2HyD3C6/+ELzg+soXz6WVDW69vWH/HrVtUkkzLhiSbONm7e2/79lN972UgpatEhirjqgWm1VWGlTNN8+8PhL+55+juNusUn/NSvFMtOKYkGhGEXZS7wSQvOtL9ZiDuGrefWVm+vmTbupJtFmXFVOfKRnT7tT90nzow/uCP/VdVUcVoH0+vPjGyMUuzdc1JrGVAnz+0r2tgX1f/IetQNDlJkkORWv6TrQ1rC6dPb5hH2Ppjr7/Q/dZLveO89gvr1NseKVp/Uw5OIOEg3Xjcc/aI++wRd0dzkGN5AIFnXThUM2ZGCRlIujHShRNOjHRiuB9Lle9mxWwih06Y6HgOTasZfjJbifsxSTsp6SBx/2wSa4QibMlqTf0G/YoN+rySy7JGsXaE978z9NE7Q20XApPuQGmZwLJYtDgxLokfhdAslFbq1Uvz9QtzNVV69WUimv4Dwx2JH++3HeuzH+21tbl915XkfaVhyaKc+cwuPzfker2pc1drT5xmpCQhF5ASEpcQeIoiLxeQUpKQEHhKJ0wpHHH38XzEygVb+FALF2jmQy0pgweYKOCSAAA+GQDp/DiIoZY7sIqvIYqamV6hMxyzh6MAACGOpaYCUpJAIUQglAkIAADDcVZfqM3la3P729y+Dre/0+PPQAPJV8rWFuauK8xdU5CjmonsGZVgU1SdJseB5099aTA0vgKzTmop0S4u1S4p1i0u1S5RivQAAJ7nzg8d2Ne+/XD3G+PUi3CULFBX9/lapgotCXCxRpwjE6hlArVcqPn4jVYuGH5PYII4HYklQ9FkKEoFY8lQJBk4N0S92Sr3xkZnRTgSVpEnNIKjJOrKkRdfV/7A5vL7U2EgjmcbBz860Pm3Iz1vjivwCQBQiQzl+roKQ12Fvr5UtzSzsuAs8HdQfWIuhXk90fi5IdeBnsEPO/u7vZMMoCSG5sql6R/dXl3yv1tWXuGxkkqw773a/+rz3R3NYxqoWifQGgXDxu9j8ChwXxeMlE6TX4hxiDxOJnA2SkzJd8XCiLhLIGknSee8xWmMZlH9Bn39ev2ytdrslXOnQut5//53bPt3DVk7JknsRTGoNwmNFnFOnthoEeXkiRk186ara3eXNQP3WisWVurVCwzqKr26Uqcu16kmRiP+UaukxpJ0ty9IoKhSSMoFZIa13VAwcrTPdqzPfrzP1umZpO9sLLZ8pWFJncWQvjEeT6aIglleT7c38HpT5+tNnZMulSbCiAWqhI6tptgqVSAH9IJwK2BmUXsLoqYbsYqvI9qsSgNGk/TPDp/7zYmLI+6+WUMtEqwpyFlXmLu2MDeVtz6C2TU5lmPebvrNS6e+Hab8U+2jEecUamp6PBc90bGRLYhUm9ZsKrt3TdHtUlLJsMkO99lm+9Fm25EWx7H0OtKzBgcwV2yjI75FjFm1wiMyoklCiNYWf3pLxYNVxlWTKk8xbPLMwAcHO189at0ZS07CpUAgmqeqrNDXVRjqK/R1BnEJz8M5OiH+DqpPzChGGExQ523uRpu70eY6b3MPBCaXRchXyjaVWDYWWxoKcgQY9reL7U99cHyEvigXkP+9cflDS6uyEeKbXzQe9/ztd937dw1NSevA+eC2qFc9HDG6tapoSY6u0eY+b3NZfdOrYiIQVuhU9RZjncVQbzGqUAHDcIkYSye51DQzSXFUnKVpLj42VUAkxTEUAgAwHAo/jj14XdSpA87j+5yTWqlUAtnaG0wNNxrzZ7JMjIToM4fdZ4+4D75rs/WP16HGcGTJas36m3Lq1+uNZtGkgsi9/tA7l3qanZ5mh7fTE8ickISjSLFaUfWxaazSqw1S8TzWxAnEqS5voMPj7/IEuryBdre/1x+SkkSBSl6okhWpFYUqeZFKXqCSK4TzXzAryXItTm/jkKvR5mq0udvdvnQ+sIjAFQJSKSQVwtSrQCEgPdH4sT5b/xR9ZxwaCnK+3LBkTcGwNylLiTVnOPZGS9frFzsabVOOtgKELiSchYSrGHcWks5i3FlIuKTorDjGCAExMQCAT46xFohmFVb5ddS0FUyhBcjx/F8a27730SlXZDaFnAAAuXJJmVZ1s7J1E/2SGMYFmlpUvgDKFyCKaigpAmk6HnNpcsG4+0z/Bx3us53uc13uxkntRzoK1NWbyu7dUHqXVjKlwvWAv63FfqzJfrjFfmxMRuPMwfMogvC1Oeu3VDy4pui2zGWtRpBkE6d6393f+bdTfe+m8xbHQYhLv7729VXls08cmDuu0IowGqWk0ildB52ewIedfSlj0OMNTnVBJIauyjdtKrZsLrFMpMb449R39p7Yfq51JA1ucY7u/25aW2Ock7zh7OCyxV9/oeetl6wpJjSEoLBctmS1tqxe8QvXmfOO4bHj35ZV/ejGNSPWOhBPTQJcqdfB4HDTEeDYkhxdvcVYZzYsNxtkU/NvZw3nUPzER86TB5wnD7gmTRGzFEnW3mhac72xtm5y5S2G5i6e9qU06SdN3CYF6IqN+vU3mdZcb5zRQpNi2FaXr9nhaXJ4mp3eZod3HDNoItQiQblGtb7EvL7InKUwcfrpzgw6z9vcXd5AlzfQ4fZn4ESMg0okKFTJC1XyYo2iTKOs1KvzlTJ0hppKcZrp9Ycaba7GIfc5m6vF4ZljkhYAgMTQxTm6FRZjvcWolQifPX7xjeau9OlFncXw1YalG4rNqYzDSWtBUww7GAyfHHC8drHzSO/QOKEvKYl9pgy73ejMQwfYUBsS6cISAyCLrF8vI+lhzYisPNdcb7Esg6I8AADARAAhAQCQUKQbOc5/jrn0A3ZwB+BHLx5RVGMVX0Mt2wAcc9mHrUP//f6xJodnZEuRWi4lCYbjIhQNAIjRTJJlAQDBOJW6UINUXK5TVujU5VplhU5VplWK/Qfppqc474lJLh0VILJKqKhG5FVQXhNDi6S6WSq2p4PnuaFgV4frbJf7XIf7bKfr3IgjVCsxbyy9e2PZPel1ELNBMOHxx5yhhDf1F4y7R96n/hiWJnGRmJAJcamYkElIpZiQCQmpiJCJcKmIkFXo62bNhOd4ttfX0uY42eo82eo82e9rTa/iCQB4+Z5+o/Jq1qy4JmKEL5659B+7Dk76kQDHqg3qJTn6DUXmVfkm4XQ1q04NOL6861CL05v6F0XgI8urv7F+uSRrV888IklxH70zRBDIopUapYa0h6K3b9/V5hr2nn917ZJvrF+e4evuaPyi3S0jyVqTNgPxcn7BcXzb+cCJ/c4THzkvnPJOXNfKVcTq64wN1xtXbNSLJFh3a+jkAdfJ/c7GY55J09WlcnzNFuO6m0wrNxlSiQpzBM+DvkCoyeFpcXibnd4mh2cqt0EKGrFwXWHuhmLzxiLLVNzxBM2cHnQe67Md6bWdGXSOS0GZC0gMLdeqynXKCp0qNbyaFdKRG3GEo73+UK8/1OcPpd5Y/UF3JHMGESxQyTEE+uNUMEFluFS5gEy5DVZYjLUm7TgnqtUX+tmRc69eaE+3sotydF9tWLIyzzQYDA8EIwOB8EAwPBAIDwYjKaGs8RcD+Eqh436ze6PCakg2gsR4OsNEQIGBEpd1JAwfuiRHvbJ2yuhjR8kvJRpFvcWoEgk+luAa1uJKl+YiMZQPdzJtP2KsLwNuNL4AxQVY+VdQyzZIqnt8wac/OJ7O9TArpE9vqv9kVXH2kyLOfYi++C3OfSjbLwCAqJZiJZ9HLdvATMosZwYPeFuwu8t9TinUV5vWXK6y2DMEHxvkI51cuJMPd/GRTv7jBd8YNhMmhsjwlBfJuRU1DZdbiSXDHa4zrc4Tbc5Trc6TBEpuv38qVs4VwpUwhCzLeTxhvX7KPLYLdvf6515PvSdQpMqgWWTSLjLpFhq15TollrViZAoMxz13oukHB05PSqiZCAxBlpsNm0osm4otCwyXq8pEtzdw28u7UkM2AuH/Xr/q0brp53TD6ROCq5OnFQokj37oOPiu/fg+ZzQ8/mESJCKR4z7X5JHOwnLZ8rW61dcZlq7RYvjl7bqBOJWyiC0Ob7PT0+byTbqEggBUGzXri8wbisx1FiPLcacGHCnjd27IlcGiiAi8WC0vVitKNIoSjbJILS9RK0JUsscXtPpCVl+wxxfs9Yd6fMFQYnr1IilJlGmVISrZ5w9lY3EhAIVq+UKjdpFJV2vS1hg16fkwsSQdSFD+OBWIUynT6I8nxAReZzaU61TTLoUHg5Fnjja+fK41e9uPAL5SMLhC2HmDpr+W6CDZyalPAACAkIisDEpLobQUkZVDaRmUlUF8dBxotLlfu9ixo6kz+zU3isB8paxcqyrVKmuVzJL4X5T2lwEzZiYUherzUW0HZWinjJ1J4wBnfmhVw+P1NYKsS79y3pN007c4x4dp90JghQ+hlju5cCcfbOaCLXywiZ/C8ENSgxY+jBU/BsV5WZ7x2gSfDAAmxNMhkPTz4U4u3MlHOvlwFxfuBOyMXc2IfiNe+yNEuXjcdqffIUBkcyl4MndcEzFCmuX+893DC43ahSZtlV6dTRrmtBgKRr7+3pGp6b+TwygTbyq2bCqxrCvMncf0uwt29x3bd6d6O44iv7x1/R01pdl8cS5ao/OIJMWlAn6H9thdtinHLKNZtGytbvla3bIGrVp31Wo90izX7vbvvdDTEgke7BmcVPhGTOA0y07lcixSK1bkGRcaNcVqRZFakSvPlq/vicZ7/aFub7Dd7Wt1+VpdviwDdelAEZgrl9aatItM2oVGba1Jmy78eDngDMd+eez8i2cvxSabOyKALyKdCwV9NYL+peKBEtwmgpMPglCgQ7RrEM1KKKtEZGVQlAeyWL4wHLe/e/DVix2726yzILMo0fiTxuN3Sj6UginZOlCgg/IFiKwCSsugKBeSWijQQaERYOMj35y/kWl6irXtSvsyhhbcj1d9C4rzx+3MU24+0MQFW/hgMxdsZn2NkEtrbBBFc27GSp5A9BunCmHOEXzCxSccfGyAj9sBG0VNW6Fkxr5ZPjbI9r7E+c/zdBDQIZ4ODRs/OotCnjMFRNC8u/Ga/4WiUS9rNnmEZ/rf7/FcHLdxXcm2zN7adNHtqbYMX9cVMIQ8D2iamTTqcLmxp733a+8dyew6mxQ4itRbjKl4ZLluTiWFD1uH7v3rnlRYS4hjf/z0ddeVZjtPpGk2JQU5lwuYXwz1Rg/tsR9+3372iJtleEOuaOUm/fK1usUrtRMlMK4iKIomSZzj+Qt2z/7ugY+6Bk4POjKonpZplSvzTKvyTavyTHrpvE1Ow1QyZREvOb2tLl+L05uueqwSCfIUUotSlq+U5SlkeUppnlKWpSTHvMMTjf/2xMXnTzXHaHqJMrZaZl8s6i9GugxsB85NyXSAIguia0C0a1BtA5SVz+UCwlTyw87+QJwKU8kQlYwl6SjNhKlkKJGM0XQsyYSppC0UmXT6IkSSd8qPbZMfLyXsJJK1NUWFkNRCoQkKtIDUgaSXHdw5GteEKJp3N77gqSytSyLiwYZeZjp/w0e60rdDWTlW8gSWfz/AZ5XYyrN8pIvzX+BjA3x8kI/b+NgQHx/i4/Z0z3DqVIhmBZp/H2q5AxLTjVocxQ69zfa8wDo+BPyMYwFQoIeyckRaOrzQR0UAcAAAnqVGFosjqS+8/zzT83sworGMCrDSL2IV34CEAgDAshzP81jGFPCffvTwe5f+MG7jjz+xb1HuhtT7aUW3wYTqEWNu51qIEV5GMBEucBFwSUS7BkxRp6nXH9rX1f9hZ/9h61B8sgmpWSFdk5+zKt+0Ot80EuDJBhzP72rtefSNfSm/k1xAvnL3DfWWa0WSf46wD8TCQbq4UnZN2ekMiFD0Qetgyij2+kMQgAq9enW+aWWecUWeSSuea1m1LOEIR7u8QbmAyFPILgfvaS7g/I3Jpm8D71Ge8mbYDUrLUN0aRNuAaBuusPcvlerX6vK2uvytLl+b29fjHVPGAYXcKk3iG0tES6ReLtjMhy5xofZUSuIMABHU/Gl8wdNQNmUa+JTgOda+h+38JWt/fwxXCJOixuuhOA+KzMOvwlwomCyVkw5xgYtc4CIfuMAFznOB5hn7IRESNd2I5t+Pmm4EyPg2xvkbWesf2d4/88nJS1ukXbMY4jKAySAug+I8KC1DZGVQWgalpSkblj34cDt9/mvs0M6RLZBUY1Xfwoo/N/EKJ2JaQzit6DaYUD0iHVfGNcrZ7X6z+bIXeQcA8Akn5z/PB85z/kbOf56PdKbYZVCYg+bfixXcD2WVU32XYthjfba9nf0fTJGzCACwKKSr8ofXDeOyiAAAjnC01eW75PS1uX2XXL52t3/E16STiHbcd1OVfmYPwekMSqVCkejaGi7/LmC1ugoKpkwY7/OHpCQxoyTof2zwCRfT9E2m54V0NuYIIKlBVMugejmiWoaolk0+fF8lJFmu0+Nvd/svOb3tbn+dxfBIXc2YJTVH85EuLtjMBy9x0T5AuXnKzSecfMI1mYGBaO4nsQXfRhQzo2WCCU2OD3cwnb9mrC9m8jGiAiiyQFEuFJkhqeMjXVzgAh+xZsO2BQBAQgWFJii2QKGJT7hZ+3vjTD4k1ahlG5p3L6JZwVNetu8vrPUFzn9+3HEQzQo07x4ozhsxe4BQQlw21eJh1uBcB+nzX+F8Z0avUFLElH6HUt+SWXpsWkM4rej26BknbAH/AIaQj9s5z1HOf473n+cC5/m4PfP+iGopmn8/mncXJDOlVfT6Q3s7+z/s7DvSa5t0mQgA+IS2/3O6wxXcGTdibktaToW05yKGpkRugB2fVJuvlO247+YC1YwdI/8yhLNGZkP4L4yCSzIdzzAt3+PptBgbJkaUixHVMkS9DFEth5LCq3d9lxNsjE+4+ISTp9yAcvOUB9FvQpSLZnewyZscE2asLzGdv+JDbbO+TEhqoKIGkZVDYS4U5UJRLhSaoMgC0DFuDJ7ysv1/ZXu3T0z2gOI8Pu4Y50qFwhw0/z6s8EEoLZv1tc0cPNv3Cn3xv/joaEVYOu9J2YqfZ/jOtIYQTCe6nWEL+Dt1jfJxG+c6wLkOsq6DfLg9064IgSiq+biDj48tkYHgqPFGtOB+1LQ1la40FSiGPTfkOtZnO95vPzXgiFC0EEneJjv1GeWBMnJ8xDUFO6O4lMhtoXJbqNw+Ll+tq372k5vmMez0L/wL8wV26G36/Ff48GhxMcRwHV79XUS1ZN5XA//c4DnXIS7UxseH+Fj/cJAv1j+5qg4qQuSVUFGDyKsQRQ2UL4ACwyS7ZThZuJPp3c72vsxHJ2MLogI051a04EHUsPmq/cpsgun4BXPp+zwdBBAlr7+AyKsy7J6NIcwsup1hC7hiZBn2/7P3neFtXFfadyp6B0gQJAgWsIkUm0j1Xi1LtiVbck1c4hI7jr2bTeJN3bTNZpPs5zixN7Y3zXHN2pJsSZYtW5LVbBVSotjFXkGid8wAmPr9AMUCgiBFUTKdzfvg0QMNMBcD8M4995zznvewbLJcKBvm/K0QJgWwEGByCJUCOL5ggCctnOME54wZv86EwwAAACaHlWWwqgJWVUCqCli+AMAY4FnWdpTte5W1vAvYifKeuBox3QOnboRVZZAkO/kXoYM9joZnpcOv49yM1KRGPkKUhi36PZKxY+anjIJlORiGoP+bOv/Xhlh/18/7KuYvOH8Lfekb4ysEIKkZq/h/QL8dgqAvSt53XmEWU46nfHzYwpODPDkEaB8kzYGVpZAkZyZs25kMzzk/Y/teYwff5ikfAADWLEayH0Qy74Zw1VyMf63goy6m+Sc8RyOVv0/ebG4mhjC56HaSI2CelE9w7vPRI0snXhcCYXKASgEigjAZH/Uk3toAAOFKWLcKUpSMGD9pbhKmMk/72YF32L6/cs7PJkfhIUwBKctgVRmsLIOU5bCieLQqlnMcZzqeZ4cOjKdXcYi0S3rbcXadScwUCob0XK84fJnzt4BEXYIR425s0fOQ8OoUmOZJ+cTVgudAy4lg45FAepEwb6kkLU944035HEqs/Z2Bj7qZ5h8xXS8D/krMH5NjC76PFvwzgPEZSqz9A5Mxf6ccG2FtH8GyvCQMic8RMymfaBw62e+NlyZfln2rVjJi874AotvTFtRz9qPR45tmPmDM+MEpa+GUtbCybBbePR/qYnpfZfte44m+qT8GheUFkLKU9zdzvqYJr8jy0Lyvo9kPJuBD8ywf7BwhffmbONdZPuq8ctlqrOJZJPuBmV/n51tQPwswFF93yH/6DY/bMpa0l6rRvCWSvKWSvCUSifIGeWnDw16DYV5se+cLeJZzn2OHDrLdfxijC0Iwkv0gVvrz0eCb30+iKPKF23vNB3xeUy4aGfa6jpFEt0xeJlNWCUWfp1bZLEAQUYZhr3Hv9QUQ3Z4WnOsM3fQjQHt5hgAMAZhQnLQumAvjlwA8xzlPsZb3OF8D76uPRQ+SAkL0m5H8p5G0m2YYu+BpP1P/DNP9h1EHFNZvxqtfnlyc+0VHwMWcetV98ZA/SiQTxlSnY+ZqSW61pGC5BBdN/RtyNOdrgFXlceqR/8BVgw6wto/Yofc56wd81DX+FVi7HKv8Layu+rwu7R+YNRja53Wf8Do/8biOEcEJrhIuSJUrq2TKKrmySq6swgVXl1+cQ1CU02U74LS+53Udl8oXqnWb1LqNCtUyaFLm63PHvBDdTgyG4EeNIiKE5YVzntelo3xvHdl9kchfKs2tEvNEH+etH6nd8dZPcBZRGZp9P5r/1OzoVZzjOFXzKB/qvjKaFCv9OZr39eTWlKd8YXsdhjCIQA5gAYQpYkrE8yS+Pwq/nf70b97a93xUeMwESpRI9Q4l4WE7zhN+ewK9EoEENldLYp6iKm3sxuADrUzPn9m+1/mIHRKmIJl3Iab7YM2Sq72qQCAsl9+g0sB5CD7Uww4fZIfe55ynJlfRQeIMrOyXiOmeyXmEJKLb/0ByXO8px3ERn+czr/OYx3Us6LvIz6wKXiDKkCuqpIoyBBHxPMvQAQB4hvYBABjaxwOeZYI8z0AQJpYWSOUlUnmpRLYAQWbfwixMdDtt7zlt+/2eM5MvEkGlKs1atW6TWrdJIisCAFAUw3H85xv3mhc5whsMr5VuPxNqP0P0XCDoEdF5kF4kXP0lTfE62aiyKU/5eF8952sAEIpkfWm8RuJswJJ04w+Zjt+OZhlh7TJ88R/HR+35iJ3zXuK9dZz3Euet40M9U44GCyBUDDAFQMRowT+hOV+ZE8+J40DIzfhsdMDJ+B10yM0iOCSWIyIZLJIjsYdYDotkCIJBAAB7d/TUG57GjwPjtbnV6djKe9SLtisw4chPae+Jdp4jOs4RffUkQyWYb9pMPK8ay80+bxS9gAYTyK9DsjzUdB+Sdd/MFaQ+t4QNz7D9f+N8jWjek3NTbE4HOHKAJ/p5coAnBnhykI/Yx78OwWicVBjnb+En9XoFsXLAtK2IYRti2A7QxCvdP3KEs8Z1mnI8zzit7w71/9HnPsVxCfgHMCxQqJdL5QtDgeag/yJDXwWVLyEgCBaKc2TyUom8RCpbKJUvFEnM0HR+SNB3MWb/QoGm5O8chUCUodZuFErWiGXr9WmzbG0xJ7hBHqHfT36+XVJZhu9vDLefCbV/Rjh6p+yIq8nAV96rrtymwATXhd3BuWvomoc5f/PI/2EBWvgvAMJixi++xmPGgOQLsPJfIobtV3XWQFN4sCXsszEBJ+13MD4bHfKwk9snJQQugkUyOOBkxk8fQ4Fw9ZfUJRvkU8mk0xGup47sOEt0nidcAwnEPlCEMhrqckyf5po+S0ntn6DcCAAAANYsRbLuQzLvggTT7Kvc7mDyEt25Bxdlev/KXP7lyA4GQpHM3Wjht+Pq0liGP/O/3vylktTcBHk4nvKyg3t4Xz1PDPBkP08M8Ne8rsHKMtiwDTFsgzVLpg2rEEQUQeAvUFp65mCYAMeGccH12h7N+ZSjKfdQ/x+G+n4fCQ/GvQRBiExRqdZtUGnXK9Ur4bGCQp4MdQR8tQHfhYCvNui/xLGzagA5ETAsFAgNsefolUJ7GMKQK40myFBHJDww+SIV6hU6/W2alC0k0elxHvU4j5KhBAVvRRXvG4zbrv06Z415kSO8TmBo3tETHW6PdJwjumqISChB7kqdjqUXCtvPEOPDelIVsuxO9dI7lCL5NKuG38F4rXTGAiGKzby5C0W3/gfT+ovpZZ8gFFYsAIIUwEUAG+bpEOBpQHl5jomT248BTlmHlf8aVi9KPirPg46zoZOvevrqZ9mqdDLM1ZLVX1abK1ie9vGUH9A+nvKBcbtXCFRugWQAACAASURBVFOCGHMUFsaqgD1WvvNEZ+f5aE9vKUUn8D9kGrRibXBJ1Wsi71/jtaBgDNFvhhQlSS4JQkSQzAxJcyFp7rRWMw5n+j47a2nYlL9pYYo5YQ/ueLAk0/U/TNt/JdzKwKkb0cJvIWmbAYD66sn9v7Lbe6ISJfLQ74yG/Cv5AjbCDh9i+19nhz+cJCA5KyBiJHV9zP5B4hvEnuB5EPIwuBAWSOZFq6BoZDjkrw8G6oP+S0H/pTDRAwCP4VqpvFQqXyiVlUgVZdcYBrxOCAUaBnuetw29GWfGJLIilXaDWrdBpVmDYtOnSHieIYItAW9tMNDAcxSMiGFYgGJyCEJQTAVBKIrKYFgIIyKG9oWCTUSgORhojJA9fCKBoRkCRkRq3Sad/jat/hYcj7/1IuGBmEX0uo5RUQcAAIaFa7Z6YOTzTGTcGI+Q83qJG7A991ppe3fU1h21dUZt3VHXAJXQv0FQKKtcVLBcWrBCqjPhAADSz559x3tuj5fwjUW0cRFcfZtyxd0qpR4DAIQ8jGuQdg9S7kHKNUi5Bym3hY6Zz9Rcwe5/SzMUXEUSlPM10TUPc57aiVcmgpULYVUFpKqEVRWwYqE/xIlEeOKEDRvmmRDb/Uf68n+O03CCRsTdEwXlOJZvOho8+Zrb1pV4qYVgIFWjihRUrkUVqZhUg3IMHw6y4SAXDrDhABsOcuEgGw6wsQgnDHELimuWL31Tr77A0/6E6lzTgmWxweHKnv6V3ZaNdntW3HzEBFDVLbLlG+tl5Kvs0AEwq+0thClGLKLMDMeeSM0A8Dw5yIeH+fAQT1r4sJUnBweC9n/qBx+GRuaqFIGX6AzbCzbdVrIjW2mYPDJP+9nO/2banxvlBgMAACqDZXmct278O6P4iqO1v7h0Qjf6BUUy5KHn0g26Gqbvdc6yd0quFiqFxJmw5IoQl9gEhHoIHrdF47k4rxHCFLBuFZjVyhIKRRAEFommFDMi/WzQxQScTNDN+B1MyMP4HUzQzQQcdMjDsgwvVSG3fz+tcOVMW3bMIUiiM+i/FPJfCvovBf31VNQ+7SlXwoBlEnmJVL5QrV0/EwOTEE5nQKdLrB7F84zPfZplCYHQgAvScEFKwkgjz7NO235L7/Ne14nxx3FBSrrpMYPpsRvDCGVZggi2hgKNoUAzEWgKBRopyjntWRiu0aZu0+pv06TchCAzCa3zQX+D13U0TDrTs38ilSZbP18813i0M97j/MmmZckb543vNdHS0vLoo486HA6pVPrSSy8tXTqhYG9e5Ag5lncNUKo0bDSrNC14HvjttGuAcg1Q9p5ozP4l9PlGIdOg+cslBculeYslCXesdISrPeD/9E2PzzZG7kBQSJeFe610cjIkgkJrH9SsfVCDoDN2DXmWaf8NO/wBrCobMX7ywrhU30zqCPmok2n5GdP10gRx97yn0AXfGxXGpaP8xYO+0296vMNjXw3FoNLN8rQ8gVyHyXWoIgWVadHk189HnWzf62zvX6LOzkhUgSC0WDSdbu90gDAFYrobyf4KrFkcdDGd54mOs0RXLUH6xzYlCAaV3yRfc49ABb/P9L3B2Y/NQi8/OVgA/dGv+4kn3cclDgMUS4WbjEWbim5Za94kxoR81MV0/JbtfGG8AYMEWjT/aSTv6xCu4lyfMW3/jx3az3N8Q+vOY59+iwzHr7ACAXn3bY9lGi6OPwhrlyHG3ZAsDxKbIHHGDeZGJcwR8hwYaA63ngpePhVKGNOejMU7lTc/nZKMGDx34DnaYd072PNbvzdRH/krgGAMQcTJU2gwIko13JWR9bhcddX8rMk5Qo6jvK5jjuE9Ttt+mhrTMYcgBBek4EKDQJAmEKbhQoNAoKdp31DfS5Fw//gRZIoKY87Tqel3w/DnqYtLRR0sO9KBhKEDsbuP5xnmSmgKQSVyZTU0K6bCTOoInz5w4vW6y3EH33vg1tXZI3WE03afWLJkyfe///1bb7317bff/uEPf9jePiFCe2OUZfholBZOLbTv6KOeu7sHACBRIko9Fnuo0jClHo09RzAoZvOcfZRrgHIOUK4Bio5M43/AMFBn4HqzwJAvzFsqMRTMqKybZfjGI4HTr3ts3dNHqIRSmI7yLD3yGxoKhLv/LS1h7md2iEYZFIWTay7EwAc76cbvsYN7R+s0IIEGXfADSnHLuQPcuX1MyDf25QUirnqTe/l2l0wNIEk2LM8HyXdwPMNaD7M9f2aHDyWL6CIiCFcBTAnhSghXgnERpzF/kacBc6WnD65Bs+5DjLsmfzrHgeZjgZOvuq2dY38FGAYl6+VrH9SkZnhZy3sg0YrGcZDPJXbbpT47laFv0EnP8ERnYiGrcTgXkX7DldkQHbuMFSKyg8KdbIIbWwCBpQpRERjWQuEUlE5FaC3C6KTajKInVQVPxJFQbE0d+39p6e8a8ybzck5UlLx38OMfhyNKAACOhe+69Yks43lImotkfQk13QfJ8pJf7bWAitpJolOurJpqYaVpBoKgmA4UHeW7aojLp0Ntp4Mh7zQ7DwjipSl9SmMD4dF6elYCALSZ+J0/NmQsuI4rOE25hvr/x9L7+2gkQVAaQSRSRZlMXi5TVMgUFRJ5CQwLIuFBItgSCjQRwZZQsJkItibMoskUFelZj+vT7x1Ng00LkqRissAcF/U4PnZY9zhtBxk6vhJsJoAgVJe2w5j9lFKzehanf7HAMLGmEMmM6LSGcNruEy+88MJXv/pVDMM6Ojq2bdvW2TlBnmxe5Ag7zhKvfCM+GzwLSFWI3ixMNQv0uQJ9riAlRzBrzgvPg44zoZOvjSXSMAGkMeJaI64x4hojrs3EtZm4VIXYuqN7fmId7hjJh6EYtOEx7ar7NFMRRq4rONdZuv7bnOsznodtzqLmtm2Xmu+MUmNLs1jkrS5/bXH5G0LBeEV8CBIbIVk+LM+HZAWQrACW58e6qvKBNqb3L2zfa/Fq5pgczbwTTt8BCbQQrowZv+SqrbPASDrzr+6+hrGlCoJAwQrpugc1xhJR0MU4Byj3IOUaoNyDlKOf8g7To/sSAIBIhpjKRFkLWZPZZtC3AbKbD3XzoW6e6AMQAonSXEjq9wfZV4fco+cUaYwvbPnO+qxK1l3T0HXwaM/ZYw77Z6SY4Kf/iwpRXCdWpUm1GfKUHbnrlGdKa94MjVJq5XLHTWt+WpB7DADgcBW8vvdPRFgDAMAw5r4fkvmbq+e8fSvPM0SoLeRvCAUag/76UKCRitoAACimSjN+2ZD5iFSeoMcC4WNjxq+zhpy83RTKELUBk+tQuRaV6aISXSMqusAhteFoDUOPOD1Be1H/mUcdbZthBF3/sHbNA3N/O4QCjYM9v7NZ3hhPpIQgVKVZI1MukikqpIpysSQfmq7el+fZCNkbDDQSwRa34yO/57Pxr6KoXG/8cnrW41JZsoR0DBwbdjs/cgzvcdkOMkx8xwmROFsiWxCNDEUj1iQxWwxXGzIfych+Uij6PFmU8w3TGsKZdJ/gef7IkSPf/e53f/azn918883jh7pByjIOhz8tbcoIT/uZ0Ee/d/psdPLYZhzkOlSXJdBl4rosXJeF681CqWruVUssrZEowWqMuCIVm8qhZBn+xCvuE6+4R5c8Y4lo9w/TtKZr7RrhcgWlUuHMKXwBF9N1nug43t5Vx5PkhHoPucy2rPIv5SXv4NjM0mywABJnjNU+jgCCU1ajOV9J6MZdP/Q1hE++6u44Exo/WzEhPG1UYDxwEZy5UJRVLsquEBuLRRDGv3hxzw9PvuSLjIR3xKjon4se+IrpTp6CowTHsQAAwLF8lGAooqvJe+qcv+kCO9COEuzMuuQIaHGhtXqhZVVWoGD5neoND0lg26tM+2/4YCeABV70wVf/8PWAFwUAoBh0z3+kF6261rwayxIB34WQ/1Iw0BjyNxDBFi4p9UauWpJuelQh3+XoxaydUWtnZKgt7OimuEm/qzodK1otK1olTc23B31n/N6zfs+ZUKCJ56fsgkt6MwfOPWxt3JGxQHHnjw3q9DlgovI857IfHOz5rdd1fPxxHNcZTI9kZH1NIMq4lvFDgUZL34s2y+ssM6EXsVK9Mj3rcbVuA015aMpFRR0U5aCjTopy0ZSTitrpqIskejgunoAmEmenGHanGHbLlWPCBRxHUVFrJGyhIsPRyHAkbKGiVppy69J26jO+NLME298PQqEIw7BKZTLK0rSGEEzXfcLpdH7lK18xGo3f+973MjLiJ8m8yBGOIhxkvVbaO0z7rLR33IOheK0R15lwrQnXmXCdSaAz4fOEmTaK4fbIOz+12q8EVDEBtPkJ3fI71dcinzuTHCEd5fsukZ3nic4awp4onKvRWFas/KC0/AyC8gCVAwAgZIS6CZgQF2znif5pU26Q2IhkP4BmPwhJc2f/fa4N1s7oqdfcTUcDk5fpUUAwUKZiGiNOs5S7lw95Ei/TVl3X4ZJXbNKxfEyBtXpjy5fk4en6egMQRcMWdUdI6CMEPlIQJLFgSOgjBH5SECKxAIAS3FAmieHBym33l27LUaYDnuOcJyFlOYSr3BbqT18fjOWkERS666eGkvVXxynjeY4MtQW85/2+837POSLYnLzOGsUUKKqMS0QxlMTRevPQpV0Ba+n44xAE0gvRwnXW9OJuWNgSCtSH/A1JeBMCUYZcWe1zn6THsXypkK6/5gFX271bv56zaPssi3HDRFfAdyHgu+i07guTE+prZYoKY/ZTqRn3zDqLRkf5tk9DDR8HOs8TmgwsY4EovYiWGvYGyT/EibbMHCJxTophd4ph13j79w8kxJzkCMF03Sc2bNjwzDPPbNmyJeH4Nyg0ynH8/wU9e4bmj/2P6/Qb7tGVOrtCfMcP0ma9F+Y4HkrUfILngLUz0l1LdtZMWaUuVaO51eLitbLiNbJpjTEfHuYDrVyoh/e3cP5WnugZ6Q6KSlHTvUjuY9NWZdwweIboU6+76973MzQv06DazFi8GhsJXGfisVIWjuNgGHb1U30NZF9DuK+e9AzRPrGzzXD+suG8TdE3OqCaSN3UfH+Oo3TKj5wxeIgj8SAh8PekNDWnf+qUW8a/CgFopbH8/tKbdxdtVAhGnD+fjf7jkwOeIRoAACPQrn9LK98ipznGQXhtIZeNcDsI73DI6SC8dsJtDbkchNdJuKtS0nakSysF3eHAheTsD45OZYiSsHcB6V5AuBYE7emEnxGraw3l7+gKP0bQCQXaIUfBcP1u0ptnqujRmTtx6eVIpIWbOisMQYhUXqpQr1CqlyvUK2OcRpYJDvW/PND9bDQyFk5nIrLBuvuk+OO3frNErJg+chMJDwR8F4K+CwHfhYDvwuRMGwRjKfqdGTlPKdUrpx0tITgOdNcSDR8HWk4EE1LhMAGUs6w+rfRNRPYh4BOoI02GSJKbkrYr1bBbppwv98v8R8wGJe+xMxNDmKT7hN/vVyqVGs0YxdTlmiA3+A9DOEtEwxaS6CBDndHIkFKzSqVdN8qYGmgK7/mZdTy5TqZFtcZx63UmrjHiMyk9jDOErgGq+wLZXUv01JHjSZWjwASQqUyct1hiXizWX1vPBz5i44OdkKIYwqd3km48wkEWRiCBeEoLHzOEsecDAds7l4++2fhxnWPCvYSy+PLOW1Zbb8EhXCiDYQQSSmAEg3AhjIugmHoOBEPCK7EHXASPsmpZlo+GuHCIjQRH/o2E2AjBxTKUEAQqtyv0d3rf6fvwrZaPHcQEbi2OYBJsrLaB50GU5Hhu5E7EhXCATVAnOhkKlNmgdG9RuXOF5JWhEMJpJpx5QUd+yF4YtC+giAn88oDI45HaAM8DAFCcTDfV6vKPitT9OMQL4BFjoEbp0eeTgWIqhWqxQrVcoVmhUC6ZikvCcZHhgb8MdP06TI71jWEZobd7u2mhUZuZOGvA8wwRuhz0XYhVmCUEjusMWY9lZD0hEKZP9Z7kGGwJN3wUaDoWDLqnjOtO+ESpM718T3rl27jYgwu0QnEqLtBjuBYX6HBBKi5IwXAdjmtRPFX8d6chfAMwE0PoJMKBSPyGLF0uEV6h2HwBuk/MN4m1qwVNuchQR8zsxf4NE50sOyEZgOHalLSdKYbdMYtIR/mPfu84+453qsq60Qie1ohLVIhQCotkiFCGiGSwUIqIZLBIhggksNXqhWiBtYWO2T+/I8F9C0FAnyc0LxbnLZaYysTXSRPnC4euLrsoFX7n8tG3W4+cG2rmJ2b1BAi+PWfVf657yqyb5WI6FegIFwlxPABy7ZVblGMPd595remDA52nIsyMag+uFiYIWRLMLupby1qq2YnqBAxC2RS9Q6ruIXXnsLI7KJyexCiEueVy3zqlp1rqx2BIJM6VKspl8jKpvFSqKLsqEgfPM/aht3o7/pMMzTLGGAOKymXKRXJllVy1RJu6HZ4VLcs9SF06HGj4KDC+NUoMKgNWtlm+cIOcjnCW1oilNWy5HHEPUpNXRxSD1j6oWXO/Bpm0kZ2/bZjmN2YSGp0WX4DuEwzD2e2+9PTr5VgwTABFZXPKuOOJYKvXdcLrPulzn5pJWe4oxlvEvnrq/Wftjl5qvBTnzAHBQCCGpyIQqQyYuUqSUyXOrZZcD5bQNaLPb32v/YRBpjOrMswqo1xwg8Q7aI45P9R8rK/2UNtnF52XuYk7ERzBNmYvvrNo4235a5TCGyrAxvPMsLvub4373uqorXMHkk8IiAdyGFLhERVGqRBaidFKhFFjtBKhlRiD8vDRofxPwrgHmhCvQ3m0nKnaiG4yyzK70Y4Orr2VbuuM9DBT81mSQyUU7yrccG/JttWZFfA15Lp5nnPZ9rdd+neKqUv4Bg+NdYTFHWFJV0SsRumFklC5nM3RFsuV1bEWCiJJ3rT8zyRwW6hP/uRu+Mgfl12WqtGFG2Rlm+XGEtFkhyQcZC2tkRG72BoZ7z6m5gpu/67eWDJBsqC/32UyaWd9kf9nEQyGaZpVqz8HBYZRzIvyCZYJ+r3nEVQKw0IUkyOIFEFEyEQdYZ6jo5GhSHggEu6PkAOR8JUH2ceyJIop5coqubJapqySK6tnob/A8xwRbPa6TvjcJ33u09MqKQiEaWJJvkiahyASl+3A+PhPDKMWUSpb5HcwnmHaMxzy2gIxHlDI4+ev1L+HnHkcOyN+qVSF5FRJcqvEuVWSOeHgJUGrq/f1pg+WpJfcbF6BwVdRJ3vJ1v7rc6+9c/kow40Fb3VilVmVYVYb89TGXFWGWWU0q4xqUWIZjqsFx3ONjq5jfTXHemtPD9aHqHjmHgajG7Kr7yzatKNgjUp4rR8aa//G8zyGqVBchWFqFFNhuDrOTeE4igg0Bfx1If+lgL8uFGgcrVcjOSS5pKsE4eA4YioPR/xFLLlSgK1RqtfItXKRAqol697u//D9vpMzdzSFKF6eWiDFRQAAnud90RFuJElHogwFAAgzUWvIFXdWukx314LN9xRvqUorinuJ4zkH4XWS3qGg00F6HIQXhRGdWJUqUadK1DqxSidRIVdsmLXvo7qPTw+1RQiI7kOD/WhoSBwaFATt0QRa0lmKtNWZlaszK1Yayws0ieXLfZFgm7uvxdkT+7fba1GLFPnqzHxNZp46M1+dqaP0514lLn0QGC8yJZDAxWtlZZvkuYslM6/rsHVF3/ulbaBp5I8IwWDZLtXmJ3Q3RjTguiIQJYaCDrPaeFV3+t8T5kVBvd979sLp5ZOPI6gUgUUIKuO4KBW1zbDtCBjpyFV9pSlXNS5I4bgIx4Zp2sexYY4N07T3yhEvywR97k99ntPjpR/GA8WUYmmBWJIvluaLJXliaZ5YkhdnpwO+WvvQ247hd+L4eDMBzGymnX8O+5FwgAsH2XCQJf1sOMhFgizPA4EYzqoQm6vEudWS1FzB9W71TrH0u+0nXry45+TAyOY9RaK+t3jLQ2W3lKZMU+h9pPf8r8++dqT3/Aw/Sy6QGKQ6nViVKlXrJRqdWKWXalIl6hSJOlWiVk302DAYleITgn6dnsFjfTWf9F043n/BRSbQJ0NhZJ2p6s4FG3cWrNOIrq15CABEsNVp2++0vRfw1oJE5RMIIo5ZRBRTsUwgFGwZ3evMGjCUI5OtSzFsTMvaiOGJvQ1vJPBm80evNB68YI1nE8SQrTQsSy9dkl68NH1hhb4g+WJH00y9o+PttiP/23pkMBAfC8lXZ241L/dHQg7Saw25bCG3g/CwSaX1YAjWiZU6sSpFotZLNDTHnOtvGSStk9+5wen7QYelVyw4p5KdVctbZSL2ynTXSzWrjBWrjOUFGlO319Lq6r3s6r3s7hsOTi/9JYuo1KE0FZGqJvVVpvx7N6wsXqlA8dncSDwHzu31fvyiM0qOfGWlHtvxHX3+UgkYV1D/RQHF0oe7z77R/OHBztNhJorBaJ7aWKzLXaDNLtblLNDm5Gsyk8wWB+EZnQYIDK82VmbIU2ZxGTMpqL/emBc5Qo/r2KUzG2c9PgwLkhdLzQI4rlNqVis1q1XatRJZyYzDMnzAW2MfjlnEq5AI0KTeXFq9b3Lmo6/LrUmRyOQ3Ql1pMGB/uW7fnxr220KJNwQV+oIHS7ffW3yTVqwcf5zh2HcuH/31udcu2cZUiyAA3ZS7TIqLOz0DnZ5Bgp4DCfwZIkOesjazogiTPLLm0RTJNYWqeJ7ze8+6bPud1vdIonP6E5ICF+hlysqYygmKKhjGz7ERliVYJsCyEZYJsUyQ4yIME0QQiUqzWqXbcFUJuSZH158bDrzRfJikI1VpRUvTFy7LWLjEUKKXJtNjjMOoxBoP+M8GG95q+WhP2ydxZJ85hzqC/vyyc6tzQtGqH0NqVLKzatkZlbxdKuLnaAuYIU95pHzHI+U70mWzZC34bPT+X9nbz4wVGpbdJBXc3v9268dfWbJtQ3b1jITaPz/E/rJvNB9++/IRTzi+8H88MBg1q43FupwiTTbHczH2sjXkshFuJ+GlufiQe4HGtD6rekNW9VrToplvPeckR3iNmBei237vuZ62HzJMgLuyHLBcOK6gFQBIIEwTirOEosyRh9gkFJmEokwUU4TJ3qDvYtB/MeC7GPRfpKnZ3LcCYZpSs0apWa3SrJHIiq4t6cj7PWftw++4bPtpesRZQVEpBGEAAAhCEEwOAOA5JhRoiL2qSdlauvjdOFvo95NTim7PETieO9J7/sWLe9/vPD1+a4/B6E25y5qd3b2+4fHvxxFsm3nFg6W3bDUvp1j6z/UHflPz5vj3YDB6b8lNzyy7f4E2e/TgUNAZs4idnoEu72CHZ6DLY4myc8YcSZWo15oWrc+qWqSAxIFDjuF3GCaA4Rqt/tYU/Q61btNVadtzXMTjPOq07XfZDkymL8IwrtKuwwVpNO1haC9Njfw7uVecUJwlU1TIFDHjVykQpgEAeJpirD18eILqGxeawGGBRDJBYTWYlRxLLCKNwrNMG08W3WY49lhfzd9aPn63/YQ/Gpp8igwXp8tSUiXqDHlKikTNcpyT9FpDLifpdZI+J+HlJznQOIKVpeYtlBeCWoP5gu026jkJZEtyVR4MPaeWnVXLzqjl3ZKxfaEAwrNFmXmKrJKU7LLMnGxJ5vH3Bz6t7XLiVo/E7pHafGI7CydIkaIwckveqscr79iYvXh26c+GjwLv/8buIn0NmafqTce94hHveWGK+Z+q776vZKsQnQPvkAd8i7Pn9MCl88MtJB2BIShWeBOL8CuEUhiCpJgYQ1AxJkwRq9Kk2rhw9Hi0unrfbD78RvOHff54jzxdprOF3Mmd+5kDhuDy1PwNWdUbsqtXGsvHc6QnIxymWJZLLrp9vTEvcoRTgWWCLBtm2RAEIbggDYZnOrHG28VYEVKs1QiGKWFYAKMSFJXDsBBBpbEuJDJlpVKzWiy5jhqPU6Gv8z+6L38/9lyTsrV08b4bpq5rC7lfb/7w5bp9Xd4JzmumXP9oxY6Hy29Lk2p5wJ/sr3ul8f29bZ/E5d5SJWqGY93hsSI2KS5+tGLHNxbfa5RPz53jeM5F+lxhv5P0OgmvnfC4wj4X6XOSXjvhcZE+V9gXZcZCiwzHBCdegFokX5NZuc5UtT6rOlvC2wdftw6+GldtHQOCSDSpW3X6ndrUbWjiBss8EWoP+mr93pqArzbkr58cY0AxhSZlq06/Q8kVkfv/AhAUUesRpQ5WaBFVKqJOBVIJA5ExuwgAkMhKMETO2PpoSydj6aQHO5ihLtrSydj6ATd9kB/RZUg23ivd8mUse3pxrxuDCEN92H2mdrglRaLWSzXpMp1eok2X6cRYshnL8pyT8Mb+rHbCQ7F0iS63LDUPRzA+HPK++EzwwEvgyirUzd08yK0wQOfT4fMSKDFJrVGc+bHkJju9ThsyKEgtNE76DobBeDpMVrl4/VfVcLY/tglrcfbsbfvESU7Yc5hVxscqdz5UektcnGNanLE0Pn/2nb3tx2goQQBcg6seK7/9n5bfmSq5apIgzTEXrJc/Haw/PXDpM0tDcqctISAApUhUsUytXqrRiVVSXHyo69PxMZsYzCrjfSU33VeyNU9tjDDUZVdvi6un2dHd4upudfb2+oYnb2JGMTq+XqIZCNjODTVTbIKfAkewWFhCjAkFCKYQSFEYUQilOIxJcJEEE+EIuj1vlQhNKhtS+xjT/ce4g4L1x+CUdUnOGt99Ymho6Mtf/rLFYuF5/te//vWOHTsm/GI3pjFvMBj+R8/rqdDX8fPuth/EnmtSbipd/O6oLQyFIgIBhmFzQwr1RgIXrW211tYL1tYLw5cHAhP24DAEb8lZ+njlHdvyVk7eToYocm/bJ680vn+yv27yvaETq56qvvPJRXfOFf9lhmCYgGN4j3XwFZ/707i8HYxIOTbefYk5czr9Tl3abTzPBXw1AW9twFcT8NVOVZYuEKbr9Lfq0nYoNWtBOOx/7efBPb/j6cSheFgsQzRpsEILCSWsvZ+x9vLMtaYJcXOZZPOXJRvuEiNQVgAAIABJREFUQbQJ+kDNOcJhCoYhgeC6N+aNNp52/eJBZnhk48Lg6pPhH3QxW0ffoID60uEaA3zeAJ0XQfHheidXcol9rI/bwIMErk/GAuGmr+rylsRzlaMstbftk5fr9p0auDT+uADBdxWtf7zyjkp9YXK7HqTIN5o/fPHi3kbHhFA5zgpNzuJ+bQs1TqMA5bDl3KoHMnatKStOLxQKpYldT4qlBwK2Hu/QZ5aG0wP154ebSToBe2gOoRUr71qw6b6SrcvSE4jNjoKgw63O3hZXT5dnUIBiBqkuVaLWS7VpUm2KRBWXPiTpyGeWhljO/sJw61U5l4NPHMpQJ8svUjWPsD1/ijsoWHcMTl0fez5t94mnnnoqMzPz29/+9pkzZ3bu3Gm3T9hmzYsc4T/Q2/HvPW0/jD3XpGwpXfxezBYml1irs7VdsF7GEUyCCUWoQIgKpLgIg1GFUApDsEooYzi21dUbM3sXrJfjPL9RpEjUD5Xe8tXK2xO23ItDn9/618b3X2081OMbAgBkKw3fXPKlh8puSb58zDk8zqPWwVec1nfjCjpRTKXX3aH4NBw9e064ZBmRDzvEF4irLGKDIEQqX6hJ2apL2ylXVgEAAZYJvv8H/59/xPqmZ2dMOzqqy4BV4297CJZOcEeozktcYOLSDyPCyvXSzV8Sr74dEl1HonnCNkxzCz4a9v3xB4E9z426b6IVt2q+9fLwsOL4K24YgURyWKxARh5yRKxARMF2pO80334ycv7Q+F0IJcuzZHytF7k14AY+O0OFOb1ZsOmrusKV0uS0slZX70t1e19r+mBUaXYUIlSgFSs1IoVWrNSKlLHnGpFCI1Z8OtjwetMHcZGJ0pS8RxbuTD1T1XKQCjFEfeaJC1kfB8QT/nwmV/Hi3i2lXKUgh+AyvVGdxy91OiFHX2C4zz88FHRyU5sNtUi+IqNshbEsR5nOAxC7YG8kAADwR0IczwcoguXYQJSIhaNdYX/CcHTsq92av/pLJVu35C67rgTRQJQ4OVD3SV/t8f4LjfauJG5lDAMPf2jUJ0vnT2sIp+0+0dTUZDQacRw/ceLEM88809zcPH6oG+QREkRUJvs8Q8DzH70dP+tp+7fY81FbSJJRHEdjPXHi8PuLe75x5NmEsYgZQimULU0vuX/httsL1wmQq8tn8IA/PVBvI9y3F6ybRToqUn/S/9rP+SiJ51Xg+ZV4XgWWVQyhM/JCWJZoa3jCZnlt/EEIQjUpN6UZ75d0cr4Xvs04xkw+otZji1eHCyVORWMgVJeQ8AliTGPVEoVqqUK1TK6sGi+YEq457P3vb9J9Y9YUL6wWLbmJ8zpYj431OVmvg/XY+HCC/BmiNWAZeWhGHpZuRjPysIw8NN0MCaZJWPI0Fak5HPr49fCZgzw1wTmAhBLxqh3CyvV4bimWVTztUKMDUl311OWaaFstM9iBpGZipiLMVIRlFmKmQggb22lFIjQMQ9cvLR1tPe/+xYP0QFvsv7BEoXrqOenWB2d4OusaDrz9bPDAy+N/bTTFKL/rm9Ltj9C8CBNcRcqPpCN/a/345bp9NcMtV/EdAAAACFF8V+GGxxfdsSJjpILb7wtTfmTocqS/NXRw4ORhwYEhedeEc3gooRTtZGQrDSuN5SsyylYayxfosq+WfRMXjnaSXifpzVNn3l6w7oZV9I7CRfrODjVFmKg/GmI5zhcN0iwTosJhJhphokGKpBjmte0/FU1dVgBmYAhn0n0CAGA2m7u7uw8fPhwnOjqvc4T/19Db/tOe9h/Fnqt1m8sWv5eQ4kHSkcc//MVrTR9c7fgCBK/QF1QbFlSnLVhsKM7XZN54eluk7hP/X38aqT8ZdxzCcCxnIZ5XMfLILYOECZwSItjSdOHO8VLIMkV5mvGB1PR7YHfI89unw+em/FlgqRJfvDZapHKldPiC5wAEyxQVCtVSuXKJQr1MJM6efArd2+L9/TfDNR+NHkF0GarHfiHZdB+Y5HHw0TDrc7BuK+dz8iyLpmVhGXmQ8JrWHY7wkyf3Eh+9Fmk8BSZrjcMIlp6L5ZbiOaVYzkI8txRNyx65MJ6nBzuotpro5RqqrZbqrJ8qnAtgBE3LxrIWxEwjnrUANRbAkrkPcTP2/uA7zwX2vQDYEfaKsGqT5l//hKZcddUvF3AH9j4f3Pc8FxijxcEKrfyOpwUlyya8MxjHQpIKy9ZMnlp1traX6/a913FyKl9qPMwq41crb3+wdHvytCLH8odq63534a1P/Kc5ME2cUBJVKMLaQqxge1XVnRuWpituaPyMJBi3K2w0TeAzsjRv74kOtUWG2yPWzqjKgJlKRVnl4tRswbU0EpgdpjWEYLruEwRBiMVihmH27dv33e9+t6dnApngBrVhcrmCqalTsmljuaskIyiFsjy1cVSn+O8Yve0/6Wn/cey5WrcpM+8NiVQ5vg1Tl3fwjj3/OpqfWJRWtEhf6I0EY1ySKEOTTISgwhRL+6MhjufTpJpqQ/FiQ/FiQ3FZal4sHsLzXMB7zmF9N67qEUHE42mrEISIpQVSRblMXj4FxyQxwiTz6fHh40cs22/PXr46LXYwcuGI75WfRps+ndEQMIJlFoiqN4vX3CEoXh7jT1oHX2lvfHI0FqrPuM9kfkYqL+XpaODNX/nf+AUfHSnSQJQ6sP1pkX8w/Ol+1hvPuYAEIsGitcKFKxFVGiLXwHINrNAgCi0s14yaN9bn9P/534Lv/3F01YaEEsW9/yq/65sJLfT1BuMYJI++Gfr4dbq3OcnbYLEMyyqGRFKq/QIXSlBbOSNAEJqWg5vLcHMZlluGm8tQfdYshwIAABBtPB3Y+zvy9Hvjf0zVE7+S3fbE5P3EzMGRwdCBlwNvP8u6E1QlTgVIKBZVbxGv3ilath2WxfeG4wHvIn3usH/0XyfpdZH+GJNLLpA8VHbLxuzFCXeQw8NegyFBs7k+v/X52v/9Y/17BBXWYRoNlyIPaUVutcClVoQ18rBGQepQbuwe12biK+5WV94sx4TX3eA47OG/vNjy6h8uez3R9AxpWZkuN12jEchoB2Lrjo5v7TkKoQwxlYpiRjGjSDi7ikwAQNDN+Gy0z8b43dGFW8TJo/EzMYTJu0/cdNNNDzzwwD333HPmzJndu3cPDU3o5DwvcoQn+i+ue/3xacdJlagLNKaYYESeOrNAY8pVpV9tTG/+o6f9x73tP4k9l8jXFle+K5OPbDz3d5x84MCPRynsT1btfnbjN3BkprwGnqO97uMO67su2/7xnQFmApE4R6YojxlFqaI8TruH5+hIxNLf3XX0sOXE0dDF84JoFAYAQBC/+0vw9+6ScPuejzafGX0/JBBJb3lMvGwb1dNEtV+kOupoS0cCjwcAAACi1otWbndlDAwJPo4xBBFEUlD632nGBwAAkQtH3L95krFcYS7AsHTbI6rHftHjoM3mVMBx0ebPyNPvkif3MfbptA4gCJZrEIUGVmjpnmaOuEKfgWHplvuVj/z8xtBVkoPqagifOUh1N9I9jbSlayYEVAAAgGEsIx8vrBIUVmNZxax7mO6/TPe30f2tzHDPtIweWKocNYp4bhmWUzI+mjoVeDpKHPtbcO/vqI4JymqChSu133sFNcxNPy+eioQ+/EvgrV8z1nh1p+SAUExQvla8eqd45Q5Ek3atlxEhe459lCYHXMDDBb0jj9DIEzbgYYNeRKkRL7tFtOJW4cIVAEbCAdbaFbV3R21dUWtnxNo5wfCIFcjincplu1Qy7XUJUzfWun//bNOHh3ppOsEUEmOCNKlCL1GkSuXyqcPvKAalFwmzysTGEiE+hQK+zxetOW9VSoUqgTTi5b022menfVZ6tGcOgkFP7TWkpCSrI6QbvsMO/C3uIL7sLVg7FgBI0n0CANDS0vLwww+7XC4Mw5577rnPITTK84CmmSRZh+P9F9a//sQsRkYg2KRIy1Nnbs5Z8kj5jhsf/r5OGG8L5cqqFMNuqWrZfzXU/fLsG7G4jRgTvrT1u19eeHPSYUbAsqTbcdhpfddlPxRj9nMcPDyk7+s1hUJSjcadkurS6VxiSbwyWRJguEamqMAF+jA50NIYrTmrv3SxtL/PyCcqe84QOr+f/Uq5rANcMYGKe/81bunhyCDdVU911EXbL1KddXR/2+QlnhUC0gyY0kzzrvekmgrWNeR54V/I42+PvgHPq1D/y4uCBUsAANEoHUd9pNovkqf2kaffpfsTK7AkhLB8jerJZ/H8ypmfcsPAR8N0XyvV00j3NFHdTXRPI+sdq3pEDTl4QZWgsBovrMLzKqeKdvIMzQx10X2t9GA73ddK9bUyfa1TxlFjQFAsswDPLcPNZZi5HDeXIaoJBTOsxxbc/1Jo/0tx7riwfI3s9qfEq3bOrkQyGViGOPYWcfSt8UYdQlBIPGF5pfsvJ3CpYVhQtES8aqd4ze1Xa575CBk+d4g4sSd89hAfIaY/IfaBco1o6c3iFbcKF2+Br1xhwMWcfdtb864vHByb+QgGlW2Wr7hbrc+g4/YrsEQOZpCepyNcyMMG3YzbQrkttNtCXbhg+7S+r98z02JrlVJYWZlalKPTIUpHG034ZqrwZQ35Otz2/oCb4zgAAARBCoFQI5KpxVKNUKIWSXFk5Pr/ZU+WNuOaSCRfgO4T06LB3vmtY88leYMl4OjxDSUnhsgFkofLb3u6+u4sxbVu7uYDetp/1Nv+09hzP4P++2DOpdDIQpYlV72z42dVxiVTnUtTHipqo6K2MNHjcnzgcXzEMOHhobTeHlNfr6m3x9TfZ4xG4nf0cgWUngEMGVy6ERgyQHoGr1KGAoFOMtThddtYluc4mAyLAAA0hdEUxgOot9tUX1fq8yWImmbrBsUM1eIdWVZgwO8yfHLftn30GrkyZ5sm9WaNbjOKTZli4SNE9HINeWpf8PgbwBvfMAEWy4SV6yN1n3DkCOUPliiUD/9MtvNrM1oa+i+HzxxkHBYu4Ob8LtbrYP0uLuAejazGgKabVU/8Srxq57QDzh+wXjvd08RznKCgCpbPVuaeZeiBNqqrgepupDov0d2Nk8PLcUDU+phRxExFkYvHyOP/y9NjagkQLpRsvFd2x1O4uXyWlzR3YIa6yFP7yNPvRS+fnxyEQNR6wYIleNESQfFSvKAKFid2U/gIET57iDixJ3zuEB+5ih1kHCBMIKxYK1pxq2j5LbFcaTQYbfzf1vaDzcDVK4UG5cAihwflkEUAknWdBADwuCRi2uTXb3dK1vq8gpCXDXmYkIelwiPfkeP5Pp+z2TnkmSjmoBJJinXpJrnGGyUCSMge9g/YfNFooi5vGLxirWHVygyzXuvt4frqw7Ge0nGIMFSn19HptgeiyfSkIABUcnGmQZGfp37qR8W5xdeUlv5idJ+wWr1G41XoPCWENxLo8Q61uHpanb09vqEe31Cbqy9OuwsC0Ibs6qer796et3KeCx3RNNdx2Ts0ECqr0qXqJ8THeYZmHYODNT9yXn59MCJ6I6gfhnA/hvoxZKE2+JSpXwRzYkmeQr1cpqhgaB8VtUcjw1TUEY0MUVF7rBicodHamkU9XVm9Pab+vszIJMs358BgplLWvlLZsFLZqBe4eQDtd6x+fnAXyY7s9VLTHI89/pf8wi4AAAShCtVSsbRAKMoUirOEYpNIZBII0yF4xI3j2HB701PW/j8JrEDaCaSdEOpPPFclG+9Vfe2/4lzM3l5HdvbVKR/yEZL1uzifk/U7eSoqWrIVwv7eAu/Twu0OYRgil0+IhrEeG9XVQHfVU10NVFc9Pdgxw5Asok2X7fyadPujiHLeVU+xrmHys/3kqXej9ScSB4dhBMtaIFiwVFC8VFC0BDMV8VSYPPM+eXJP+NwHk+0fn5ItzimCpUpYpoKlypGHTAVLlR3Dgp//zuG1+bmQnyP8sVypFA1D40ikQolwqaZzNX5ci8SLnl8VGCC0cCt62M293NoALSBoKszQ3nCow20j6AlaTjl6zcblOctXGjRGXGfC9WZBTECcprhLFxxnT9vOnrZeOGcniXhpHgSBlqzQ33xb1soVGaQN6m8g3YM0D0DvsKf28mDrgJ2dKCqvU0p4wLv95FTWZu+Rm5atzLiWb32NmBc5wlmDYulur+XsUNPvav/WYJ9Q37osfeE3ltx7e+H6hFJDNwAUSztJX0zGIlaHxJBwa5OnpcHd3OhuaXC3X/bS1MhmLScDXpxLLEqxVIibFd5WxmkZpRVMBo8ATghYAeCEgBWDcAYgjYDSTZCEa2oofvUv99isUyq86A2ShRUao0k2NBga7A9a+kMB/ywFz1RocLmqcaWycbG8RYxMCKlBAlFw1dd/fGrxZ5+OEDcgiN+y9ejue97F8QRLDwQhAqFBKDIJxVlB/yUiOEJql8iKF1a9gw2T5Kl95Km99MCIQAaWWaj+xn8LK9dPHuofzeEmw+UMH3q3r/as3ZAhyTErss3ynDyFLmWCzZtJHSEfIameJqqrnu68RHXVUz1Nk62CoGS57I6nxatvn2FVzOcILugNnz1Enn43XPtxwhqYGGCJnGdofpKXgxnzxWt2idftHgBpk6ccTXO/+1X9735VP3qzJwcM+FJZ1zrVxXXqizp8jO7EAgEDJuxlcRCEAA8AIFlhB5nZG05z0woHpfLQcjul8tAKD53Yx8Jw5JYd2V9/pqywOAG1Z/L1N1x0nv/Mdvhg/6VaJ8dNsBcQBCqrU27emc2x3Bt/ae/rniCCI5agt+7Kue8rhYsWpwAAggG6pdHdXO9qafQ0Nbg6L/tomgMACITI2cu36/XXKot/LZgXodE5wdHemmfPv3G4++x49nOWIu3p6rsfLr9tztOHLM/ZQ+7BgN1GuG0hd6xYx0547ITbSfrshNsTDgAOEvRlYMM6zKbF7BrEJwMzUA7OFg0vkrdXyNsrZR1KdEadygEArBiEMwGZCQZk6lf33Vt7Pj4+kG6ULizXLKzQlpZrioxRdbSftnTyxJWJi+IhTmJxQkMOfsgvGnLwg3bO6eK4aISnwkLGjzAEAECOEAAAFGJFSBQAoESDK5RNC6Q9oz2DEKUONeSghlw0PRc15IoWb0HUep4Hb/y57WffOx8MjBg/Q4bv0a++ZM7vBjNAWuZDBQtfQJCxpZnubSFP7YUwgWz3N/4POm1XC68n+uH+vv17es6cHGYn9X+SybHsXEW2WZGbJ8/JU2SbFXkFSqnsaqwXx9ID7VRXPdVVT3VcQrQG+R1P4QVVc/kdbgw4luppjracpVrPRVvP04PtYOrlEcssEK/ZJV67GzdPGYtraXT/86OnWhoTq9gnBwyB8hxq6zrx9h1Z8rScCyeFhH/ElEYpdsge6B/yDlj9/Va/3UXMcBlXyuEvP1zw8D9VpqRehfTuKGzDxIcH+j/c33f2tHXyRBqP0grtvQ8V7LzLLJNPOZGoKNvW6m2ud3s9kSe/OZt45hziBpFlWJZNWBU+52hx9vym5s3Xmz4cL+gswUSbcpbclLNsq3l5plw/89Ec9vCBDy7bCa+2LBLAPJaAYyjoGA46BwI2O+Fhpo4OoQ61uDFf1JQHE1PurCHApwudKjTYTmZSXILpAgFeo3Bk6dpXmTp2Z6OCSJgLermQL640ahQ0h75h2/LX4Zsj3Iht0GjwBx80LcwIFcqHZYFOxtJJWzoZS9c0VIiZATXkYBl5SEomlp47avmS1J8NDYa+9bXTJ4+OsJYRBLrldolCSTC0n2H8DO1HECcMeUcnJIqxuWbb1h3fMpnvn8Xl0TQ7V9J08wGxVaO10dPc6O7t8qemic35ytw8RV6h0pglw7AEYY+Ajzr8fv+BPT2nPxmKbb1nCAyHl69O27LdtHmbyZDxd0JAmwW4oDfaei7aej5mF2PlKFhmoXjtLvHa3Xhuadz7x085muJ++8tLz/+6YfSXX7pS/68/rhKJxziDwQDNsSOv8mSg7VzH4dN0zQV/Aq9rccr227NxDGm85Gqoc3a2+ZLboVHIEFKH+zS4X4v5iiU9N2vPilAKM+bjhYsFhdV40WI8r3wmBOA4eNyRjw72f7C/7/TxYWpcNlEmx3beZb7vKwULy6+i6wvH8TzPI8jn2dbxix0anQp2wvPfF955sW7P5DZ1JbrcrbnLt5qXrzSWJxQZGnR43jp48ZNPBjprImHLlSkC8XSaM2oejJgH6DTnVPIQcFgoasoTNeZjtgTzAIXYbNFwvmQgXzSYLxnIE1skSJiCoW6B9NNoXn2woNed63Ol80yCq8rKkd+6K+e2XTlFC9UAAC7k40I+LuChOi9FLh6NXDz2WV/q/xu4xxIZyYrBgN+RevLxjHdlyOwz+eMBYThmWoDnlePmcsxcjueVw5KrDmXwPHjrlfaffOfcqGs4LTAcLqvUVS9NWbxcX7UsVaOdKbXsix4adbsisSh6a6Ontcnd1e5nmMTGDMNgU448r0CZm6/IzVeYC5QDvcH9e3pOHLFQEykPCAItW5W2ZbuJIOjerkBXh6+3K+BxJ5O1LCnTbNlu2rw9s6RMe717Yc4TsCzvtJOWgZB1mLQNE5b+kHWIsA4Tlj6/UABt2J67aWvmslV6XBC/zRqdck31rn9+7NTlphFapkiMfu+n1Q89sQCGp/8FHfbwoXd7D73be/4z2wytHQAgK1deWqHNzJKl6sWpBnGqXpyiF2tRD1eznzy1L9L46VQ5XQjFMHO5oLAaL6zGc0sxU9EMtYpiCPipY4cHP3ivz+kI331//q27csSSqy72mEkbJmc/FXDELxqGQqFINjeb3XlRUA8AYIZ7xkQx5ghhJvpq46Hnat5qc/dNflWGizflLLkpZ/mG7GqL17X/SPO5k7b+Oo4bUAIu2WVw4nA0dzBqHjAU+KoxtpiG1Cxm6zbUNZkae1IYdsK+RoMF1qjrCsX9+ZKBXNEwCo1k/sIp6daC0q6c/L4Mk1ii0IqUKRK1RqRQoPLhVrblfKjmU9uF845IOD5TmFeojFlEc8EI5dIyEPrRt899eGDsOy6Q9H47+41C8ZRlc7BMhWXkocZ8RHul4IahuSvZEZ4M8lcylIjWgJvL8bxyzLRgroKQwxbiW187feKIZRbnmguUVUtTlizXVy1Nzc1PNqOmqm6OYbA/6PVMcIsDfooftxNHULi0Qnt1EcJrxrCFOP7x4CcfWepqHXbr3OxgwJVEzm27c27ZlRNHywIA+H3Rnq5Ab5e/u8Pf0xXobPO2t3onL8Fp6ZLN2zK3bDctX5022QbMB1iHiMMH+kmSBgD4fRTPA5bhQiEaABAmmdieIBCgpqhWBbG3DQ2GnPbwVHuOUUhl2Or16Ztuzlx/k3E0yTo87NVpFb/5xaUX/qthdITFy/XP/c/qrNyrpkQ67OEP3ut9f19ii2g0ycoqtWWLtGWVutIKrVyZ7N5kvY7wuQ+o1nPRyzV0b3OyslEYRvXZeE4JlrUAyyqO6Q1B+PVVxySIKMOwydPS+/7DduFAvFfz8AuZuVXJzhrffSKGs2fPbtiwgSTjb655kSNk3VbL7QZYqsQLqgSFVXhBFV5YhaaapjuNYVzDrGOAsfbx0WSrhs3R1+7qaXcP9PmGx8czI2GZYzjXYlngtptYOsFM4lGWz3RJUXG4W8ZP2lEhEFcs6TGJbKe95T5mguoNBjOrlfVbtWeXKJpRaOSWgHChsHyNaMlW4dKbsYzpWz5RUfazk9b973QfPtg/mcmyoFR9265chuFe+K+GMDlit1RqwXd+VHHHIidVdzRy8Wi0/SKEoKgxH8vIw4z5aEYeZixAjfmIUsfx3MneD3s9HRvNt2Uqc6a9mLkFz4ODe3sG+ydkQH3eCd8xGKBqz9rbW71xkaJRaLTC4jJNSalmQal6wUKNuUCBolNGVywDocZLrsY6V0Ods7HOFWcFEwJF4fIq3ap1hpXrDFVLUjH8uoRuaIo7f8Z2/KPB40csbS2Jg94AABiGTDnyklL1glJNXqHSYSM723yd7b7ONl8Sk1m0UL3zztzbdufEqWclh8cdOfLBwJFDAyeOWiYzBqUy7K7787/+zbLUtHnRTyYSZj480P/26x2nPxmeaqpcP8AwVFap3bQtc+PWTJblv/HYydE/olCEfucnVY88WTwTRzAJnI7wB+/1HT7YJxKhZYt0ZZXaskW6/9/eece1dd0L/NyhLTGEGBISGxsDNjbGe8TG281ynMTZdmabNqNJm6ZJ2pf2NS9p0pc066Vt2qSuk7RJHCfOcOIRx3thY2MwBsxGIATaaF7d9f4QloUAIS4ggTnfjz/+2NK9+h0d/e793XN+K17OMQic9Xq89ee8taeJ2tPemjKyvT6EHxSA3gp8/KxC0YJrpevuHf0E0PAY0hAO2X0CAFBXV/fkk09+++23/a1eZHyErMvlHayFAgDAfeyr7mdvCHoRi0v0WUTB1BJclUUZOujuNkrfSnW1UfoWuquNMnaECK0cDIrFz9tzTtoKTtoKGlwDFDlEAJstaS+WNxardXOyCEVKMmO3mC81nOxIPmEtPGmdbiRDLUQKJM3rFcdXKcr8e5J4crpo/jrR/PXC4tLhVp70eEgcxxiaPbivfef2pn3ftjkdAz/NoShy+5apz/5hTuAVwnpcCF8YpLsWt3Hb2bf/c/7dbmdvcRlNbOaK7OvWT72lOHUhtyalY0eP1Xv6ZFfZcX3Z8a6KcgPhGdQvyxdgU6fFFxTJ8wvl+TMS4uLxthbX+XKDz/6ZjCPqayMS4/MWpSxerlqyXFUwIyHw1kbTrF7n1LY6tK32thZ7e6ujvc3udFCKJGFCoihFKVYkipKU4qRkUWKSKFkplkh5AID2NseBve0/7NUePaAb8DeVSHl5BfH50+WFRYr86fK8gnjfiQNMkc3bcMlaX2Otr+s1jTiOXndT5g23ZE+ZNrweewAAgiBRFPX5uggPfeSAbu+u1n272rr0fcytQIjddX9edM3h6RNdn35Y//WOJs4Bz4ORmCQ6qJiTAAAgAElEQVRSpkpUaklqmlSllqpSxSq1VJkqqbto2b9b+/13be1tgwaX+iiZn/z6u0uzcqMZCRkOjMPqrT1N1J4hG897m6spbV2I9aKgcKH8yb/0d46OEJKkGYYJ3flrSEM4ZPcJvV5/9913f/TRR8nJydExhEP6CB3fbbX+9Vej0OBmcHSE4pSt4IStsLxnmosewCQn8c1zYmvmxtTMib0YP3isJguQepfmpK3whLXwgiObutwUNCmOvmERtXG1MGdqn/whVBo3kmeooDZMbhf1/W7tV9ub9u/RBu6azpilePGNhcVzhkiba7HUbzv79mcXtjq8A7f61MRmrsq9cU3uhuLUhRgy7ra/vAR9/qzx9ImuU8f0p090WS3cQ36SleKgTcKYWD4SYN5sFqK60jSgkyZeLlh0jUoaw2tvdWhb7bp257BCUURiPDZOoNcNUIVELMEXL09dsUazeJkyPStmhCsJbgyYPsGyoKLcsOfr1j3ftNZdvLJsFQixO+/Le+QXM1JUI42paW22Hz3QcfpEF4ohqWppslKcrBSnqqVJSpEisY/XStfu3P5R/acf1jc39MkxRxAwd2FKyfxkAIBYgvP5KIIgMbF8AABfgPmiVGQyHoYNOqs4D1WqJMpUiUA4hPLXVlv2727bv1t75mR30D6qQIj96vmShx4tDCFo3MJSJKWt8zZXk42VZOtFb2MVpW/uU3YAw2Nufjzu3t+NYi+wcHyEQxrC0N0nHA7HTTfd9H//93+5ublB/Sh6D4tMGyabzRUfP8SlQnW1emtOE7WnvXVnvHXlVyo9DgLC42NJaXhKBp6kAYPkKtnd+PtHk7+vVbR0D7DzyeexJdnuJbm2hSptOk9L95gYq4HpMfnrlfQRJxDx0vJ4aXm8zALf3y6x5tChrorThmtWqhcvV42F3tvtboGA1786ncNO7vmm9avPmirOGJ54dtbdD0wLIZ0F7NGWfVvL3zzU/F1g2zOFJLkoZe6Jth9cZPBNWS5OXJVzw+rcG7Pl03yvSPkyDMUBADiKS/jD2GcbO9pa7BerzNWVpouV5upKU1tLqFQTeYLQ51ApKlbMLEkMZx1jsxLHDnUe+aHj8A+6oHvu6JKRFVO6VrNyrWbBEuWQt+CxxukkMAwNrPMexMF97a+9eO7MySu1Zjibw+4u97GDuqMHdUcP6IL2yQPhC7DkFLEyVZKiEptNnuOHOoO2QNMzZTffkXvznbnpmZHWTJuVOLiv/fvvtAf2tptNnuI5Sa//fanff38VwHpcZOtF5w+f2D97w79YxJM08Y+9KV5yY+hzw8TjIWmaCbFlCMLzEYboPlFRUTFr1qzAc5ubmzMyMq4cNh58hAPgayJTd8ZnFxmbCUvS4CnpeEpG7x9lBiZXhlhs0TT773/WvfL7M/33xNIyZKVrNMtXqxcvUwVGM18RTnqZHhPTY6JtJqbHhPAEvPQ8PCUzWvvjnHF5HV9c/GBr+ZuN5j7NPQqTi7fMfvzavE18TOCh3Eda9u6t/2J/w9dWT7jlB33EixRFKXOmp5TMUM6ZkTInUTKM1JRRp8fmvVhlvlhpqq4yV5836dqdeQXxM4oVRbMTZ85WDMtJ1h9tq/3ID7rDP3QcO6gL0igEAUkpYk26TJ0m1aRL1WkyTbo0Jo5v7HJ36lyGLpe+02Xocnd2OA1dbkO323cT5/HReQtTStdqVq1LCx31Mz45vL/jtRfPlR3X+18RCLE77p366C+LQpvDHpv3xOHOo4d0Rw/oAheXHJDF8H60IXPT3VPmLkyJekQrTbMXq0z50xMm4kIwHMimKtNrDxNVx/yviBZeJ//5W0MHc4wG4RjC0N0nQrwCIrUiZCwWZ0JC5B7WThzp/K9fngzMY+ULsHmLUkrXqFes0Uyg5zWbzSUS8YfVJZUFbIPx4vG2H05qDx5v3W8nrixlMARblXvjvbMfn6Ne0v9EmqFOag/uqf9iX/3OLoeu/wFDkiJT99rFlDkzlHNiBNGcZ4OhJzFx9JvqMQx7scpcdkwvEGI+46dOk4YfRUnTrLHbbeh2p2fGhMg1jiIOhwfDUJEorAjhowd1f37x3IkjVzqZ8AVYXn5vsK7TSVIkAwCgadafMOOwewfccJYnCBddo1x4jQrDEL3OeSV7oc3hjwXzgWHI4uWqW+7MXXd9xoAPstFijFRuXOE6uN38+qP+2rMIzpPd+mTcvb8bSWSp2+2laUYqDfUJ5761tVQE1/RZcqdckX5FUUN3nwjxChgnPsJRpL3N8YdnTn39+ZWGLBlZMU//bvaq9ekcElyiTpCPMAQNpppT2oMn2g6c0h4yubqD3o0RxG2a8cA9xY+kxgz9+MawTEXnqb31Xxxq3u2+vGtq8/Q+vBOUx0OFqqXrAwFIenzOPM0112SuXZS+UiaI9KJnoucRRotwSqwFceJI559fPHf04LAfnsQSXwhS6pLlqvzp8sF8ojYr0dnham9z6HVOkmTWXZ8+cpfkWDBJVI62Gqx/ecqxZ5s/3JSXWSh/9M+4MgsRSRGchwgloVOtGLuF9XpYws3YLazX7bDY2PyloX2EQzIBuk8MGTU6KvTYvH/6Q/m2d2v8kQvyBOGvf19y2+YpIaLqxzm+qNHBxq93dBxo3HVSe/Bk2wGDUz/gMVnyqVuKH7upcLOYN/r3Dr29/bz+9PnOsvOdZVX6M4PF4GAoPlu18JrMtUuz1uYnzYxMMXSHwxP6GRMyIIFRo8Oipsr8+h/PffNFc+g7ikCIzV2YsrRUtaQ0tWDGVbWROKlUzlNxyPzawyE6miECEcIXInyhP0Pfb//6H5z8rVMoGVH48QToPhEOep2T81Mey4Kdnza+8FxZZ0fv8gVBwMbbc557Ye44SXUaXTyU+9u67V9Uf3C8dX9gYVU/qpg03zqsRL04SRK5plRdDt2FrvIL+vKqrvIz7Ud7iAE6pIv50vmaZSuyr1uetT5FFs1685CxoKne5ricDSKT8VAMBQBgGOLfBxYIMKFo4u3NQPrDkt6ej/9k++B/BrRtw0Kzy4JKo+lJiVBlme5um1I5aJkPq4WYrvkwVSNduiJ1SWnq4mWqcNJFnQ6yqsJUUW7Y9XlzedmVzcCZsxP/8OqC2fOG14JnfGI02qVSoT+ET9fTtr3q/U+q3tPbg8uyiPnSueqlC9NKF6SXTkssino6oJcmag2VR1r2Hmj69rzuFN2vHgGGYMWpC+8reWJVzg1jMVqt1jTyzl+TEKvVieMYh5WN1ta8q/bTPfWfywSxc9RL5qqXFinnCnEuxZ0nKJNT5Shdk/ntJ8jmC4BhfKH+jMMaOkkflcQiAhEiFPv+weBC0S//Fa+Z9G2Yvv68+cd37vf/F0WR6TMTlpSmLi1NnbMg2R9QTlFM3UXL2TJDRbmh4ozhUk1wIaikZNEz/z3nlrtyo5KANRb4fIRCEfZD066Pz//9cPPuIItSrFqwLGv9wrTSIuVcbKDSqeMBq8d8pGXvoabvDjXv7u+/zJbnPTT3qRvz7+JhIyrh5vTaKYayEzaGpXsIa3u7ZXVxadQfCDhDs7TR2dXl6Oh2dOrt7QanvtOuNTj1nfZ2o6trcfqqxxb+V5Z86qjL7ew28nm8hPhwfbodPa3f1m3fVftppf500Fs8jD89pWSueskc9ZLZqYuiGzwVASaJjzBMGJcd0BRLuFhvb74vKo1F+CJE2K/IXxh5hGNNhLZGGYYNYZz+9W7NH58/Y7MOkB8tFOHzFiVn5cReOG+qqjD1r73pg8dHH/hpwc+fKR6fkXicabU07aj+5/aq94PCOGOF8Rvy77696KFcRUG0xsYBhmWqu84ebP7uYNO3lZ2nA416ijT1vpInbi96KHSSIs1Q53Qnj7buO9r6vdGp91KEm3K5SZeXHkB5Zirn/c/qv01LGrbPgKA8bbam3IT84Z44Elyks0J38nT7kbL2I03mWqOzq/8yOhAMwa6bdvujC3+bGT9lJHI9lLum+/yFrvKqrvLqrrOXjNUIQDLjc3MVBbkJ+bmKglxFQWZ8Lo72ubL09vZv67bvqvu0QndqwP35IFAEnaIonKtZ6jOKKdLUIU+ZcDAMg060DKvxgM8GIVHNgBkvPkKaZs+fNRze33F4f0f5qe4+pToQFqA0oIOXOwgCMrJjZ85WFM1OXLVOk5kThWSsVkvD941fJUmUSpkmRaZOlqpGuKyhGLKm+/xZ3YlzupNndcfbbS1BB8xVL72t6MF1U24W4BPbLa93dGwtf+PfFX8LDLGJFcbfNfOnW2Y/liDus7PdaK492rLvWOv3J9oOOL3h9mgEAGAofn/JE48v/J2IF5a3mGLI7VX/fOvEH/T29sLk2ZtmPHD9tNvHLuTV6jGXdxwr0x4+03G0Sl9OMeE25fCDIdgN+Xc+uuC36fE5YZ7iJl013RUXus76jF+DqYZmhihVyMP4mfFTchPypyQWCnHR3vqd53QnAoszAADEPImvUB/JkKfbj5zSHqo3Vg9mI1UxabNTFxWrFhSrFuQnzRy3mxmjRX2n7YfKdh6GrihSpyeOi3oUE4vuzs/t1uAtB1X6gyJxqDrJgUW333777aefflokEgEANm/e/OqrrwYeOS62Rvsdz5wt6973rfbwwZYa9Bts/l4kzsS0Z7MtU1VM8Wz1/JkzVXMXpUwrlA/Yhi0ysID98Nw7Lx96OqgsS6IkJVmamiJLVco0KdLUFJlaIUmW8mPEPImYL40RxPlLtPgxOrvOdZ48pztxtuNEVdcZNzlADeV4keKmgntuK3owW543tl8sstgJ20cVf91a/oa/8CkAQIiLbp5+76YZDzSZ64627Dvasq/Trh3yoyR8GQ/lxQjjcJQn5knrDFUk01uCUhOb+ftV/7csc12I0xmW2VX7yZ+PPd9iqQ98XcQTr596y6bpD5SoF3P6ir3QLG1ydZtdhm5Hp9HVdb6zrKz9cL2xOsic+OFjgiSpMlmamiRVJktUSVJVslSVIkvlgcQDlZ2nuz8uN/6bRXrXwRiKb8i/65EFv0mLyx7w05rMded0J8/pTpzVnag3VodYa/JQAc2Sg42qP0JctCxr/Y/ybi3NujboacPiNpV3HDulPXS6/Uh197nBzK2YJ5meUuKzi7NUC+JFE9XNFrQ1yrKgstW4v7J9//n2VsOVp7dcZWzpDPWKGZp8zdAN4icD4WyN1lQ8oGt7L+jF4oX74xWlvn8PWXT7kUceWbFixYYNGwb8/MgYQqary5qaKg//FIvb+MG5dz4493/9XUoCXDhLOX+e5pp5actmKedHZWHU0dP69O77j7fuH/rQgRDgQjFPKhPESPkxDm9Pm7VpsCNxlF+Suuj2mQ+tyd3Ax8Y2/ySKeGnii+oP/n76f5vMdUMeLBcnLkpbsShjZbFqoZgnkfBlQlzUXw2OXDjxzoVnTmkP+V+5Nm/Tb0tfH7D8zf7Gr1898ptaQ2UIudnyvFtn3H9TwT1Bq9VADE691trUZmvq7NEaXV0ml8Hg7DS6us0ug9llCL2FiCLo1MTpc9VL56iXFKcu7L95aHN5/7m/5qNDl9xeCgCAokAkMdnYMzS/gRHUsbgRR3kbCu5+ZMFvNLGZLq/jvP70Wd3xc7qT53QnLW7jYHJxlJeXOGNGSklB8hynJXfPKScPB/esjXWDxnpTdb3xYr2put3WEmQa+Zhgaeaaa/M2rci+LpySe06vvbzj+On2I+Udxyr1p/tX9fOBAGSWav7D858pzb42Mmk24eOlGJZlBYMnlrS2GtPTFTTDltV37a9s/6GyvdsWKpxSJZeUzlCvmK6enZ141YQ1cMBud5MkLZeHKl46pCEcsuj2ypUrHQ7HhQsXZs6c+Y9//CMvr8+KYrxsjfppsdS/d+a1HRf+FU7WNh8TzFTOm5+2bEnG6lmqBZGJjPi06r0XfnjSv6GXm5A/PaVE7+joduh0PW2DXeHhkyxVzVTNn61aOEs1vzB59kTfAg0fhmX2NXz5btkr53Qng94S8cQlqYsXpa9cnLFqWlJRmLdIFrA7qra+dOgpi7u3xlCMIO6ppS/dXvSQX1VOtB149chzZ3Un/GfFCOIemPOLG/Lv3HPp848r/x5km3kYf0X2dZtmPJAak661NbVZm3yWr83apLU1DbiaDwEP489ImTNHvWSOenFJ6uLB9mCdBLntQN2/DtQ63IPunbKYleHX04I6VNiSnsxvslQNtuzDECxXUTA9pWRGSsn0lJK8xBmEF/nseOO/D1/qtLguDwy9d8W0H68p8N333aSr0VzbYLp4yVjd5ehYlL5yVc4NnHeMaYaqMVSe693/P9Fmbex/zLSkop/Nf27tlI3jIdyJZcGXZU2vfllhcRAiPh4n4ctlQrlUECsRxEsE8VJBnESQIBNSNHOoWnfoQofNFdwNQyrkLc5XkhRztKaTIIN/l3iJYNn01BUz1IumKXlRbdQeYTrMzp0nm+we8tc3FYc+ckhDGLroNgDgV7/61dq1a+fOnfvaa6/t3bv36NGjgR8VoYR6giCFwiGcZ6fbj/zj9Kv7G78OfPbUxGbeW/LzVTk3VOnPnGg7cLLtQL3p4oCnJ0pSVuXcsGbKTfM1y0boqBuMLofu2T0PHWja5fsvhmAPzPnFE4v/O3Ct1kNYu+wdOru226Hz/W3zWHoIq4PocXh7HESP3dsT5OXCUV5+0sxi1YJZqvnFqQsDi78QBIXjKDaZrg0AQFn74b+deuVwy56CpFmLMlYuTl85O3XRcBfELpdXLOYDAMwuw/8c/MXO6g/9C7Li1IUvrv6bh3L/75Hnjrbs858i4ok3Fz/20Nyn4oRXdi/K2g9/UvmP7+o+C+fJLDSxwniFOFkuTlRIkvMSZ4STYODx0v85cun972sszivRQJnJMQCAlu6eQa9dhGQEl2hhJS2oYnitAGFjhfGzVAtmqebPVi0sUs71r+HaDPYPD13aearJRQywb5mWKPvNLSUL88a2hGyga6BSfzpwnrPleT+d/+z1024fFSciC1iKJod7c2jotP3h09PljVx648hlwtLpqaUz1POnpPBxFADg8dJHLur2V7YfqtbZ3cH2MjFGdMui7FsW5STGhJt24iKob8tbPz3WcFFrjpMI4iT8WLEgVsKPkwhixfzeVySCeIlAJuJJhDyxABcLcEnInkdjjZdifqhs33Gy8VRdF8OyfBzd81/XJsaFyiMf0hCCkEW3A8+y2+1KpdLh6NNIa1z4CPc1fPnOyRfPd5YFvjgjZc6Dc3+5dsrGoH5ABqfeV0vlRNuBIHeOjxhB3PLsH63J3bA0c+0ollP5qubfv/v+UX9Z6sz4KX9av7VYtYDbp9k8Fp9dpFk6Sz51sLth+CXWrj68NDGS3eAgh83x1v2/2fewX2EwFGcY2m8aeRj/9qKHfjb/ucHqhts8lp0XP/yk8h+ht09FPLEmNis9LlsTm5koVSrEyQniRIUkWSFOThAnDesWTNLM9mMNf9970dBzxTCkJ8p+um76utlpKILYXN7zLcbzzcbzzcaqVrOTGHixKBGBkpz41UVTFuYpA2+vZfVdHxysO3RBxwTcARQxwrUzNGdbjBfbr5TD/lFJ+q82FCfIIrEzYfWYt5a/8a+zb/lL+gEA0uKyfjz36ZsLt3B7wLV6zEdb9h1u2XO4abeLdP4o79abC7fMTl005IluL/WX3Re2Haij6N5Hcx6GkvTQ3tPUBOmKGakrZmhmZSoG2/MkaabsUtf359t/qGo32fuUcedh6MoizZ3XTJmZqQghpabdsv14w67TrYP99KGRifgiPiYW8MQCPFbMFwtwmYgvE/FkIn6MiCcT82NEfJmIFyPm+16XDt6QJHzqO207TjR+c7rF6uwT5v34usIH100PcWI4hjBE0W2CIGbMmPH1119PmTJlx44db7311sGDBwM/KkIJ9WazI0Q52v/e//jWs2/6/o0i6PKsHz0495dz1UuH/GS9vf1E24EDTbsONn3Xv76XEBctyVi9OnfDipzrAp/xh4vZZfjNvod3X9rh+y8CkM3Fjz619KUwAxFHgsXiFIv5oVtWQgZEr7empPRJXCMozzsnX/xr2cskfeVJHEOwDQV3P7bweXVsRjgfW9F56pPKf3xd+7GYJ0mLy07zmb243r/DrOPjJMjAFFgMQwKf0GmG/aqs+S+7L+jMV7bZlfHin6wtvHFeFjbQjZVh2Aa9raLJWNFiPN2g1Vuo/pc1goBcZdzCvJTUBOmO4421HX06P0xTx9+1bOq64nTCTSAo8s1Z7RvfVPqXLDFi/s+vK7p5YTYakRh3h7dn29m33y9/3ey6sg5LkakfmvvUbTMeDCdJn2bpys7Th1v2HG7eHZSo4yNLPnVjweYNhfcMlsjxQ1X7S5+V+/eK+Th674ppD60uQBDE6iQsDsJs95gdhNVJWHz/dXjMNvfcqSkritR5qcOIgmFYtqLZuP98+7flrYEPPQCAfE387UumrJ+dHuiYdHup78pbtx9vrGo19fuwMUTAwxQyYWKsKEEmTIoVyWXCpFiRQiZUxIgSY0VyqQAffOPKSZDflbd9fqKxsu+YURRZPE15bXHagtyk+BGvCEMX3f7uu++efvppmqaVSuW7776bldUn3HRc+Ai1tubSv+fiGO+mgnvuK3mCQ2AkSXtPtB3Y17Dz+4av+ndOwFB8RkqJr9pFiXpxmIm9DMtorU1l7YdfOfyMP2ZHHZvx8tr3F6QtH+4IIeOEBlPNc3t/fLr9CAKQtVM3PrHov3MSpkVM+qlLXVt/qDla0xn+ZaeIET64quCWRTn8sEvmWp3EybquY7WdJ+r0eksotyWKIMunp951zdQ5ucERQMYez592nt11ptX/ysxMxfOb5uSqIpQX7yKd/zn/t7+X/W9QRLFvhS0XJ8pFCrk4USFOjhcp5GKFXJQYI4wr7zh+uHn3sdbv/Y7hEGAItiRj9cbpW1bl3ODffugwO1/6rPzghQ7/YfOnJP/0ugxcYBLioimKwlH/pj4omtl3Xvvvw/Xnmvpsw8ZLBBsXZm9anGt3ez891vDNmZYgV3FBmvzWRTnrZ6eTFGNxElYnYXUQVpfX6iSsTq/F4bE4CJvL6yKoHpfX5aVcBOnxhkpRjQBpibIN87NumJuZFBvWJnCP9bTbGRxUGK9Yzhf06u0EKLrNMKzd7g5dz/6b2k8WpC0PEY8XJixgKztP723Y+X39lwN6E/2xeb7wPIXkyu6Z1WOuNVTWGarqDFU1hvP1xurAyBcEIJtmPPDc8lcj2ZbW4fAIBDwOFZAhFotzsF7QLGC/vPhRTkJ+YfIQLvrRgqKZPee0W3+oqWkfRge+WDH/vpXT7lg6RTScPlxBNHX1HK/pPF6rP93Q7Qs39SER8DYsyLpz6RSNok+0ntvtRVHEvwlxok7/wqdn/NH/OIbevWxqYZocABAj4gME8DBULMABAGIBjmMogiCyvntoUiFvJCGRBOX5tOq9v5W9outp4/YJOMorSV20NHPN0sy1Tq/9swtbv63bHuSnjxPKr5t2+435m/ecdn56uNN72dDweC6R8lsL9i1B9e5eLstc98jC3w7oEwmhcsOipt3ynyP1u860BIbVoAjC9L1Xi/j4+tnpty7KKUgb9nYXywK72+skKBdBugjK4SEdbtLhIZ0e0nH5j91N2t1ep4eyu70OD2m0e4L6IXNAyMdWz0y7aX7W7Owk/+YCQZAMw4bZ+WswJkDR7Ui2YQqkxVK/t37n941fndOdHCyHKVueV6Sca3YZao1V/Qt4+kmRpr609h/XZK4ds8EOzGT2EY6QcVLvyuEhPzve+OGhusCVGYoiQR4Xu9sbeCFKBLx7lk/dvDxPKhq1XXEvxVQ0G47X6itbTMsKU29akDWg16d/GyaCpN/7/uJ739f0D3fkgFiA52vkhWnywvSE6Wny1IRQQfN+SNr7xcUP3jn50oAhpgOiic1cmrl2aeaahWmlQQ+vLtK5+9KOHRe2nmw76PcTY0Q+z3wvSvXuqrEIQ0v2kbHbWXSAJfWi9JWPLfyvoL6eo6tyNpf38xONHx9t6DA5gt7KVcVtWpRz7ZyMUfHbhQnDsia7x2Bzd9vc3Ta3scfdZXUbetzdVrfR7jbZPaEtyfT0hA3zs9YXp/dX6clSYo1hWKeTkEXE2T4gLq/jTMexsvbDp7SHKvWnA11EoYkVxk9VTJ+hnPOz+c/FCqOQ/epyEXw+juNwRThsenrcMWGH3o0Feovrw0N1nx1vdHiubGSJ+PiG+Vn3LJ+qDs8ARB6Ph0RRpH8v6FaD/YVPz5yoG7jbF2fiJYLCdHlhWkJBmrwwLUERE+ouQbO0xWW0eEwWt9HiNplc3Ra30eIymt1Gq9tkdhutHlOWPG9p5pprMteGU3lOa2v+vHrbjvPbDW2LMddSwPYuUhh+ozf+fYbf29YUAUiiJCVJqqoxnA98pJ6vWfbowt8uSOt1U42FyjEse+iC7t9HLp2s0/NxbM2stFsX5YQOoplweL0Uw7DCCBr1/owLH2EkcZOuc7oTZe2HT7YdPK8v8+94AAAEuDA3IX+KonCKojAvccYURQHsEwTpz7kmw+5zbV6SAQBIhDiGoigCfM+5AhwT8DEAQHmjYffZNiogwlARI7xz6ZRbF+fGiscktycy7DrT+kNVOwCApBjfRqvbS3kpBgDg8JAMwzIsG2j4Qb/FbmgSY0RBGet2tzfwbB6GFqYnzM5KLM5OLEiTjzzrbvfZtpd2lPvjNlHMo8mqmDHFrYrRpMakq2LSVDKNUqbxBay2WZveOfni59XbAovhlagXP7rgt0syVo9wJKFpNdh9GRFjKmXSMi6iRqMFQXkqOk9Vd51VyjRTE6enx+cEpWpEHRg1ypn+UaMjxEmQ35xu+eRowyXdAH0WQ5CjjN28PO9HJRnhR7tEEbvdjWGoWDxWu/Fao+NCm6m6zXyh1Xyx3Txg/mKYCHjY9PSEkpyk4qzEmYYTYI8AACAASURBVJkKn6syfDotrj98evpw9ZXYutUzNc/cPHvIHL52W8tfTr302YWtgXtLM5Xz7pr25A3FweleEcDsMnxT+8nF7or5acsWp68KjHuYELhcBE0zMlk092+uZh/hVQD0EXJmFB02dR3WT47Vc0jYmj8leXPptMXTlFEtrD88+vsIxw6GYRu7ei60mqq15gutproOazhZegOCoUieOr44K7EkJ2lWpkIe0hHDsOx/Dte/+U2l/wdNjhP/5paS5dOH0RND19P217KXP618L7DzCQ/jq2My0uOy0+Nz0uNz0uOy0+NyNLGZY1Hiw0O59zV8+eXFjw437/GvUBGATEsqWpKxemnmGg5lKKLCZPERsiwgSaq/1yGQ0H2aJi0kSWO+rTfIMCEIcoQraYKk91ZoPzlaX9Hcp1CnVMS7YU5mjioWAODx0l6KBgA43CTDApphnB4KACDgYzfMzZymnnhVlSmKRhAkKsWMSJpp7uqh+thCJEbc50d0eMhzTcZzTYbyRkOXddDMkIykmFlZitnZicVZiWl9uz3U66zP/6fMn9CGIsimxTmPX1fELfBEb2//W9krH1f+PdDJEgSGYMoYTVpcdm5C/hz1kjnqJYPVbQgHhmVOaQ9+Uf3B7kuf90+eDkTEE8/TLFuSsXpJxurAHCEvTdg8FpvH0uOxWD1mm8diIywIQK7N2zTyuH0O0DTDsmzoSIgXjr6389KhoBf/uu6ZEmWo3KfA7hMGg+HHP/5xQ0ODTCZ78sknN27cGHjkuPAR0gx752t7l+SrHliVH6KmLQQyKngp5shFndkx6J0LANDabf/yVLOlb/2LfE38psW562enjySfATJadJid5xoNZ5sMZ5sMjXrbYHeyxBjRrCzF7OykmZmK/ZXt7++v8dvaHGXs726bO/LYk25n57unXvm2brve0TH00QBkyaeWpC6eq1k6V700zEoOAIA6Q9UXFz/4quY/QfHtGIovSV9VpJpXpj10puPYgMGAKTJ1rDDeZ/wGq4cswIU35t913+yfj0qXUy9NdPZodXatrqfN4NQDACR8Ke7rD4PgUkEMHxOIeGIRT8JD+akxaaGr6D2w64X3Kr4MenH/ne+UZszx/XvI7hNbtmwpLi5+7LHHzGazTqcrLOyTDxqh7hOdnRaNZtDuKh8duvTSjnIAgDpB+uzNs5cWqMZ6SOFQ027ZX9m+/7zWSzF56vhpl/+E3nUZXbq6bDKZSDz+POQn6vRvflPZYXbGivm+koaxYr6/wqG/2mGOMjZaRYSbm7szM4Mfbxv1th0nGr8uawmycKER8LB1xembFudMT5+oHYLCx2Ry8HhYdANuOWB1EhXNxvJGw7kmQ3WbecgtVj6OPri64IFV+aOon83N3SpNTJu1sdXaGPh3u60lRKfJFJl6nuaaOeolxaoFDMuYXQZfTKzFY7K6TRa3yeI2ml0Gk9vQP7+rMLn4xoK7r8u7zb/EdHkdx9t+8JXUCdHWJgQIQJZkrr6/5MnFGavCrG7fZK5rMte197Toeto6e7Q6e1uHrdXg1IfTsdnHvjuas1MzQhwwpCEcsvuEUqm84447/vnPf2ZnZ2/durWgoI+xj8yDLUuH1EtfHBoAoN3k+OnfDpVOV/96Y7FKPgqpqQRJN+p7vBSdlRwTE4Y5YVi2ssX0/Xnt9+fb2wPSd1oN9j3nevN5k2JF0zRyn1HMU8enjsY4Bx0Pw4yHJXsgtR2W176sOF7bG0ZvtodaV8WI+StmqNfOSps/NWXA2mD9IUj61KWuA1UdJy/pb16YvXl5XojSTSEIrGHm9lK7z7btONEYtMk5JBlJslsW5dw4L2vyROuxLDveVC4c4iSCZYWpywpTAQAESVe1ms41Gc41Gc82G/q37Jidnfi72+b6apePIjTNCnBhrqIgaEVFs7Sup63d1lylL/d1Zwzc0tTb27+8+NGXFz8KX5BSprkh/84N+Xf1X7qJ+dKVOdevzLkeANBiqT/cvOdQ8+5T2oNBq0AhLooVxscK5bHC+FhhfJxQXtVVXmeoAgCwgD3cvOdw854pisL7Sn5+w7Q7+zfAoRnqQtfZ8o5jp9uPnOk41r9Z3nDhYyN98CotLf3JT37idrs/+uijN998EwCAYX02F00mk1QqbW1tffPNNx966KFjx44FvjsutkYZhv30WMObuyp7LrcvEfKxH68u2LJi2rCe1xiG1Zoclzqs9Z22hk7rJZ2tzWj3V0NIihVlK2NzUmKzU2JzlbHZKbH+1E5fC7Hvz7f/UNkeVO5vSGLE/JvmZ/1kbWEkk1ujQofZ+dY3ld+WtzLD15l4iWBlkWZNcdrcnKQBXZ4WJ3HoQsfBC7pjNZ2BBVByVXHPb5rDefOqus2840Tjt+WtQTH9GUmykpykEA+8OIb4mgZMoDgXSH8Ylm3otPlWiuWNBhdBPXF90S0Lc6L4s9IsXd119pT20Mm2g0FGMTRSfszaqRs35N89T3PNsLpTeWmiSn+GYRm/8etfr5UF7LGW798789rh5j2BK7kEcdJds35618yHhbjorO6Ez/id7ywbst8cjvKSpSpljCY1Jj1JosRQzOl1UAxp81hohnJ47QTt8ZBup9dOs9T+By6FjrYdckUIhuo+oVKpysvLlUqlXq/Pzs52OvuMP0LBMjRND5kVbnEQf/76/M6TTf77bEZSzHO3zF4wdWDHspdiOkyOVoO9pdve0Gm7pLM26m3DKn6REi/OTomNEfGP13b2byEm4uNLC1Qri9QKmaiuw1LTbqlptzQFO/N7SZAJf35d0Q3zMke3KjFNMyiKIGNw1fpK/XaaXXnquMykmNDxOBYn8e6e6k+O1vsyxgAAKIrcOC/r7mumeCnG5vLaXITN6fX/o8fttTm9WqOj/1NFgky4aqZm7ay04uxEFEFauu0HqtoPVHVUtBgHK+CEIsjGBdlPXF8Uzpreh93t3Xmy6cuylqDS0gIetqpIs3FBdklOErRwA0LTDIIgV2t8lpdixi6JhSTp4VZDDDSKjeYaKT8mViiXixRxooR4UUKcUB4X8LcqJi2cguMjpN5Y/X756zsvfhgY/sPD+AxDD9bhMk4on6VakBGfo4pJU8o0KTJ1akx6oiQlTGvNMCzLsqHjs8IxhCG6TwAANm/evGDBgp/85Cfvv//+1q1bDx8+HPhR4y59orLV9MKnZy5qzf5X1hanPfajGR6S1hodbQZ7m8GhNdrbjA69xTXk0gRFELVCKhXijfqeMG1kjJi/rDB1ZZF6UZ6yf+SOl2IaOq0+o1jTbrnUYQ1cvhSkyZ/ZOHsU6z6MevqEb+Nxf2X7gQsd/l1NER/PU8fnq+OnaeILNPKslFj/NqbHS39wsPa9/TWB+0srZqgfv64oa6idJYZlzzUZ95xr21eh7W8Rk2JFYgGvpXuAx+Gs5Jjl09VCPvbe9xf91YETZMKnNsy6tiQjlESGPVGn33mq+Yeq9qCfO0cZe/OC7OvmZk6eTU5uRDJ94ipjnFT1GxVMru4Pz73zYcVfBtv2VMo0czVLS1IXz1UvyVHkh+lNHJBw0ifCMYShu0/odLotW7Z0dHQkJia+++67U6b0KTwUoYR6o9GenBxuP2uGZT871vjGN+f7r9KGJFbMn5oan6uKnaKKm6KKy1HG+gL8GJbtMDkbOm2NeluD3taktwWZRkWMsHS6emWRZm5uUvhOKYZhd59re/XLCn8kN4KAH83OePKGmWFWVQ+N2ewQiwUjLz7kcJOHL+r2V7Yfvdg5ZDKcgIdNVcVN08iT40QfH6nvtl2xYSXZSU9cX1Q0TEvPsOzZRsPuc237KrSmQXyKKIoUZyUuK0wtnZ7qj3fvMDv/Z/uZwJTnBVNTfntrSVBAPACgpbvny1PNX51uCQqpF/KxtbPSb16YfZVVpRo7bDYXjmMwdZUDOp1FpZp4CTMhoBhyb/3O9868dk53kofxZ6TMmaNePDt10UzlvFFMtHA6CYqiQz97uUiPhwo2BzECCY72rlWi0H1Cp9Nt3rxZq9Wq1ept27apVGMS5GlxEq9/df6LgJ3SIFAESYoTqROk6gRpVnLMlNS4Kaq48M2P3zS2mxwFafKZmQrOu5puL/WPfRe3/lDrt6wiPv7g6vzNy/Oimw3SaXEdqdZ9X6k9Xd/dP45OLhPmq+Mb9LbQnXp85KrinriuaIQBvQzDnmns9llEi4MAAEgEvEXTUpZPVy/JV8YNcvPdV6F9aUe53x4LeNiDq/LvX5XPw1CHm9x9rm3nqab+UTAFafKb5mf9aHbGKNathkAmISxgq/RnNLFZ8aLxGzUdhe4TW7ZsKSws/OUvf/nqq69euHDhn//8Z+jjWZZ1ubzcnjGrWk0vbD/T3NWjTpBqFFJ1glStkKoTpBqFRCWXjquaVR1m5//uPLevQut/JTVB+tSNM1cWaTh/psdD4jiGD/U1WRZ0WV1ao6PNeHnr2OBoM9oHrF+VkSRbPl1dOj21KKO3fbbZ7qnWWi5qzRe15mqtOcguquSSR9ZPv3ZOxii6PxmGLWvopmlmTm5yOD+ikyDf2lX178OX/H7EzOSYaer4/ZXBW6AJMuF1czJumJellAmk0qjVeZ+4EASJoijs/MUBh8MDVY4DJEkzDBPdQpJcDKFGoykrK1MqlZ2dnfPmzWtru9InjKYZr5fCMJTPx0mSpqhe73Fbm0mpjBMIeCiKuN1eAIBIxGdZ1lfqXiDgURRDkhSOYzwe5vVSNM3w+TiGoR4PybKsUMhHEOB2exEEEQp5DMMQRK8UiqJ9Pmoc7z3RJ8Xj8bJssBTf8HxSSJKiqF4pvoZYQiEPQZAAKSxBkMOVUtFqfmnH2YbOK+Uo81Lj5uQmzcpKyk+NS5AKwpHSZXOfqe+ubDVeaDX7swB8RksmxAFAUBTxhbnjGNplc2uNjtAeUBRBCtLkywtVK2empSVI+n0XHEV7p1ok4pt6PBVNhtoOy6VOW3FW4o1zMkQCPOAHxXE8eMZ8P6jvu6AoKhD0fpfAHzRICssCj6d3EgZSmwGk1HZYX9557kKbuf8X5GHoknzVtbPTlk1X83mYx0O2tZlyc1MACEcK5bsOx1Q5h5QSqJwDSRkF5QznEjCZHCzLymSisKX4f9D+UlAer3eqB7nQgFDI5yAl8AcdUkqgcg4uZaTKCQDo6LBkZSUFXAJDqE14ykkyDDtayjng/Tkc5RzT+7PRaKdpJiUlLkg5WRaErkc2inAR09XVpVAoAAAJCQldXV2Bb1EUY7U6RSIBn48TBOnrxysU8nk8zGp1KhQxKIr19Lh92kbTrNXq5PN5AgGPJCmr1SmVCnk8kdvtdbmI+HgphqEOh4ckqeRkHgCI1erEMEwo5F2WwufzcY+HtNvdMTFiHMecTsLj8fqk2GxuX7NHhvFJwQUCntcbKIV0Oj0+KXa7T0osggRKof1SCILs6QmSIkNRvKfHTdN9pMybkvzR46Uf/FC77Uh9j5sEANR2WGs7rB8cvAQASIwRzspKnJWVqJIKpqljVSnxPiksinX0eMou6SuaDHWdNrNjGOneIYiTCKYqY9eVZCyamgK8XqGQHx8vcTqJnh6XTCaSSjGXi3C7vQkJMj4f7elx0zQtFPLjpYL8ZGmROk6hkHk8pMXiAIyAz8c9Hq/D4YmLk+A43+EgvF4yMTEWxxGbzYUgiEjEp2nGanUKBDyBQOr1UjabSyYT8XiYy+V1uwm5XCYQoHa7m6JooZDHssBqdeL4lakWi31SSIfDHRsrwXG+00kQBJmYGIPjmM3mUkr5/35y9b8P1731bZWvkhkAICc55vo5GRsW5aAU7XIRLMMAgNntbhxHAGABGFiKXzlxXOB0enxS+iqn/7sMoJxyeZByBkq5cgn4lDM21qc2HoIgQ1wCfZWz/yUQ55PSXzk5XAISycCXQFJSrEjEN5sdLMsKhbE+KUKh7xKgenpcgVISEmR8Pt7T46Jpxi+Fx8MFAh5J0pel4G631+n0xMdLMIzvcHi8XiopKRbDEKvVhWGIUMin6f5SRDgeqJy4XzlZtleKUNgrRSwWxMZeUU6RqFfKYMopl19RzqBLIEg5fVL6KueVSyBIOREEiY8XM0zgJUD6L4FAtfFJSUkZ3iWAopjN5gIABCmn10vZbE6pdGApIZQz4BIYWjnH9P7s8ZC+kNGg+zPLshEzhFxWhCqVqqKiIikpSa/Xz549u6MjrKpCkw2rk3j726pPjzUMlhUg4GH5GrlGIa3rsNR32kbS/RlFEWW8RJMg0ShkGoVUo5BqEqUahVRylbatMPS4X/uyIk4iuHFe1tTU0WwxAYFAJiFcDOE999wzb968n/3sZ2+//faZM2e2bt0a+niGYSwWZ0JCNIuLR4suq+tsk6GyxVTZaqrRmv15eKGRy4RFGQlFGYrsRKk8RhTosLG7ycDoIRRBUuLFKrkkWpXMxi0GQ8847Pw1/nE4PBiGikQwyWTYQJXjhtvtpWkmtHuVJdwsGbxPhoqkABudJSPHqNEtW7ZYLBa5XL5161alUhn6eNiGyQfDsE1dPb6AlHNNxtp2i9+kCXhYcVbirCxFvkZekCb3d0SDbZg4czUldUUSmEfIGahy3Agnj9D0ygOOXe8FvZj85/3C4tIQZwV2n/C58wAALMvabDaK6hNIyMWcqlSqYeVqYBgKH5QAACiK5Chjc5Sx18/NBACY7J7KFlO7yZGXGl+YLh+woUF8vHTIijyQAUlJCTdvFRKITCZEUbi7wAWoctwQiwUMw7EPpZ8Q3Sd8BxiNvRlW27dvLy8vDzp9XNQahUAgEAhkMIZcEQ7ZfaL3c0ymDRs27NmzRyTqk3EeiUc/mmY6Oy1DHwfph9Fo93iG1xUd4kOrNUV7CBMSq9XpCNmpETIYUOW44XB4rNYhSngPSWlp6alTp3zdJ+6++24AAIZhOB68zfbkk0+++OKLQVYQRKYNE8uyxECZ3ZAhIUkqdAcryGBAleMGRTFjUeR9MgBVjhs0zVDhRRGGgMfjrV69+m9/+5vNZhusuExjY2Ntbe3ixYv7vxUJQ4hhmFotj4Cgq4+kpNirtQ/AWJOeDouLciE+XgINITegynFDJhONiodu06ZNvu4Tgx3w0Ucf3XzzzQO+FQlDiCAARnxwI3RrEkgIYJEwbkCV4wxUOW6gKAKGal6BJ6fzc2cFnyjuE2i6ZMkSFEXvuOOOAT+BZdkPP/xw9+7dA7477towQQKB6ROcgbHs3IDpE5yBKseNcNInhmSE3SciU8AGgc9K3MAwDG6NcgOqHDdQ9KrtyjvWQJXjxqio3LZt23zdJ7idDtMnIBAIBDKpiYQ/gGWB1wvjqbhAkvRIapBOZoih+g9DBoSiaBiozA2octygaYaiQjXPiQCRySOkdTqYR8gFo7HH1xUFMly02gG6NUGGxGp1wTxCbkCV44bD4bFah+4NPqZEJmoUgeEe3BAK+UN25YUMiFQKVY4LAgEOA0e5AVWOGzxe9CMhoI8QAoFAIOOaynPG1mZ70IsLlyoTFKF6VoRPJFaEDMP6OkBGQNZVhsPhEQh4MBqNAxaLMz5eEu1RTDzcbq+vKXm0BzLxgCrHDYIgfU16Qxzzr3dr/rO1LujFT79bv3iZKsRZgd0nAAAff/zxM888AwB46aWXbrvttsAjI7EH4utHGAFBVx92uxvGGXHDZHJEewgTEqeTgOVtuQFVjhseD+l0BvcaHC7333//jh07AAAWiyUzM5OiqJdffjknJ6ezs9N/zKOPPrpr165du3Y9+uijQadHwhCiKAoflLghk4n4A7VnggxJQoI02kOYkEgkAqEQLge5AFWOG0Ihb+RBJLfeeuv27dsBANu3b9+4cSOO47/85S+1Wm3gMUqlsrm5uampqX8P3UjcZFEUgfui3AjdtRkSAvjsxQ3Ym54zUOW4MSr78KWlpT/5yU983SfefPNNAACGBXuU3njjjdLSUgDAoUOHgt6KUBsmg6EnAoKuPiwWJ0xO4oZeb432ECYkdrvb5RrpPtXkBKocN1wuwm53j/BDwuk+8bOf/eyrr7766quvHn744aC3ItSGyekkEmGp0eHj8Xj5fFwAo7KHj8MB7+ZcIAgKBmdxA6ocN0iSJklaNqJSowCE0X3CaDRmZWWxLGswGILeilAbJpUqPgKCrj4UihiY1MUNjQZ2/uJCXJwYtmHiBlQ5bkilwiGz+ErXqOPlwQsCdVofp2zo7hMAgLfeeuvaa69lWfbtt98OegvmEUIgEAhkYjPC7hORWG1QFNPRAYsPcaG7G5ZY40hrqzHaQ5iQmM2OkTtsJidQ5bhht7vN5pFmnmzbtu2xxx7705/+xO30yGy7sSQZ5ZqqExSahkW3OQJVjhsMw0KV4wZUOW6Misrdd999Wq12sDCZIYFboxAIBAKZ1ESoDVPUu2xMUGiagU8q3ICP59ygaQauCLkBVY4bDMNGvfNXhNowtbdDHyEXurttLhf0EXIBOmy4YbE4oY+QG1DluGG3u6NegzNCbZgEAlgnjAs8HuyJwxGoctzAcRSqHDegynEDw9Ah972+qP7gTMfRoBfvL3kySz41xFmBRbePHDny+OOP22y2+Pj4v//977NmzQo8EvoIIRAIBDKu+fXuBz6tei/oxY827V+QVur79/33379+/fqNGzdaLJbi4uL6+vpXX3319ddf1+v1PhuXlpa2devW0tLS3bt3P//886dOnQr8qMj4CNmRFxefnHg8JEVFefd8ggLbrHODIEjo6+IGVDlukCQ98kKSQxbdRhCkqanJYrE0NTVVVlYGnQ5rjY5rLBYHrDXKDb3eFu0hTEjsdg+sNcoNqHLccLkIu32kzxClpaWnTp3yFd2+++67AQAYhuH4lc3qrVu3vvrqq5mZmW1tbSKRKOj0yHSfQGH3CW5IpUJY+JEb8fFQ5bggEvGhj5AbUOW4IRDwcHykd7khi27PmzevuroaRdHq6uo9e/YEvRuZfoQIbFDCDdiPkDMJCSMu4jspgf0IOQNVjhuj0o8QALBp06ZnnnnmzjvvHPDdLVu2vPPOOyzL/vWvf+1fjzQyHerZqEfHTlBgh3rOmEz2aA9hQgI71HMGqhw3RqVDPRiq6PYf//jHrVu35uXlkST585//POjdSKw2GIax2VxwUcgBh8ODoihcFHLAYnHBJ3QOuN1eHg+Di0IOQJXjhi8+K/Si8P45T16btynoxfykKykQFEV98803ixYtSk1NDTzGnxaRlZV15syZwT4/EukTLMu6XN5RWfxONjweEscxHIc+m2HjcHikUmG0RzHxIAgSRVHomeYAVDlukCTNMMwI+9S///77zz///DfffMOt3CjMI4RAIBDIpCZC6ROdnZYICLr6MBrt0GHDDa3WFO0hTEisVifMh+MGVDluOBweq3USlFhjWZYgYMQHF0iSino52gkKVDluUBQDO9RzA6ocN2iaiXrZkMj4CAFN0yPPFJmE0DSDogi8MXGAJGno6OIATTMIgqAoVLlhA1WOGwzDsiwb3exV6COEQCAQyKQmElujFEW3t5szMhIjIOsqo7PTEhMjhgG3HGho6MrJSY72KCYeRqOdx8NgKSgOQJXjhs3mIklaoQiVefL61+e/O9sW9OIr9ywoylQMeHx1dfWDDz7Y3d0tlUr/+te/zp8/X6fTbd68WavVqtXqbdu2qVSqwOMjsxpF4I4BNzAMg5tU3IAqxw0UhfuiHIEqx41wVM7sIDpMjqA/noDq8Pfff/+OHTsAABaLJTMz85577vn1r3/d0NDw7LPPbt68GQDw7LPPrlmzpra2dt26dc8991zwGEb7Sw0AjqOpqfIICLr6SEqKEYn40R7FhCQ9feBHRUho5HKpTBZckhgSDlDluCGTieRy6Qg/JKj7xL333rtu3ToAwMyZMxmGAQDs37/fV33tjjvu2L9/f9DpkWnDBGCdMG6QJM0w0InLBdi1gxsURcNAZW5AleMGTTMUNdLOX0HdJx555BEcx/fu3Xv77be/8cYbAICuri6FQgEASEhI6OrqCjo9MnmEtE4H8wi5YDT2uN3eaI9iQqLVmqM9hAmJ1eqCeYTcgCrHDYfDY7W6RvghQd0nDAbD9ddfv3Pnzi+//HL9+vUAAIVCYbFYAABms9lnEQOJhCFEEASGe3BDKOTD+mrckEqhynFBIMChr4sbUOW4weNhAsEohG0Gdp+47bbbHnnkkXfeeUetVvveXblypW/v9LPPPlu1alXQuTB9AgKBQCDjmv/6T9nnJxqDXnzvkdJ5U66E6ZIkGRcXd+nSJalUGhcXl5CQ4H/LaDTqdLotW7ZYLBa5XL5161alUhn4UZEwhAzDOp2ETAbL0Q4bl4vg83FYi4ADPT3umBgY9DFsPB4SRRHY8IQDUOW44fVSDMOOsOEJRVFff/31X/7yl71793I4PTL9CBnYqYsbNpsL1m3iRnd3T7SHMCFxODzQLc0NqHLccLu9I3dLb9u27bHHHvvTn/7E7fQIrQjtdjdM0eWAw+ERCHjQZ8MBi8UJW2BywO32oigywp44kxOoctwgCJJh2OjmiUEfIQQCgUAmNRFqw2QwwE0DLlgsTpicxA293hrtIUxI7Ha3y0VEexQTEqhy3HC5CLvdHd0xRCahnnU64aXFBY/HG/UGJRMUhwOqHBcIgiLJkWY3T06gynGDJOmoR0JEpg0TSxCkUAhLhQ0bgqBwHI1ug5IJisvlFYuhyg0bkqQQBIGByhyAKscNiqJZluXxohmoDH2EEAgEApnURGKpQVFMRwcsPsSF7m5YYo0jra3GaA9hQmI2O6LusJmgQJXjht3uNpsd0R1DZPbcWOh14AZNw6LbHIEqxw2GYaHKcQOqHDfGg8rBrVEIBAKBTGoiFIURdYM/QWEY+KDCEV8TMshwYVkW6hw3oMpxYzyoXGR8hHRbG9w950JXlxUmdXGjqckQ7SFMSEwmR08P9BFyAaocN3p63CZTlH2EAtV8pwAACwlJREFUkYhYRRBkVLpsTEJ4PBzmTnADqhw3YLoOZ6DKcQPD0KivCKGPEAKBQCCTGlhZZlzj8ZCwsgw3YJt1bhAECaMfuQFVjhskSUe9kCSsNTqusVgcUVeRCYpeb4v2ECYkdrsHuqW5AVWOGy4XYbdH+RkiEpvaKIrArrzcEIsFsAcTN2JjYYtULgiFPOgj5AZUOW7w+dGPhIA+QggEAoFMaiLToZ61WJwREHT1Ybe7vV7YoZ4LJpM92kOYkDidhMcDd+O5AFWOGx4PGfUgksgYQsZmc0VA0NWHw+GBkQvcsFigynHB7fZCtzQ3oMpxgyDIqFdUjlAbJpfLK5EIxlrQ1YfHQ+I4huPQZzNsHA6PVAo908OGIEgURaFnmgNQ5bhBkjTDMAIBL4pjgD5CCAQCgUxqIpQ+0dUFA4u5YDY7oMOGGzqdJdpDmJDYbK6oO2wmKFDluOF0ElH3nUUooT7qW8ATFIIgaRom1HPB5YIqxwWSpCkKuqW5AFWOGxRFRz0SIjI+QkDTNI5Dr8OwoWkGRREEQaI9kIkHSdLQ0cUBmmYQBEFRqHLDBqocNxiGZVk2uqmE0EcIgUAgkElNhNowtbTABiVc6Oy0QIcNNxoauqI9hAmJ0WiPusNmggJVjhs2m8tojHIKZmRWo0jUK+hMUFAUhfui3MAwOG9cQBC4Fc8RqHLcGA8qB7dGIRAIBDKpiUzUKIB1wrhBkjTDwCcVLsDyKNygKBoGKnMDqhw3aJqJeqByZPIIaZhhww2jsQdmnnBDqzVHewgTEqvVBfvqcQOqHDccDo/VGmW3dCTaMCEIAuurcUMo5MP6atyQSqHKcUEgiH5PnAkKVDlu8HhY1NN1oI8QAoFAIJOaCLVhinoD4gmKy0VEffd8gtLT4472ECYkHg8JPfrcgCrHDa+XinohyQi1YYKdurhhs7kIAt6VuNDd3RPtIUxIHA4PdEtzA6ocN9xub9Td0uEaQqfTqVKpfP/W6XSrVq3Ky8tbuXKlTqcbWgaKxsdLuI9xEiOTifj8SPhxrz4SEqTRHsKERCIRCIXRbIgzcYEqxw2hkBf1IJKwDOHLL7+ck5PT2dnp+++zzz67Zs2a2tradevWPffcc0PLQJHYWPGIhjlZkUqFsHohN+CzFzdEIn50O8NNXKDKcUMg4IlE/OiOIaxgGZqmWZbl8Xi+gzUaTVlZmVKp7OzsnDdvXltbW8CRjMvl5fEwoZDn9VIEQQmFPBRFurpsMplIIhGgKOJbBUulQoZhnU4Cx1GRiE+StMdD8vm4QIATBOn10iIRH8dRl4ugaVYqFSAIYrd7UBSRSAQDSuHxMLfbS1GMWMzHMNTp9LDsFSkYhorFfIqi3W6Sz8cEAt5lKTwcx8KWgvN4uMfjJUm/FIJhWJlMyLKswzGkFC9NM4NIQYVCvk+KQIDz+bjHQ5Ik7fVSUqmAopi+UhCxWBBain+qEQRIJEKflMtTTXk8faQM8l36S6G83j5T3e8HZZxOb+APOpgUqVQIQKAUxu0e9AcdUm0CpfjUxukkTCa7RqMAADgcvVM96lL8agMA4pcSWjklEj6KBiunT8rlqQ68BEaqnCzLhn0J9Cqnw+EhCEok4g8oJQy1CfcScDg8vnjywEtghMrpkxL0g/ougfCVs58Uxu32+qSEVhuHw5OUFBtCbfpdAsDh8IzRJcBJOaNzfzabHQAAhUIWpDYsCyK2ORHWihDDMBy/skHX1dWlUCgAAAkJCV1dfcrr0TTjdnt9znaSpN1uL0XRLMs6nYTb7WUYBgDg8ZA+J4SvPZMvC9V3IkVRAACvl3K7vb6sXt/BLAtYFrjdXp9PNVAKRfVK8Z/os9Zu9wBSfNrma/nh9dJ+KQThOxEA4JPiBQAwDBskhSSvHOzLc3e7vT4pvoMDv4tPim8SLkshA4YXdCLlHx5FXTnY4/FSFOPxeC9/F+A/+PIk0AFTHSzF5fK63aR/Ei5/FyZoxi7/Lt6BpvrKiSRJDfZdfAcPNGNXpAT+oAAEneibMWrAGRtkqn2TcEWKb3i+70IQpNPpk3Lld+kvxTcJl3/QPso5+A8afDDLAp+U/soZKOXyVA+pnFSQcva7BLz+79L3EhhAOX2NgQa7BAZUToKgXK4+l0DgiYE6FvS79L+cB5PiO9HlCnEJBM9Y0CXQd6qv/C6+4V2eMf/wBlbOQCkh7jaBUx36EnA4CN/Bl7/LwJeA70S/cg5+CQQq57AvAb8mB14CQylndO7PLlevogbdn32zERkGXhHm5eXV1dX5RnnlUKT3YJVKVVFRkZSUpNfrZ8+e3dHREVoGy7IEQQqFUV78TkQIgsJxFOZ1ccDl8orFUOWGDUlSCILApmkcgCrHDd9iiceLZjDEwHfY2tpalmUH2zVduXLl9u3bAQCfffbZqlWrhpSBIAi0gtyA2c2cgbckbvB4OLSC3IAqxw0cx6JrBcGwEur9K0KdTrdlyxaLxSKXy7du3apUKkOfSFFMV5c1NVU+0sFOPrq7e2QyYdQ9yROR1lZjeroi2qOYeJjNDh4Pk8lE0R7IxAOqHDfsdjdJ0nJ5NGNuh2GH/SZTpVLt3bt3OFJY37YvZLjQNCy6zRGoctxgGBaqHDegynFjPKgcLLEGgUAgkElNhPxPUTf4ExSGgQ8qHPGFwEGGS4jgAEhooMpxYzyoXGTaMMESaxyx2VxeL2xyxgVY74obsMQaZ6DKccM9Dkqswa1RCAQCgUxqYGg+BAKBQCY10BBCIBAIZFIDDSEEAoFAJjXQEEIgEAhkUgMNIQQCgUAmNdAQQiAQCGRSM7aGcLi97CE+nE6nSqXy/RvOYThUV1cvXLgwJydn5syZJ0+eBHDewqajo6O0tHTKlCm5ubk7d+4EcOqGyYkTJ8Ti3sbjcOrC4e2335ZIJAqFQqFQ/OIXvwDjYN7G1hAOt5c9BADw8ssv5+TkdHZ2+v4L5zAc7rvvvl//+tcNDQ3PPvvs5s2bAZy3sPnjH/+4bt26S5cu/etf//rxj38M4NQNh7q6uhdeeMHtdvv+C6cuHGpraz/88EOj0Wg0Gl999VUwHuaNHUvUarVOp2NZVqfTaTSaMZV11UBRFEmS/p8GzmE4vPXWW16vl2XZurq6nJwcFs5b2FRWVlosFqfTuWvXroKCAhZOXdh0dnauXLnS15zc9wqcunBYsWLFvHnzJBLJokWLampq2HEwb2NrCHk8nu/2RBAEn88fU1lXGf5LC85hmDAMs2fPnuLi4l27drFw3oZJdnY2AGD37t0snLrwsNvtq1atunTpEguv1mHy1FNP7d+/3263//73v1+0aBE7DuZtbLdGFQqFxWIBAJjNZoUCduriApzDcDAYDNdff/3OnTu//PLL9evXAzhvYeN0OlmWramp+fjjjx9++GEApy48Ghoa9u3bN2XKFARBAAAIgrS0tMCpC4dXXnmltLRUKpU+8cQTFRUVYByo3NgawuH2sof0B85hONx2222PPPLIO++8o1arfa/AeQuTjRs3fvzxxzweT6PREAQB4NSFx8yZM/3rCQAAy7IZGRlw6oaEIIipU6deunQJALB3796SkhIwDlRubItuD7eXPcQPgvT+NHAOh8Rms8XFxSUkJPhfMRqNcN7CpLq6+v777zcajTwe7/XXX1+zZg2cuuECr9Zh8d133z399NM0TSuVynfffTcrKyvq8wa7T0AgEAhkUgMT6iEQCAQyqYGGEAKBQCCTGmgIIRAIBDKpgYYQAoFAIJMaaAghEAgEMqmBhhACgUAgk5r/B1QRQ54FtXgNAAAAAElFTkSuQmCC",
"image/svg+xml": [],
"text/plain": [
"Plot{Plots.GadflyPackage() n=20}"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# plot many colors (no hue should dominate your attention)\n",
"plot(Plots.fakedata(50,20)/3 .+ reverse(1:20)', l=(3, newgrad_newcolors'))"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"1000"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# notice that we have unlimited unique colors this way\n",
"colors = new_pick_colors(new_colorgradient, 1000)\n",
"length(unique(colors))"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#000000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#FFFFFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-4\">\n",
" <g fill=\"#FFFFFF\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-5\">\n",
" <text x=\"153.18\" y=\"17.89\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"21.53\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"25.16\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"28.79\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"32.43\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y10</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y11</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y12</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y13</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y14</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y15</text>\n",
" <text x=\"153.18\" y=\"72.39\" dy=\"0.35em\">y16</text>\n",
" <text x=\"153.18\" y=\"76.03\" dy=\"0.35em\">y17</text>\n",
" <text x=\"153.18\" y=\"79.66\" dy=\"0.35em\">y18</text>\n",
" <text x=\"153.18\" y=\"83.29\" dy=\"0.35em\">y19</text>\n",
" <text x=\"153.18\" y=\"86.93\" dy=\"0.35em\">y20</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-6\">\n",
" <rect x=\"150.37\" y=\"16.99\" width=\"1.82\" height=\"1.82\" fill=\"#4C4CD7\"/>\n",
" <rect x=\"150.37\" y=\"20.62\" width=\"1.82\" height=\"1.82\" fill=\"#FF4C4C\"/>\n",
" <rect x=\"150.37\" y=\"24.25\" width=\"1.82\" height=\"1.82\" fill=\"#4CCC4C\"/>\n",
" <rect x=\"150.37\" y=\"27.89\" width=\"1.82\" height=\"1.82\" fill=\"#92A8FF\"/>\n",
" <rect x=\"150.37\" y=\"31.52\" width=\"1.82\" height=\"1.82\" fill=\"#FFF84C\"/>\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#B46DFF\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#D2F24C\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#4CD5B5\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#FFC84C\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#805DF8\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#8FDF4C\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#5ECCE2\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#FFF34C\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#C584FF\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#FFFD4C\"/>\n",
" <rect x=\"150.37\" y=\"71.49\" width=\"1.82\" height=\"1.82\" fill=\"#4CD181\"/>\n",
" <rect x=\"150.37\" y=\"75.12\" width=\"1.82\" height=\"1.82\" fill=\"#FF8A4C\"/>\n",
" <rect x=\"150.37\" y=\"78.75\" width=\"1.82\" height=\"1.82\" fill=\"#6655E8\"/>\n",
" <rect x=\"150.37\" y=\"82.39\" width=\"1.82\" height=\"1.82\" fill=\"#6ED64C\"/>\n",
" <rect x=\"150.37\" y=\"86.02\" width=\"1.82\" height=\"1.82\" fill=\"#78BAF3\"/>\n",
" </g>\n",
" <g fill=\"#FFFFFF\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-7\">\n",
" <text x=\"150.37\" y=\"14.07\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-e0008f7ad4634d2280d89cbe183df130-element-9)\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,79.15 L 149.37 79.15\"/>\n",
" <path fill=\"none\" d=\"M6.13,60.11 L 149.37 60.11\"/>\n",
" <path fill=\"none\" d=\"M6.13,41.07 L 149.37 41.07\"/>\n",
" <path fill=\"none\" d=\"M6.13,22.04 L 149.37 22.04\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4D4DD7\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,22.04 L 13.7 22.65 16.49 22.08 19.27 22.92 22.06 22.88 24.84 22.81 27.63 23.24 30.41 23.18 33.2 26.35 35.98 23.94 38.76 22.33 41.55 22.6 44.33 26.25 47.12 26.1 49.9 25.01 52.69 25.09 55.47 22.4 58.26 24.34 61.04 24.51 63.83 25.12 66.61 25.79 69.4 26.56 72.18 26.47 74.97 28.48 77.75 29.22 80.53 30.76 83.32 30.19 86.1 30.52 88.89 30.46 91.67 30.73 94.46 30.75 97.24 31.1 100.03 31.54 102.81 29.95 105.6 29.48 108.38 29.52 111.17 28.71 113.95 27.89 116.74 27.01 119.52 26.19 122.3 27.21 125.09 27.08 127.87 27.39 130.66 26.26 133.44 27.77 136.23 27.99 139.01 28.6 141.8 30.24 144.58 29.62 147.37 28.44\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FF4D4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,25.84 L 13.7 27.47 16.49 26.76 19.27 26.16 22.06 25.7 24.84 25.83 27.63 25.06 30.41 25.7 33.2 26.53 35.98 25.74 38.76 25.86 41.55 26.81 44.33 24.93 47.12 24.98 49.9 24.17 52.69 24.02 55.47 24.57 58.26 24.95 61.04 24.28 63.83 24.71 66.61 24.58 69.4 23.43 72.18 21.49 74.97 22.28 77.75 25.15 80.53 25.66 83.32 24.8 86.1 21.8 88.89 20.83 91.67 23.52 94.46 23.36 97.24 21.76 100.03 22.1 102.81 21.87 105.6 23.75 108.38 23.78 111.17 24.42 113.95 24.5 116.74 23.54 119.52 23.87 122.3 24.49 125.09 24.84 127.87 26.25 130.66 27.09 133.44 26.69 136.23 24.76 139.01 23.52 141.8 24.19 144.58 23.75 147.37 23.6\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DCC4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,29.65 L 13.7 31.32 16.49 32.55 19.27 29.25 22.06 27.15 24.84 29.17 27.63 29.04 30.41 27.47 33.2 27.46 35.98 26.09 38.76 24.86 41.55 26.38 44.33 26.16 47.12 26.21 49.9 27.15 52.69 28.09 55.47 28.61 58.26 28.1 61.04 28.9 63.83 28.77 66.61 27.29 69.4 28.46 72.18 29.06 74.97 30.01 77.75 29.67 80.53 28.58 83.32 28.65 86.1 26.5 88.89 26.56 91.67 28.12 94.46 29 97.24 31.03 100.03 28.28 102.81 27.19 105.6 27.84 108.38 28.43 111.17 29.53 113.95 31.75 116.74 33.38 119.52 33.06 122.3 33.17 125.09 32.11 127.87 32.75 130.66 37.07 133.44 37.96 136.23 37.76 139.01 37.37 141.8 37.48 144.58 39.25 147.37 39.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#91A7FF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,33.46 L 13.7 34.22 16.49 35.07 19.27 36.71 22.06 37.31 24.84 36.37 27.63 37.75 30.41 36.53 33.2 33.3 35.98 33.26 38.76 36.09 41.55 37.11 44.33 36.66 47.12 35.9 49.9 36.68 52.69 39.61 55.47 39.27 58.26 38.65 61.04 39.43 63.83 37.95 66.61 38.65 69.4 38.57 72.18 38.46 74.97 39.41 77.75 40.97 80.53 38.11 83.32 39.09 86.1 39.45 88.89 40.43 91.67 38.44 94.46 38.92 97.24 36.95 100.03 36.82 102.81 35.72 105.6 34.46 108.38 35.4 111.17 33.48 113.95 35.19 116.74 35.14 119.52 34.62 122.3 34.39 125.09 34.71 127.87 33.44 130.66 33.05 133.44 30.85 136.23 32.49 139.01 33.66 141.8 34.75 144.58 31.98 147.37 31.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFF84D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,37.27 L 13.7 35.36 16.49 37.09 19.27 37.18 22.06 39.21 24.84 38.42 27.63 38.51 30.41 38.43 33.2 37.44 35.98 39.55 38.76 40.11 41.55 40.63 44.33 39.82 47.12 39.87 49.9 38.09 52.69 36.89 55.47 36.36 58.26 38.04 61.04 36.96 63.83 38.37 66.61 36.68 69.4 39.2 72.18 40.35 74.97 39.52 77.75 39.32 80.53 42.55 83.32 44.82 86.1 44.76 88.89 44.26 91.67 43.67 94.46 43.29 97.24 42.39 100.03 41.62 102.81 42.24 105.6 43.95 108.38 42.9 111.17 42.3 113.95 40.39 116.74 40.1 119.52 37.48 122.3 36.62 125.09 36.5 127.87 37.44 130.66 36.98 133.44 36.29 136.23 36.99 139.01 35.55 141.8 33.49 144.58 33.82 147.37 33.93\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B46DFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 41.8 16.49 40.31 19.27 40.41 22.06 39.33 24.84 39.22 27.63 39.38 30.41 39.09 33.2 39.37 35.98 37.92 38.76 35.69 41.55 35.33 44.33 34.27 47.12 33.83 49.9 34.23 52.69 31.94 55.47 30.32 58.26 30.12 61.04 31.73 63.83 33.79 66.61 34.72 69.4 36.11 72.18 35.85 74.97 36.8 77.75 36.58 80.53 37.2 83.32 34.81 86.1 35.7 88.89 33.95 91.67 34.3 94.46 35.86 97.24 39.13 100.03 39.01 102.81 38.49 105.6 36.28 108.38 37.34 111.17 36.66 113.95 36.52 116.74 35.25 119.52 35.36 122.3 36.2 125.09 37.46 127.87 37.72 130.66 37.24 133.44 35.87 136.23 35.31 139.01 35.33 141.8 35.44 144.58 35.98 147.37 36.45\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D2F24D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,44.88 L 13.7 45.95 16.49 43.32 19.27 43.45 22.06 40.3 24.84 40.59 27.63 40.51 30.41 41.04 33.2 42.06 35.98 43.25 38.76 45.27 41.55 44.75 44.33 44.54 47.12 45.38 49.9 45.39 52.69 47.06 55.47 47.62 58.26 45.99 61.04 47.78 63.83 47.35 66.61 46.61 69.4 46.68 72.18 48.24 74.97 47.8 77.75 46.55 80.53 46.86 83.32 49.34 86.1 47.68 88.89 46.95 91.67 47.13 94.46 47.98 97.24 48.44 100.03 46.88 102.81 45.21 105.6 45.05 108.38 43.57 111.17 44.91 113.95 45.1 116.74 45.11 119.52 46.85 122.3 49.73 125.09 49.27 127.87 47.95 130.66 49.82 133.44 50.64 136.23 49.91 139.01 49.95 141.8 47.16 144.58 47.05 147.37 45.26\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DD5B5\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,48.69 L 13.7 49.88 16.49 48.54 19.27 47.94 22.06 48.18 24.84 47.28 27.63 47.42 30.41 46.28 33.2 46.23 35.98 45.36 38.76 45.52 41.55 42.86 44.33 43.62 47.12 46.28 49.9 45.63 52.69 46.08 55.47 45.85 58.26 46.42 61.04 46.18 63.83 44.77 66.61 43.17 69.4 43.28 72.18 43.49 74.97 42.84 77.75 45.77 80.53 47.26 83.32 47.32 86.1 48.36 88.89 47.66 91.67 49.07 94.46 49.1 97.24 50.01 100.03 49.5 102.81 48.39 105.6 46.64 108.38 45.84 111.17 45.59 113.95 45.63 116.74 48.55 119.52 47.71 122.3 48.59 125.09 47.68 127.87 45.94 130.66 46.42 133.44 47.53 136.23 47.27 139.01 47.86 141.8 47.98 144.58 50.63 147.37 50.5\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFC84D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,52.5 L 13.7 51.8 16.49 53 19.27 53.33 22.06 54.39 24.84 55.18 27.63 55.68 30.41 57.5 33.2 57.18 35.98 57.35 38.76 57.14 41.55 54.8 44.33 54.16 47.12 54.62 49.9 54.05 52.69 55.13 55.47 54.77 58.26 52.55 61.04 52.55 63.83 51.37 66.61 52.65 69.4 53.03 72.18 51.37 74.97 51.23 77.75 50.21 80.53 52.43 83.32 53.41 86.1 52.18 88.89 54.73 91.67 55.46 94.46 55.36 97.24 56.61 100.03 54.06 102.81 54.88 105.6 53.79 108.38 51.87 111.17 52.4 113.95 53.11 116.74 53.31 119.52 54.76 122.3 55.8 125.09 55.19 127.87 54.71 130.66 54.76 133.44 54.82 136.23 56.22 139.01 57.11 141.8 56.11 144.58 55.42 147.37 55.67\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#805DF8\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,56.3 L 13.7 54.77 16.49 54.17 19.27 54.58 22.06 55.21 24.84 56.14 27.63 56.47 30.41 56.75 33.2 56.73 35.98 57.99 38.76 59.08 41.55 57.34 44.33 55.96 47.12 56.9 49.9 57.08 52.69 54.68 55.47 53.63 58.26 55.2 61.04 57.51 63.83 56.74 66.61 55.42 69.4 55.36 72.18 56.16 74.97 56.43 77.75 56.85 80.53 57.43 83.32 57.49 86.1 56.12 88.89 53.89 91.67 53 94.46 52.47 97.24 52.44 100.03 52.38 102.81 52.82 105.6 53.13 108.38 53.48 111.17 52.49 113.95 53.01 116.74 55.33 119.52 53.86 122.3 53.85 125.09 54.89 127.87 55.52 130.66 56.39 133.44 57.98 136.23 56.46 139.01 58.18 141.8 58.85 144.58 60.99 147.37 61.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#8FDF4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-24\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 60.1 16.49 59.44 19.27 60.22 22.06 60.8 24.84 61.4 27.63 61.47 30.41 61.05 33.2 58.98 35.98 58.86 38.76 56.74 41.55 55.63 44.33 56.4 47.12 57.7 49.9 55.23 52.69 57.17 55.47 57.26 58.26 57.57 61.04 56.92 63.83 56.95 66.61 57.82 69.4 58.75 72.18 61.31 74.97 61.95 77.75 64.67 80.53 63.9 83.32 61.67 86.1 61.45 88.89 63.03 91.67 63.48 94.46 62.03 97.24 63.11 100.03 63.77 102.81 62.49 105.6 63.26 108.38 65.2 111.17 65.44 113.95 63.24 116.74 63.09 119.52 63.58 122.3 64.03 125.09 62.7 127.87 61.98 130.66 60.52 133.44 59.68 136.23 58.77 139.01 57.49 141.8 56.19 144.58 56.14 147.37 57.11\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#5ECBE2\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-25\">\n",
" <path fill=\"none\" d=\"M10.92,63.92 L 13.7 63.85 16.49 64.9 19.27 65.5 22.06 64.94 24.84 63.06 27.63 61.89 30.41 61.37 33.2 61.19 35.98 60.14 38.76 60.68 41.55 62.62 44.33 61.71 47.12 61.07 49.9 61.43 52.69 62.99 55.47 62.28 58.26 63.35 61.04 62.68 63.83 64.04 66.61 65.38 69.4 64.33 72.18 66.32 74.97 62.12 77.75 61.2 80.53 60.93 83.32 60.32 86.1 59.21 88.89 60.39 91.67 59.67 94.46 61.5 97.24 61.46 100.03 61.05 102.81 62.34 105.6 60.96 108.38 60.66 111.17 61.21 113.95 61.61 116.74 63.59 119.52 64.6 122.3 65.65 125.09 66.07 127.87 66.94 130.66 66.56 133.44 64.41 136.23 64.66 139.01 63.88 141.8 62.93 144.58 61.79 147.37 63.33\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFF34D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-26\">\n",
" <path fill=\"none\" d=\"M10.92,67.73 L 13.7 69.47 16.49 69.79 19.27 70.41 22.06 71.64 24.84 72.31 27.63 72.78 30.41 73.17 33.2 70.12 35.98 69.23 38.76 70.19 41.55 67.48 44.33 66.31 47.12 65.8 49.9 67.39 52.69 66.66 55.47 66.33 58.26 65.79 61.04 68.53 63.83 71.32 66.61 70.66 69.4 71.39 72.18 73.08 74.97 72.9 77.75 72.07 80.53 70.79 83.32 71.51 86.1 72.48 88.89 73.53 91.67 72.87 94.46 70.04 97.24 70.81 100.03 72.29 102.81 73.16 105.6 72.07 108.38 73.77 111.17 74.1 113.95 75.51 116.74 73.64 119.52 72.29 122.3 70.2 125.09 68.89 127.87 68.8 130.66 69.89 133.44 69.43 136.23 67.76 139.01 67.21 141.8 67.65 144.58 69.35 147.37 69.23\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#C583FF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-27\">\n",
" <path fill=\"none\" d=\"M10.92,71.53 L 13.7 72.85 16.49 72.99 19.27 75.48 22.06 75.81 24.84 75.5 27.63 76.17 30.41 76.04 33.2 76.42 35.98 77.47 38.76 75.74 41.55 75.51 44.33 73.31 47.12 72.78 49.9 71.22 52.69 72.63 55.47 74.12 58.26 75.21 61.04 74.44 63.83 73.47 66.61 71.46 69.4 71.52 72.18 69.14 74.97 68.81 77.75 66.41 80.53 64.73 83.32 64.06 86.1 65.1 88.89 65.03 91.67 64.1 94.46 62.88 97.24 63.79 100.03 61.84 102.81 62.12 105.6 62.33 108.38 61.71 111.17 62.07 113.95 63.67 116.74 67.72 119.52 66.77 122.3 66.19 125.09 64.72 127.87 64.02 130.66 65.88 133.44 65.25 136.23 66.86 139.01 67.25 141.8 66.93 144.58 64.61 147.37 65.5\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFFD4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-28\">\n",
" <path fill=\"none\" d=\"M10.92,75.34 L 13.7 75.83 16.49 72.97 19.27 73.66 22.06 75.42 24.84 76.7 27.63 77.49 30.41 77.07 33.2 77.62 35.98 78.23 38.76 78.73 41.55 78.29 44.33 79.87 47.12 80.42 49.9 80.38 52.69 79.46 55.47 80.32 58.26 81.12 61.04 80.18 63.83 80.2 66.61 78.72 69.4 78.49 72.18 77.32 74.97 75.95 77.75 75.03 80.53 73.66 83.32 75.95 86.1 75.41 88.89 77.12 91.67 75.73 94.46 75.3 97.24 75.17 100.03 75.17 102.81 73.97 105.6 73.86 108.38 74.95 111.17 73.81 113.95 74.69 116.74 75.05 119.52 74.5 122.3 74.48 125.09 74.63 127.87 75.32 130.66 74.46 133.44 74.86 136.23 74.28 139.01 73.61 141.8 76.36 144.58 74.94 147.37 73.02\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DD181\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-29\">\n",
" <path fill=\"none\" d=\"M10.92,79.15 L 13.7 80.25 16.49 79.47 19.27 78.59 22.06 79.3 24.84 80.95 27.63 82.23 30.41 84.57 33.2 84.51 35.98 84.14 38.76 83.72 41.55 84.76 44.33 86.47 47.12 84.87 49.9 82.97 52.69 82.82 55.47 83.53 58.26 83.22 61.04 83.83 63.83 81.16 66.61 80.67 69.4 81.42 72.18 80.62 74.97 78.84 77.75 79.21 80.53 77.32 83.32 74.92 86.1 74.31 88.89 72.7 91.67 73.54 94.46 74.78 97.24 75.66 100.03 74.56 102.81 75.49 105.6 77.68 108.38 79.92 111.17 81.48 113.95 82.28 116.74 81.38 119.52 80.53 122.3 80.39 125.09 80.32 127.87 79.41 130.66 81.14 133.44 80.28 136.23 79.81 139.01 80.46 141.8 78.39 144.58 79.02 147.37 78.34\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FF8A4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-30\">\n",
" <path fill=\"none\" d=\"M10.92,82.96 L 13.7 81.86 16.49 82.06 19.27 80.98 22.06 81.67 24.84 81.02 27.63 81.55 30.41 80.7 33.2 81.31 35.98 82.63 38.76 83.93 41.55 86.47 44.33 84.61 47.12 85.8 49.9 85.7 52.69 82.92 55.47 83.47 58.26 83.86 61.04 84.08 63.83 84.87 66.61 85.41 69.4 84.96 72.18 83.97 74.97 82.9 77.75 84.73 80.53 84.38 83.32 83.1 86.1 82.7 88.89 80.96 91.67 79.45 94.46 79.5 97.24 80.32 100.03 81.83 102.81 83.96 105.6 85.67 108.38 84.25 111.17 84.79 113.95 85.95 116.74 85.9 119.52 87.53 122.3 85.45 125.09 82.95 127.87 81.7 130.66 79.78 133.44 79.45 136.23 77.88 139.01 79 141.8 79.94 144.58 80.9 147.37 82.3\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6655E8\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-31\">\n",
" <path fill=\"none\" d=\"M10.92,86.76 L 13.7 86.21 16.49 85.53 19.27 86.26 22.06 84.85 24.84 85.26 27.63 85.49 30.41 85.23 33.2 84.39 35.98 84 38.76 82.16 41.55 82.25 44.33 82.07 47.12 82.21 49.9 83.1 52.69 84.93 55.47 83.92 58.26 82.61 61.04 82.56 63.83 81.17 66.61 81.74 69.4 83.1 72.18 82.36 74.97 81.07 77.75 79.2 80.53 80.55 83.32 81.52 86.1 81.09 88.89 80.92 91.67 82.65 94.46 83.83 97.24 84.32 100.03 85.9 102.81 85.37 105.6 87.59 108.38 86.01 111.17 86.62 113.95 86.49 116.74 87.44 119.52 86.05 122.3 84.57 125.09 86.57 127.87 85.19 130.66 86.42 133.44 85.9 136.23 87.51 139.01 88.98 141.8 88.63 144.58 87.57 147.37 88.03\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6ED64D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-32\">\n",
" <path fill=\"none\" d=\"M10.92,90.57 L 13.7 90.04 16.49 91.75 19.27 91.49 22.06 91.48 24.84 92.25 27.63 94.74 30.41 93.2 33.2 92.43 35.98 92.84 38.76 91.79 41.55 91.02 44.33 91.4 47.12 92.28 49.9 92.89 52.69 92.69 55.47 92.43 58.26 93.8 61.04 94.83 63.83 95.36 66.61 94.77 69.4 95.99 72.18 95.87 74.97 94.53 77.75 94.51 80.53 94.46 83.32 93.34 86.1 91.6 88.89 92.12 91.67 92.72 94.46 92.22 97.24 91.7 100.03 90.82 102.81 92.49 105.6 93 108.38 94.14 111.17 93.01 113.95 93.35 116.74 92.66 119.52 92.84 122.3 95.15 125.09 94.71 127.87 93.95 130.66 94.68 133.44 93.1 136.23 89.68 139.01 90.37 141.8 90.79 144.58 91.19 147.37 88.91\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#78B9F3\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-33\">\n",
" <path fill=\"none\" d=\"M10.92,94.38 L 13.7 95.02 16.49 95.77 19.27 95.84 22.06 95.41 24.84 95.73 27.63 95.54 30.41 95.46 33.2 93.32 35.98 92.83 38.76 92.29 41.55 93.41 44.33 93.92 47.12 95.05 49.9 95.8 52.69 94.18 55.47 94.68 58.26 94.36 61.04 93.76 63.83 94.04 66.61 92.43 69.4 92.19 72.18 93.91 74.97 95.53 77.75 94.58 80.53 94.26 83.32 93.52 86.1 95.17 88.89 94.47 91.67 94.26 94.46 92.64 97.24 92.5 100.03 95.1 102.81 96.05 105.6 96.6 108.38 94.25 111.17 94.87 113.95 95.08 116.74 94.02 119.52 94.07 122.3 94.05 125.09 95.6 127.87 94.62 130.66 94.21 133.44 96.63 136.23 96.3 139.01 96.01 141.8 96.54 144.58 97.58 147.37 96.03\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#FFFFFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-34\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"79.15\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"60.11\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"41.07\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" <text x=\"5.13\" y=\"22.04\" text-anchor=\"end\" dy=\"0.35em\">20</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">25</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/html": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#000000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#FFFFFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-4\">\n",
" <g fill=\"#FFFFFF\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-5\">\n",
" <text x=\"153.18\" y=\"17.89\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"21.53\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"25.16\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"28.79\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"32.43\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y10</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y11</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y12</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y13</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y14</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y15</text>\n",
" <text x=\"153.18\" y=\"72.39\" dy=\"0.35em\">y16</text>\n",
" <text x=\"153.18\" y=\"76.03\" dy=\"0.35em\">y17</text>\n",
" <text x=\"153.18\" y=\"79.66\" dy=\"0.35em\">y18</text>\n",
" <text x=\"153.18\" y=\"83.29\" dy=\"0.35em\">y19</text>\n",
" <text x=\"153.18\" y=\"86.93\" dy=\"0.35em\">y20</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-6\">\n",
" <rect x=\"150.37\" y=\"16.99\" width=\"1.82\" height=\"1.82\" fill=\"#4C4CD7\"/>\n",
" <rect x=\"150.37\" y=\"20.62\" width=\"1.82\" height=\"1.82\" fill=\"#FF4C4C\"/>\n",
" <rect x=\"150.37\" y=\"24.25\" width=\"1.82\" height=\"1.82\" fill=\"#4CCC4C\"/>\n",
" <rect x=\"150.37\" y=\"27.89\" width=\"1.82\" height=\"1.82\" fill=\"#92A8FF\"/>\n",
" <rect x=\"150.37\" y=\"31.52\" width=\"1.82\" height=\"1.82\" fill=\"#FFF84C\"/>\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#B46DFF\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#D2F24C\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#4CD5B5\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#FFC84C\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#805DF8\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#8FDF4C\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#5ECCE2\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#FFF34C\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#C584FF\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#FFFD4C\"/>\n",
" <rect x=\"150.37\" y=\"71.49\" width=\"1.82\" height=\"1.82\" fill=\"#4CD181\"/>\n",
" <rect x=\"150.37\" y=\"75.12\" width=\"1.82\" height=\"1.82\" fill=\"#FF8A4C\"/>\n",
" <rect x=\"150.37\" y=\"78.75\" width=\"1.82\" height=\"1.82\" fill=\"#6655E8\"/>\n",
" <rect x=\"150.37\" y=\"82.39\" width=\"1.82\" height=\"1.82\" fill=\"#6ED64C\"/>\n",
" <rect x=\"150.37\" y=\"86.02\" width=\"1.82\" height=\"1.82\" fill=\"#78BAF3\"/>\n",
" </g>\n",
" <g fill=\"#FFFFFF\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-7\">\n",
" <text x=\"150.37\" y=\"14.07\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-e0008f7ad4634d2280d89cbe183df130-element-9)\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,79.15 L 149.37 79.15\"/>\n",
" <path fill=\"none\" d=\"M6.13,60.11 L 149.37 60.11\"/>\n",
" <path fill=\"none\" d=\"M6.13,41.07 L 149.37 41.07\"/>\n",
" <path fill=\"none\" d=\"M6.13,22.04 L 149.37 22.04\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4D4DD7\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,22.04 L 13.7 22.65 16.49 22.08 19.27 22.92 22.06 22.88 24.84 22.81 27.63 23.24 30.41 23.18 33.2 26.35 35.98 23.94 38.76 22.33 41.55 22.6 44.33 26.25 47.12 26.1 49.9 25.01 52.69 25.09 55.47 22.4 58.26 24.34 61.04 24.51 63.83 25.12 66.61 25.79 69.4 26.56 72.18 26.47 74.97 28.48 77.75 29.22 80.53 30.76 83.32 30.19 86.1 30.52 88.89 30.46 91.67 30.73 94.46 30.75 97.24 31.1 100.03 31.54 102.81 29.95 105.6 29.48 108.38 29.52 111.17 28.71 113.95 27.89 116.74 27.01 119.52 26.19 122.3 27.21 125.09 27.08 127.87 27.39 130.66 26.26 133.44 27.77 136.23 27.99 139.01 28.6 141.8 30.24 144.58 29.62 147.37 28.44\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FF4D4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,25.84 L 13.7 27.47 16.49 26.76 19.27 26.16 22.06 25.7 24.84 25.83 27.63 25.06 30.41 25.7 33.2 26.53 35.98 25.74 38.76 25.86 41.55 26.81 44.33 24.93 47.12 24.98 49.9 24.17 52.69 24.02 55.47 24.57 58.26 24.95 61.04 24.28 63.83 24.71 66.61 24.58 69.4 23.43 72.18 21.49 74.97 22.28 77.75 25.15 80.53 25.66 83.32 24.8 86.1 21.8 88.89 20.83 91.67 23.52 94.46 23.36 97.24 21.76 100.03 22.1 102.81 21.87 105.6 23.75 108.38 23.78 111.17 24.42 113.95 24.5 116.74 23.54 119.52 23.87 122.3 24.49 125.09 24.84 127.87 26.25 130.66 27.09 133.44 26.69 136.23 24.76 139.01 23.52 141.8 24.19 144.58 23.75 147.37 23.6\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DCC4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,29.65 L 13.7 31.32 16.49 32.55 19.27 29.25 22.06 27.15 24.84 29.17 27.63 29.04 30.41 27.47 33.2 27.46 35.98 26.09 38.76 24.86 41.55 26.38 44.33 26.16 47.12 26.21 49.9 27.15 52.69 28.09 55.47 28.61 58.26 28.1 61.04 28.9 63.83 28.77 66.61 27.29 69.4 28.46 72.18 29.06 74.97 30.01 77.75 29.67 80.53 28.58 83.32 28.65 86.1 26.5 88.89 26.56 91.67 28.12 94.46 29 97.24 31.03 100.03 28.28 102.81 27.19 105.6 27.84 108.38 28.43 111.17 29.53 113.95 31.75 116.74 33.38 119.52 33.06 122.3 33.17 125.09 32.11 127.87 32.75 130.66 37.07 133.44 37.96 136.23 37.76 139.01 37.37 141.8 37.48 144.58 39.25 147.37 39.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#91A7FF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,33.46 L 13.7 34.22 16.49 35.07 19.27 36.71 22.06 37.31 24.84 36.37 27.63 37.75 30.41 36.53 33.2 33.3 35.98 33.26 38.76 36.09 41.55 37.11 44.33 36.66 47.12 35.9 49.9 36.68 52.69 39.61 55.47 39.27 58.26 38.65 61.04 39.43 63.83 37.95 66.61 38.65 69.4 38.57 72.18 38.46 74.97 39.41 77.75 40.97 80.53 38.11 83.32 39.09 86.1 39.45 88.89 40.43 91.67 38.44 94.46 38.92 97.24 36.95 100.03 36.82 102.81 35.72 105.6 34.46 108.38 35.4 111.17 33.48 113.95 35.19 116.74 35.14 119.52 34.62 122.3 34.39 125.09 34.71 127.87 33.44 130.66 33.05 133.44 30.85 136.23 32.49 139.01 33.66 141.8 34.75 144.58 31.98 147.37 31.42\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFF84D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,37.27 L 13.7 35.36 16.49 37.09 19.27 37.18 22.06 39.21 24.84 38.42 27.63 38.51 30.41 38.43 33.2 37.44 35.98 39.55 38.76 40.11 41.55 40.63 44.33 39.82 47.12 39.87 49.9 38.09 52.69 36.89 55.47 36.36 58.26 38.04 61.04 36.96 63.83 38.37 66.61 36.68 69.4 39.2 72.18 40.35 74.97 39.52 77.75 39.32 80.53 42.55 83.32 44.82 86.1 44.76 88.89 44.26 91.67 43.67 94.46 43.29 97.24 42.39 100.03 41.62 102.81 42.24 105.6 43.95 108.38 42.9 111.17 42.3 113.95 40.39 116.74 40.1 119.52 37.48 122.3 36.62 125.09 36.5 127.87 37.44 130.66 36.98 133.44 36.29 136.23 36.99 139.01 35.55 141.8 33.49 144.58 33.82 147.37 33.93\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B46DFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 41.8 16.49 40.31 19.27 40.41 22.06 39.33 24.84 39.22 27.63 39.38 30.41 39.09 33.2 39.37 35.98 37.92 38.76 35.69 41.55 35.33 44.33 34.27 47.12 33.83 49.9 34.23 52.69 31.94 55.47 30.32 58.26 30.12 61.04 31.73 63.83 33.79 66.61 34.72 69.4 36.11 72.18 35.85 74.97 36.8 77.75 36.58 80.53 37.2 83.32 34.81 86.1 35.7 88.89 33.95 91.67 34.3 94.46 35.86 97.24 39.13 100.03 39.01 102.81 38.49 105.6 36.28 108.38 37.34 111.17 36.66 113.95 36.52 116.74 35.25 119.52 35.36 122.3 36.2 125.09 37.46 127.87 37.72 130.66 37.24 133.44 35.87 136.23 35.31 139.01 35.33 141.8 35.44 144.58 35.98 147.37 36.45\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D2F24D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,44.88 L 13.7 45.95 16.49 43.32 19.27 43.45 22.06 40.3 24.84 40.59 27.63 40.51 30.41 41.04 33.2 42.06 35.98 43.25 38.76 45.27 41.55 44.75 44.33 44.54 47.12 45.38 49.9 45.39 52.69 47.06 55.47 47.62 58.26 45.99 61.04 47.78 63.83 47.35 66.61 46.61 69.4 46.68 72.18 48.24 74.97 47.8 77.75 46.55 80.53 46.86 83.32 49.34 86.1 47.68 88.89 46.95 91.67 47.13 94.46 47.98 97.24 48.44 100.03 46.88 102.81 45.21 105.6 45.05 108.38 43.57 111.17 44.91 113.95 45.1 116.74 45.11 119.52 46.85 122.3 49.73 125.09 49.27 127.87 47.95 130.66 49.82 133.44 50.64 136.23 49.91 139.01 49.95 141.8 47.16 144.58 47.05 147.37 45.26\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DD5B5\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,48.69 L 13.7 49.88 16.49 48.54 19.27 47.94 22.06 48.18 24.84 47.28 27.63 47.42 30.41 46.28 33.2 46.23 35.98 45.36 38.76 45.52 41.55 42.86 44.33 43.62 47.12 46.28 49.9 45.63 52.69 46.08 55.47 45.85 58.26 46.42 61.04 46.18 63.83 44.77 66.61 43.17 69.4 43.28 72.18 43.49 74.97 42.84 77.75 45.77 80.53 47.26 83.32 47.32 86.1 48.36 88.89 47.66 91.67 49.07 94.46 49.1 97.24 50.01 100.03 49.5 102.81 48.39 105.6 46.64 108.38 45.84 111.17 45.59 113.95 45.63 116.74 48.55 119.52 47.71 122.3 48.59 125.09 47.68 127.87 45.94 130.66 46.42 133.44 47.53 136.23 47.27 139.01 47.86 141.8 47.98 144.58 50.63 147.37 50.5\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFC84D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,52.5 L 13.7 51.8 16.49 53 19.27 53.33 22.06 54.39 24.84 55.18 27.63 55.68 30.41 57.5 33.2 57.18 35.98 57.35 38.76 57.14 41.55 54.8 44.33 54.16 47.12 54.62 49.9 54.05 52.69 55.13 55.47 54.77 58.26 52.55 61.04 52.55 63.83 51.37 66.61 52.65 69.4 53.03 72.18 51.37 74.97 51.23 77.75 50.21 80.53 52.43 83.32 53.41 86.1 52.18 88.89 54.73 91.67 55.46 94.46 55.36 97.24 56.61 100.03 54.06 102.81 54.88 105.6 53.79 108.38 51.87 111.17 52.4 113.95 53.11 116.74 53.31 119.52 54.76 122.3 55.8 125.09 55.19 127.87 54.71 130.66 54.76 133.44 54.82 136.23 56.22 139.01 57.11 141.8 56.11 144.58 55.42 147.37 55.67\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#805DF8\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,56.3 L 13.7 54.77 16.49 54.17 19.27 54.58 22.06 55.21 24.84 56.14 27.63 56.47 30.41 56.75 33.2 56.73 35.98 57.99 38.76 59.08 41.55 57.34 44.33 55.96 47.12 56.9 49.9 57.08 52.69 54.68 55.47 53.63 58.26 55.2 61.04 57.51 63.83 56.74 66.61 55.42 69.4 55.36 72.18 56.16 74.97 56.43 77.75 56.85 80.53 57.43 83.32 57.49 86.1 56.12 88.89 53.89 91.67 53 94.46 52.47 97.24 52.44 100.03 52.38 102.81 52.82 105.6 53.13 108.38 53.48 111.17 52.49 113.95 53.01 116.74 55.33 119.52 53.86 122.3 53.85 125.09 54.89 127.87 55.52 130.66 56.39 133.44 57.98 136.23 56.46 139.01 58.18 141.8 58.85 144.58 60.99 147.37 61.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#8FDF4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-24\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 60.1 16.49 59.44 19.27 60.22 22.06 60.8 24.84 61.4 27.63 61.47 30.41 61.05 33.2 58.98 35.98 58.86 38.76 56.74 41.55 55.63 44.33 56.4 47.12 57.7 49.9 55.23 52.69 57.17 55.47 57.26 58.26 57.57 61.04 56.92 63.83 56.95 66.61 57.82 69.4 58.75 72.18 61.31 74.97 61.95 77.75 64.67 80.53 63.9 83.32 61.67 86.1 61.45 88.89 63.03 91.67 63.48 94.46 62.03 97.24 63.11 100.03 63.77 102.81 62.49 105.6 63.26 108.38 65.2 111.17 65.44 113.95 63.24 116.74 63.09 119.52 63.58 122.3 64.03 125.09 62.7 127.87 61.98 130.66 60.52 133.44 59.68 136.23 58.77 139.01 57.49 141.8 56.19 144.58 56.14 147.37 57.11\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#5ECBE2\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-25\">\n",
" <path fill=\"none\" d=\"M10.92,63.92 L 13.7 63.85 16.49 64.9 19.27 65.5 22.06 64.94 24.84 63.06 27.63 61.89 30.41 61.37 33.2 61.19 35.98 60.14 38.76 60.68 41.55 62.62 44.33 61.71 47.12 61.07 49.9 61.43 52.69 62.99 55.47 62.28 58.26 63.35 61.04 62.68 63.83 64.04 66.61 65.38 69.4 64.33 72.18 66.32 74.97 62.12 77.75 61.2 80.53 60.93 83.32 60.32 86.1 59.21 88.89 60.39 91.67 59.67 94.46 61.5 97.24 61.46 100.03 61.05 102.81 62.34 105.6 60.96 108.38 60.66 111.17 61.21 113.95 61.61 116.74 63.59 119.52 64.6 122.3 65.65 125.09 66.07 127.87 66.94 130.66 66.56 133.44 64.41 136.23 64.66 139.01 63.88 141.8 62.93 144.58 61.79 147.37 63.33\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFF34D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-26\">\n",
" <path fill=\"none\" d=\"M10.92,67.73 L 13.7 69.47 16.49 69.79 19.27 70.41 22.06 71.64 24.84 72.31 27.63 72.78 30.41 73.17 33.2 70.12 35.98 69.23 38.76 70.19 41.55 67.48 44.33 66.31 47.12 65.8 49.9 67.39 52.69 66.66 55.47 66.33 58.26 65.79 61.04 68.53 63.83 71.32 66.61 70.66 69.4 71.39 72.18 73.08 74.97 72.9 77.75 72.07 80.53 70.79 83.32 71.51 86.1 72.48 88.89 73.53 91.67 72.87 94.46 70.04 97.24 70.81 100.03 72.29 102.81 73.16 105.6 72.07 108.38 73.77 111.17 74.1 113.95 75.51 116.74 73.64 119.52 72.29 122.3 70.2 125.09 68.89 127.87 68.8 130.66 69.89 133.44 69.43 136.23 67.76 139.01 67.21 141.8 67.65 144.58 69.35 147.37 69.23\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#C583FF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-27\">\n",
" <path fill=\"none\" d=\"M10.92,71.53 L 13.7 72.85 16.49 72.99 19.27 75.48 22.06 75.81 24.84 75.5 27.63 76.17 30.41 76.04 33.2 76.42 35.98 77.47 38.76 75.74 41.55 75.51 44.33 73.31 47.12 72.78 49.9 71.22 52.69 72.63 55.47 74.12 58.26 75.21 61.04 74.44 63.83 73.47 66.61 71.46 69.4 71.52 72.18 69.14 74.97 68.81 77.75 66.41 80.53 64.73 83.32 64.06 86.1 65.1 88.89 65.03 91.67 64.1 94.46 62.88 97.24 63.79 100.03 61.84 102.81 62.12 105.6 62.33 108.38 61.71 111.17 62.07 113.95 63.67 116.74 67.72 119.52 66.77 122.3 66.19 125.09 64.72 127.87 64.02 130.66 65.88 133.44 65.25 136.23 66.86 139.01 67.25 141.8 66.93 144.58 64.61 147.37 65.5\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FFFD4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-28\">\n",
" <path fill=\"none\" d=\"M10.92,75.34 L 13.7 75.83 16.49 72.97 19.27 73.66 22.06 75.42 24.84 76.7 27.63 77.49 30.41 77.07 33.2 77.62 35.98 78.23 38.76 78.73 41.55 78.29 44.33 79.87 47.12 80.42 49.9 80.38 52.69 79.46 55.47 80.32 58.26 81.12 61.04 80.18 63.83 80.2 66.61 78.72 69.4 78.49 72.18 77.32 74.97 75.95 77.75 75.03 80.53 73.66 83.32 75.95 86.1 75.41 88.89 77.12 91.67 75.73 94.46 75.3 97.24 75.17 100.03 75.17 102.81 73.97 105.6 73.86 108.38 74.95 111.17 73.81 113.95 74.69 116.74 75.05 119.52 74.5 122.3 74.48 125.09 74.63 127.87 75.32 130.66 74.46 133.44 74.86 136.23 74.28 139.01 73.61 141.8 76.36 144.58 74.94 147.37 73.02\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4DD181\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-29\">\n",
" <path fill=\"none\" d=\"M10.92,79.15 L 13.7 80.25 16.49 79.47 19.27 78.59 22.06 79.3 24.84 80.95 27.63 82.23 30.41 84.57 33.2 84.51 35.98 84.14 38.76 83.72 41.55 84.76 44.33 86.47 47.12 84.87 49.9 82.97 52.69 82.82 55.47 83.53 58.26 83.22 61.04 83.83 63.83 81.16 66.61 80.67 69.4 81.42 72.18 80.62 74.97 78.84 77.75 79.21 80.53 77.32 83.32 74.92 86.1 74.31 88.89 72.7 91.67 73.54 94.46 74.78 97.24 75.66 100.03 74.56 102.81 75.49 105.6 77.68 108.38 79.92 111.17 81.48 113.95 82.28 116.74 81.38 119.52 80.53 122.3 80.39 125.09 80.32 127.87 79.41 130.66 81.14 133.44 80.28 136.23 79.81 139.01 80.46 141.8 78.39 144.58 79.02 147.37 78.34\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#FF8A4D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-30\">\n",
" <path fill=\"none\" d=\"M10.92,82.96 L 13.7 81.86 16.49 82.06 19.27 80.98 22.06 81.67 24.84 81.02 27.63 81.55 30.41 80.7 33.2 81.31 35.98 82.63 38.76 83.93 41.55 86.47 44.33 84.61 47.12 85.8 49.9 85.7 52.69 82.92 55.47 83.47 58.26 83.86 61.04 84.08 63.83 84.87 66.61 85.41 69.4 84.96 72.18 83.97 74.97 82.9 77.75 84.73 80.53 84.38 83.32 83.1 86.1 82.7 88.89 80.96 91.67 79.45 94.46 79.5 97.24 80.32 100.03 81.83 102.81 83.96 105.6 85.67 108.38 84.25 111.17 84.79 113.95 85.95 116.74 85.9 119.52 87.53 122.3 85.45 125.09 82.95 127.87 81.7 130.66 79.78 133.44 79.45 136.23 77.88 139.01 79 141.8 79.94 144.58 80.9 147.37 82.3\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6655E8\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-31\">\n",
" <path fill=\"none\" d=\"M10.92,86.76 L 13.7 86.21 16.49 85.53 19.27 86.26 22.06 84.85 24.84 85.26 27.63 85.49 30.41 85.23 33.2 84.39 35.98 84 38.76 82.16 41.55 82.25 44.33 82.07 47.12 82.21 49.9 83.1 52.69 84.93 55.47 83.92 58.26 82.61 61.04 82.56 63.83 81.17 66.61 81.74 69.4 83.1 72.18 82.36 74.97 81.07 77.75 79.2 80.53 80.55 83.32 81.52 86.1 81.09 88.89 80.92 91.67 82.65 94.46 83.83 97.24 84.32 100.03 85.9 102.81 85.37 105.6 87.59 108.38 86.01 111.17 86.62 113.95 86.49 116.74 87.44 119.52 86.05 122.3 84.57 125.09 86.57 127.87 85.19 130.66 86.42 133.44 85.9 136.23 87.51 139.01 88.98 141.8 88.63 144.58 87.57 147.37 88.03\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#6ED64D\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-32\">\n",
" <path fill=\"none\" d=\"M10.92,90.57 L 13.7 90.04 16.49 91.75 19.27 91.49 22.06 91.48 24.84 92.25 27.63 94.74 30.41 93.2 33.2 92.43 35.98 92.84 38.76 91.79 41.55 91.02 44.33 91.4 47.12 92.28 49.9 92.89 52.69 92.69 55.47 92.43 58.26 93.8 61.04 94.83 63.83 95.36 66.61 94.77 69.4 95.99 72.18 95.87 74.97 94.53 77.75 94.51 80.53 94.46 83.32 93.34 86.1 91.6 88.89 92.12 91.67 92.72 94.46 92.22 97.24 91.7 100.03 90.82 102.81 92.49 105.6 93 108.38 94.14 111.17 93.01 113.95 93.35 116.74 92.66 119.52 92.84 122.3 95.15 125.09 94.71 127.87 93.95 130.66 94.68 133.44 93.1 136.23 89.68 139.01 90.37 141.8 90.79 144.58 91.19 147.37 88.91\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#78B9F3\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-33\">\n",
" <path fill=\"none\" d=\"M10.92,94.38 L 13.7 95.02 16.49 95.77 19.27 95.84 22.06 95.41 24.84 95.73 27.63 95.54 30.41 95.46 33.2 93.32 35.98 92.83 38.76 92.29 41.55 93.41 44.33 93.92 47.12 95.05 49.9 95.8 52.69 94.18 55.47 94.68 58.26 94.36 61.04 93.76 63.83 94.04 66.61 92.43 69.4 92.19 72.18 93.91 74.97 95.53 77.75 94.58 80.53 94.26 83.32 93.52 86.1 95.17 88.89 94.47 91.67 94.26 94.46 92.64 97.24 92.5 100.03 95.1 102.81 96.05 105.6 96.6 108.38 94.25 111.17 94.87 113.95 95.08 116.74 94.02 119.52 94.07 122.3 94.05 125.09 95.6 127.87 94.62 130.66 94.21 133.44 96.63 136.23 96.3 139.01 96.01 141.8 96.54 144.58 97.58 147.37 96.03\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#FFFFFF\" id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-34\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"79.15\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"60.11\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"41.07\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" <text x=\"5.13\" y=\"22.04\" text-anchor=\"end\" dy=\"0.35em\">20</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">25</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-e0008f7ad4634d2280d89cbe183df130-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/plain": [
"Compose.SVG(158.73015873015876,105.82010582010584,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=23101, maxsize=Inf, ptr=23102, mark=-1),nothing,\"fig-e0008f7ad4634d2280d89cbe183df130\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(Compose.Property{Compose.FillPrimitive}=>nothing),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-e0008f7ad4634d2280d89cbe183df130-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-e0008f7ad4634d2280d89cbe183df130-element-34\",false,34,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-e0008f7ad4634d2280d89cbe183df130-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-e0008f7ad4634d2280d89cbe183df130-element-8\\\")\\n .init_gadfly();\"],false,:none)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd3hUZfbH31um95lMTe+VFAgl9AAh1NCRIlJUpIlSBERQWQVddXV/us3dxV1111V3XV1dC9JbIBggIQmppGeS6b233x8XQgwhmQwZLsPez5OHJxnu3PebyXvfcs55zwGAgICAgICAgICAgICAgICAgICAgIBg6EhISKZQKHirCEmEQrFQKMZbRUhCoVASEpLxVhGqpKVl4i0hVImNjafR6HirCEn4fIFEIsVXAxy8W69du4HHEwTv/g8xeXkTxo2bhLeKkITH469btxFvFaHKjh378JYQqixfvlYmi8BbRUgyYsToKVNm4KsBDd6tKyvL7XZ78O7/ECOXt0MQhLeKkMRms1dWluOtIlQpLb2At4RQpaam0mIx4a0iJFEoOm02K94qCAgICAgICILBxIlTGQwm3ipCksTElKSkFLxVhCQMBmPSpGl4qwhVZs6ch7eEUCUvbwKXy8dbRUgSExOXljYMXw19+wjT09OLi4sbGhrKysrGjBkDANiyZYvFYlGr1Wq1+le/+pU/ty4snMNisYdS7P8MqakZRNhCYLBY7MLCOXirCFUWL16Jt4RQJT+/UCAIw1tFSJKYmJKdnYu3ir4oKSkpKioCACxdurS2thYA8Jvf/GbBggWDusnIkXl0OiMo+h52oqNjY2Li8FYRktDpjFGjxuKtIlQhNtMBk5Mzks3m4K0iJAkPj3xAI723bNlCIpEAAElJSfX19QCAY8eOXbx40Ww2nzt3LiWlt9WOwWCy2RwIgiAIYrM5mEUUQVA2m4OFFFMoFDabQyaTAQB0OoPN5sAwAgBgsdjYrhGGYTabw2AwAAAkEonN5lAoVAAAlUpjszkoivZsBQDAZnOYTJafrTCZLKyP+tcK9ka4/1awkyE0Gp3N5iAI6k8rFAqVzeZgH+yArZDJZP9bQVGUzeZQqTR/WoFhhM3mYGuU/lvp9QcdqJVef9D+Wun1B+2/lX67zZ2t3LXb3NmK350T8b9zYq343zlZLPZgOifTn87Zs5VgdM4AHgE/OyfWij+ds0cr/nRO2P/OibXiZ+fEWvG7c1L875y3WvGrc2Kt+Nk5Q2V8xj6B+wPS56uXLl3y+XzTp0///e9/v2vXrvr6+oyMjPfff3/btm0ikWjbtm0ffPBBz+u3bNk5Z86Cc+dOQRA4cODNtLTM4uLTTz+9c+HC5QwGs6qqfPLkgscf36TX69vbW1etemLRouWVlWUmk3Hv3lfy8wuOH/9BIBDu3ftKZGRMaenFnJzczZt3AAA1NNQWFS1euXJdW1urSqXYvHn7nDkLi4vPeDzeV155a9iw7HPnTsXGxu/Y8QKXy6+oKJswYcoTT2w2mYxtbS0rVqxbsmRFdXWF0WjYs+fAlCkzjh37nsfjv/DCq1FRsaWlFzMzh2/ZshOGkfr6mlmz5q9a9URHR5tSqdiwYVtR0aKLF885nc5XX/1VVtbws2dPRkfH7Ny5n8cTVFRcHTdu8pNPbjGbza2tTcuXr1669NHq6kqDQf/ccy8VFs4+evQ7Npu7f//B2NiES5eKMzKynn76ORQl1dVVz5o177HHnpDLOxSKzvXrt86bt/jSpQt2u+2VV36VkzPqzJnjkZFRzz33YliYiEQiFxTMWrRouc1ma25ufOSRVY88sqqurlqv1+3cub+wcM7x40eYTNb+/Yfi45NLSs6npQ3bunUXhUKpqakqLJyzevV6haKrq0v+xBNb5s9fcvlyic1mffnlN0eOzDt9+lh4eOSuXS+JRJKystLRo8c99dQzdru9ufnGkiUrly17rKGhTqfTbNu2d+bMohMnjtBo9Jdeej0xMeXixXMpKenPPLObRqNVV1cWFMxcs+YplUrR2dmxbt2mBQuWXrlyyWq1vPTS66NHjz916qhEItuz52WJRHr1amlubt7Gjc+6XK7GxoaFC5ctX766sbFBq1U/++yeWbPmnT59jEQiv/zyL5OT0y9cOJuYmLJt2/MMBuP69YqpU2esXbtBo1HL5e1r1mxYuPCR8vLLFot5//5D48ZNPnnyR7FYsmfPAZks4sqVSyNGjN64cRuFQhs+fFRCQtKKFWuamxs1GtXWrbtmz55/9uxJGIYPHHgD65wJCUnbtu1lMtlVVdfy86evW7dRp9N1dLQ+9tiTixYtr6i4ajabXnjh1YkTp544cSQsTLR37y8iIqIvXy7JyRm5efN2n8/X0FBXVLRk5cq1ra3NarVyy5Ydc+YsOH/+lNfr/cUv3kpPzzx//nRcXMKOHS+w2dzKyvKJE6c+8cRmg0Hf3t66cuXjixevqKoqN5mMe/YcyM8vPH78ez5f8MILr2KPQFbWiC1bdkAQXF9fM2fOwkcffby9vU2lUmzcuG3u3IUXLpx1u92vvPJWZmbOuXMnY2Lidu7ch3VO7BEwm82trc0rVqxdsmTl9euVRqN+9+6XCwpmHT36HZfL27fvYExM/E8/XRg2LOfpp3f27Jxjxow/derYU089W1S0qKSk2OGwv/rq29nZuWfPnoiKin7uuf0CgfDatStjx05av/5pi8XS0tK0bNljS5c+Wlt7Xa/X7dz5YmHhnGPHvmezOfv3H4qNTbx0qTg9PXPr1l0kEqm29vqMGXNXr36ys1OuUHQ++eTT8+Yt+emnC3a77cCBt0aMGHXmzPGIiMhdu14UCkXl5ZfHjBn/1FNbsUdg6dJHH3lkVV1djV6v3b79hRkz5p448SOdTn/xxdcSEpJLSs6npGQ888xuKpVaU1M1ffrsNWvWK5WKzs6Oxx/fPH8+1jmtBw68MXLk2NOnj8lkEbt3vyQWS8vKSkeNGrthwzNOp7OpqWHx4hXLlj1240a9VqvZtu35mTOLTp06SqVSX3rp9aSktIsXzyYnpz377B46nVFdXTFt2oy1azeo1Sq5vH3t2o1btjxXXV2hUilefPG1sWMnnjz5o1gs3bPngEwWfuXKT7m5YzZufNbtdjc21i9cuGz58jVNTQ0ajfqZZ3bPmjXv9OnjCIIeOPBGSkrGhQtnEhKSt217nslkXr9eMWVK4bp1G7VaTUdH2+rV6xcuXHbt2mWz2bxv38EJE/JPnDgiFIqff/4X4eGRV65cGj581KZN271e740bdfPmLV25cm1LS5NarepzfI6PT9y+fS+LxcF9fH7jjd8UFS35+ut/9Rqf8/ImXL9ecV/mwbsgFAq/+eab3/3udxERvU/GsFgss9nsz00OHnxHIpEFQd3DT1HR4vnzl+KtIiSRSKSHDv0abxWhyuHDn+MtIVTZu/fV+PgkvFWEJAUFs1asWIu3ir44fvx4YWFh948UCqW2tjYpKQkAsGjRolOnTvlzk/DwSMxuQDBYOBweEYEWGCQSKTw8Em8VoQrhmQ4YiUSGWQsJBgubzeHzH7zUKxwOx+fzqXsAAJg5c+a1a9eqqqqOHTsWF0c8LQQEBAQEBAOxb98hsRjnDHIhysyZRbNmzcdbRUgiEkn27z+Et4pQ5b33Phj4IoK+2L79hdjYeLxVhCSTJxcsWrQCXw1BTLFGo9GIPGGBQSKRsTg3gsECwxCR+zhg6HQiA0aAUKk0LAaSYLCQSCSiPAMBAQEBAcFDCp8vwE7kEAwWBoOBHaYhGCwIgj6IjvcQgSj+FTBcLp+IDQwMGo2OHTrEkSDa33bs2CcUioJ3/4eYqVNnFhTMxltFSCIUCnfu3I+3ilDl9dffw1tCqLJp0/aoqFi8VYQk48dPLipajK+GIO7Ybtyoczodwbv/Q4xKpSB8hIHhcDhu3KjDW0WoUl2N6/nlUKa5+YbVasFbRUii0ajdbjfeKggICAgICAiCQUZG1v1MFvcwIZNFEKfCA4NKpQ0blo23ilAlN3cM3hJCldTUDKLqXGCIxdKoqBh8NQTR/rZ8+Roulxe8+z/E5OaOGTkyD28VIQmXy12+fA3eKkKVjRu34y0hVFmwYBmRUTIwMjNzxo/Px1dDEA++kEikxsZ6wk0YAAiCaDQalUqBt5BQBMIyYuMtIyQhk0k4pzkOWVAUbWlptNmseAsJPRAE0et1CkUn3kIICAgICAgIhpz585dyOFy8VYQkmZnDH9CSzQ88bDZnwYJH8FYRqqxevR5vCaHKzJnziFOYgZGamoF7Me0g+ghHjswjkl0FRkxMHFEHIDDodDrhXg2YiROJCvUBQlSoD5iIiCjcK9QH0UeoVHbJ5R3EAZEAMJmMcnm7yWTEW0jo4XZ75PJ2pbILbyEhiVzeJpe3460iJFGrlR0dbS6XE28hoYfFYpbL2wwGPd5CCAgICAgICIaczZt3hIUJ8VYRkkyaNG3y5AK8VYQkAkHY5s078FYRqrz44ut4SwhV1q3bGBERhbeKkGT06HEzZszFV0MQU6zJZBEoSmShDQQOh0ukWAsMokL9vRAdTXimA0QiCScq1AcGm83h88PwVhE0aDQ6MZoHBolEIpPJeKsISWAYJkK0AoaoeRIwRD3CgCGGOwICAgICgoeXgwffIXIOBUZR0eL585firSIkkUikhw79Gm8Vocrhw5/jLSFU2bv31fj4JLxVhCQFBbNWrFiLr4Yg+gh1Oq3H4wne/R9irFYLBBFW5UBwuz1arQZvFaEKkdUvYPR6LXF2IjBsNitxVIyAgICAgOAhJSEhmUKh4K0iJBEKxUS6psCgUCi4Z6kIXdLSMvGWEKrExsYTUVqBwecLJBIpvhqCaH9bu3YDjycI3v0fYvLyJowbNwlvFSEJj8dft24j3ipClR079uEtIVRZvnytTBaBt4qQZMSI0VOmzMBXQxB9hJWV5Xa7PXj3f4iRy9shCMJbRUhis9krK8vxVhGqlJZewFtCqFJTU2mxmPBWEZIoFJ1E+SoCAgICAoKHlIkTpzIYTLxVhCSJiSlJSSl4qwhJGAzGpElECYUAmTlzHt4SQpW8vAlcLh9vFSFJTExcWtowfDUE0UdYWDiHxWIH7/4PMampGUTYQmCwWOzCwjl4qwhVFi9eibeEUCU/v1AgeHjzhAWTxMQU3MuvBjEnkMlkbG9vdblcwWviYcVutykUnXq9Dm8hoYfX69NqNR0dbXgLCUkMBl1LSyPeKkISs9nU3t7qcDjwFhJ6OBx2pbKLOP5LQEBAQEDwMLJ8+RrCaB4YubljiDLrgcHh8HBP1xS6bNy4DW8JocrChctwPwwXomRm5owfPxlfDUH0EWZkZFGpRF2SQJDJIohaQoFBo1EzMrLwVhGq5OYSy68ASUnJYDBYeKsIScRiaVRULN4qgkZ4eCSJRNQjDAQOh0dspgODqEd4L8TEEPUIA0QikRH1CAODzebw+UTqFQICAgICgoeSnTv3EwkzA2PatJkFBbPxVhGShIWJdu7cj7eKUOX119/DW0KosmnT9qioGLxVhCTjx0+eO3cRvhqCmGKNx+MjCFGyORDodAYME2WYAgFFEcLMEjDEyjVguFw+iUSUWQ8EGo1OnDgnICAgICB4SOHzBQgSxB3nQwyDwWAwGHirCEkQBCV2hAFD7AgDhsvlE7GBgUGj0ZlMnANug2h/27Fjn1AoCt79H2KmTiV8hAEiFAoJH2HAED7CgNm0afvDfAYgmIwfP7moaDG+GoK4Y5PL291uIr9aIBgMeqIMU2C4XC4iv1rAEPnVAqarq8PhIKrOBYLRaCCiSQgICAgICB5SMjKyqFQa3ipCEiKzTMBQqbRhw7LxVhGq5OaOwVtCqJKamkFUnQsMsViK+8mTIPoIly9fw+Xygnf/hxgi12jAcLnc5cvX4K0iVNm4cTveEkKVBQuWSSQyvFWEJJmZOePH5+OrIYiWWRKJ1NhY73QSdUkGDYIgGo1GpVLgLSQUgXw+X0NDHd4yQhIymXT9egXeKkISFEVbWhptNiveQkIPBEH0ep1C0Ym3EAICAgICAoIhh6hQHzBpacOICvWBwWSyZsyYi7eKUGXx4hV4SwhV8vOnExXqAyMxMSUrawS+GoLoI5w4cSrhPQ6MhITkpKQUvFWEJEwmc+LEqXirCFVmzpyPt4RQJS9vIlExJjBiYuLS03Fe9wfRR6hUdsnlHW63O3hNPKyYTEa5vN1kMuItJPRwuz1yebtS2YW3kJBELm+Ty9vxVhGSqNXKjo42l8uJt5DQw2Ixy+VtBoMebyEEBAQEBAQEQ87mzTvCwoR4qwhJJk2aNnlyAd4qQhKBIGzz5h14qwhVXnzxdbwlhCrr1m2MiIjCW0VIMnr0uAH9+gkJ68eP/6zXF4eT3v+7GAyGXC73R0MQfYQyWQSKElloA4HD4RJHMAODqFB/L0RHExXqA0QiCScq1AcGm83h8weIM6LTo7jcrF5fJNLtVN2HDx9etGgRAIDH4zU1NaEounv37oaGBqlU6o+GICa05PMFBoPB4yF8hIMGKz1hsVjwFhJ6IAjK4XC0Wg3eQkISoVBMnF4NDC6Xb7GYXC4iu/KgodHoCIKYzaZ+rsnMfDUqqndi7osX16jVF7HvCwsL165du2zZsvXr1yclJe3cuRNBEAiCXC6XP3mbg7gj1Go1xCwYGBaLhZgFA8PjcROzYMAQs2DA6PVaYhYMDJvN2v8s6A8nTpwYPXo0jUZbuXLlxx9/DADweDz+h2oGcSI8ePAdIudQYBQVLZ4/fyneKkISiUR66NCv8VYRqhw+/DneEkKVvXtfjY9PwltFSFJQMGvFirX3eBOXy/Xjjz8+9dRTHA6nvLx8sG8PYhkmnU7r8XiCd/+HGKvVAkFBXKM8xLjdHmJHGDDEjjBg9HotcXYiMGw265AcFfvss8++/fbbF198MYD3EkXvCAgICAgeaAb0EQIASCSSXq9PSkrq6OjoftHn8+Fc2zU8PJJEIqJGA4HD4RFZKgKDiBq9F2JiiKjRAJFIZETUaGCw2Rw+X9D/NSjKoFAEvb4gCO1xAbpgwYIff/wxyGIHD+EjDBjCRxgwhI/wXiB8hAFD+AgDZkh8hOvWrWtra8vKygrs7UH0EVZWltvt9uDd/yFGLm/HeTsfsths9srKQbvKCTBKSy/gLSFUqamptFjuNfTxfxOFovPey1d98MEHH3zwwZDoISAgICAgIBg6iOoTAZOYmEJUnwgMBoMxadI0vFWEKjNnzsNbQqiSlzeB8OsHRkxMXFraMHw1BDFGn6hHGDCpqRlEPcLAYLHYhYVz8FYRqixevBJvCaFKfn4hUY8wMBITU7Kzc/HVEMQyTG63u7m5kThbEwBer1etVmg0aryFhB4+n89ms7W0NOIt5MGCCsNzxeIDSUlbYmL+o1DYvd4+L3O5nA0NtfdZ28OB2+1qbW2x2214Cwk9vF6PRqNWqZT9XEOBYRqCkGG455fH5/MNkQYiIoOA4KEFhaCpYWHLZLIFUikHvRkZV240Fly8qHISK1SCkOHPmZmPR/Uu7jH14sUT6r53C+np6X/6059EIpHZbN6wYcPFixf7vKybIJpGly9fQxjNAyM3d8zIkXl4qwhJOBzevYdi98NskSiNxRr4OlyBIWgCn//bjAx5QcEPo0eviYzsngUBAFls9qm8PCmFcucbN27cdh9lPlQsXLhMIvGr0AFBLzIzc8aPn3yPN+lVfeKjjz56/fXXExISDh069OGHHw749r4nwvT09OLi4oaGhrKysjFjxgAAZDLZ0aNHa2pqjh07JpP5dTowIyOLSiVOmAaCTBZBnAoPDBqNmpER4Fmi/gkjk7/Mzf3vqFFVkyY1T536+2HD5orFDCSIzoUAyOVw3kpLa54y5czYsZtiYoRkcvd/NVgsf25t9fh8AIA0Fuv02LGRNFrvt+cGvvwiQdBEPj+ZyaTC/4vZAVNSMhiMB32F9GAiFkujomLv8Saff/75kiVLAABLliz54osv/vKXv3z//fcAgLKyMtiPDtm3abSkpOTgwYNff/310qVLX3nlleTk5L/+9a+VlZVvvfXWjh07MjIy1q4deNEdHh6pVHb1k5EdRRkej93nCzAfKYJQPZ6H85wih8ODIEiv1+ItJPQgkUgikaSjo21obztTJPogK0tyxy7K4fWe0Wi+V6m+UyprzeahbXRQkGH4q9zcmSJRr9fldvvnnZ3/6Oi4pNcDAJbKZH/LySFBEACg2WqdevFio/X2Ea6YmLjm5kDcqzOEwnfS01OYN6PEuxyOFput1WZrsVpbbbZmm63FZmuxWi0ej5BMDiOTRRSKmEIJI5OFZLKYQhGRyWFkspBC+VGl2l1dbQ3BHMUSiUyn0zocD+eIFFTYbA6Kov2nCB7QNEoikerq6tLS0n744YetW7eWl5dDEFRQUPDaa6/t37//u+++619D3wfqP/74417T6dSpU59//nkAwCeffFJSUtLrerFYSiKR5PJ2n88XHh7pdru6ujrVapVYLLVYzDqdlsViczhcnU5rsZjDwoRUKk2h6ExK2hoVtdRmq+3svGgyVZDJSrNZoVYr6XQGny8wmYwGg57L5TOZTLVaZbfbZLIULjfD45FxOGk8XjaKsnS6qxrNGbe7Qqer02o1PVsRCMJoNLpS2eV0OqXScBiGOzraEASVSmUOh0OlUvRshcPhsVgsjUZts1lFIgmZTJbLO7xeT0RElNvt7uqSUygUoVBstVq0Wg2TyeJyeXq9zmw29WxFIpGhKNre3tqzFRqNLhCEmUwmg0HXsxWhUEyhUDo75R6Pu7sVMpksEklsNqtGo2YyWRERUQaD3mQy8vkCOp2hUikcDodEIkNRklbrcjr1EkmY0+lUKruwVsxms16v5XC4LBZbq9VYrRasla4uudvtDg+P9Hq9nZ0dWCt2u02tVjEYTB6P//NWlA6HXSKRoiipo6MNgmCZLBxrhUqlhYUJ72wlLExEpVJ7tUIikcRiac9WjEaD0Wjg8fhcbqxcXtXdilzeDgCQySJcLpdC0Ym1gnUbNpvDZnN0Oo3FcrMVhaLT5XLJZBEAALm8/VYrdrVayWAweDyB0Wjo6Gjj8fgMxs1u0905sVawzkmhUIVC0c9b+VnnxFqBIEjbJf9VevqGqChszegDwOz1sm6tMSkwXCAUFgiFb6eltTqd/+3s/E6prCZTrS5ndytYt7nzEejVOVEUlUj66JzYI9Crc/p83vDwyO7OKRFJfh0unRl2O2pR63J9q9P912j6uqnR7nBIpeERTHZ7e+sXCiWjqeUPsdFkCIqh089NmFB0raK0U451ToWiCwCAtdKrc2KPQHfn7H4ERoVHHIqPn8r+2WZIQqFIKJTRXG7/o8+dJDEYc6TSTfX13zc399U5sUdgEJ1zqB6Bnp0Ta6VX50RRFKs6d0fnxFq52TmxR4DBYGKt9OqcWCt9dU6slZ91TqwVrNv0egSMRkPPkbPP8blnK32Ozy6Xq1fnxFq52/h8R+fEWrk9ct5tfGYwmDAMA6DpNT5TKBSdzt/NQK/qE0Kh8IMPPmhra5s3b157e/uAb+/bsHPp0iWfzzd9+vTf//73u3btqq+v/+Uvf7lv3z6v1+t0Og8ePPjqq6/2vH79+q0FBTPPnTsFQWDv3lcSEpKLi08fOPDGlCmFZDKlqqp8woT8Rx9dp9Fo2ttbly1bPWfOwmvXrkqlq+n0CDJZIhDkSqWzRaKlMTELqdTE2NjshQuXwrC9ublt+vRNY8ZsJJPz4+K2RkWt5/GmCAQjGYwYBKFCEEyjyQSCPKFwfnT0fBjmJycnPvroYr1e29bWsnTpqqKiRVVV14xGw/bte8ePzz927Hsej7dz536pNLy09GJ6etaTT27xen319TWFhXOWLn20tbVZqVSsW7epsHD2xYtnnU7n/v2HUlMzzp49GRkZ/fTTz7FY7IqKq2PGTHjssSeNRkNra9PixSvmzVt8/XqFwaB/5pk9kydPO3r0Ozabs2vXixERUZcuFaelZaxfvxUAUFdXPX367EceWdXe3qZQdK5du2HGjLklJcV2u23fvoPp6VlnzhwPD4/cunUXh8MTCsUFBbMLC2ebzebm5saFC5fPn7+kpqZKr9c9+eQhofAZmeyphISnIiOXR0cvZLPHxMRMnzDhUR4vVa93jx49beHCR5TK9q6ujtWr18+cWVRaetFms+7d+2pm5vDTp49JpeHPPLObxxOUlZWOHDlmzZqnLBZLc/ON+fMfWbBgaV1djU6n2bx555Qp00+cOEKl0vbseTkmJu7ixXNJSakbNjxLIpGqqyvz8wuWL1+jUMg7OztWrXpi1qx5ly9fslote/YcyMkZeerUUbFYum3b8wJB2NWrpcOHj1q3boPdbmtsbJg9+wWBYJ9AkCSXn37qqS1TpxaePn2MRCI///yB2NiECxfOxscnbdq0jUymXL9eMWlSwYoVa5RKhVzevnLlutmz51+9WmqxmHftemnkyLyTJ38UicTbtu0VCsVXrlzKyRm5bt1GCoU2e/Z8gSBs0aLljY31Go1qw4Znp02bcfbsSRiGujtnfHzCpk3bqVR6VdW1CROmrFy5Tq1Wd3S0Ll++Zs6cBeXlV8xm086d++dlZL4Ce2cKhdgs2Olw7DVabsxY8GXjjSuNDZGCMC64HbbGQZCRXO6K8PB5aem+sVPOFp+OiYnbsmUHnc6orCwfN27SqlWPa7Wa9vbWpUsfmzt3YUVFmclk3L79hXHjJh8//j2Px9+5c59EIistvZiRkf3kk1s8Hm99fc2MGXOXLFnZ0tKsUikef3zz9OmzL1w443K59+07mJKSfu7cyeio2P8UzpzkuWl6qQ8Tv6nSLD5xnDF1Vs6MosrKa0ajftu25ydOnHL06HdcLnfh1l3XbPYMo44EwywEWSKTfdvZmT1p2iOPrCoqWvLf//577dqNhYVzLl4873DY9+8/lJaWefbsiYiIqK1bd7HZ3GvXrowePX716ie9JuMGBu2PaakJtzbKThi2kcgkj+deYvC4KLpcJGIgiDU2cdWap7BHYMGCZfPnL62pua7Xa7dseS4/f/rx40fodPru3S9HR8eWlJxPSkrbsOEZFInvN/UAACAASURBVEVraqqmTClcvnx1V5e8s7PjsceenDmz6PLlEqvVunfvK1lZI06fPiaRyJ59dg+fH1ZWVpqbO3rt2g02m62pqWHevKULFjxSX1+r1Wo2bdoxZUrhqVNHKRTKnj0HYmLiL148m5iYsnHjs2Qypbq6YvLkghUr1igUXXJ5+6OPPv7008/V1Fzv6pLv3v3yiBGjT578USSSbNv2vFAounLlp+HDR61bt9HhsDc21hcVLVq4cNmNG3UajXrjxm1Tp844ffo4giB79/4iLi7xwoUz8fGJmzZtp1Co169XTJw4deXKtSqVsqOjbcWKtbNnLygrKzWbzc899+KoUWNPnDgSFibavn2vSCS5cuVSVtaIxx/f5HI5b9yomz17weLFy5uaGtRqVZ/jc2xs/ObNO2g0xt3GZ5PJuHPn/rFjJx4//gOfH7ZjxwvYyJmZmfPEE5vdbk9DQ+2sWfMWL17R0tKkUimefHJLQcGs4uLTHo9n375Xk5PTzp07FR0dt2XLTiaTVVFRNnbsxFWrntDrdb3G5zfeeG/WrAVffvlZr/F55Mgx169XYL2iSCwezuH06ioftbc39bBnWK3WDz744N133y0uLv7mm2/eeeedd99912j0q65F3z22ezo9dOgQNp3K5fLs7GylUimRSC5fvhweHj7grQ8efOe9997s6pL33TAE5+f/QKf33u124/U6IIg02GpEDodGqTylUJxUqc75YzhFECoWi4sgNBhGEYQOQQiKMgEAbrfFYmlyuYagPshgKSpaDMPwV1/9LPEjmcxLTn4mKmoJBA3sl/L53MXFq3S6q0HTGAgy2eycnDcw/VZre1nZbq328tA2IZFIt27dvXfvs/d4HwSCdsXHv5yURL61+fuis/OpigrNz4MtI2m0WSLRLJFoalhYT3/hNwrFotJS15BFd/fH66mpu+Pjse9/09z8dGWlP++aLBB8M3IkE0UBAGqnc3pJyVWD4fDhzx9/fOAktzAErYuMPJicLLo1BXp9vr+0te2rre1yOMgwHEGlRtFoUTRaDJ0eeev7aBqNAsNqp1PtdKpdLrXTqXA4bv7odKqczlga7Y20tO64nkqTaXVZ2RWDIZAP5b6zd++rn3320Y0bdXgLCT0KCmYJheJPPvlLP9e8lJS0SNo7FumJ8nLM4I/RXX3CbDbr9XqN5ratNSxsgCOefU+Ex48ff+ONN44cOdL9ykcffVRSUvLb3/52y5Ytubm5a9as6f++fkKlSni8bOyLw0mDYXI/F3s8NoOhSq+v0Osr9fprHo9NLM4Xi/PDwsYiSO+oHI/H7nCoer5CIrF7/r4IQoPhgYtjOBxqs7nRbG4ymxvN5hsWS5PN1unz9X0MK0hAEBIdvSw5eSuJdHNN5PN5IAju//SL3d515sxCp/NBcTRGRMzPyjrYcxb3+Tw3bhyurX3X5/O3kPT9IYZO/yg7ewL/Zsyz0e1+pqrqr239+R0pMDxJIHg0PHxVRAT2yhedncuuXHEHeS7cFR//y9RU7Pu/dXSsLivz+t1iHo/3/ejR2MSjc7lmlpSU9BhW7sYEPv//0tNzeizPz2i1z1ZVXR2KGSuKRjuclTXt1rDl8vlera8/VF8f7I+RINRBUXTu3LkbN26cPn16AG/vYyTlcDh3Tqcymeyvf/0rj8fTarVr1qzp7Owc8NZ8vsBgMGB2c3+AYRKHk8bl3pwXaTSpz+c2Guv0+gqDoUKvrzCZGvqMrEEQalhYnlg8RSzOp1CCntzB47FbLE1WazsmBkWZ2LYVm6UgCMY2lE6n/qefNjocgRyKZzAYAACLxQIAEAhGZ2S8wGLdTmyvVl+oqjpoNjdRKAIKJYxCEVEofCpVTKEIKBQRhSJgs5MxDSpV8aVLT9znabtPoqKWDhv2MvZBmc1NVKoQUwgAMBiuX736nNl8Y0gaQhCUw+HcS23exyIi3svIYN/al5zTah8rK+tpgemfnvuzTzo6Hisr8wRtEH8iKuqPmZnYMxzYHnQEh3Nk9GgBmQwAMLndK+vqv2ns4w9BhmE2isqo1L0JCUtlsu5Ro8lq3VVd/S8/RgP/gQDYGBPzRmpq9w67VK9fXV5+3fRAp7TmcvkWi6mf2ECCu0Gj0REEMZvv6e+7bt26AwcOzJkzJ4Dy9CCoB+r7N40OCIUicLstg4oLhSCYw8mQSKaKxfk9Z45+8HodHo/D63V5PFav1+3xWH0+j9ttBgBQKCIGI9qfXePdMBiqiosf9XgGnWwCM40eOXIuLW2XVDqj+3Wrtf369V92dR3t/+1C4YRRo97HZp26ut/U1f1msAKGlpiYlRkZ+7DOZjBUlZQ8jqKM7Oxf8vk38yp5PPbq6ream/8OwL3OGQGbRhEImisWPx0TM6XHduTl2tpf3rgx2JnsnfT0Z2NvhoP/ta3t8WvX/N+l+c9iqfTT4cMRCAIAnNZoZl66ZAso2HIYi3V0zBgxhQIAcKPoJ83NLBRloyiXROKgKBtF2STSnScizG73oYaGdxob75ak5h6Jp9P/mp09/tam3O717q+tfbuxMRif5IAwUXS+WJzEZLZh4a82W4vV2usXf1hNowgELZBIZolEpQbDGY2mymQakj8A1sewr0mjx7ULRP2bRoNNECfCzZt3fPbZR2q1auBLgwCFEoYgPzsm5XL9zHTj8di93gGSa0AQQqeHM5lxTGY8gxHDZMYzmXFk8iBi4ZTKUz/9tHmwR0QmT55FJhcgSH63ydfjsTU0/PHGjQ+8Xoc/d0hKejopaTMAwOfzXrq0XqU6NygBQ0h8/LrU1F3Y93p9eUnJk5jbFYKQuLh1yclbu5caKtX58vLn7fb+Mi0NiEAQtmzZ6t/+9lf+v0VEoTwRGflUdHRUj3N11WbzqqtXLwdk7oMAeC8jY3NMDPbj+y0tGysqhnb8ni4UfjNyJOa/vGwwTLlwwegO3LycwmQeGzMm3L9Tv16f78P29hdqajodfnXFgIEhaHtc3CvJyd3T8BWD4cbdt+Zen6/SZDqv1V7S6y1DcQCDAsMzRKLlMlmRWEy748BozyMiLTZb4rjJn104V9zYcO/tPiAwUXRdZOQzsbFxdHr3ixqn85xWe0arPavVXjUY+jFZiymUVCYzhclMYTITGYzuaY9DInFJpF4Tzxw39O0P3wTtVxkYIsXaoCGTeUxmHIUixH7EhnVsTwkAwHaWEsnUtLQ92AUtLZ9VVLzk//05nLQRI96j07vDkXwdHd9VV79pt3f5fxMIQkaP/lNY2FgAgNOpO3t2oc02ZPYrGZWK7RVYKMojkVi3vsd2D1wUdfp8FUbjVaNRL1goTriZrESrvXzp0lPYbrsbDictO/sNFisB+9Hp1FdUvNTZeaR3k8Ehj8fbHBOzWCql9NjxeH2+37e0PFddHdgGCwMC4P3MzCdvnXx6t6npmaqqe5V7izwe7+iYMZjlsMZsnlhcfO/50uLp9ON5edF3HLHH0LtcBrfb6Ha32Wwv1tYGtj4IjDQW68OsrNzBnMRw+3xXDYZine68Vntep5MPsioqDEGT+PwV4eGLpFIeaXAGIaXDcVGvv6jTXdDpSg0G8z2sTnAknEp9Ojb2qagobr+/vsntLtbpzmq1pzUaldOZwmQmMxgpTGYqk5nMZA7qo+MdOaLH1aocxIkwIyOroaHufzYLbWrqzvj4J7Dva2rebmj4oz/vEosn5+S8jaI3l2AGw/WqqoOBhVZSKIIJE/5NpYoBADpdeXHxynuJSaHC8CSBYKZINEskSmQw/H+jCnAbQXilDXxz/ZPLOlX7HaMSglBTUrbHxq7q7o1y+bda7RWXy+R2G10uk8tlcrtNiMecwyRNEghGcblGt7vabK4zm2stljqzuaeRikqlJSYmV1SU9SOJjiDLw8M3RUf3CshWO51/aWv7Q0tLo98ewX6AIeiDrKzVt2Jn3rhxY3d19b3fdhiLdWrsWD6JBABosdkmFBe32YbmEYuk0Tbkjr52o87odhtcLqPbbXC7jS6XAe/RHIWg5xMS9iclkQKqVt1ktZ7X6Yq12gs6ndHt9gJgcLkAAHavt9daZySXu1wme0Qmk92xOb5sMPyoUoWRyVj4azSNducesRcen6/SZCrW6Up0uot6fZ3Z/OAH/GSx2Tvi4h6Rycg9loZGt/tTuVxKoYzj8/mDXBn0idfnw9ZVZsz7BSPPtrdf7cs5fd94cH2EoQ+Uk/NWePhsAAAAvqtXn+vo+G//b4iJWZmevvdWXKX12rXX29r+dS+hLnz+8Ly8jyAIBQA0NX1UVXVosHeIpdOxyS9fIKAPRToxldN51WCoMJkaLJYbVmuDxdJqs3l8PqFwbFbWa9i03Q0NONJAUxpoygCNiaCNBPoYkb0+X4vNVmux1JjNtWazikyZtnzNr98+xEQQForSEKTXN2Fk8lKZrNdytUSv/11z8+dy+dB6vBAI+ig7e8Wts0av1Ne/WHtPtR3i6PRz48ZhaUKVDseE4uI6i2UIhN7Cz+MTuJDOYqUx+6tvKiCTx/J44/j8nqY8fzC63R6fD4EgNto7wUi12fypXP5pR8edn7OIQomiUqPpdGxqnJmZI9JruHd/RiweT4vV2mSzNVmtPb9wX2cAACAAZohE2+Pipv38mEGz1fpuc/Ph1lbM8A5DUDqTOVEgmMDnT+Dz71wu9ETldF43mWrM5mqzudpsVjudepfL5HabPZ5e6w9/jk9wkjk0WW9zhfaq1qkfmtzxQZwI589fevLkjwbDwAHZDyswTB49+s8CwSgAgNfrLCl5QqO51OeVEASnpu6Ki1uD/ehyyTWat0pL+04LxE3nRsyOaP+2XV818GcbF7c2LW039v3ly892dv5AheFxfD4EQPfS2On1Yj4Vq8fj8HohAIZzONj8l9LX0GP1eGrMZq3LZXG7zR6PxePRuVzmW+s7vcudHTN3lEAWDzoigQIFAxgYnV5vs812w2JptLttnMlWzngUeNJBUzpojANyGAQx5NXq8Xwql/+uuTl4tj4Ugv4xfPjiW0egXqipOdQQiBtJRKHMFYtfSEiIpdMBAAa3O//ChSE5sdCT1avXf/ihX6aLBxkphTKWzx/P54/l8XI4nAD2kc1W62ednf/o6Cj37zg2AGDmzHmlpRd5VvMYHm8Mj5fH42WwWKgfTWtdLmxGvKDT/aGl5f6nlxvH5/9h2LCMn6eSL9bp3mls/LKrq59IsQQGYzyfP4nPH8fnkyCoxmLpOfNp/DbXp6ZmsFjsS5eK+7kmc39m1Pzeh84vbrio/qnvsPzw8PCPP/44IiICgqDnnnvuq6++6l8D4SMcHGwUnRIWNl0oHMZilRmNxTrdOa22H9sUicQeO/YTzAfmchmLi1eYTL3HQQSh5uS8KZEUYD9qND+Vlm7pFdoDAIBgSDxZHPdoHD+LDwAAPiD/UV7z2xprR/92PCg3913s5m632Vq+6g/J4tR+V9Z3o8lqPWH0XUVHtnLmOAHV63V4PPZbobZet9sEAHC5TBQKn88fib1FqzjiufFKNosxnMMZzmYPY7Mp95CRWQ7CqkBcNYhhApsMqGRAHQGUfBBIxoN6i+UPLS1/aWvTBd8zQYKgf44YMU8iwX48WF//r87O62az04/dZyKDMV8imScW5/F48K1R1erxFJaUnNM+KCdEH2ToCDKKyx3P5+fxeNiqDoUgFooCAGgI0isatsvh+Fwu/1Quv6jT3bsZk4EguVxuHo83hssdw+OJ+yr30QuFw/F6Q8P7ra334p/2HzIMH0hKei4+HrnVtdw+3787O99ubPTnROn9ZMCJ8PDhw999990XX3zB4/GuXLnyww8/NDY2vvnmm2PHjv3yyy/FYvEdt/wZQZwICwvnFBefMZlwyMwytMAQlMvhTBcKpwuFeTzenau8NpvtnFaLTYoVJlOvNRSNJh037jMqVQQAsNnk588v6xkYSaEIRo78PZd7sx59R8fX5eUvpKSkAABdv34Ne5HMIccsi4leFE0R9H6WfB5f23/aat+vdajvGsKHoqyJE79g08OXgaOLwQlkMHssl893Tqs9ojFdgbOd4mXdUS3+IJd/e/Xqrp4RsyQISmexstjsBAYjjk6PZzDi6PSeFRJ6gcUBYiFqZzUapRtCURaJxGSzU3m8bC43i8NJY8DecKCSAVU4UEUApdSnZkE2D4BtgGJ2u60us8ZuNNg1VpdN53LZPR6bx3PVaDyqUt1Phw0Zhr/MzZ3VIyO2y+erNpnKjcZrJlOZwXDNZFLeCsKEIWgkhzNfIikSi+8s+eTy+eb/9NN3ynuKrb0bixev+Ne/PgnGnR9kWCiKPdSYjTSwm+TnT7927Uo/xbTFFEoMjRZDp9/899Y3dx5Nkdvtrzc0/LG11RGcoykYw1isj3Nysths7Eej2/3Hlpb3mptbh8jl7D+JiSl0OqO8vL9IiAEnwsLCwrVr1y5btmz9+vVJSUkffvhhW1ub0+mcPHnyG2+8kZGR0b+G/0UfIY9ESmexpBSKx+czYt5ar9fgclk9HrvX2x28FEGlYpPftLAwwd0H616Y3O4LOl2xTndaozmv1WIHnNns1LFjP8aOkBsM1y9cWOV2WwAALFbCyJHv3woQ9dXV/a6u7jcA+J4oWsSBoO+O/+AJIzMWSMXzIlDWbZ+Wx+4xVBv42fzuv57L5Gr4S0PTP5q8zr6fnLHSrL+NGBULbgaO2jye8zoduDUEQABg4WFkGMZiEc1u9zG1+julqtQTxQtfIpUW9J/0507a278qL3/Bn3MjbBSNo9O758V4Op2KIBd1ujNa7Xmttv8dGwxTsAzs2FcvF2NPzOYbWu1ljaZUq/1pCANo/YcKw1+PHFkgFN7tgk6H45rRqHA4CoTCO4sFeny+M1rtV11d/+nqagnaUPUg+wgfcAI+RyilUGLo9FwO57n4+J6FsdpstkMNDR+0tfljORgUMATtiIt7JTm52zzzo0q1rry8Y5DhtUOFPz7CASfCO6tPAAAaGhri4+NnzJjRM0tan+AZNSqjUicJBJ92dAR1bc5B0TQWKx37YjLTWaz+fbwAAJvHY/d6+wz/9QFQbjQeUaku6XTD2OzxfP4YLpd5h48dw+B2H1Eq/6tUfq9UQpyRo0a9j8WtqFRnL13aIBCMHDHiXRKJDQDwel11lfsTbOdnikQzRaJEBqMsHnw9BpQmAl+PP5FA55t0xpV+wQFsnm+oxgvzGbQ8Qff/OvXO+j/XN3/e7PPc/kRRCNqdkPBiYmJ3GFgNiN5YqzhV/69+PgEKRRARsTAqajGDEd3zdY/HJpf/0Nb2T5OpoTspK4nEAgBCUToEkRCEDMNUn8+lUJy8/xltaDSpSDQqJmaKzxfNYiXdLVGtzdapUp1Vqc6pVBcwi+79gY4gO+LihnM42Wx2jH8BHVaP50eV6quurv8qlf47XQImN3dMaekAtbwJ+iQ1NaO1tdliCbwUFwWGn4iKej4hoeeBzhab7dX6+g/b2oYqb20snf5hj/SBVo9nV3X175qbcYxoFYulFAqltbW5n2v88RG+//771dXVa9asyc7OZjAYVqsVRdGFCxe+9tprcXFx/WvA00f4cU7Oo+HhZ7Xapysr/XdKD0gsnT6Gx8vlcLAwszurjwaA2uk8qlIdUamOqFRdPz9HjEJQFps9ns8fz+eP4/P7LPzt8flK9Pqz9rB26TPNQAYA0Ggu8Xg5MEySAXW2pyzR+PU4NoIFZF9OBP+cAKp+NgGBKCWYfwFMvgZIPw8x+yLG/tl02BZ+e7tmqDVU/1+1ukQNAEhlMt8fkxMfzjHSgZEOtHToFDPlOl3oI9s1mlKfzwvDqM9OQSAKDJOAjwy5aDBMRhAq1RULaocB2+3BWq+vbGv7Z0fHt70OAj6wkEhsPn84n5/L5+dyuRnYEqQXPp9HpytTqc6pVOcMhqr7OXNzSaRsNjubzc5is7M5nHQWq2dMh9bl+kah+E9X1xGVKhSL8/2vwWYnC4XjLZZWpfL0gGk6+ocKw09FR+9JSOhZ/LLRan21vv6fnZ13O5jIYiW43ZYBTR1PREW9nZbGurVwv6TXP1ZWhm8dTT/xZyKcMmXKt99+++KLL7755ps//PDDhx9++I9//GPs2LH//Oc/B6wSEcSJcN26jV999fndsj6O5fHOjRuHNe/x+d5vadlfW6sNKHKBg6KjeLzRXO4oLnc0lysayCnt8HprzOZGqxUGgIGiPBKJgSAMBGGiaM9doNvnu6jTYZPfZYPBz9xOCQzGOB4vj8ebGhaW0Nd5OyXglYLUGhCdBFpHgBopuPn5+CBwKRl8NhHU//xPlt7gm1fsG9MIQ3dp3wODYzngw0leE+f2BsjSYuGwKICDugM+8uBBwI1kT3lSx/HG5tovjcYhOAN3H+Dx+AsXLjt8+Hc9X0QQKo+X3T0pdqc57YnTqVOpilWqszpdmc/nQRAKDFNgGEUQBgRBKMoCt/a+Fkvz3aJ/A4YMw2lMZjaHE0OjndFqz2g0AaSZpggo/Bw+AMDn9bktbgCAz+1zW90AAK/T67F7AAAuo8tluutTtnPn/rfeeiXwX+N/CQShhYXliUSTRKKJNNrNqGCXyyiXf9/R8bVWe+Ve8gXSEWRjdPTuhISeHnSH13tSo/m6q+sbhQI7jwvDFKm0MDr6ET5/hNfraGr6W0PD+30WzBFTKH/OzJxzK2bkgcpmPnz4KA6He/Lkj/1cI50m5Q3j9Xqx5V8tlrbbx1q6q090dHSkp6cfPnw4LCzM5XI9++yzeJpG+/cRslH0xaSkrbGx3QthjdO5r7b2T62tA/qrYQgaxmLl8XijudzRPF4ygwHfPUwZi/WvNpurTCbs30artZ8mGAjCQFEmgqidzntJWwUASGEy54rFs0WicXx+P4HUPgicTwOfTwRNkh6vekD7D+2Nf2s01hkBAJgbj4YgNBjmkkjRNNpSmWyOWNydmNhBAv/JA1+MB9aBY9MGh9fpVZ5Xyn+UK84qPLYHfXcyYK5RLCGtUDheKBzP42X5U9PqDnzNzX+/fv1NP9Pd3R/4w/kjXhtBCRvgz++2um98eKPxb43YvNgLwkc4IAxGlEg0SSSaLBDkwvBdP22rta29/euOjq8tlpbA20KQp2Njd8bF9YpR8AFQbrIVu6OqmPPaSMm+HsO4y2VoaHi/qenvXq+DhaLxdHoCg5HMZD4bGxt26ybVZvNjV6+WPjD1rfzxEQ7I0FefGCr8qT6RzGT+Oj19Ro8IgqsGw9NVVefvCA2HAEhnsfIFgvywsIl8fj/RK3qXq0SvL9HpSg2GKpOp2WbrczNHYpNcxvuU1IdPIhWKRHNFohkiUc9NpwcGR9I8/xjv00tvG+7cVrf8K3nbZ226dl3/t6UjyByxeKlUOkskwsyqRjr4dDL4Phd0bwSpNp9JbTfr7E6902lwOvVOiiuaSxvp8Ti8XqfH44Bodo/X7vW6AOyEyG6Px+mFnOxhCDu193bWY/MozirkP8qV55V3i8rBnUFVnyCR2GFhY4TC8ULhhO5FvZ+YTHVXrmy/8zAMDkAgbmVc6tZUCPH3cbYr7DW/q+n4rsPn/dmjIRSKVSpFECSGOhCXOyw8fLZINInBiLnzv10ug17/E40WzWQm9vovna6so+Nrufw7p7PvAwkoykAQGoLQPB67w6G+cx/JQtGtsbGPRUQk9WVhUgPuJZBW4ks2Qywp0EiBWgo0Yq9c7JWH3eEN8AHwblPT8zU19+d4hp885NUn/GeuWPx2Wlq3IdEHwN87OnZXV8vt9lQmMz8sbLJAMFkguFucvcvnu2Y0luh0JXr9Jb2+dqBURjAZTt+ZHjE7oupXVa3/bh3q36Y/UAgaz+fPlYTnyeL+ldBVM4sJy247xt0Wd/NnzY1/bxxsugQmihaJxUul0kKRiArDGjYwUwHV7P11Wd1b9TcCs37Qw+nSaVJZgYyT2rswtNvi7jrV1Xm0U1WiemBnxD6BYEhaIDU1mEw3ej91LFYCtk3E4oPcbqvP5/Z4bF6v0+t1ejx2r9fj8Vjo9MiwsDzsLR6Pvbr6jebmf9x70YyAQRlo1ktZ0qm3THNGl/qSGgCAslAIQBAKoXQUAIDQEJgEIzSEwr+9iTHUGK6/c11TGnjJqqECoSDSAqkkX2JptejKddpyrVMX9MigAYFhkkAwUiyeJpFMoVIld15gMjUolacUitM63RUsQJrNTo2MnC+TzaFQBD2v9HpdGk2J1+tEEDqJxMImPxSlYyb3npfZ7Uq7vctmk9vtXTabAvvGblcgCHVi/PyFEfF5SEsaaAog0USbzba2vPy4OpDCcA89D8rxCQoMb4uLeyEhoTsC0+x2mz0eyV0cfhqn84xWe06rLdHrrxgM/i9wGFGMEa+PYCffPD3TdaKr/JXyod0a0sPpSeuTqML+YlMZMQya+HYUj8vkavq0qemTJkxJnxXq/YGDokUSySMyGZ9EWn/tWuVQlHCjR9Bl02TS6VJOcu8Z0WVyKU4r5Efl6hK11/VAzIh3NY1CQJIvSdmUwoxlAgA0lzUt/2zpPNnpcw96DouOfiQt7fnuwiAKxYny8heczgG278GAFc/KfTOXEX1zBWmoNlzeddkqv2uCBQiGIudFJm9M7nkgVXFaUf1/1eYWM8DDNMpJ5kQuiAyfEU5i/SxI29xi1pXrtGVaXbnO3GK+nysNFGWKRBPF4qli8cReExW4OaX9pFSeVChOWa23azX3PD4BQYhINCEiYoFYnD/Yc0f+wALWXFCVaT81htTFvLsZwAlIHUDY5ICuKqsqtS1fdXXhm9j6bgyJafQe6Tvuf0iw2Ww+v/ciDq/39YaGj9rb30hNXREeDgHARNFexxK0LtdZjeakRnNKo6kwmQKoTCYrlGXuy8TWyBiSKRJOOufqvqvaK0OQpwOlowmPJ8StiIPJ/uZPcRldTZ80Nf6j0W2+bUN2uZx3C/3vH4Pb/XF7+8ft7QG8925YGh44vgAAIABJREFU260Nf21o+GsDI4qB7RHZSTeXESQWKWJORMScCJfR1XWqq/NYp6pEFcDUMoR4vT6brfdMEDYyLOXpFG767QoGghECwQiBQ+1o+XdL679b7apBnKBqaflMq72ck/MWm50CABCLp0yc+J+ysj1qdX85ooac8JnhmS9kIrSbRvDWL1sr36jsf4Pu8/pav2yVH5EnrE2IXRmLUBAAgHiSWDRO1PJFS90f66zW+xRAiDLR8BnhUQuiOCm9V1cYzGgmM5oZWRQJAHDqndg2UVemM9QYPI6gmPWoVLFYnC+RTBMIRt9ZhdRmkysUpzSaiyrVeewQcC/sdpvXe1OYz+dRKE4pFKdIJLZMNisiYj6Pl323dt1ui8dj9XjsJBIbK+7dPzZbZ23r5/9u/ZfDoSLD8GSBoEgsnikSeX2+eoul1mKpt9jN7Dyf7DE9GukDEKAAX4S3E/mei1xluPROJ/aldbn0bvcQJJe/d1wulyPIJb0G5IEwjfYih8N5Nz0dq8nZZrOd0mjOabXH1Op7qQkAk+H0HenRi28eSsACQCSTJdgH4PP66g/X1/+pvucJvEEBwVBkUWTypuQ7k7/cDafe2fj3xuZPm7G4vhCCEc2QFchk02Ws+DvynhhdXSe7uk526av1/SS7uRsIFWElsEgskvaqts9ojsHCSeWkbEkRjrnthHYanCgN7blS8bl9Xae6mj9v1lwehJEQhsmpqTu7i2b4fN7Gxr/U1v7a6w36ohsmwWk70mKWxGA/ehyeytcq275p6/dNvaFJaClPp4QXhv8sLcMHDU2f3jUtw5DAz+FHzY+STpMi1J+FKZlumNq/aUeZKD+Hz83gYpP0nfjcPmO9UVep01fq9VV6S4ull5tzkEAcTqpYnC8STeZyM+4cD02mhq6uY11dRw2Ge6qixWDEsNkpXq/d7ba53Zi1y+Z223odY0UQGp0eTqVKaDQplSqh08NpNCmVKqXRJBCEqtXnW1o+VShO+ZOngkRiJyQ8FRv7aD8RPV6vy3VrarTZOnS6qzpdmcnUMNj6qQ8BQZwIw8MjlcouV0CbcRiCisTiVput3GgMOOlRN73ModZ26+Xdlw01BtF4UfbL2WTeTduFtlx79YWrts5Bp+0QjBCk7UjraTk01hsbDjc4jXf3c/iAvlJ/tymQw+FBEKTXP+jJJFnxLGmBVDZdxozu40CCQ+Mw1hoNdQZjjdFQa7C2W+8cs8gcMjuFzUnmsJPZnGQOI5oBwRAAwOv0qn9SK88pleeU/dj67oREIolEko6ONkY0I3ljsmyarLuPu63uxr81Nn7cCFPgqPlR0Uuie1qnAQCmG6aWf7a0f9vu/9JEJJqYlfVat0PIYKi6cmWHxdLsv+DBQhPTRrw5ont3a223lj5XioUWBwA3g5u+PZ2XdTsw3al3Ks4ouk52qUvUQ7n3gkDsstjoJdG9uorb6pb/KG/7qk1Xcdu2DKEQN43Ly+Txc/j8LH73E3onbrNbX6XXVer0VXp9pd6h8WvthSDUsLCxYvFkkWhSX9mIfHr9tc7OY11dR/3/U0okMp1O63AEKzkLitID2MDRaNKkpK0REfP8tzC53VaDoUKrvarXl+t05U5n0EchNpuDomj/AW6541bEJo/r9eLp7/9P2dlfKp+8vLzjx4/T/Uhe8aD4CIOHbLosc18myrhpDu083ln+i/JuOyQljJL9i2zh6FtVdk2uioMV8qP+aqaH09OeTZNMue1Id6gdtb+vbfu67V4WqgH7CPGCncSWTZfJCmT0iLv2ObfVbaw3GmuMpkYTJYyCTX69pqI+Md0wKc8pFecUunLdgFt2iUS6Ydez/9b8PXJeZHcUpdflbf13a/2f6x3a2wMlhECSfEnM0hjBiJ/FNbitbu1VLTaw6iv1TsMAURsUiiA7+3WhcAL2o8dja2v7Qq2+oFZfGmzaGn4OH5uTPDaP1+X1Orweh8fn9rltbp/H57a46eH0Yc8PI3NvTgyK04qyl8r6ORfoFxCQTZOlPJ1CD//Z385j8yjPK7tOdSnPKe+xCQiGhu0dFrXgZwei9VV6zE474LKDGcPkZ/N52TxeBo8Zw+xn0DLUGtq+bGv/vr2no6EbGk0qEk0Si/MFgtHdLt5uvF6XVvtTV9exrq7jdvugQ2cDTrF2H2CxksTifDKZRybzyGQumcyjUMLIZB6CDPz0WSytOt1Vvf5aZ+cPDscQx1VRKIKoqEcSEobxeJf69xEuf+rPefmP93rxN69Mras6gX3fK+l2YmJifHz822+/PWvWLMiPGiBBnAiXL1/z/fdf47it6W0OdXmrf13d9GlTr8sgGIpbFZeyKQVCb34arV+1Vr1V1f+ZOZSBJj6eGLs8ttvI5rF7Gv/WeOPDG/du6szNHQNB0E8/XbjH+9x/OGkcWYGMn8VnJbJ6+mL9x9Zl8zq83QEgPXEZXaoLKuV5pV1tJ7FIKB1F6AhKRUksEsJAUBqK0BAaj8bN5Hb7vn1en/xHee3vavup0cFOZMc8EhM+M7yXsQ7D0mbBZkR9ld5Qa7iL2RCKjX0sNXVHz8gIn89jMFSq1SVq9QWd7qrHc9e9AplHjpgdEbUgihnjb1UQn9dX+9vahg8bhiqKBCbDsctjh63LdDN7z3lel1dzWdN1sqvrVFcA5m4IhjL3ZUbOi8R+dBldHd91tH7VaqwPZBeLMlFeBo+bweVmcHkZvD43ix67p/NYZ+uXrdoyLQShfH6OSDRRKJyA+XR74XBolMozSuUpler8vWRNWrhwWXHx6a4uHNLYBgyCUEkkbF7kMRhxWMJeOj2iz4tdLmNd3XvNzZ8MieGUy82KjX1UKp0BwySfz2U0Pn/2bH/lWgecCHsl3X7rrbc+/vjjlStXKhQKnCdCfGFEMob/cni3udLaYb3y/JV+Cvhx07k5B3MYkTfHX3OLuebdGgAATIFRBorSUJgCkxgkhIbAFJjEJPGH87sj0X1eX8d3HTW/rbEr8cla+wACwRA9ks5J4rBT2JwkDjuZ3af31OvymhpNxjpj9xcWN0sPp4vGiUTjRYJcwd3cRQOiKlZV/6baWOvXgEtik6LmR0Uvju61Meql1lhn1FzWyI/IDTW9zyOz2SnDh/+KyYzv441eh1Z7Va2+oNFc1OsrsaEEgiHBSEHUgijJZAlMGkRslEPruPL8lSAde+Akc8T5YskkSXdIVDc+r09Xrqt4vcLU4O9OF4KhrJeyIubcHFtbv2qt/OUAET2Dgh5O5w3jcTO43HQuJ5XT62N0dzHgq+PgirHA0nuFYTTWKJWnFYoTen3F/U+K+yBDoYR1Z7HncDJ6bZ1NpvrKylc1mpLAbg7DZJlsVkzMSi53WM/Xr1//ZWPjPe0Ieybd3rt370svvbR58+b6+nqfz4fzRDhyZF5V1TWrdSgraPtJ2Miw3F/ldptDu051lb9cPqB5B6WjGXsyImb3vSC6G5pSzfV3rt85LN4L0dGxEAQ1NzcO4T1xhyKgcFI47CQ2K57l0Diwac/UZPp/9q47vKnqf597s/domqZJ96B7l9JSKJuyUaaKIIKiKEMFFAeCKAKKiIAgCgIKsofsDWW2pXvvvdK0abN37u+PW0NI2zQtLVR/3/fp0yf35Nybk3HP55zPeF/rWaYYIsYu0s5hqIP9YHsy31bl8dac1vwd+T0wFRAMUd2pzAAmuuege9E7q1JXVCpqr9XWXa2Tlz/ZRkAQlsUK5XBi7O0HM5nBHdLWqNWN5U0/wRHZzlOd2nsj62/Va0QaGA9jiBgAAxwVBwBASwuwFCyEgdQidfbG7D5acg0bNjoh4Qb6mCwg84bzHIY5sMPYaOAWhVFrzNuaV3GiosurQTAU+lWoYEIbZ2Dlqcrsjdl9VwiBZ5AGzBzEn2yHd3p622rAgIJAkDrIUOzc3JQsFN5pbLzT6wokYWEDS0uLpNL+QtfSK4AgDJ3uy2aHu7vPI5OdTe11dZfz87/r1mdIJPJcXV9xcZlpUWHZ2potlV5RqZKLi7OtnN6lIQRmpNvz589PT0837+nu7l5RUWHl+i80RggBGAf3eooa1ZUaeyAWR8cBABA9kr89v+yvMttvP8EEQdDqIJMRtQJ5pTz/p3xhQu8zcfzrYoTPBzRPGjeWaxdhB+EgvUyvV+kNKoNBadDJdQa1waAy6OQ6OpExbeIrG99b1ysTLoaIYfgw0A0HM5DZ4WZRWiStu1pXd63OIqkHi6Xa2Q3kcAZzODE0mhfA6gCzBXCFICQFDMgH8FM/+9a81uqz1bVXalGO0BeFDusI8Uy8w1AHh+EO9jH2pt15w52GrPVZVgKoEAYKXR8qGNdmBStOVORszunWl0Ii8alUTxrNi0r1pNG8aTQPi6o+g0FlnqOL0sMCAIBzJQhPAoEZAP/U8JR1qpxN2Y0P+kTKsT/HCJ8dMEzw9HzTy+sdU1jRYFCVlOwpLf3dOsk4icRns8N4vLE83mjzdaHRqK2ru1RR8Vdra5YtdYS2GEJz0m1T44vfEcbFjUpNTbKiS+I0yWnA2wNyt+QK7/WaLcHRcUMODqG4UAAA2hbt4w8fm2ej2QiyE9l/uT+GjNHL9Xql3qD+Z7bVGAxqg06qM6gNBrVBnCHuo5o5b29fCAJFRQV9cfH/NigUSmRkjGlb07vAs/CsIJbjKEfecB6W+vRSCQEtOS11V+uE94RYCpbsSCbxSCRHEsmRROKRyHwKntWBqpdRiau/Kio9kWWj/7avMX781MuX/+7sWbKAHLYhzMR9rBaq09ekd1hzAmGgsA1h/DF89LD8aHnullzrVhCGcRxO7D9mz4tK9cBiO4gT2wgEMbQokjU+16lxjTTfJ849xIgU7i4s2d9rsVUTYmKG5ufn9v9M72cBkcjz91/F508wGQ6lsio3d6NQeNvUB4MhMhgBJucqgWApwKlS1VVWHq2qOmnKR3Vz8yCTKXl5z7ojNCfdNjW+eENoHTg6bvip4WiYTXhPmLslV1nzrNWdEBaK3hWNJgEatcZH7z5qyXwBfB//gy2AIQydaEcj2dGIdnSiHZ3IoZM4dCKHTrIDADqdtqVK/EyVW30KGA9zB3P58XyHOIcOU2y6AAKBSg+QFgVygxEdXF19pqhou1ptfacCUaluDIY/BGGVylq1ul6lEiLI894+QljIZ7GP5zxP1FnaYQEuhIXCvw03sb6VHS7L+zHPuuHh8Ub5+X1sIX7ZHghitF4GoNE0i0T3GhsTRKIHJhEG+gC6y0sugglPyGsabjVkrM3419Xv9hOw2QMDAz+j0/1MLY2NCXV1l5nMQCYzhMHw61DyDABEJHpUWXnYxjpICzg6B7LsnC0aK0qSlPI2a9p/SbetZ42yglmRP0Sa8k2MWmPpH6Ul+0uepYz6iWYVAtLXpNderu3qjH6Kf2/WqHXAECY+4O2pocsZJC6NyLbS02DUX8ze9VfSOrmme0sZBoM1ceJLz42uCUPC8IbxHMc4cgdzrdMJGbVGZZ1S1aCSFkiFVxROpLecnaebnEUGg6q0dF9p6T6D4UkZK5nsxGAEMpmBDEYgkxlg4RhEEING0/SPUUT/6tRqkYn41ERTgqol/3OWXqNpUquFGk1T+9r/xYs/3L37xy7fNSeKE7o+1EQiKM4Qp3+ermpQAQBgHBy+KZw3vK2gqPSP0vyfrAl40ek+/v6rTfSt5tBommWyIpmsRCYrlsmKZLJSi3IUGCZgME9lYOn18s4yX/AMfNjGMFOhlKxMlrIiRVHVaxkM/8as0R4DgjAuLjN9fD7A45nWe2q1LS0tmS0taQ0N1+Vyy4x9FMHBYXQ64/79O88ypP5Lut1ljBBHw/m85+M6w9UUilfVq3J/yG243dCDl/N43cP/Q3/0cfHe4sLdhT24SD/BfzJGGOw0YtHQbW6cYNtPkaqa/kxcczX3N6PNS8guZZj6CDgajjecx4/nM3wZ6ka1qkGlrFeq6lWqhjYjZV7CiIJG8/LzW8nlDje1aDSi0tLfcTg6kxnEYAR2Ocs8IzSaZq22WaVq0Gia1eoGjaZpwYJ55oYQQQwWdGI6XatKVafVtuJZ+NB1odwh3LZ2qS7rmyzhXWHEdxEOcW0l6iUHSgp2dOreJxDsfHyWm68GdDpJXd2Vf4xfUa/Tt0Iw5LvU13OuJzrt6WS6jDUZvRWX6ecxQgqNo5D1Mt02Dsfw8Vnm6vqKefAPQYxyeWlLSzrKU9OZ8TNHf+Aa7UND6OXlU11d0SWJHMOXEbg60Fx0UZQoyv0uF2UBthEOQx0it0aiBrXuel3ap2kvTg+gF2Bv7wAA+M8I4jjQ3RbEfh/rNcO8UW/UydViuaZFphbLNGLTY4WmdYjXTH/+EFPP8qbMPXeX59Qm2PJaBALB2dmtpORfswzicKL9/FYxGAFd9tRqWyWSbK1WSiI5kskCAsG+Z4S0zw6DQaVU1qrUtdjYTNasagjXdrMpqhWmAiQri1EYxru7z/X2fte0x0UQfWXl0cLCHTpdn2dd8sfyQ74MQTlaESNStKeoeF/xs08X7u6eDQ317XluXzjwBPIri34Lj5517/quS8e/VCl7+ROm0338/D4GAEItX0tLRrd5JNh2eDz+xW6m+0UdIUrU6bvU10SZYdQZyw+XF+8rtsWPT/Oixe6PRcu3W3NbH739qI9oef+H7oKIo8yM+PTl8BX4f6qRFFrJkeT113L3KrWdpodAABriPWtB7Hf2tCdcJPeKj+9/8HGjrOcyp/0WEATz+RN9fT8kkfjm7Xq9TCLJa23NaW3NlkhylMqap8/CktoScgQkEp9EciSR+KZNJIIgen3bJ2wwaEwawjCMJxDsCAQugWDXO8IIjrVg5iFgJzJvE5+yqzwolstL5fIyCyYBHm+Mv/8qMvnJN9vYmJCXt1kuf37FQnRveuQPkaYc4IY7DRlfZrzYfN0+AoMtWPjhSTfvaPSwVVxz9tCqtIdHX+yo+iH60BCuXLnm4MFfbd/W4Og4v6V+zi85mzylmmZN+dHyqlNVVrK0CWzCkD+GkBxJAACVUHV/3v0ekF/0N4wePR6C4OvXL77ogfQcMISZFLzk1ag1NGJb2VB3w35YGDch6L050V9R8G2xLr1Rdyl796HENVaMKIfDnT//nS1bvn72t/CcAcMEd/fXudzhUmk+avnk8oo+VTrE45kEAgePtyMSuah1jIkZbx5igSCMReomBkMhkwUEAufpC2nB+LMgPLnt8OZ4cHcU+hBBjCpVjUxWJpeXKBSVAsFkO7so03kyWUle3maR6F7fvD9rwNFx4d+G28e0hQzlFfKUFSnyip4zy7z33kcXLpyuqqronfH1Bjx8hyz44ASdaamkWJKXcPLA0roqa1mazwFEEt3JPczZPcLXL6ym8Oz586de4GD6HdcoM4AZuDqQ6f8kOmJQG2ou1JT/Vd7eWQrj4Zg9MaxgFgBAr9Q/XPiwx+zD/Qr/9hiht8PAd+J+8uU9yYDIr3/4693lxY0p3b0Uh+o0P3bzsAGvQv/8VkWyqr33PnpQ2vFt86JihP8N2KhHiMEQSSQBmSwgk53QBySSgBotwb58FdwbAe6P7PIKWm1rUdGOysqjL1DoAIIhn/d9vN7wQn9ZeoU+86vM+ps9dND1txhhXPySl+dtxWBwAACjQf/w1t6w6BkUWtsKxmjQ37+++9KJtUrF88urJ5BoTm5hLh6Rzh4RLu4R9o7eqG/faNA9vvz+4UO/PbeRtEe/cI1aAIIhl2kuA94ZYK6mjRgR0UNR2eEyVIAbAAAgELY+DOWtQIxIysqUvqht/x+6BQKW/M6w7WP83jSFr8SKuv0PPrlTeBh5hs2Nn+PgRUO3eTsMNLVczd275+4yrb7bUiH/Q9+BxGIREGcq1YNK9aBS3alULwrF2SKZHkH0FRWHi4p+NpU3vFg4jnYMWRti4sVtvN+Y+0NuL2aT2ggcHYcyrffCpfCk2W/9EhU3Dz2USRv3b5tVkpdAprAmzv46dvS7MNyW2yKXis4f/Szx9u99SjLn6Ts0dvQ7zh4RXMcBnUW1v/80oro8zcpFvvnKZ9YMvkXjvAUZiUkdG/IlS5Zs3rxZpVIBAA4ePLhixQrrg+xDQ0gikTUatdHYw48YwkK84TyPOR7ohs8ERbWi4lhF1dkqr/le3m95o4053+VUHKt4xgH3H+BwOAiCtNoudA/6G+xpLl9MPOtpH4Ye6gyas+lbj6V8q9b1gtwrBMGjfOfNi/mWTWkrUKtsztl8ZXaVOM+8GwzDBAKxH+Ys/CtAoVAUit60ARCEpVCcqVQvKtWdSvWAIGxx8c+2ZBI+T1BcKJFbIk3imogBqf67umBnQZfCI+YgEklardakzWsjMCSMYLzAaZITmi0or5C3ZLSIM8XiNHG31MdMYHNcF6447ewejh5WliT//uOMluYnWpUC15AZb+7w9B1qaqkqfXxi/9LKkh7Sh1rHgICRiz4+jyd0QMlkMOgaqnOrylJqK9NzUv4WN1urdtv7S/DCN10sGkfFJ96607YvslCfuHr16tWrV8+cOWPjOPuda9QSEOBEcTzmeHAHc80HqxFrCCwC2lJ1tirr66xnepV+hn+ja9TfMfazCaeY5LbU+cSyv/fdX1EvKe3dVyHiqAuHfD8+8F30UKNX7r7z/o38A6YO/3ONPgtsdI3+94Cj4XyX+LpMczElKKgb1fk/5dderbXRkdFd1yjdh+48xVkwTmDKEHwKCJCVy1qyWloyWsRZYkWlTauTAYGj3lx+1OT/fHR734nf39frLHMmIAiKGPzq1Ne/Z7Da9lgIgjy++8f1c5uFtdaKPrsLCytoNBoaavKqylKqy1KrylLqKjN1OjWwrXyiS0NooT4RGhpKpVIDAwMzMjLeeuutgoIuWLp6IpRjI+rqavT6Z1brRkBTUlNTUhPVler+mrvTJCeUyMPkNW1Oac7e+IKjvr0OiaTVFlqg/oMZEZ/Mjf4GA2MBAFq96qebCxOKjvTFC6l18p9vL35ccenD0QdoRDYBS/5g9P5oj6nbbixAc3B0Ol1tbfe02v8HEyor/1M877ZDJ9Nlb8yuPF0ZuCqQHcYGABC5xLANYa4zXHO+y7El86ChodYWVV48Cy8YJ3Ce4mwh7oEYEQiCnqz1IUDzoNE8aChDiEasaclqKTtcJk7rmJ8EgqARE1dMeXUjjMECAAx67ckDyx7c2NNhZwRBUh78lZ16Ln7amhETPsBg8RAERQ17Y2DcvOK82/eu/pydes5oeNYc2gGBoxatOodaQUlL3Z8751aUJGo1HWxzpVIJBtNDhRkTbt269csvv5BIpDlz5ixbtsxoNF65ciU5Ofmjjz7au3fvkCFDrJ/+b5ptAQA4Os51mqvbbDcilwgAUFQq7s+/jwr3/A8vBFgM/t24HeMCF6GHYkX9t5emFTQk9vXrcqjOH4874u/YJlotklVtvvJKQcN/jYvnf3jegAB/LN9/uT/R4R8uHiNSeaqycFdh+3kGR8MRHYhkRzLJkUS0J0IwpFfpDWqDXqk3KA0GrUGv0BtUBqPGqJPraJ405ynO3CFcC60oRbWi5nxN9YVqg8rADmWjEsRMP2Z7oiK1UH1n5h1TmQcEQUy2E4fnZc/zCgibGBQ5FW2XiGt/3zazvMime4HL95n+xk9+IfHmja3imgc39jy8+ZtM0sOsC5+g0YtWncPhSeh4tq8fIWoo7tmlUHS5IwRm6hOhoaGmRhqNVl9fT6V2ofTZh4YwMDCkpKRIre79dAYIC/FH852nOmdvyrbRadCvEDzw5YjYV81bMBgcgfjkqyIQCBq17MCOeQpZn2jO9RaYJO5nE06Zit+LhMnfXHxZrHg2Z7jNwMDY2QO/eHXgGjQCbzDqj6VsOJP1vZeXd3Z2xvMZw38MkZHRKSl9voh5IYBhDJHMMFFTWgeGhPF608tzrqfJGmkl2rI/yhCAkHgoizqZxCPZolHTGQwqQ/3N+upz1c1pze29rzAeZgYw2+xiCAtPwxP0dmQtX5VE0KaT7HleHAcve0dvHI5ocWJZwf3ft82UtnaPnGtA4Ki4+CWBEZNNeTQAAINem5F06t61n8sKH3Trar5BY95e9TdqBVvFNTvWjxA1lFjp7+DgSCAQrFee2GIITeoT27dvz8rKmjx5clFR0fTp05cuXTp8+HDrY36RMcLhEz4IDJ9UkHW9MPt6TUXG/xN5TPcBg5esudn+F9we1eVpP38z+nnmN3cLnvbhayad5VDbmHBvFfyx89Y72s512PsIoc6jV449ZIpNZtZdx4aVffLFu895GP8N/FdjhBwHz9ffO8hz8r9w9PMHN/bYONWQBWT/j/xNvKm9hZbMlupz1XXX62wp4cfiCAOHzBnzyiccxoAuO9+9uvPMHx8ZDD30kLE5rrFj3o0ZsZBKf0oyorYi4971XSn3D3fo2AwPYxzcF0ogwFXVqqoqlULD9wpdqtIIZCr76hrNtnWjm4RdJAr0SowQPK0+MX78+M2bN2MwmPr6+kWLFpWVdeHz70ND+NJLs27fviaRdCoKv3TNLe+AEehjuVRUmH2jMPt6ftY1ifjfSpbdJTgOniu+STRFs7tEVVnKzxvGqBSdfoa9CAqB6cTycWEHOLF88BhSvaSkTlJS11rcKK3Qt2NnDneJ/2TcUQqBCQBAAHLs8TeHE9c+S4HEs8CB7r563DFTcYVM33gscfODkpMiWdULGU+/BYfqhIGxIll1Z9ytb7yx6ODBX5/zqPoUEATFjHz75bk/mDwulSVJx/YurqlIt36iCfbR9gErA6juHfjW9Eo9SierFqqd6K41VVUaoxomwDgKDkPCwDgYR8PBRBiDx+DoOKPOKLwrrP672sayfTKFFTvm3WHjltKZjp31UcrFooYSkbCkSVhaUfQoL+OyjW/KCnA4YljMrKFj33f1ijJvVyklKfcPP7q11/TRQRBYstjt+03+BELHRREIAuob1JWVqqpqlUQfoK7HAAAgAElEQVSiVyj1Wi0ikeh0OkQq02k0RqXSoFAYeDyXohL8/fsPrYwKhiG43YsYDAjyz5TTf9UnrAOHJ23aJ+5wY9RQk1eQda0g+3pJ3p0O1yD/UpCp7I/WP+TyfQAAMonQfO1mMOg16icEfY5OAS/N/QF1U1SWJO36Nr7XGQI5VCcnlq8Ty9eF7S9g+Tiz/ExlCRYwGPWNssp6SUlda3Fda0mdpNiVHfDG4I0whAEAaPTKbTfevFf8ghNcsRj8m4M3Twldbso3QABS2JD0oOTkg5KT/0litm4BhyHMivxsZsRqLAavN+qaZNVCaXmDtFz4z1+DtLxV+V8rw6UzHV97Z69/2ASLdqNBf/fqzosnvtSobGLFhLCQ2yw3hi9D1aBCGdVV9SqVUKWX9wkrG9vebfiED2JGLDQPl2jUMiW9WkWoV+Lryx9lZB6829RQ0qfuIhfPgXFj3w8bPNtilq4uS310e29p7vFdP3m8NKV3tsv2gmtNTc9ULdZ/1Sfi4yc9fHhXJus04YpKt/cNGuMXOs43eCyN4dC+g06rKsy5mZN6PjftgqTlOUWe+ghYHOG9z655+cUBALQa5Y6vR1SWJHfW2d8/aEDI1BFTvkKjX+VFj3ZtjLfxprUCCIJDnEaO8ntjkPsUMp7e9QldoUle/fWFqaUiWxfXfY1oj6kfjjlAeVq0AQFIUUPy/ZIT/28tYiA/bsnIPU4sX+vdNHqlCogvpOw5k75Vo+93C1A2x5XOcqwsSXqyC7CKsJhZsxbsotDaGP7qqrLzMi4PG7/MNK1LxLWnDn6QkXSyV4Y3YsTYrKy05uY2Tx0OR6TQOBQ6h0bnUun2VBoHiyNIWxtamqtbm2tam6vRygELuHhEjpy8MjRqOpr8iaJVXHPn0rYHN3/ljmWGfBkCAECMyMOFD1uynkfQhELjxIxYGDNyoT3P29ToaJc/NvI7OrntzSYmtezcR58x7zMWrZVGFhHgCmXrfQEfduQRbUx+j45rSErqNu1UL6Jf1BFCECRwDfULifcNifcYMBiDtSysQRCkuiwlO/VcTur52sqeGPwXCwiCXn/vj4FDXwcAIIjx9x9nZiafttIfrSNskFBfXfQbagvLCu7v3jReo+5hZTqf6T3Sd95ovzdMIb320BrUtS2FNS0F1S0Fap3ckeHFZ3jxmd4cqlOHfBB59Q++vTS9v20jvF0DV7z+U3MuEuQ0HIaeyslGAFIsfHy/5MTdoqNN8prOrtCfgYVx7d3UVkAlsN6M/W5swELTRlmjVxKwHVQ3m6NJXnMocc3Ngj/6Sdhe4BY6avKq8OhZMAbb0lSVnngiPfFEVWlyZxaRTGHNWLAzMvY19BBBjLcu/HDx+Bq9TmPP8561cJdP0GhT57yMyyd+X9Lc2MO6EQKJJnANcXINnTh1YYOoFcaQqHR7Kp1rvpnrEHKpqFVc09pc09Jc1dpco5CLI2Jf9fYfbt6nrir71oUtqQ+OtLmOIDDo50GopKKsRHbv9Xu9wkRjCyAI8vSLixnxVlj0tOiAi4P8D8MQ6l2H7qXF/bhLP2TsB+gKo7mxfMf6EeKmSgAAHg87OxFdnEkuLiQCAabTcFgsxGTicDiISsGSSDCRiKHRsFyu/dbt9ocP/0dlmHqWNUogUgcEjPQNiffyH+bo1IE2jVhUkZN6Pif1fHF+gkH/7+BemTDzq3HTv0Qfnz208taFH6z35/OdIAiqra0ePGrR7Ld+QWsKS/Lv/rJpglbTjSxZMp4+1HvWKL/5fo6Doae/a5m6ubqloFqcX9NSUN2SX9NSIJRWdDjx4TFEHsOTz/TmM734DG9Hphef4ZVefX33nfd1hn7Hb04kkry9fbKzM+gkTozHS7FeM4KdRmJhnHkfvUF7PX//iZSN/64Noqd92NrJFyQq0aPSMw/LzlQ0dUEiMWzAq28P/dGURqTWyf9MXHM+cwceS3KguznQ3dv+09y4dDcHuhuV8BSFU5koY9+DlZnVN/vq/dgA36AxI6es8g0a0/4psagiPfFE+qPjVWVP7SR8g8fOefd3Bltg6vbnrjdK8++a94mMfe2luT+Y2Kh1WtXVMxtunv/elvmEwRY4uYYK3EKd3EKd3MLsuB59UfJblHvr1vkt+ZlXLIw9mU+OOxaHEsIV7i4s3vtMNQndhYBPPHo4asjgNmeSQs2++nhlbVOQqUNzY9n29SNamroXm7cla7Sv0X/rCLFYiM50CYqcGjRwqpdvnLmvAIVKKblz6ccb577Tafs14WRU3Lw5iw+gd8v967uP73uvW6cPHfvejDd3oqcX597e892kLuOmJhfoYM9pFst/mVqcUPTXjfwDJY2p3Xwf/1bQiOxB7lNjvaaHOY/BYp44G/QG7fX834+nbPxX5NREuU36eNwRIu7JPqNeUvqo9MyjsjMFDYkWKxgHutvi4bsiXcebWhLL/v4lYWmT3BrVAAXPiHKfPC9mg7n61eOKi/sffGzBY9fXgDHY8JjZoyatFLiFmrfrdOr2WQXNjWVpj46nPzreWF84dc73Q8YsNlmmpIQDpw4sV6s6iM6QKMzJr3wbO/odk7dDWJufnXoOfUwg0jAYLAAA/qeuCQ/wdkRHrmAAgc5EIGCEAQIDpHM5SKNBL5c1KWRNcqlIJhHKZU0GvZbB4jPtnNn2rnSmo3mhwpOzjIbMpFM3zn9XXdbp7WlSIDfqjPfm3JOVPmvExEaMGsE5dDCM59DGZJKYrD14drx7wJskcps4jKihZOfXI83p3P5F6ENDuGDB4rNnj4vFPamEmzLJ4dfdwY9TWt9fllNVrSJT2QFhE4Mip/iFjLPwOTQ3lp/+48PslL97adS9DG//4e99dhV19uZlXP71+ym2UDbExAyFYfjBgzYp2rhxS6e/8RN6exdm3/j1+ykm2w9BsB1FwGN4ODI8eXQPHsODR/fgM71pRLb5BY2IIb3q+o38A4llZ/vhNq4XwWKxp017Zd++Xe2fohCYg9wnj/V/K1AQZ2rUG7TX8vYdT9lo3Ui8WEwOWfr20B8tPL0miBX1SeV/Pyw5nV17BwHIlJDlcwZ9RcS1ySc1yat/SViaWGbTDbJy5Zrt27ZMDf1gZsRqUxTZYNRfy9t7OGndc3CDE4jUmJFvjZjwIYvzxBgjiDEz+fTN81vqKjP9QseHx8wKjJiMJ1AsztVqlCY2L7lUdPS3d7Ied0E16eo16JW3frEwtxbAaQCjDtCEAOoo09YIAyPQawwqGAa1stLHlVcfV1yoFeVbrwCGMVgGi8/iuLDtXJh2ziyOM8vORSyquH1pW5dOWgiGYg/EMgOYAIDWnNYHbz5AjN3O1sbCOBe7AE/7cE/7cC9uhDsn2LrDHIE0eJIOi1dDsB5LUtTUysuqRXqDVmtUU5hcjqMXQsEfO7Mys/SKWNFt+Y7w8CgGg3n79jUrfWhEtvkqEEWrUthbs1m/iBGag0TCbNrgu/Q9d3RV19Ki+3RNwW/7qoxGBACAwxEHBI4KipwaGDHZXGcrP/PKqQPLG+v7iwYKCge+74dfPyRTWACA2srMbeuG2pjw0p5rdMSED1+etxV9XJ+RKElK59LceHQPB7obDkPo5DIAAFAvKbmRf+Bm/sF/aVSsu7CFazTEaeRrg9YF8J/wDusMmmt5+06kbOxvnxIMYd4aunVKyDL0sLa16FTqd+Gu8ZGu49vPC3JNi0QlEjDbCs6MiOF85o4/E9fYTnpuqiNkkrivDVoXH/A2SpsHAFBpZSdSN53N+LGPFD/seV7RwxfEjnkXvV9QaDXKpIQDty9utahFwxPI/qETwgfP9g+d0J7QOSftwpE9b9nIigJjsHHxSybOXE8g0SyeIsgBsxaQmwHUHUODIMbixpSk8nPJ5RfKm/okoYHmRYs7HAdhIQBAzvc5FUcrujwFhyG42QV5cSM87cM9ueFudkHW540eQ6yoK2lMbfsTpdpiF22pI1w2au9Y/4UWjZ+fGZVZc6vD/vb29nv27PHy8pLJZFu3bj11qguxwz40hGy2nUQiMXSHs25QFPPgvlCfAZZ3eGJSy+Kl2RmZT1wcEARHj1gw+ZVvTbWfBr321sWtV09/060oWt+BSrdf8U2iHdcDACAR1/7wRXSr2NZJlkKhAAAsdABGTV41dc531EZgXwqgrmLkap38fsnJ63m/59Xdt728j2Xn7Bs81jd4LJHMKMy+XpB17YWrd3YXGAyWwWDY4ocIcRo5Z9BXJlocAIDOoLmau/dU2ncGo45F5rEpfBaZZ0cVMMkOdhQBk+zAoToxSdxmRe294uP3io+XiqwJxzw7iDjKx/FHotwno4c5tXc3XHpZphYDAPAYYqjLmBiPl6LcJzNI9u3PLW5M2Xnrne6O0N7ewVxJ25nt92bsd1Fuk0wtTfLqr85P7sX5HYcjhkRNixn5lpf/cPNgm1wqunft57tXf1bImqycTiBSA8InhcfM9gsdh8MRNWr5mT9XPLzZ7VJIJtspdvQ7GCwOAKBWSl0J3hH0oU5ET/M+zeo6mbKZiKFgMTgijorHkvCYLmgxGmWVyeUXksrP5dQm9K4nxvd9X68FXgAAg8qQMDtBWdtpuMSdE/Jq1JdR7pMtIuXPB6hdLGvKaJCUVTbnVInz2ickk0hkDAYjl1vbJHRpCC3UJx48eJCcnLx9+3Y2m83n83NycqyPs7/ECPF4+MvPvT9Z6YXFtg3pwiWhny/N06NtuafXIzt2la9dXySTPbGsJApz4sz1Q8YsNkUQW8U1Z/9cmfbo2DOOB4YxCIL0OGsOhyct+eKm+4AYAIBGLd+2bmhtxbOSfmFh3Lo37oRSB1u0KzStaEFYg6Tsn5qwMqG0wsYbD0+gePkP8w0e6xc81kHgZ/GsRFybn3WtIPNqYc6N3uJ7s7PDS6U6ne7FVN9bIMR51Jyodebm0HbUtRbfKz5+r+R4l3krPQCbwl87+bynfZuezu3CQ9tvvtX+O4UhjD9/yGDPl6M9XuLSXAEASq30UOKaC1k/d1Y1312EOI1cMGSLSV2rSV790fHoZyfSc3QOHDzq7YFDXidTn3LjixqKb1/cmpRw0CL2H+I0kk7iJJb93eEPm0iiB4ZPqihJ6pLHxApwGMJwnzkvh61wYfubGhGApFZcPpP+Q4ebDxKehoGwVCKLiKWEOo8e6DYxQBDX3uSotLK06mtXcn7NqLreK7wTMB4eengozYMGABA9FCUt7UBEycM+9LWotYM8pkIdzfNiRV2JKK2kMbW0Ma1UlGbuC4mJZn3zlc/I4U94PyQtmO+/r963VwwBDIXAxMJ4Io5CwJJxGAIZT8djiS7sAE/7cHdOMB5LsjJsBDE2SMsrm3OqxLmVzTmV4tyalgK9oescpS4NoYX6xJw5c/76668333yztLR0/vz5ubm51q/fL1yjwUH0g/tCQ0PaYhKtrbqlH+Yc+quWRMJ89onXxys88f8w/tXUqpd/lHP67FNMenyXoOnzt5tnHhfn3j55YFl9dRergPaAYYyX37DQ6Jmhg6Yr5eKrZzakPviruxpjWBxh7vt/hkXPBAAYjYbfvp+am36xW1do7xplkrirxx8PFAxDD7UU0OIE9ESgwelycq4k3/0jJ+18e72VzoDWq/gGj/UNGesxIBaL69pJgiDGqtKUgqxr+VlXK4oTu0VO78gjhIcxwsMYYaGM8DCGqwspJ1f2/vLsu/dsIn7sFrp0jdJoWI3GqNU+tcQJdR792qB1Jgrv7qJanH+v5Pj94uNWkkqIOCqNyKYT7WRqcZfZqm6c4HWTL6C1LghAjiSvP5L0VZcTqKd9eKjz6DtFh5vlPeRm6oxiDRWDfGvoVjSztKQxdfXpYWpdT1wvBCI1PGZ2zMi33LyjzduNBn1exuVHt/flpJ63WIBCAJoWvuqNwd/CEEauaUkoOnIj/0Cx8HEPXh0AgMXgiVgKarqIOCoRR6ESWEQchUtzHRf4jjmthM6guV146Gz6VltyhUwyTBQ8I8xlbJT7pEjXCXSSJYdUvTTnkXBnpeYckWigULBMJpZKwZLJGCoVW1mlPHW6oVFk613MCmYN3jcY1Y3KWJtRc+GJJfO0D1s08mt/7gRzE0hiNcKMwnp5ZkpJ0sW7dwsrO8gRCw2hf73OZ9KEJ1XdarXxl98qN24usWVgGBjrzPLz5LaFHj04Ie0d+BYwGPWturok9d5df3xtpVuXhhCHwxUVFfn7+1+5cmXZsmWPHz/euHHjli1bli1bNmHChNjYLm7tPjSEX3zx7W+/7RAKrfmIMRho1Uee69YMMJH0XLshWrgos6b2SbWprw91986g4XF2ppaLlxuXfpBTXvHUFjs8ZvZLc7cw2U7oodGgT0s8XlZwv7IkqbYqy/rEDUGwl18cav8sSvtFDcXXznz7+P4hW6Z+Gp0bO+bdIWMWm+KXJ35//961DhI3rGP8+CkQBF+6dBY99OZGfj7xtKkEsFiZbYz1wJGfShZQKlrSHh57fO/P8iJLpiIIgtn2bg4CX57Az4Hv6yDwc+D7mgqNzaHVKIrz7hRm39Co5b7BY32CRpsHbExQKSWJd34/++eKzgq5XF1I5pbPkdeBoUUQcOivmlWr84WNveky4nJ577yz7OuvP+vw2Vkz+Fu/98/Nk02fnSpvRwsS5jzm1UFrfRwGSVSNrcpGsbJeomxsUTa0KBskKlGLor5FKZRrWoIFw4d4z4pwHdc+ylLRnJ1Udg6CIDqRQydx6EQ7KpFNJ9rRiHbmncWKuoKGxPz6hwUNj0ob0ywIWiNcx60ed5yEpwEAdAbN9ptv3S481AsfjQ3YseP3pUsXdPZsiNPIr6ZeQbc7iWVnN1yabsVlAmOwRCINT6Dg8EQimYHDk4gkenDkSxGDX7GIxjUJSxNv/56UcKBD0gwijvrh6P2xXjMs2qvEudfz9t8pPNyitEYwTcEz/PlDAgVxAfyhTixfIpZinjncGWTq5ovZuy9k7bQ9P+ijjz4/c+ZoefmT/SgMYQKcol8ePCNUMAGve4oplEhvdht6wSX6Mo701GLCYEDu3G0+dqLu9NmG5uau90lBnwa5znAFAOikurszE7wd8ZOHxkXZr8K0DAXIP3M7hPACkrzHHKELnkrDyS+Q30loTrjXfCehWdio8fWhrl/rM2Oao8k/rdMh+w9Wf/1tkfls3C1AEOzE8kF3iq7sQBe7ANRp0R7HhO//edzaPGlLjNBcfaKuri4iIqK+vp7H45WWlqLBJmtDte0d9Qm8vSgH94XGRLdNtQqF4ePP8nfvqWg/u0IQmPe60/cb/e3t237ESqXh280lScktGq1RqTTo9YhMpsfiyBFDlw0d+54BsBCz1GatRllTnlZZmlxRnFhRkmQqc4Eg2MN3SFj0zNBBM8xTb9qjubHs2plvk+/+0RmhrcA1ZNj45ZGxr5nvrm5f3HrmzxXd+1DaYbTf/PdG7EajEUbEcPDhp6fTtuAI5NBB06Pi5nkHjLCodhc1lDy+92djXaGDwM9B4OvA9+XyfaxwfBuNhuqy1MLs6wXZ18uLHpmXUsEwxtUryi9knF9IvLNHpEXCd8KV7acOLDdvYTJxC+c7v/eum4d7FyXbJrS26tasK9z9a6XB0LW/iMPBz5vjNH+ec0pq69ffFlushKzD24vy8/bAMaPawmmPU1onvpQsEvW8DpWCZwzymBrnPTvUebQtc2tn0Bu0JaK0wobEgoZH+fUPB7pNenfYDjRFRaYWb7j4ck7d3S4v8tww1n/hslF70cdn0n/Yd38l+hiCoKHxS4aPX47FEfAECpFE77A8wBw6nToz+XTirX3Febc7W1EJmAM+n3jahd1WT9yeDcBg1KdWXr6RfyC54oLJw0YncfwdhwQJhgUK4tw5IZ1l23aIeknJ2fQfb+QfeBZuHRYLNz6eO3miw7ix9kwmDgCgauFWPhpflThOp3yyQ8ISVM5R19zjzpFYjRZX0OmQm7ebjp2oO3uuobW14zmHQIADw5nTdg30tMe5EYFTo0d9whxh/sCnTWCi99ijRnJhUbEiOIhOJHZc8FFSqnB3I2MwbScajchfR+vWfV1YWtbLBENkPN2F7e9qF+RqF+DCDnC1C2SReXJNyyu/sq2faIshNKlPfP/99wcPHnz06NEvv/yyYMGC+fPnx8XFAavoQ0MoEDg3NjbodB1/i+PG2p86Fkkmt/1GHz5qeWNhRkmpNWcLm4377lu/BfNdbCxgbZa6XUn+WCyz5FKRttZXliTLJMKA8EkmjeYnZzWWpT06nvX4rLf/sJGTVpoTsYtFFdf/3pR4Z7/JWkAQHBgxefj45Sb2cBQtzdUJl7ffvri1syUznY6VSjvdYjIYLAiC5FLZW0O3TgpegjbK1M3fXXk1vfq6eU+WnXPk0Nejhs5tH96zjubGMlT3oyjnli2MhRSanU/gaN+QeL+QeNOHdu3MhgvHvgAABAbQlix2e/01Jwqlg0lHqTRkZknTMiRp6ZK0dIlEov9uo9+MaU98UOkZkveW5SQmdTwMCAIjh3PeXujy0hSeyXOALlc3bCquqn4qkoTD4bhcnrk2L4mE+fRjr49XeFpQAxcWyeMnJlVWPWsOJI3IjvZ4Kc57drDTSFOOZXtoDWqpqkmuFvMYnqbaBiuol5SsOzextvW5JkK7uXlUVHSRvv9m7Obp4R+jj3++/e7lnD00hsOcxfv9Q8dbP9GEuqqsh7f2ptw7ZP2HF+U+ecXYPyn4tjK1c5k/7X/wSaBg2Gi/+TGeL1skqkhVTXeLj0IQHCQY5sz27zAqhkJv1Km0UoVGotBKVFqpUitV6mRoS5Ew+VHZ2Z5lBvB4fDu2etxY5qSJDkMGs025Diao1UZpC64qaUxTxnSD/MmyGwEGOfmaiPx70ODauCFsGH7qRI3GeO2G6NiJuus3mpyciH6+1AB/Gvrf3ZWmbhHI6l1lDa4tlb5NxSHmJpDt86CRvOtOWmLCPXFWttRgQIhEODqKNXyY3cjhnKiBzA6ZshEEnPm74cuvCnPz/kldgQCRS0SF0HVSnVFnNKgNerm+BzUbHYJGtHPn+ddI86wnuE0PXzXQbaJF42/3PjTndzRXn+Dz+QcOHBAIBCKRaNGiRUVFXdxHLyxGyOHgc9KHOXAJGo1x7frCLT+W2bInAAAMiWXv3hEUGGCZ69whtFrM5UczqsSvd9mzubE8PfFEeuJx81JWPIEyZMziUVNW0ehcU2NLU9WNc5vTE09Exr4WN24px+Gp1LLKkqTbF3/MSD7VoSuVTse+PJU351XByOGcX/dWfbgqV6Pp4K6bMmUGBccKBXNNKf5loowNl6YJpeWdjd/VK2rg0LkRg1/t0Ocpl4rqa3KFtQUNNbkNtfkNNbndVSwzAcZg31x+LCRqGgAAgoxNxUviBqabx9UBADKZPiOzzfKlpkkKCuXtv9z4MfY7fwr08mwzCUYj8vuB6k/XFJhz7zryCPPnOS9808WUM2UBjca4d3/Vxs0ltXVt3huLGOGEcdwd2wJNO1S9Hjl/UTh1sgM63dTWqcdNSsrJ7Z2SZDqJE+s53dM+XKZulqhEUnWzVN0kVTW1KoVSdZMpooaBsa52gb68GB+HQT68aAFrQPtZO6/+wTcXX5KqrCVM9gVskWGCIPjT8ScGe04DABiM+gP56yNfWWJ+g6AwGHQatVylaNWo5VqNQqOWq5St0taG5Lt/VJV2Ed6DIPjVqC9fjfoS/WS0etWOW4vM/cMUAjPOe/Yov/m+vOjOLwMAAHqjrqQxJaf2bm7dvWLhY6VW2hdKYcPi7E4eHcGx6+DK1TWq8xeE5y4I79xtRm92DIwd7Dl9WvhKb26kec96SYlcJ6TZtbh4Kd0HqIiMFgK1lcBoJlAleGorAEAl5skaXGRCF1m9m7zBRd7oZDRYLrwgCFF6PXzsd/hWWnL97QbhfWGHzOAkEmZwNGv4MLsRw+yiBrJwOAgAcOW66NvdlQUtBooThexEbvvvTGkvEQwAQPSIXqnXq/RGrVEv16uEqvxt+YrqnoSNbSmf6BL9V32iy4L6yRMd1q/1mbcgPTunezMRDgd9tNxj9Ch7AACTgYUgiEbDYrEQmYwh4GECATZtNFGcOtP0/U4WmzfI1SvKzWuQeZaauKkyI/FE2qPjVm5OPIEcO/rdUZNXWXGfGg36zMdn7lza1j5EBwAgEOBxY7lzXhVMmsAlkZ6MLTVNMuu11LJyS//D9NGLpnt+Q8e3bUbvFP214+bbtvhqMFh8QNiEgUPnksiMhpq8htq8htr8+upc6zno3QUGi//wy2MvTTQEeVyik5/y6qSlS7b/XH70eF2HBt4CRCL8yUqv1au8TB6b5mbtZ18W/H6geuxo+7cXukya4GCxsk5Nkxw7UTd1skPs4CdfIhrP3/x9SYNQY8fhTp8x99dffnB2Iv20NeDlqU++soePWhYvzc7Kls6c7vjn/jB0RdzSopsy/fH9B72ftmMjaEQ2ahF9eIN8HAZRCMyEoiPbbrz5QngPVq5cs2WLtZwFFAQsedP0BHQeN2JBbRDQkQGCIAlXtt+9skMpF2s0ih7TH1IIzJVjD5mW/0JpxbeXpnVG7O7M9hvtN3+Ez1zzJBetXlUoTMqpvZtTd7eg/lFfE4iPj+eeOhZhfl8jCEhLl5y/KDx3QZie0aluTKBg2LSwFQPdJnbI5WsOCDbCGL1BZ9UDDyGlrg9SQ4+KmU9SsYw6Y3NKc8PthoY7DQa1Ac/Eo384Bg7PaHtM5+AjfSgIg1BKxENwzy2CQWMo3ltc+kcpou/eZtGWgvou0X/VJ2wBDEPGXtpiWyA0hH7kz3BfnzaPfFm58tW5acmPWwEAXMcBrl5Rdvbu+VnXrFD3WgCHJ8WOfmf0lI8t5MFUSsmjW3vvXtmB8syaA4ahoUPYc14RzJjmyGJ1XMTT2qpbsCjzzN9t+zM6iTMzYvWk4CVoboXBqN//4OOzGT925633LdzdyJ994iFj78wAACAASURBVDXnVYH5nW8wgFNn6nbsquiBRfH0IO/8KWjc2CcuaIXCYOFibW3V/XW0du/+atO0Mna0/fq1PoOinghNKJWGk+fwdco1VHaQh92ekVE3iYS2dN+mJu3qLwp+P1Bl+qpHDuecORFJp2MBACqVYfactPMXXzx7uJNb2KDwV27f3dX+t9Tf4O87+pvxl/B6HABARwCFbsIDv84ryHqmuQwA4GoX+PmE03xmm9BBRvWNzVdekam7qNuBIUy4a/xgz2kNkrKcurvFwsfPbRkxY5rj4YNhaFq7Wm28ndB07oLwwkWh7QkmTizfl8M+GuE7t8uqxPZoktdUi/MqmrMrm3MLhA9VHk2OIxwdRjiQHKzVMHQXOqlOVa9CjAiWgoUwEI6Gg3EwhtRx5FVWIsvakPV8lDF6EX1oCAcOjMnNzVIqX1h5O4WC+emHAJOusU6HfLam4IdtpV0aPiwWighn0KhYtcaoUhnkcoNOZ5RI9Xq9UanCxY5aNGrKxwwWv0lYmnB5e2LCfmBUkMkYHBamUjEYDESnY0kkzJRJDq/M4js7Wf4i8wvkR47VyuWGb7/2RXdCCAK27Shbv65uUtBHU0M+QNMFAQASlWjzldlZNbd7+XPpKTAYaPkS96/X+ZhvuFUaem5lfGZJ/M5N72ckdUHfYAXTX3bc9kOAk8ByLrh3X7x3f9WJU/UqVQdFLBPHc7/60icinGFq0emJCjWbSTU55KHk7NCde8lpSfdLCu6aM/uEhzEunYty4BIAAHo9sui9rP0HrbGskSksLI6Iw5Pk0sYey4BYgaNz4LIvb1NoHARBygsfpD48kp54Qi4V9foLdQYMFj91+uIrF/6wHrqDIHjExI8mzf6GrCXwswFsAACAIlHK6pNxz0g6M9R71vJR+9CEewQgp9O2HHz4aW9VQ/YF3nzD+bfdwWiOibDRMHFqRmpatwnGUOCxJDsKn0XmsSiObIojyufAJDtwKAIm2YFB5kIAkqqaKpqzTRV4lc05Ck1Hkt0QYPozeSN4vBE8qlsX1QsWUIvUymqlokahrFEqahSKaoWyRqmTdpzngSFiYDyMpWCJXKL/h/6soLa0R8SIVJ6sLNhZoFfYVGQlEDiTSOSSksJuDbV30S/qCPsUs2bwf90VzGC0OdOvXBO9sSCjw5oYRx5h/DjuuLHcMaM4aK5Xh9DpELncAGMwRoOeRMJ0lohlgdo69dHjdX8drU1Lb9vThIcxjv8V4elBNmiJFfcnFd54GdE+0QisU+d8fnRi/+GDDg2h/7Y7ODLiyQ4sM0u6Z1+jnfchriACAGDQa3/b8tKzaGRTqdiv1wUsWeyMxQJRk+7gn1V7f68uLOrC5Lh6Dfx87dsvx2dzGJYB1CaJ++2M9xrEbTp8RoO+ujy1OO9Ok7AMhjFEEl3gqNu0popnrwYAIAh08nLI5YRgIomGxRKIJDqeSMHhiEQyA48nmycD67SqnLQLqQ+O5Gdc7lBVrgdw4PsuW3vHonTHaNAXZF9PfXAkK+Xss6tRWgfXccAbS/9y9ogAAEjEtfU1uXVVWfXVuXXV2Q01eabadgZb8PriAyYZI7xQLSjBQwAGANwrPv7dlVe6VS1OwtPcOSEenFAP+1BP+3AP+1A0KKjWKX66ueCFqz1bx9L33H7aGogm7hWXKM5eGLLn12OlpX2S3ISBsQQsWantVNu1M1DdqbwRPMeRjgw/hl6u10q02latTqLTSrRaSdsD9D9qAg2aHi47IBhynenq+74vltI206ob1Tnf5TTc7joXoVdihM+IPjSEcXGjUlOTFIreXzt3F26u5MMHwwbHtC1Y6hs0c+en37zdBADAYqHBMazx8dxxY7khwfReF1RpadGdPlt/+Ehtwj1xeycwh03Z9+VXZOFCjfyJgSkSJt+s+qVY/KioqKCXR9MjkEiYLz/3Xvmhpylcl5kl/XBl7u2EZgAAjc5dti7Bge8LANBpVbs3jS/JS7D94hAEOwh83byj3b1j3LyjeU7+HEY1k1pbXj+wujw3P+taQda1ssL7HXIFOPB9J87+JiRqGgRBACCe/EdRvoc4jGoAgEIJjp8fUNI410EQYl0lh0xomTJ4nT2zLVUyo2TqveyFNt4XKqUk6/GZ1AdHinJudpd1wRz2PO9la++gubgatRyLI2AwT63DdFpVTur51IdH8jIu206bYDtiRiycPv+n9jTWKIxGQ3NjWV1VdnNj2aBhb5qysSpLkv/Y+XqMw4RFcdvQluMp3/7x6HMrL8Qi8zzsQz3swzztwzw4oY4Mz/bhsXpJyYaL0yqa+zW33+ervb/5ygd9nJUtjZ+Y5O4RlZ+f29r6woLN/QEENsHvAz+niU6mlubU5qwNWYpKa35BNzcPMpmSl/civ/H+QrHW18BioXVrBqxe5YX6MYxG5Ne9VRwOfswoe3SzaNDhjTq8XktEjFidklJTq6mrU+PJCjJdTWWoCSQDg47FYmHTztIcylaGuIGuaeVImlk6OUcpZutVdiqVvriqIquotKG1WqyoE8mrxYo6lCgSAICBsaP95r8ycI255A2NV+kdf+jApcNfri/QdzPg3EcYMcxuz65gb6+2KVKtNq7fULTlx1JzgjQm22n5urt2XHcAgEYl27lhdGVJspVrkiksN+9oV69Bbt7Rbt7RJhmXzqDVKEvyEwoyr+ZnXRPW5gMAWHbO42asHRT3holaz2jQJyUcuHp6/diRhhHDOOs3FKF5pBQax9t/mHfACG//ETwn/w6vj8cpJ0ZvcOK00aQVVg+/mbbcYOzgi1YpJQBBSBSmRbtM2pj+6Hjaw6PlRQ9tDDmbYMf1WL4uASWCUCpadn49qqW5KiRqemTsa55+Qy3shErRWpB9vUlYKhZViEWVYlGFWFTxLLtSMoU1++09KAsSAECv0yAAsVJ1isJoNNz4e9Plk1+hZbWLh/88MahNXCy5/DwMY7EwjkpgYWAsCUfDY4l4LImIo3bJdYkA5HH5ha3X35Br+m+ECYLApg1+H69oyxVPSm4dPyWppaUbasn/efBG8AI/DiRy235FeoW+4OeCyhOVz1JxER7DdvO2dPPeuyYUNfR79YmXXpp1+/Y1iaQjL/YLwvA4u0MHw8iasOrHY5pLAxEjRq8hG/VYg7aLO19n0Ci1UqVWqtC0qvRSrUFuBHoGgcsk8Vlkvu087lq9qllR2yyvs6PyHRlepvZWdUXw1GOBox9AEAIASEnVfLpGcuOmNXPS12CxcN9vfKpq8+498duLM4uKO1jc2XE9Plh3F1VDVcrF29cPr6vKJlPZLI4Lm+PK5riy7V1ZHFc2x4XFcbFwAJrDYNDVVmTodGo372iLXRGKlubq6rIUv9DxpskaQZCMpJMXj69prCsEANDpjFGjxp050wHZLJ3J8/If7j4gBocjGgx6jVqGIIhK0QoA0Ota1q4SD49tsyiiJnD0pOLwUVlJqdig12o1Cq1WadqKOQj8wmNmhw+eje6Dnx5eRXXhHyVZh3GYFhYLx2bj2Cwcm41ns3AsFo7NwrPZOLFYN2V6skSiBwCwOa7L1iWwOa4AAJVS8vOGMebZy0y2U1jMrMjY11CPZWeQttajRrFZVNHSVJmXcUUsqrDS3wRP36HzlhwyCR7VV+e0VJ76ddfXHJ4X3znI0TnQ0TmA7xLMcfA0r44Xiyr++HluWcF9UwsGxq6dfCHcJd6WFzWH1qCubM4pE2WUN2WUNWWWN2WqtM9JXa9ngGFo57bAxe+00aPcutM0dXoKSlE0fvzUlJREc8ry/8/AUrC+S31dp7ua0lD1Sr20UNqa1yrJk0jyJfIqucmJ7ucXSKPRk5M7yLc34aufg6fNc7FofGtSYlJCx/nwTU1t7RAEMRgMLLbTAt+2bl29o56jn8QITWBTHEf6zosPXOBIH9B17+cFsaLu6ONvruXuZbCgP/eHjo9vq8dSKqEHjxrT0qVoEXppmaKbO41nwszpjtt/DDSJcEok+k8+z/91b6WVMTgI/JatvYPWk6G5JBbKkZ1BIq4tL06sKH5UUZJUXZaKhqMIJNqAgJF+IfG+wWMtKjXNUZB9/cKRz8w1ym2RYeoQGAy048cncxwAwGBALl9t/OXXyivXRB0WuQpcQ1CLyOPzXbhp7rzHbrzHJEKn6fImXL8pmjg1mUITLFt7B313GpVs18b48qJHHfbnOg6IiH01YvCrXL5PlxdHEKS86GHK/cPpicc740mHMdhx078c+9JnqIVDEOTetZ//PrTql1/+aF9HiMMReU7+js6Bjs6BGAzu8sl1KqXleyTj6VtmPjRRwHQGqaqprCmjTJRR1pRR3pRZ01JgMHaDtPbFAouF9v8W+vprAvTw/EXhrNdS1eq2MiET1+iLG2C/AyuYFfxFMM2zg5pvvUIvyZe05rdK8iSB7FAO3EWMsEtDaKE+4e3trdfrAQAzZ86MiIhYvXq19aH2oSH08vKprq7QaF6wDCwWxkW6TRzrvyDCdbwV4g+9UafWybV6lVavVmqlaK4alcAi4+lkPN06h5ZC09qsqG2S14gV9SJZlVhR1yyvBRDEoTqxKY4cqhOTzLOnOrMpjjTik2p3mbr5ZOrm81k7Tbl2EAQ+/dhr/VofE9eRCRKJPj2zjZklLV1SWKToQdmJuxt5wjjuxAncqEgmWlGOIKBV0ubVUasNKpURAEAiwf5+T367Z881vL8sp66+a/+bwC106ZpbHdKTmkOrUdRWZlWUJFYUJ1YUPepS0prj4IlaxAEBI000lZUlyeePfFqUaykIQCAQnJ3depyBtnyJ+6oVngL+Ux6CqmrVb/uq9u2vqn/aD+PqQpo0wWHyJIcRwzh4fPdupT8ONxVLDnIdBwAAtBrF7o3jSwvudXkW3yWY7xzI5rrbcd05XA87rjvTzrkzMjODQZefeTXl/uHslL/NlRzsuO7zlhxGpVEAADJp45FfFuakXQAA+PsH5+X1UEnDnuYS4TpOq1dr9SqlVqozaFQ6mUav1Bk0cnWL3qjtGUl3PwGBAB/5M9xUlvrX0dr5b2WYBwjc3T0bGupVqr6tWfzXAcJCXm94ubzsQnK0VtFRuLqo+Lq1NUSXhtBCfWLlypUAADs7uzNnzsTHx6tUXeQz/1tjhDCEQRW0TUarPZzZfmP8Foz0ncskP+WLU2haH9UdyG45UVHRKBK3Goz6jrOQzYDHEMl4OglPoxCYFDyDhKdjYZxU3SRW1Ilk1bZX7OIxRDaVz6bwGST7zOqbHaaBDY+z+2N/aPu6C3PI5frMLGl6pjQjU5qRKcnOkVnIKZiAw0FDBrMnjOdOHO/g59u9XOoGoWbpBzknT3cjI9zNO/r9z6+je0GVUtLSVCkWVTaLytsCWk2VYlFlj6v7MRic24AY36AxNRXpWY/PdDcaZyOwWGjyRId3F7mOHskx57vS6ZBzFxr2/FYlV+gnT3SYNMEhKLCDpa5SRVLpHNRamlpLU2kYTc2apHs3crOzmpu1zWLtlEm8zz5pc4k/ypubUjhLp1Xt2TypvUW3ERgMjsVxseO623E97Ljubt7RXn5xFpFFjUqW+fhM6oO/CrNvhMfMnrlwlykum5959fDu+T2mGfrvAYuFHLgEJyeiI4/o7ETk8YhOAiKfT/T2ori6tN2Se36rfG9ZTh8VQP9XgSVj6QPoDD8G+kdzp5mMD2JErg67qlda8w10aQgt1CfQsvqDBw/+9ttv9+/ft7xcO/ShIVy5cs3Bg7/2utMcAlC050vzojc4s5+wa6p1Cr1Ri65G0b0dHksyFxUDACAAyalNuJa7L6vp772Xw738aAAAtdIgrFc3CzXCOnWTUCOsUzU3aoS16uZGjVZjBAAQiBgCCQYAUGlYGAPBMESlYwEAiBFUlSlKC2T6PtDVGz16vCMPVinTIiOYkRGMiDCGlXIOAIBOh+Tly1CjmJ4pzciUEAmYCeO5E8ZxTdlA3QKCgN8PVK36NL8HWQBcvg8OTxKLKtDw23MGh8OdP/8dW+hRuoSXJ2XRWy5vznPmcLrg1EYQkJEpuXi58cIlYUqqNHjg9MmvbjT36BZm3zh7aGVtZSYEgT8PDJrzCsoeAF1KXL5i6XfPXoduDgZbEB4zOyL2VRePSIunVIpWU6aPXqc5f+TTO5e3ma8nNm3asXr10l4czL8F4+O569YMcHYmOXDxsFV2le+3ln7yWX77Ndh773104cLpqqqKvhvkfwlEeyLDj8HwZzD9mWyeHe5P8vnz1qqQbYkRmqtPAAA8PT3/+uuvQYMG2TIea1MkhUIpLi7m8/kAgCVLlmzevBndYB48eHDFiq5FFVgsNgbTDd53WxAkGD5/8CYfnuV7I+IoAFBAJzkrYkXdjfwD1/P210tK8AR4z9lBXv+4/ohkjKsnxdWzaxLkDqHVGEvyZPlZksIsaX6mpChHprSthtQ6yGSKTA6fPVuP7sYgCHh6UCIjGBHhjMgIZngoA6VEMQGHg0KC6SHB9Dfm/qNCZUTa389yuf7GrabLVxuv32gyeURpVCxaFwHDkMlkymT6DpNibAGatPKigMVi2OwO2FZ7gJJSxcef5q9ZVzhzuuO7b7uak7qhUCoNN283XbgkvHip0UR2CgBITzyRlfJ33Nj346d9gfL5+QSN/nhTWtKdA7cv/ZjX+HNN02knThYAyOjwbfb0lN6tkpGIa29f3Hr74lY0shg++BVTUo/JCgpr8w/seK29WLS9fad5TP9VUKnYLZv8Fr3lakvp1BdrCzdsKu7wKSaTjcP1XITk/xvUIrVapBbeFQIAxoyZwLand3lKlzh27BiqPoEezpkz5+TJkzae2+mX/8knn3zwwQc8Hg8tw9q5c+fNmzfPnDlj+7BIJLJGozYaO+WcJOIoWr3aRuYIT/uweTHfRriOM7VoDWqtXoWqJHd4it6oS6m4dC1vX0rFJfRVYBja/HvYuOl8AACCAK3aQOiEKKhnMBqRqlJFfqa0IFOSkdSSkdTSM/8JDoeDIEir7ZitEYYhTw8yavlCgunBQXST06ZDFBTKL11pvHyl8e59cWce1P8MYBgmEIh9EaoJCqS9+7br6685tbTqLl4SXrjUeOduc4d8NyaQqez4lz+Pi1+Cwf4fe2cZH8X19fE76+6b3Y27uwsSIEhwd1va0m0LVSh/qlShFGgppUoFhxYKLa7BNSSQEHfPJll3f15Mumw2yUZISOjD98OLncns3Em4c8+995zzO22GSCxaNXPYKgalFgAgEumTh1/v9bSjO7h6RsUOmR+VNIfOdAMAXD//45Hdb+p1HfyJiESiSvUUe/J6SnISfdevUbaS7iaTRdikq6/X1jfo6uq0DY3a2jptY6Outk7T0KizVYS3A4fD6/X6x0kn/X+L4+EOZuhYp6Bw+zyr4wdr622qx9hWn4AgqKioaNy4ceXlXVRTgenUECKRSAiCDAYDbAjPnz9PIpFCQ0Pv37///PPPFxa2mcVyODw0Gl1fX2uxWFxc3IxGQ2NjA43GoFAoCoVcIhGTyRQqlSaRiFUqJYvFxuHwQmHDgrhPxocLiptv3S498bD+kgEr02q1LS1NBAKRwWAqFHKZTEqjMbw4oeN8ViT7zLSK9GsNqozy304VfFteU4TFYtlsjkFnUMm1VAqdzXCWy2QIM4ZKpWnM4tKaPL1ez+O5IBCIurqa1Z+HLl7pCd/kxw0VR3cqLJAaR9R5+LDcPCk4go7GQrp6UNk8LIkKkEgIhULptCaVQg9BkF6HNBqMWq1epwFoNMZkNrh5Y738SIh2gS1W6qs1Z/5qunlOm/+gRSaTUKl0MpksErVoNGo2m4PFYhsa6k0mo6uru9FobGysx2AwTk5cjUYtl8vIZAqBQJTJpAqFnMFgEgjE5mahTqfjcp1RKFRdXQ0EIZydXfR6fVNTI49HGZLs4u2F8PdDRUfRgwKJJpM547LoyjXN1Wuau5mVRqPRxcXNbDY3NNTBrWi1mpaWZiKRRKcz2rbSpNNpuVweCoW2awWHw7NYbKVSKZWKqVQamUwRi0VqtYrFcsLhcI2N9batoNFoDodn24pcLpPLZXQ6g0gk2bZSX18LAHB2djUYDEJhA9yKSqWUSMQUCpVCoUokIpWqtRWhsMFgMDg7uwIA6utr/21F29LSRCQS6XSmUqnQ6XQ4HI5IJLW0NGu1GmvnhFuBOycWi2Ozndq20qZzwq1AEFRXV4NCobhcZ7gVBoNMINCtnZNEsmulzmIxW18BuBUsgTUsfU1k4ixrar/ZZLx77uUtn1Y5sTEAgKpqfWzSJanUzOU663S65mah3StAIpHgbuPkxMVgMDatGBsb6+FXQK1WicUi+EWTSiVKpYLJZOHxhKamRvgVQKHQGJI7DkeWNee2bUVh7ZxarbqlpQVuxa5zwq1oNGqRqIVEItNodNtWbDtnbW01Eoni8ZzhboPHE5hM1r+tPOo2tq+AXeeEW+moc8Kt9KBzwq3YdU4MBuPiwnttBXPFSzxrYNq+A3UbNwulMnRjo7D9K2DbOeFW7DonlUqrqanS63XtOif8ChDpdGb7V8Cuc8KtdNQ54VbadE64FdvOadtKR52zzfhs20qH47PBYLCOnLattO+ccCvtOifcin3nhFux7Zxubh5IJLKyshzuNtbOicViJZLuChQ8ZvWJTuXBTCYTHH4Kk5WV9c4773C53LNnz+7YscPu4qlTZ/P5AiwWh0Kh+HzB9OnzAAAffbRRIHh96NCRAICIiBg+XxAYGAwASEsbz+cLmExWlPsYApoa6Tz2xWHfbJub8930ki9mXZoZs2Z41JRlfEFMTAKX6r1u2j+fjLmU4jMLtoJmyPh3zpbnd3szEhTjp0wCAHC5zny+IHnIMKVO4uHnOmn2eKYbqbTpnk8Ub8b8WUwmGwAwd+6SpUsFC1/2slrBP3+tyjiK4vMFQQFxZYUKtDHEnTHn8jHkF2vy7p+LzDs/et7Qe+PDM67sSz3za8ycYVffml9VdHn0Pz+7Cqbd3v8NpiEnfc8W1NS4yxteplzcG/bdp3VH99SIGnBmU5u/p7M7nv+6x08nAvZfSl74stfI0cl8vsDLywcAMGHCND5fQCKRAABLlwrmzl0MAGCzOXy+YMSIMenpU5YseZHPF4SGRgAAUlNH8/kCJyceAGDWrIV8vgCCIAKBwOcLJk2aDgCgUFwDgxc9eOj93IsPVq3Frd+cPGRkw8Spd4TNSWmjl5FIFADAkiXL585dAgBgMFh8vmDkyHEAgKCgUD5fEB4eBQAYNmwUny/gcnkAgBkz5vP5AiQSicfj+HzBlCmzAADu7h58viApaSgAICoqjs8X+Pr6AwDS0yfz+QIqlQYAWLTo+QULlllbSUsbDwAIDAzm8wURETEAgKFDR/L5Avg1njZtLp8vQKFQGAyWzxdMnTobAODq6s7nC1JSUq2t+PkFAQDGjp3I5wuoVDoAYOHC5xYufA4AQKMx+HzB2LETAQB+fkF8viA1Ne399z9PSUnl8wUuLm4AgGnT5vD5AgwGC3fOqVPnAACcnV35fMGQISOsnTMgIBgAMHr0BD5fQKczAQDz5/MXLXoeAECl0vh8wbhxkwAArq5+fL4gKioOAJCcPIzPF7i5eQAAJk+eyecLcDgcEonk8wUzZswHAPB4zny+IDTI57etc87s4+sVZQAAk8lQdHe7t5vX0ufL1WoTAMDDHfP3oTgWi8rnC9LTJwMAvL19+XxBbGwiACAxMYXPF7i7ewIAJk+ewecL8Hg8BEF8vmDmzAUAACcnHp8vSE0dDQAIDY3g8wXBwWEAgJEjx/L5AhbLCQAwZ86iJUuWlxVcqS2/wecLJkyYBgDw9PTh8wXx8UkAgPj4ZD5fsG3bTgDAxInT+HwBXNSbzxfMmbPI2jlTU8cAAEJCIvh8QWhoJAAgNXUMny9wcuICAGbPXmTbOSdOhFvx5vMFiYkpbDZm0kT4FfAFAIwfP5XPF5BIZNtXgMVy4vMFo0aNAwAEB4fx+YKwsEgAwPDhaXy+gMPhAQBmzlzI5wsQCCQej+fzBZMnzwQAuLt78vmCpKQhAICYmAQ+X+Dj42ftnBQKFQCwePEL8+YtBQCkJLveuJz42gpn2Aqq1ej3P9ItWJLt6ZWyePGLPJ4zAGD69Hlw58RisdZXwM3Ng88XJCcPAwBER8fz+QIfnwC4c27cuD08PNL2FaDTmXy+YPToCQAAf/9gPl8QGRkLABgyZIRd50Sj0Wg0ms8XTJs2BwDg4uJm7ZyRkbF8vsDfPxgAMGbMRD5fQKMxAAALFiyDO6ftK+DrG8jnC6Kj4wEAKSnD+XyBq6t7Z+Ozs7MLny9wMD7Dr8DixS8AACiUR53T19efzxfExCQAAJKShtp0zpl8vgCPxyEQSGvnhMfn4cPTAABhYZHWzjlq1Dg+XwCPz6tWvb9u3ZcAADKZwucLxo+fCgDw8vKFB4Fusnjx4m+++Wb16tXd/4otXeyLWywWO4UqMpnc0NAAj+COeeWVtw4e3NXS0rFqMBqJ3T4/1yozb0ejrLysOSvGI91awtQCLDdKD++6+W7vSpWOnsLbtCsadptdOiV8bV6muXvlD3sEFofwC6EERVDDYmkjJ3KpbStOmIyWGxeajx+su3C8UedwS2348DQIgi5dOufgmmd0CJPJmjt3yfbtmwf6QToAgqCI+BkIJCrrxgH4TPpYp3/+ioN9tCdONU2ZcbebVTn7iQ8+2PDxx11kXPUICgU1djQ7bSQ7bRQLrgqpUBhv35VevyG+lyW7el3cWfn1fgKDQXz8YcBbr3tb9QL37q9b8frDx3+MZcteOnv2RG3tYBEHfopISEih0xmnTx8bwGfoliHEYrE5OTmTJk0qLi6eMWPGypUrU1NT+6R5Gt4p1GV4pFtalPsYDsWzs8uulf657/a6anF+71qJTmL89E8iFocAAORkSp+bcFOr7vetfDQGMWS006R5LsPGcrBthbmVCuOFpVydqAAAIABJREFUfxoO/VZ9v5Oa7M/4/8Mbr3pv+bI1vHnj5rI17xQM7PP0CQH+pDFprDGj2anDmCRSpxF5Wq35Xpb05m3J9RuSm7ckwqb+zTn29iLs/CVySEpr0JNCYXzz7fwdvz4zXc/o9oowPT39iy++QCKRDQ0Ny5cv744HsqcJ9Vyqd6RbWqRbWoTrKDKutbPm1V/97fqawsaOFTe6g3cAade5FHhxVlWmWpR2XdK5x7s/IFPRY6byJs1zjU5m2EWm5WfL9v5Qcfpwvb5tGVs4eO+ZXFMveMyE+gFh29ehK17yhD8LVuT++POAFSN8nIR6Mhk1Jo09Jo09ZjTL04PQ/gKj0aJQGDsrzAkAKC1T7TtQt+HLMschSD2FSkXFx9KHpNDffM3bapWvXBUvff5+RWWfBVU9S6jvNQwGE4PBNDb2soJVnzAYJdZQCHQANzHCbVS9tORy8X6LpfeBjjw3/J4LKU48HACgsVazYNT1pvq+qZvTC2gMTNoU7uT5rlGJbQLxlQrj33tqdm+vqKtqfYsmT56JQCCOHh3UZWgGJ72WWBtAkEjo6KHYieM5AACj0TJ5+t1TZ5oG5El++eWP9hJrjqFSUZMmcGZO540d7dRhSbLqGs2Zs81nzjVfyGiRyQyBAaSkRPqQZEZSIj3An9Q+aaG8Qr3itYeP8xeAs4ni4+gJcbT4OJpdK1qt+f11RVu2lvdtRvwzibVe8x8vwzTgottEEuq300lBEVQAgFplXDb+Zl5W1zqQT4CQaOq85V7jZjjbbpkaDZZzfzfs/b7iwR1JeHg0AoG4fz/TwU0c4Dl/kllvaL6RpakfmPF0AHEgut3fED1dGJFB9Kigsl8Pq6p6Nv8jkVCXzydFR1EBADqdWbAi9/ddXSjP9QdLlizfufOn7lzJYKAnT+TOmMYdPYqNxdrbP43GdPmq+MzZpjPnmgsKOy3ExmRikhPpSYn0lCRGXCwVb5PLdOivhtffyqvr9rSVTEZNSHdKTKDHx9KiIqmdVQnNypYtXnY/L7/vpb2fiW73mu6IbrvPHMdKiLA7WfLjAUVpp9snc+fOXb9+PQBg7dq1Bw4ccPwMT6vEWpdgsIif/k6MSWEAAPQ6s2Da7btXOxYgHihIZNS4mc6LXvH2DmgTeVRVqjrwc+Xh36s1vXBkQlDw2897L54KH6kq65pvZDXfyBbdzjGqH6t6+H8ECKJHBCLxWKNKYzGZDHIVMJsNCpXFaOrF3wdCIqlBPvToIGZMKD0qGMtsTVfXNDTfWPx2T2chzjzczasp7m6tKaFffVP+9tqCQVKNywqLhZk6mTtzOm9kKguNth89su/LMi6LzpxtvnJNZFWj7iZoNDR/rsvG9UFO7Na0YIXC+OHHxdu+q3DwR4AgMCSF8dxS95nTeURixznBBoMlJ1d+647k1m3JwT/rDf0gBfWM/ib849fcZ9jnRdxa9k7L7Qfw5/ai2w0NDcOHDwcAXL58mc1mO75/PxrCsWMn3rhxRaHocVXl7iD4n39MMkOjNup1ZoXMqNOadFqzQmbQ681qpVGtMqWmc9JnOsMXf/hKzl+7BqlLHImCRk7gznvRM25oGz0USYv5XUHm1Z5sEEEIKOzDFe4zx7X/kcVolNwvhI2iLL/UYvrPptWTSOQhQ1I7jECjhviFrF3OiOq4KiEAwKzTm3R6k0anl8r1UrleItdL5AaZXC9V6KVyg1Shl8r1UgXBlcOIDmFEB9MjApH4jgt4qarrbyxeo2vuWZlWVxfckT9jY2NaDeq5C81zFmQ9yVp3M2fOP3Ron/WQy8H6+BB9fQg+3kQfb4KvDzEmmmqnCG+xgDt3pYePNBw+0lBe8bgeMgYDvf6ToOeXuVl1kR7kyF9amXvzln1YmYszbski16WL3azFMm2pqtbcui25fUd6J1OalS3rW6djh4wYMSYnJ0sk6qWO7v9n/PwCCQTigwf3HFzTpSFsL7qdk5Ozdu1aCII+//zz8PBwx88wGH2EjkEgoHc2h8553qPrSwEAAHz3efH365+CjXu/EPK85Z4T57riCa0TW4sF7Pmu4usPC+xCaToEQiIj17/pMiEVPlSW1xBcOAhsB5pPBpmi+eb96kOnW27aK2z9B+jQR4hlMwJfW+w6JQ1yKCP5mBjkSmlOESM2DInDAAAUpVU3l/5PL+nZRBCPR/7yY/i8Oa21fkrLVFNmZOYX9HuVPiwWERlB2bJ51fVre319iD7eBB9vYmdrLACA2Wy5fkNy+EjDX0cba2r7eLMhKZH+/bawiHCKta0dv9asfb9ALDZgsYhJEzjLlrqNSWPbmmSpGdSpzaUP5Yd2VJ0/29QofNJFb575CHtNd3yEXRrC9qLbI0aMuHjxIgBg+PDhV65ccfwM/TguxMUl5eXlqNV9qdiEREGf/RA54d9hoksO76xet6KXUXADApmKnrbYbdnrfkyn1uC6ggeyt/nZlSWdOloAAAgMOnrTGu6o1sI61YfO5H60DYFBM6JDWclR7JQoip8naBuWYDEas9durj/ZRf946iAQiKGhEVZ/AwKL8V40xXf5HBSxdcvRrNOLs/MRWAwSg0ER8RAKiaaQICTSekGPUFXVS+4XiLPzJdkFyvJqi9niNDQ2dtv7CDQKACDLL7u5bK1R0bNXAILAmlW+n30cAK+K5HLjgiXZx0/2sfMJiYSCAklxsbS4GFp8HC08jNJ+q7M9JpPl0hXR4SMNR4429quxQaGgV1/x+ugDf2ucZ3Oz/tgJ4ZRJHCazzfSuUWGuVhsJ9NaTep356J6aX78qs4aePRmiouLKyorl8kERhfB04eLihscTHEd6d2kIQTvR7fz8/DVr1gAANmzYEBLSRaXMp8lHiMUhvtwZM2J8qy7wsf21pw7X4wlIChWNIyBxeCSZisYTkQQiEk9AkamouirNp2/mmgaZl6U70JmYj76LsP6mGrVp/aqHR3Z3HD2BxGFjt73HTo6GDyt2/533xc+grTw+lkVnJUWyk6PZyVFYVmu9QIvJnPvRturDfVn6YFDBTUsOXv0cwZVrPdNw5lrB5l/VdR0bFQQWg8RiUCQChkrG0KkYGhlNJWNoZDSN8u9nCoZG1olkkvv54qx8yf0CnaiDWDDe6JTozWsgJBIAILlfcOv590yaHscqTxzP2bszClZXN5st731YtOHL0scsPOXlSYiLpcXFUuNj6dFRFAcZfjDCJl1ZmbqsXFVWri4rV5WWqYuKlU9yq9bVBbd1S+j0qdz2PzKbLTey5UoC0tWnA3EPk9Fy4o+6HZtLK4odzSCf8bTQHUM4cuRIWHT7yy+/BAA0NTWNGDECgqCLFy86OTk5vn8/GsJly146evQPsbhvQlQIRNQ3B2MThrPgw/0/Va5f9fBJFm1/kiQlDUUiEW4hVW99GmyNLD19uP6jV3OU8jbVLVAkQvx36xgxrfOdkh8OFG3b7ejWEMSL8Q3+8HW8tycAAFgseV/8XLH77374JQYGOp0xffrcP6+dCvnfcmb8I8eArKAsb8NP4syHT+YxXKeMivj0DXgntuXW/Tsvf2TW9Th7NTiI/PfhWN9/S6Mc+KP+uRcfqLsdQkWjocNCyaEh5IgwSmgIOSyUYle0xBaLBRSXKJUq9z/+vF5aBls+tVI5KMrHT0h32vZ1qJdna25iZZX66Jlmqjcpbtgjt7pKaTy4oyokimodIgAAZrPl/N+NP28qKczpl0gFW+bP52dknG1oqOvvhv57REfHU6m0jAxHM/LuGEJb0W0AwJw5czZs2ABB0Ntvv/3HH12koj0dPkIKDf39X/Hhca1LmR2bS7eu69vaNYMLax6hXwj5y9+jfQJbi0bVV6vf5mc/uNMaOIChkeN//JgW6g8fFmz5reyXQyQKyj+EwnXD05kYOhNDY2LoLAyDhaExMTQGhs7EIFGQxozdUZ9eb+bBXyz6ZlfJjwOQb9AfuAUGjN2yrsGVBCFbJxA6kbRo686aI+csT7aSque8CaHvvgTvSAsv38l89TOLscd2hcFAH9wbkzaydXDPypbNW5TV3KLHYRFwsgGFgkIiISQSopBRAAA2GxseRg4LpYSFkq0BqJ1RW6e9mym9mym9c1eamSWVyYy9yCN8MhAIyPfW+rm74Y+daYoZ7TR2hrM1mkavM//xS9VPX5bAQhkR8fQXVvsOG8uxugIsFnDljPCnjaU5d/tRyOmZj7DXdMdHSHDlYBg0u5PK8hqjsnUD/DFFt/vREDIYTJlMZjJ1+vInDGdFJzOO7qlpqHHkbGdxsD8eTfAPbfWcf/1h4S9bSvv4WQcZsN4xXBAHi0eu2RA8a1lrcJDJaPnu8+Idm0sxbGbiL5+RvFwBAMBsYt7eH0Mq8Q+luHQk6tEegxm1RzSuWOMGH6JzrtxZ+21d5VNcggfHYfm/NM91ahrsnwMAGNWakh8OVO49ZtI+6dAJGM/5k0LfFcCfhRm3M1//vBe2EIWCNm8MfvUVr8d/nkah7kGOPPOe9G6m7G6mtL7BfsOWzeYMtkw4BBKiUNEkCorBwkxe4DZjiTvqX1+m2WQ5dqD2u8+LbWvxwASGU15Y5Zc2hWtblTP7lri6TCWXGhUyA/xPLjXKpXqFzKiQGRRSg1LR+xUwjcZQqRQGwxOVTv1vgMcTkEikUvlYEWHLli376KOPJk6cCNem7ykD6SPcuj925ESu2Wy5ebHlyO6ajBON7cMjnd3xP/2TCBfONZstG1bn7f+pcgCedaBJm8xd922EVcX7yk1DBn2+lsACAEDAMpOZEU3slqiYxQKkYj0KBZGpaKMFubtlXLGmte5zEvlhQN3Jy6caL50Q5mXL+lZ3o1/B0Ck+/Bme8yfaJjM0nr+Zv+kXdc1A6jYBAAJWLvITzIU/1xw9/+C9r0GvNvSf47t/900oBtNpuZj26PXm/AJlTq48J1f+IEeek6toah6YCUF38A+lzFrmTqGiyVQ0iYoiU9FkCppMQxGIHWznWizg4vHGbR8XlRU6Gj29/EnPv+U7YbYLEtUHA51Wbfp+Q/Gub8uNzzIR+xQMFtGdwPh+pR8N4Xvvff7zz9uEwo5HIgYbe6EoDWUTqCYV648fqPtrV3VJXmvn9vQj/fxPAtcVDwAwGS0fvPLgn321/ffAAw4Sj2OnRHNHJrqmpQAiziBXGlUao1JtVKmNKg3KpIuJwbnwIBykz1QFSYxkAAASMs1hXggjlFlvolWbSgoU5YWKFqFOKjZIWvQysV4q1kvFBviDxQIQSCgygT58HGdoOu8Oa9pDtTf83Whi0UxmBgQsapXR8dt+6aTwqw8KWp54kLodaCrZZ+k0zwWTbWM+8WJ1xqpPbZ0HA0vImhe8/pU4qNx//OGn3/fuPinJjN2/RdKoaACAQmmE08zh0BWTySJXGAEAOp05L18BG7/CImVPk8e3bft15cplvXu8XkOmol9513/uC57dNFd3roi2fliQk9ldySoXD8KyVf4j5/gh0K3zSAiy4KBWly0SMmOgHizjSvIUH7+W014u/8033z1y5EBFRVmH33pGh3BccO9uCaNR2H/voB0+vK/rL/QbXYSN9R8KmWHNsqxpi92TR7Lg2rY0Bmbhy14LX/Z6eE/6166a8iLFlt0xDDYWAGDQm9/mZ53/p3GgnrZfwTJpnBEJnJGJrIRIOAUNBk0hoSltIuLKASi38fqjIeN89lmGpOjaNXnRQ3lhjrwoV15VpuqywpTZZMm6Ic66If7qgwI377txm97SB8QBALJUAQYLag7zfPtpuNxEqNLxqnWcah23zsAip2rmXxXX3SvP+idPXlqjKKvWi7sVOI4mE9FUsq5FbNI+lvQ5mkz0XjrNa+EUFOnRVrCsoEy45+Sc8GF/DhorCADI27gDScC7zxwLAPCcN9Gk0RV+9VsvHJbXb4i9Ay72wwMOGBAEJs93e+PjQKYTtrNrLBagkBmUcqNKYRQ36379uuzGhQ4quyHQKFqoP5ZFx7LoGAYVQ6fi2AwMg4KhU7EsejaZmN1xObg2uGOEyzjHsA7tol8IeefZ5L921nz1QYH8ydaQ+i+BQECzn/N47aNAEhkFACi6ZwCHB/J5Bj59guuKn7LAdepCN1fPjp1bWrXp9QWZ1893oyM/VZC8XDkjE7kjE2nhgb1I9IYMOtn3X+cevvX4xTQgBBT6/ises9PhQx9ExVKXc0jI3KBnVum41XpOpZYnNZEd30QvVSjLq5XlNcryWm2TCEOjYOgUDJ2CoVGxLJr1EEKhAAAWk0lRUiV9WCLLK5E+LJYXV8HOMzQGsehlr6hkxhdv59V2UhkARSZ6L5ritXgqmvxIUkReXFG8fW/jhVu923jsbyAkImrDaufxw+BDeVFF4dc7m67cHdinGliCIqjvbA6NTKBbz1w903R0b41c2mr2Wv85jFzFcVhOw2KdhsaykiJRhN5kgtohupt7R/Bhe6dy68C9LpD0b+StqEn35Tv5Jw72e5goioD3X7mQlRihLK2Rl1QqS6vkxZWaeuETDv7qQ7wDSOu+DbfWHrBYwI9fFG//bCDjjPrRELq4uDU1NXbTewxBIH4Ya9oit7QpPFspaqXc+MrMO1k3eyZVNbDguWy3aWk4TmukH5KIRyCRAAAIiUARW409nscmenYgCyAvqmi8eEt1J09VXKU0alFEPIqARxEJKDIBTSKiiHgkEY8iEtAkQsP5G9Kcvis2BEHBq5/zXjINPtLWN6FpZGRfjCzdwaw3yIsqCPK6sYm6CFcZCakWqzB7drZcvqpF06lYBhXLomOZdHh2j2PTbRVzFCVVxd/tazh3HTaBaDTayYlbVzcAitWOgVCo2K/f4YxIsJ4RZz4s+Op3yf1BVIDQ09O7srLrCmuPCZWOXvlB4Cy+O+JfaZi6KvUXa/IzTnRrywdCIulRQZxhceyhMRT/bsUQWUxmvURmZ96QWIxtR0KRiPB8tPl61t0VH5v1HQxcTjzcmi9CxkzjWc/cymj59I3cqjIVl+sskYh1uj4ubsMZkRD67kt4nr1UpkmjVZRVK0qqFKXViuJKRVmVVji4tJQ7BI1BPPem7wurfDH/CrVXFCu//F9Z3j11XyXa9Y5Blz5BpqInznGZtsgtKJIqEekF027nZz8dYg0QAmKnxHjMGe80LM4au98dLCaT+F5e48Vbwoxb6lohGLgyTAErF/oJ5nX4I6NSDUuoiDIfyvPLiM7MSSvjYiaHSCCG0Ehv1tP1lk7rzNndRy+V45yYCEy3rneAsrym+Pt9Daev2k6NHZdhwuKRIZFUDA4BANCqTXq9GQCgkhtNJgu8BQcAMBosalW/5M8xXchpG5aqw0daUI/GX2HG7cKtOxUlA1aD0Jb+Tp9AIKDpi91eXRdI/1cdRqc1//Z16Y4tZbqu5EAxDCpnWJzTsDhWcpTtZoAVdZ1QWVqtE0t1LRKdWKoXy3XNYp1YqhfLdGJZl1sF7rPGhX+4Ak53abxw894b6y2mjh9p2Find7eEObvjrb/Cz5tKnLCL9u3d04fpEzgOK/QdATctqZvXa+qbqg+frfnrjLZpkC4bIuLp674N9w1q3Vsy6M2/bCn9eVPp8GHjukyf+OqNkEXp9iuHqaszrz3o+JcdOnTo1q1bqVSqRCJ54YUXsrOzHT9bP/oIy8qK9foeB1MoZIb9P1Xu/6kyMJyi1ZgdS4sNErAMmtv00e6z0gmunO5/y6TRNl/Parx4q+nyHb20TfBbc7MQgeiBKe0rirbtMaq1QW/y4UNtk1h876E4O198L09RUmkr1S0rrd3zWu25jadWfx48a7ozAEBiJDcbaEUNxEt3oRYZUi+BdatlBolcJ5bpxTK9VKaXyM0GIwAAQqEoAZ60ED9WVKBnaoiByjFbevD7qirrir/fX3/yUvvdIZ1OZzcYIRBQYAQlaQQ7aQQrMpGB7aRAjxWzyfLXrppvPy0S9V3BdJ9A8sJXvCbNdcXiKhSm/RdlsXdVgSYLEgDAGZHAGRHvIs2hPDglKWsQ1muvnBbKnqB6iy0FBbn9d/PQGNq7m0NDYx5lg10507Rh9cOarqS6ISTCa8Fk/5UL229+WoxGcXZB05W7TZfvKsoeS1i/+s/TKAI++O3nAQDcUUmR69+8/79NHW4/XjnTdDfu0ivvBix82QuJgrA4xIr3AkSN9+48gMr6IlYGQiI8508KWLnIGgKmaWwu3PK7xWKm+HuR/T3Jvh4EF/uhBu/sFLByof/L84SX71b/ebr5Wubg2TslklCvfhg4d7nHIy31O5J1K3JKCxQAAJGoxdhVWhGZgGRS7ZWTMehH77Jd9QksFrtw4cKLFy+OGzfuhx9+SEhIAA4ZeB/hUw0zLsxj9nju6GRr7hqM5EFh/ekrJo0OAGDWG6x7MkaFGq4zbDYYpbnFvVAbeQI4jx+GQKPF9/LUtd3aqkoYzlq7KcSa9Q8AyDgpPHukvuC+vKJE2VnkDgIBTVng+tq6QKYT1mhB1htY1Wqnq3n4RhMHRaPigdqFbSKhdCSkhoRUa0Wyk78VFdyo0UtgmyrvsoCGqychcQQraQQ7fjiTxuhAfNwxKqXx1y1lO78t73Kl4pjEEawlK7xTRjvZVaAVGalnpfG5ah/Lv+8gCjIlkPJGULMai5tennGnfW5cr/HyJyWmsuKHs+KGMskUlExqkMP/JP9+eHSov39b0ufBwCwOdsX7AdMWurXZC307L6MbAqrUEN/wda9Sg31sT+pE0qarmU1X7jbfyO6plKtj/F+e7//KAvhz9aEzOeu2OVhKBkVQP9gaZjXtJqPl7WVZZ488VsYONcQ3/MOV1BBf+NBiMlfu/ado2x67MmEoMpHi60H296T4e5L9Pcl+nnar5NYF4pGzT2DLNDiKSqGhiSQUEgVRqGgEEiJRUCgUgkhGoTEIPAGZksbm/SvvoFIat64rPPhzVY8StHa8G/7cZHe7k6NeuXUxs7Xch131iVmzZn3yySeHDx+eN2/e5s2b8fguvDxPmej2EwBDp3BGJHKGx6GIBINCadLojGqtSa0xKFQmjdao1hpVaqNCTfJ29ZgznuTtZvtdo0pTdzyj6uBJeVHF4zyDh4cXBEFPwFvTV6DQ0IKXvF5a609sK1+pUZuKcuUF92X592UFD2RlhQo4KyM8jr72yxDbxcH1881frMmzVYZ09SR8+E144ohWV6vFAv78teqrDwrsROZgIAhwXfEevkT/YEbCUA/vEFOHsVcWCyjJk4ub9QAAHAEJp+VR6GgAABqNwBOREATI1Ed7to21mm8+LjpxsK6nWZVoDGL8LOfFK7ytQhAwWTfEWTfFHGcczw3PccGbnNwuqJJLta7WC7CQgYWWGg2W6jKVokkGLAAAYDYY4EkVAEBVXV/79wVlRRd5RBwXXGIqK2E4K2E4y8m541pRHWI2W/KzZZdOCa+cbip48LheCSweuWSF93Nv+VjjkLu/FwoHiXgtmGx1NCgrautPXhZevisvKO2/5U7Qqud8+NPhzxV7/slb/6ODixFIaN5yz5UfBMA932iwvLkwszsGvj0oIj5g5SLP+ZOsv680ryR33TZZftfLTAiJcBoW5zE7nT0k1jbyzmIy2S4QkTgsHFiLZdJwTgwMg4Zl0XFsBoZBNam10twi6cMSaW5RjzZXpy1yW/dtOKJ74X6XTgk/fSNXWNfGk9od0e0uDaFd9QkGg/Hdd9/xeLwffvhh+fLlDAbD8YMNOh/hQIHjMLkjk7ijk5mxYT3y8MHIC8urDp6sO3HJqOqDifxA+QgfEzYX+9anweNnu0CddCud1lySJ5e06IeMebRCqq1Ub/xfx4EScHj96vXBViWBpnrtp2/k3rki8vQneviSvP1JHr5ED1+ilx8JR+i0ZlBTvfZmRsvNjOZbGS1dbnimpLFXfRbsG/xogZufLfvynfzMa92aWdMYmFnL3Oe96MXmPkoJMJss5/9p/H1rWe49++w3FgfrNS6evWA+wsX+PXeA5H5hzdFz9aev2q6HCERUSho7IZWVmMryaFelz2hBVul4AFh8cN0NdBTWaa+cEV46Kbx9RdTTlTEEgfGzXV77MJBno/SWcaJx4//yO4sHtoWTmhD63qMgEZNWX/LjgbJfD/dCmqfHQFDY+y97zBkPH5X+dLBw6y7H3+C44H69Mp/LlmAgg15nfm3e3WvnehDlDqFQ3FGJIWtesEbYGVWaom92Ve4/3tPSoQQXjvvMsW7Tx1i19WH0YhkCh+lmYK1WKJLmFktzi6S5xdK8EquMWXumLnT7aHu3rGCLULd+9cMOl8vdkVjr0hCCttUnCASCVqs1m80hISF79uyJiopy/Hj9aAiHDRt1795tlWoAnHwoAp4S4AUgSC+RaVskDjZPCK5c3uhkbloKLTygFzkMJq2+/vSVqoMn+zKAEwA/v0AIAsXFT6WealgMLXEEKziKFhxJtQYUdIhGbdqxqXTntjKdw2rmTCfs/zaGjJvh3KPHUKuMmdfENy8237zY4lh/pD0IJDR9sdsr7wawOI+M2cXjjVveL6gqte9LOALSy4/k6Uf0CSR7B5KGjnayNckateno7ppd35Z3MfpDkHP60MBXFxPceI4ua4tJq288f73m6HnR7QdjpvJWfx7McWmz+DNYUDU6p3wpN0/EkRJcARIFAJDlFrQc+BNUFlKoaDKs4UJDU6hoCg0dEevlHWRsP6XQqk03L7VcOSW8cqapqZ0wW3uiEhmrNwSH2az4C3PkX67Nu3Ol68kEzokRsvZF3pgh1jPNN7JzP97+JEWCIAQU8dmbrpNHwoeFW3eV/tSBGC+ERDKigzmp8U7D40lerihg9MPXhhAqvKGy1bOv3r7cRZFeBBrFSozkjUnhjkpCUx9NvBrP33z4+fe2W5p4AjJ2KPP6ueZu7kxAKBR3ZKLHnHRWQgTobFraPSxmi7KiRvawRNciMShUZr3BqNaY1Fqz3hCXQHjhVQ800oRD6MW1soaiJq3apFRd2PQuAAAgAElEQVQY9DqzWmlSK416nVkhN2g1Jr3OfCujpbO0S09PbwKBmJ/vyD/dHUNoW33ijz/+uHLlyvbt27/55pvq6mq4HoUD/iM+QgiJIPm408MDaGEBtHB/so+H7arOrDfoJTJdi1Qnkuglcp1YpmsWo4h47qgkSqC33a0sZovkfn7juRvykkoUkYAi4JB4HIpEQBEJKDwWScChySQkHgshkU1XM2v/vmCQPwXhPAMFnYkJjqIGR1Lb28XTh+s3v1fQ2O2arqnpnPe+CrMb6G1Rq4xVpaqqUlV5kfLuVdGDOxKD/rF0mwhE1HNv+Sx+xdtqGIwGy8EdlReONXr4Er38Sd4BZO8AIs+N0OFQI2rS7f+x8uCOKqm4u55gCIWi+Hu4eBLXfhnK4OL1ZrTFAv7aVX3+lARCIQEACBTKaWgsd3QyEtcmAx1vlCcxi6OJxUyUzGRB1Og5xQperogjwrhYkB1H54qz8oq372u5ZV+cGUdAJo1gp453Sk3nwHIWdjQ36soLFWWFyrJCRXmRsjRfYfsLungQ3vwkaPRUnvVv0tyo2/Zx4d97a7scxCEE5DFnfOBrS1D/urt0Ymn+Fzvqjmc4/mJ/ACGRMVv+x01Lhg/zNvxkLdKCoZHZQ2I5w+PZQ2M6jF+FgMUDXf9g18XMXy5oGuyXhggMmp0UxRs7hDMiwU4xQ9PQ/PCz74UZt61nqHT03OWeC17yojMx966LP3j5QXV5D5xNRA9n91npblPTMHQKAABYLDqRVCeSaoUtOpFUKxTpRFJtU4teJMM7O9HC/GlhAdQg7w4LejvGpNPfe/3z/kuN3bYqdMkEV7uTE9+8cyX70S6ubfUJb2/vP/74g0wmZ2RkrFy5ssssvn40hFOnzs7IOCuTdVcJqafgOCxamD89IpAW5k8N8X3MdFqL0dhyJ6fx3I3Gi7d0Lf2oUt8dwsOjEQjE/fuZA/sYfQ5sF4MiqPdvS7q502gLiYx67aPA2c95WMygtkpdVaqqLFZWlqqqSpVVZSrY8UChUEeNGnfkSJ8V0+C44F77MHDCHJduekEAAJUlyp3flB87UOt4pesAJx7uu8PxAWGt/sX9P1ZuWJNnDTtCkQjO44a6TRtNjwyy/RYELEwgEpmonRk/VVU93tnJNrBLfC+vePteqxzdkiXLd+78Cf6MQEDhcbQRE7kjxnO8/Duo+WdF0qIvyVdUFCvNJsuMpe7WFDGt2rTz2/Jft5R1mY4CISBWYqT/KwvpkYGtpyyW6sNnCzb/OoATTQQaFfftB+whMfDzFHz1OwCAMzyeHhnUgffEaAKoDjbnZXmljRduNF64pappcEqJ5o0ZwkmNR7Uzn5rG5rp/Lpb+/Kc1KMaJh1u8wnvmMndbv7tWbdr6UeG+Hyp75LRGYNAkbze9WKoTyTrLCbECoVCUAC96uD8tLIAW5k/0dO3mVpnZYMx++8uGs9e6/2AwQUGhZDLFWky7dwze6hNd+ghRZCIEQT3t6BAC4qal+C6fTQ3y6fQii0VZUauXKbB0KpZFt1XhssOk1Tdfv9d4/obw0p3Bs7Z7Sn2ETwamE1Ym0Xcmheo4j7DXBEdRV30WHDeU2f5Hep25ulxVUaysKlVVFCvLi5T5fSFZTqKgvt73qADnhWONa57LtnXUjZ/lsuyz5Ep8eLbaX2bs1FApK2pFd3NFd3NEdx/qmsV4Htt3+Ry3aaPbmMPMh0Xb94ru5HSWR+jhSxw5gZs6nhMUScV37ou1YrGAEwfrtn5U2OWKH8uiu01Nc581zrZ+sqKsOvejb8X38rpsqL9B4jDxP3zMjAvr7AKtUCS8dFuYcXtZ6vSjF47p/XkeE1KIwYHtr7QYjbCski3qOmHD2esNZ69Jc4ut4anu3kT+Gz6T57lapxR2ZN0Uf/DSg6qyJxGHiCITaaF+FH8vBBaDJhGQeKxnED0smacHKKMFJVUia+qMaDoNXtpaTOYH739d+/eFHjXRHR9hlwze6hO+vgE1NZU6XaexCX6Ceb4vzKo7llG577i8uOswSwiJdJmY6vv8LLtYTRi9WCbJLZLmFEtziiS5RbZ+QQQGjaFTsUwqlsXA0CkYOhVWJxHdyW26mtmL6uH9DZvNAQAMtoI4TwVYLNbNzdNxBFqvGTGB++Lbvhq1qbJEVVmqLC9SVhYr66o1XYq79g4MFvHpD5HpM1udo9m3xCtn35VJDL5B5Hc2h1qtsgVAx2+TT5d6keJj4U0tZXmN6E6OKPOh6G5uh9sbeGcnvxfnuE1Nsx2aRXdzdcdvZh1yVKUZgoCLB8EnkOwTRPINIvsEkr0D7MOUsm+JN/4v/2G7sKA290FArMQo99njuCMSbJ/BrNOX/HSw7JdDcL7pYABFxCf+8jktzN/2pKygTHjpjjDjliy/DDZgXl4+jY0NGo0aAOAf77Jyz5xKlG+Z1tVo6WDeoK5paDh7vf7MNVleie35wHDKc2/6jpnKs+aZAACKcuW/bCmtKFZ+vD0iKJIKn9SqTd98UrT3u4onXCVm4lyXz36IhB+v4L7s+Um35FIDlkVP/PlTsr8nAMBituR9/n3l/hPdvyeDwcRgMI2NA1koZsB8hAg0atS537Ds1qhW0d3cyn3HGy/c7HDljsCg3aaN9lk20zZj3WwwyvJLpTlF0pwiSU5RN5PenvGMpwgEAnrr06DFK1s92RXFyhsXmuc872kt2yKs0375Tv6Zv+oBAGgykR4VLMsr0Ym65Y8guHL8XpzrOnlk+5VKKxaLoW2gmVYoajh/o+HsNUVxpfUJXTzwvkFk70CydwDp8mnhuaMNDlRcsGyG27TR7jPG2qlP6KWK2n8uVO49NghfZDSVnPT7epKnq+hurjDjljDjjqaxi6BQ/1DKryeTsDRiscY9W+yRr3RDEPDKilp4/ScvbJMZRSKjQmNp7fNNs26Kd2wuvXa2Cf57otDQC6v8lq/2s/7vZ98Sv//Sg/YBXP3E+Nku63+yt4Lwj9oUCbdYCr76veyXQ0/mqfqEfjSEq1a9v3PnT50tawgunOhNa2jhAbYntcKWygMnaw6d0Ylb32QkHucxO9176XSc06NEEKNKU3XgRPnOI9184Z860tLSIQhx7lwPZlXPgGGxnJYufXHTpk8G+kH6ksUrvd/6NMjOSWnQm3dvr/jxi5LHFIQjuPH8BHNdJ42AkF3veVrpbEzvDLyzEzXY13XSCE5qvJ3dFd/Lq/rzVMPZ64NTXwIGTSZazGYHyVEvv/zm8eN/VVdXWs+ERFN3HEuCRbobGgwvLy0pvVEOAKDQ0N4BJN8gslcAyTeI7B1AgivNWbFYwLWzTTs2l3aosRwYTvnsx0hrfqpOY/rmk6I931X007aElfGzXNb//MgKvjD5lp3+EYpEiP9uHSMmBD4s+eFA0bbd3bnzkCGpdDrz2LGBLD8xwHmEtFB/z/kTndOH2SpPmvWG+lNXqv86y4wN9Vo4pTXeCQAAgF6qqNzzd8XeY4PHn9cfPPMR9pp+8hEOOONnuXz6QwT638K8Ny82r1/dRn/gMSG6O/sJ5rpNHmXp4ZCgqq5vPHfDbpcPgcWQfT2ogV6UAG+yvycl0Lt9dKVBrqz9+0L1n6cfUxptkPDOO58ePLjLTt4vMoH+498JsJhAU722vEjpHUhy4nUa+Ww2Wc4cafhlS2lRrryzawAAaAzixTV+z7/pa63geP+25P2XHvSfIGX6TOcNO6IcWEEYJA4bu+09dnI0fFix62jexh1dqrz2iY/wMelHQ4jHE3Q6rdncdeAclkFznzXWY854az5pe3TN4rLfj1T/ccpOaug/CRqNhiBIrx+8E+RBCwKBwGJxsKvmP0bCcNbX+2KVcsOXa/PPHu0XhwqRSFSp2jjXbfM0IBSSGRvGG53iNDzOthIyjLpW2HTlDoZGJQd4kjxdHKwvJfcLqv441XDm6mPWpBxU4HB4vV5vNtt7duKGMr87FO9A7QEAYNCbq0pVWTfFO78p7352RHAU9bMfIq3KDyajJfuW+OqZpitnm0rzu5U4i8YgwuNoCcNZsUOYdppQCrnB8u/IDUEgdggTNroFD2QvTOrYCsIgMOjozf/jjkyED6sPncn9aJtjGaDuDHdUgiseax+qJlaU6Y19Y/sHhSFsfRQkkjsqyXP+RLsYLXWtsOzXQzVHznVYGOU/yTND2GsGrSFEIaExCexF4101OtMrGx9qdL2RMPXwITY1aDXqx5I/dYCdIewMBBbDTorijUlpnwnXGQa5Ul5UIcsrqTl6fpCU2uhbOjOEAIDkUextB+OsIaAatamiSFlepCwrVFQUK0sLFLWVapOxNxubGCzi5Xf8l77qY10awjTUaK6ebbpyuun2lRZt294Ca9AnDGMlpLKikxndiQG20qUVhIGQyMj1b7pMSIUP605evr92iwNJoO4Md5MTf4j25dud3Hl+bEXjJQffIhKJJSUlzs7OAABnZ+edO3e6ubnV1tYuXry4vr7NVuVglFij+Ht5LpjoMnGEuk5YtuPPuhOXu8x9+Y/xbGu01wzCrdHoAOqi8a7zxjhzGK2rq+wi2fQ19yobBp217mkZJgiFYsWH88akcEYlYhmPdGQsJpOqql5eVCEvqpAXVyiKKruMLnna6XBr1ErSSHZAGKW0QFFeqGyoUfdt9eiwGNqq9cGR8XTbWFMYndZ896royhnhw0xpSDQtfjgzfhjLKljYIwpz5C9MutVNdQgIAYV9uNJ95lj4sPHircItv1nVSFAEPJKAQ1NIKAIOScB7+PrRMwocb412aQjtqk/4+fm99dZbr7/+OpfLhSAIAPD7778/fPhw06ZNb731VmhoKJ/f5m79WIZJIhGbemXA5MUVOR9uy9+4w6TRDp5KIk8StVoFQQNQhuk/gNFoGtgKn1ZcnXDzx7osHu8a4k22+1FUADVz55B572WfuzO4zENPM3YsRmPzjazmG1nQJ9sZ0SHM+HBNQ7O8qFxRWj2YI1/6A6lUbDB0+ivfvNh882J//V/n3pMuGXODzsSkjGYPG8tJSWNTaK2mDotDDBnNHjLavq6vlfIi5e3LLbcvtTS0zfjEYpFYfJshKD9b1plGWnssZkvOum0mtcZr8VQAAHdkonWztEMUpx5XPOSPP/7g8/mHDx+eNWvW4cOHjUbjpk2bNm/ebNWUGTVq1Nq1awEA+/btu337tt3X/yMSa894xiCBhEdNH8FdlO46MpZpF+dZVqs+f7d56QQ3LAYBADCZLe9+X7hxd1nfrg+e8f8cBBKKTKAPH8cZOsbJL8R+EgYAENZpb11qge1fd5RjH4eAlYv8BHO7vOzskHl6iaP4oC5XhHbVJ6xp9RaLBV4R6vV6IpFoMBgwGIxCocBi28gH9uOKsMuE+md0xrOE+l4TFcgclej97b572scTGu0QCAKj49lMKoZMQFJJaCIeScQjKUQ0hYgi4JBEHJJGRgd6kIj4Nn4XicLwx/n63afqbuSILRbw+/HaQxtiXNg4JALa8EpQbBCN//EDpWZQ5I8HB4fn5+cM9FM8ldgm1A8sZpMl64Y464b4qw8KeG74YWOdho3jBIZRcjKlty+13LrU8iSrnRdt221Uazxmp5vUWpNWZ1RpDEqVSaMzaXVGhcqo1po0WiyEYNOYdQ4NYZcYDIazZ8+++OKLVCq1Q3GZlpYWOp3e1NTEYDBaWuz10Aejj/AZz3yEPQWJgCYP46yY5TkihgVBQCjWfXOw4vvDVRJFnwVYRfhRvl0dOiSii8JmVgxGy+mbTbtO1h6/JrSzylwm9s/1MdZb5ZUrpq/JLK4e+MqdPfURPsOKYx/hMxzQnfSJ7gTL2FafsJ60rgh37dp1+/bt7du3r1ixIjY2dunSpba3GnSi2xAEgr3Iw6OZQyMZZbWq7w9X1TUPOgm0/ua/KrrdHzCpmOenuL00w9ODax/Qr9QYfz5a/fWBiurGx0q5oZHRn7wY8NIMD2T31IczC6S7T9XtP1vXLOnUaYRGQV+9EfLKTE/4UKY0LlqXfezqAO8B2IpuP12QCahF413LalX3i+VC8QDsQqWnT8nMvPVsF6cXdEd0O85f4M0baXcy48FHTdJHgrS21SesJ62G0NnZ+ffff6fT6WKxeOnSpQ0NbRKQBoWPEIJAiDc5NZo5PJo5LIrhRH+0e2swWv7KaNh6sOJm7gBXhHjGYCMqgLpilue8Mc547KOtSLPZIpIZ2PRHdWQMRsuBc3Vf7i7LLetZVUIAAASBpRPcNqwItPZJo8ly6kaTUKyTq4wKtVGuMspVRpnSIFW0HkoVhvqW7k7dlkxw/eF/4TgMAgBgsYCPfyn++JeSXqtH4jCIqcO5x64JVT0sovu0MzSS8fsHkd4urdr69S3a+8Xy7CLZ/WJ5drGsvK6PozSfMQgZvNUnHBfmRSCgUG9yagxzeBRzWBSDReuiAlZmgfSbg5V/XKjX9YPvZ7DxVBfm7W/QKGj6CN6KWZ52u5QSheG3YzW/n2xycot0wRW+vcjHNlzTYgGnbzZt3F12Kau7MaUxgdRvV4cmhj6q9H05S7Ry08NeGFQHxAZRD2+Idf93OXv8mnDJR/fF8p7t6HKZ2JdneL443d2Jjr2dJ53wxh2RrDdBm+npU06d6lR0m4RzohDsa8LZgkLiUCgcAACLIiMQKAggsBgqAACFxKKReACAyawXyUta5MVSZaXZ0gfWGotBfPJiwFvzvR0UyZIpjQ9K5NnFiuwi9eWshn7KWklKGlpQkCeVdiCK9gzHdKcwb5cM3uoTjn2EaBQkPj+WhO8gWqdRpMu415JZIEtPchoVx7JVoRWKdT8eqfrhr6qGlv9yDM7/Wx8hi4bZ81FUfAjNwTUYFMIuGuV+sXz7ocp9Z+rUWpM1jxCCwMQhnDWLfFLa2su7+dKfjlYXVCor6tSdLd0YFPRnLwUun+puHV7rmrWrvyk4cK6uP9YWbDrm4GcxI2JahTO0evOJ68K9p+tO3mjqctoXHUB9fZ7XnDRnDPpRsHtBpXLsq7drhD3eELb1ESIgJIsawGNEOzOiecwoJ1oIDk3t6Q0doNA0NkvzJcryZllBkyxfoqiQKLsuQWNLpD9l17qoMJ/W6U6LVF9Sowr3pdh2D4sFqmkMzCkYll+WpNGSSUQJmVil1BaVNWRey7maW/7AYumbifUzH2Gv+Y9LrMXFJeXl5ajVnYYAnPo6YVxSa4JLs0R/KUt0KUuUkdlSUPloERnqQ351ttfCdBfb7S+9wfznhYbv/6rKLpKptf/BXSAPDy8IgioruyVn/J8hwo9yZGOsl3OnxSPt0BvMhzMath+quv7g0TScQCCGhkbY+huGRDDWLPaZkMJpX0deqzeX16nK69St/+rV5XXqlHD65y8HMqkYaytbD1Z8vKOkXwM7UUho48qgN+Z5256UKgyHMxr2nq67nC222y9FIqApwzmvzfEeFtVx8E6NUDPutTv5FT1avELj05bVlml4jEguI5JHj8BhHM1I+hyZulaqrJAqq+XqWrm6Tqaqkalr5Ko6jd5+mYVEQG8v8ln3gr/V/J+43vT8Zw8aRToEAvJ3J0b6USL8gpwo05SKsRKZe2ctYjEKgCgWSnNySjMLq7OaZHlGUy9n2FFRcWVlxXK5rHdf//+Mi4sbHk/op9Jp3WQgfYQvz/RMi2Nl3GvJuCfKK1c4mGszqZjlU91fmeXpwrbXq22W6Csb1JUNmqpGdWW9pqpRU1GvrmxQ/39zkzztzBnt/Mu7EXZLvc6oa9b+eKTq56PVjaLuDluhPuS3F/nMHe2CRvWgz5+70/zq5rzCyicUbj5rFG/VAp/2C+LaJu2Bc3V7T9fdL5ZTSajnJruvmOVpN2O4/kD89YEKBALa9WEknKcokuknvnn31sMunOsICOnhNCTIfVqg22QKwcXBlRq9xPGizWTSGYwaAIDOqDCbjRZg1ullAACjSWcwaQAAeAyNRQ1gUQKJuE5TvNtjMKqlKtg61kqVVRhMw+vzsUOj1CSCBIIsKo3pra35Px2tggcQApYZ4jEzzHOOm1My1MPxDYtt4HBXKTQFYrlBJNOLZAaxXC+S6VukBpFMr1APihSXZ/QH/WgIly176ejRP/pQ5gONgmaM4L0218vWbdMZLVL9vULZzhO1Ry839k7XcQBJShqKQCCuX7880A/yJEAioM9eCnx7kQ+8YlNrTcvX55y83uTgK3KV0dRJRAmdzpg+fe4vv3zX4U/dufhlk9wCPEg+LgQfVyKD0qnWVHWj5s2v8w9nDECxUF9X4vyxLvPHOgd42Mt4FlUpndk4MuGRQ8FgtPx5of7rAxV381vDs0fEMI9+GUchogAAKo1p5trM0zc70DRBIXHe3JFB7lMCXCcSsB2L3au0zQ3ibOs/ibKyT35BAAABy2RRAljUQBY1gE0JZFEDaESPnqopIZEGLLaprK64vqVMqqrS6KX+Luk+vNFIRJv/Vq1BVlj9d07l/uqmG2xqQGxAQqhXDIsaZtD7aXUUu3ti0JoZY7/y97rXvjm11rT9UOUXu8o69L/On8/PyDjb0FDX/kfPcEx0dDyVSsvIODuAz/BU5hEmhNBem+uVGs3iMrHt97vskCmNB8/X7zxRcyPnqYk7/a/6CMl4XoT3wnCv+ZXCy5dyPlHrRHQyet8n0dYd8op69fQ1mfeLe59a2yOtURoZDVtEbxeC9QObhvlqf/nnv5cO+K57TCB1wTiXOaOdnVkdFO4RyfQ/Ha3e/mdl+/yi6ADqya/jYWlTg9HC/+T+3tOtAzQWTfZzHhfkPtXXeSwWbS87gsTo88vPWS2fXP3khnUUEscge1MIrmQ8j0JwpRCcyQQXKsGVTOB1ZqcdYzLrS+rO5FbuL6o9YTR14AxGIqDk8IAh4Um+zlEEbEhZVbzRiAEAQJA5LWV3ctQ/Hd5WrjJ+tb98y75yedsykM98hL2mOz7CwGFs5yD7WUv2sXpJvSNHuK3odmdnYPrRELq4uDU1NVql3voDLAbh6oRz5+DdOHhPHsGdi3Pj4N05eA8e3tanCFNcrdp5omb3qbpeBBE8YahUOgRBgzMCDYWEfN2IFfXq7ofvopDYANeJkd6LfZxHI6DW/xeNXlJUt2njGw/83FozE87faZn7Xlbvwh2toNFoJyduXV3N49xkUIFAQKnRzAXjXKancmlkNACgoFK59UDF7lO1Dky1ryvx7LYEePvUYgFvfJX32zHd+Litvs5jUEh7sypT1xZW/11QcxRBaCivKOnofn1AsBdZozNV1Pc4aDM5nLtwbExqdKBez5PKnSRyp/omZnUDE4vmWruTFYvFXN18PafiQH7VX+2di52BRkEjo1NjfXaikRz4DJF4zMd7C4sGmFQ0k4phUDC2m+piuWHj7tJv/6xUaUxIBCbGb9nQ0NUoJAmATh08ZrOxpP70g7LdlU1X+ypC578BhUJFoVCO9w7nfhGeOMfe17t9/q2SG60aMV2KbgMA1qxZY3fGyqDII+w+EIRgUQJcWfGurHgK0U2qrBTJS0TyYpGiVKqsMlsezdE8eYSF6S5LJrj6urapCGo2Wy5ktuw8UXvkUuOAT/mfMGw6JimUnhzOCPcl17doCytV+RWKwiplZYPGQe4aBAFfV2JcMC0umBYbRI3ypxLxSJFMv+d03a//1OSUOlq98RhRkT6Lw73m4jEdx3QwafVjhuz098rctLfsf98Wdrbh+QwAAA6DGJ/ipNaaztxq7k7wKo+FPb01IdyXAgCoqQ/87a83LZY2Fd3EivKC6iMFNUdrW+46GMH7hDEJ7MNfxJDwqLxyxfFrTceuCW/lShz/d7PpmIXjXJ+b7GaXBrP1YMXa7QVavRmJwFCJbnSSJ43oSSN5UoluTdKHuZUHZapeToMoBOe5ww85M2Pgw+qm6wevzFFpmwEAEASmpXI/Xh5g+zANIv2W3UFG7Us0olf3W5GqqnPK9z4o3yNSlPbuOf8f0qUhHDt2LJ/Pnzt37vLly/39/VetWoVEIiEIMhgMVrPX/oyVfjSE7733+c8/bxMKH9fLQsAyXVhxrqx4V1aCCyuusxhuk9kgUVaI5CUiRYlYXipSlAglDzX6liERDP4kt1mjeHapGnKV8ejlxjO3ms/daXagADIgpKdPhiDEyZNHH/M+CAQU5ElKDqenhDOSwuj+7vZVwmE0OlNhpbKoWpVXriisVBZUKhVqY0wgNTaIFhdMjQuiwQuRDskskP52vHbfmTqpjZgZEccO85wb5bOEQ29TWtICLFXCq+WN50dGvgQsPOt5le76rvOvCSWPlUgE4+TEffHFVz/55J3Hv9V/ABoZ/c+mODxq3ukry0ym1v7fJM0rqDlaUH20UWIvK7pt268rVy7r88eYnea8e12kbYIHAKBFqj95o+n4NeGZW82224xIBDQmkf3cZLdJQzh2X8mvUKzclHcx014osg9BowhTk34O8ZgJH0qVVfsvTRdK/4+96wxv6sjac9V7L5YsWbLk3ju4UI2pBgIiEBMgpG2SDdlNzyabtumbkLZZsiGNkmwILfTem23ABhv33m313tv9fsgIuRuDgeyX9+HhsUb33rmSZu6ZOec976n0vUQgoAdnBb/9eIQkmFDXkn6yqECpEY25rw5VUVnzz1VtO+zOm5Pf+h/D1Kl5TCZ7585fhjlmREM4oui2HwNbwLiKbt8KMChiguRBIWuigJXBpISP5hQkAs2iRLAoEYGNamNdh6r4q18uvL3+8vQM08P5wklJDN+XQCGiVs0VrJor8HrhK3WGI8WqI8Wqogqd2/O735RkJdBz01mZcfTMePowNswPPBaZHElNjhxVlhgMA63R6c8uSIumpUXTPv1rzM6TPRv2dxRec81N/1dMyGIkoo9CgsHSUdPxX6N9J4uueGl1yOzMhuKr886XLnY4CQAAIjb7ibkXrzT+eKr8H74F+B+4LTBbEV9sXpUQ2ivSSMAbBYK3Cg9uv1invWPukL9tHPoAACAASURBVKdkon+/GDcw4Z1Fw/gmoNPlPXtVu/+8orhSl5/DXZ0vFHD6OG/NNve24z0/7G2/A2F+l9u6/dwKlaFmSsLrEIBoJNEjs07/dmF1Xed+AIDXC/90qLOoXLp06usYRLL/LCLBkJLw25GSbT/8dm2oL5ZNjU6UPBgrWuJPShGyM4XszDlpn9Z27itv/rmp+1g/kQE6GR0rIfv+BTF7IwgeL+xfN1hsbqcLBgDAMKw3965E7Q6vnx7op5W53PDRi6r/YR/YiKLbw+Oec40iIFRy2OqpCW+Q8UGDHmC2Kbo0lzvVl9SGWioxhEkJY5DDmeQwKlE4POvM6lB3qIotzstp0a0r8/Vi/iCLAIPZfbJE7TOK92Dd1BEBQeDtxyPeeCRiUA6R2eYurtCfL9eW1RuDObjYUFKUmBQtJvNY2EGODkBrj7WkxlBSoy+pMZTWGqxu78Qo6qMLQpZM5xFwN4I0RhNzw67X9AZxwKkOKvVstPRYalwti9rfJB847964e2FMyEP+SI/dZThX8dHFunVjTuf6A36Q8bxlU7YKWBN8L4PYLcvm/ZNGVgEAnC5vcaX+ZIn6xGX1xSqda0zl0UeDNx4Nf+dPkb6/a1vNi14piRAS83O483I4gzKA+qG4UvfD3o6tx7rvfOpCrEh2X+b3aJQvyOo9UfbG+aq1PEZybtI7YfwbIl4YjCU7Ze/EpP0YtB0AYLK6d5zs2bi/41yZdlD3NQqJixLMT5SsCIyX+2CxK0z2SzjcteCguoSIzjgpfjRf0egh1zj+ublx/a723x2LHoxiRwhGEt0epgWMqyFkMJgGg8HjuYkRHCWYn5v8HpsaFdjo8th6tFe71CVd6kud6ot6S/ug56KQWDpJwqSEM8lhDEoYmxrNZ6QM5AX44PY4jPZyGqVwUkrp1HQLakBlZwBAQ4flap2hvMFY2WS61mi6k3aRSCQCACyWmytHgMciN76ZuHRGH0JUj9px4Zr2fJn2fLm2vME46H7XVzwoJpQUJSbFhJKjxSQUErpab/AbP7X+hus4cS7vwbVJ5za1HvysjohBPJDHf3RBSEYsrUcl2bLvNZOlN7MlOKghKep0XMQ5HHaQTwHD4JOfm177utbjhbm0uJmpH0t5uf53tabm3UWPtSsv3NTH9wGJRFGp1NEk7WDRZASEAgD4VugIBAqLIgMAPLBLpa8JjDf/HhHCzrp/8hb/arKidWtG0ucvrxwkTdBi85wr0/qMYpcer1DIfe1IBOTLwaBT0AAAChGFREBao2uUbBcEAvr82Zi/LOsNnl2q0s97/pJ/IEEQSI6gzsvh5Gdz06Kp/faLar3zp0OdP+ztqGq+nWp2Nws+I+WBqTsphN4JJddd49Lj/bmJbo/9Uv035c2fPbWE+vxySWBOCwCgucu6+WDnpgOdQz03yPigBMnyjMhVVEL0wHdRKCef3STk1Ql5tQJeHRF/SyWKAtGttn+0qfG73e3jUadsbMDjCUgk0mwe7rcejSEcXnR7mBZw76RPCFgZeSkfijg5/hajtauw+vN25QWFvsLjHQv1FInA8JkpAtaEEHaWkJ1JwnMHPUxlqPAijiZEXJw3ySzk9q9g4IfB7K5sMlY0mcobjBVNpopGYz/+9G3EGNIneCzsnk/S02NoAAATElyo0v+6rfVCua6x83YW98mQCZb9MxGJggAALSXan58r03RYAQB5abKc6O9hmAAAQCDc+dO+TY450e9cu9Pb2m1tk9va5LZDhcrdZ+SB74YHz56Z8k//Gsjjde6/+MzVpo03e4fDpE+QcJwJUc+kRz4xolSYzalr7jnR2H20sfuIySYf/uB7EGnhj89J/8znnfbCnuNXXius+QIAMHMCe04WJzedFSchD+ozcHtRJottoIidHzAMjhSrPv2l6fil4QJ1aBT04+tJK+b02t1jl1SLXy4dSpqHy8DOy+bMzebMSGcXV+p+2Nu+95ziHpEUJuN5D0zdEcxMC2z0wp6yps1nrr1nsHb6Wlg0zK9fPhrBaBZy+rg9YBicuarZuL9j50m57+NTSaiJcfTr/2g0MrpHJSmvmVbZkG2xDjksvXC70XbZ7Dxttp8BkMm3QAEAEPEoDBoCACAgiEpCX29E+mKrCAj4GyclMfzOVQBAl8r+4cbG7/e2j9/3zKJhJiUxpqQwpyQzE8LIerNbrrGrdM4ulV2pc8o1drnGodQ5u1X2qPgcNJ7783+HS58Im8DkhvdPq608rjDIexNj7l3R7VEm1DPI0tykd2NEi/1LLYfLeL7qk+Kar3xqFLcLdFKokJ0pZE8MYWexaTEDiddKfbXKtF8sOJ83UT8piemrCTAMNh3ofO7zqttY8c6Pm02oT46k7l2bzufiWjCgkgBa0TCAIG2Xre6sqvasqv6C2tZXxBmJwHi8N80PylsTPveFyMAHqN3s/u3tKlCRPzvtU9/36fEaYyPfjI+sbu2xtfXYWnusbfLeP0ZUgUFAqLSIx6YmvEnA9pIbi2q+PHbl1ZtSZx40oZ5OCs2KeS5Z+tBQHoKhAANYri33WcQOVfG9v01EIbFz0j9PDXvU99Lq0Ow4v6K552S/w7gMbG46a0YGKzeNFTKgfNVoUN5g/OyX5l+PdTtd/Z+kBBxy2wep87I5vpfbjnevfLts4GG/F6CR+IWZ38aJlwIAYADXtO8+WfaW2thfD2z58odPnz4axrWtzhcumc7rt0E029wnSzRhAkKUiDSUPrhSyy+rEde2SHX6OABLABjk+ePxOlsVZ2s79tZ17jNabyJFm4BDPrlY9PJKqS+71IcOhe2DjY0/7uu4Xb8Ol4H1VRCaksyMHWKxNSge/Nj1y84jt9L1vSu6PSKIOPbk+NfSwh/zEys8Xldpw/dnKt4fb8YEDk2NFOZHC++T8vN8uviBUBvr67t2AUSRmK+PkVoTwwmJ4RT6YKyTHrXj6U8qdp2+m5uGRVODvn4vpYWOqMIBy2DreK8Hbi/X155V1Z5VmZsZ2dGvxIsf6FRfrG7fWd2+y2wbuYIaAgkteTcua3kvQU7baaVyccjrjD5X1UTrnidhK1lvbvvl9H1KffWtfBwaMaRg6m9+umlD95Gd51baXWOUcAyiJ2bHvhArWhK47nG4jD7j6nJbfQsCL+xxuHq9T0Qsm0oUDryU3alv6jnR2H20W1NitivuQVIPlShckvOzkD3R91Kuu7b1zP0jysGEC4kzMli56axpqax+UjsuN2y2uX3kC7PN7fHACeGUwKKM3Wr7v7e1rt/V5i+XQSej932a7hc6/8/OtjVrK8dcWOqeATQl/lURZ9KJsje7NJdHPJqIRy6eyludL5iawhymLAYAoEftuFilK6rQFVfqSmsNfmFIHJoqYGcIWBOF7EwBKx2L7p9LDgO4W1Na27GntmOfylAzyo9BwCGfkoleXikNLHXXJrd9sKFhw/6OsYWK8VjkfXn8yVmsjBiaVEB0IYDfqDqg3qQcCACOG2CHtrakqYfurijmXRPdFrAmrMzdH/gD17TvPl72usY4Xvm8gwKDIoUHz44JWRQePAeDGiS7wAt7zDa53tLm8nQScCo2UyMJ1sdKTcmRVjS6d1e+7Xj3M2urlLrbxu8Ypeg2AgW9+V5SwqLgDmyfLDAYBg6zG0cehA3ktRE9zfGuxiRXVQZspXphT7vyQlXbjur234Z6smPwyFX/SonL63UsN1/Sfv/4ZYaQsPKLFG5Y7zfmNdI7Ns787usXzPbhpNFGCQyKtDh7Q5Rwge+lylC75fRiralpNOf6RbfF3Mk5sS9J+XmBgpOtirPnqz5u7D42/EXY1Khw/uyw4NkiTnY/+qsfHq/TbFMYrV1mu8Jo7bL0/i03Wru1pqZBpUzGD1SiMCf2xWTpwyhk7wOusnXbnuInXO6bCGwjEdCSBTMuX75gtLjdHlg/mKtDzCP89YHQRxcIA3c8Fptnw/6OL35ttto9/sxFAMC7PzS8+e3dVFK+kxhUdFsUhF81T7Bq7o1sZofTe6XOcLFKX1ypK6rQjaZkNAJCcmix4cFzooQL+MzUgQKqGlNjbcfeqrYd3ZpBlOEGgohHPrVY/NJKid8cWmyUHpV1z7n63WfkhRW60SxckAhoehqrQCYSzuHWkyHXSJbE4/K2X9Iqi7SeRguHjGbTMVwGNoiJZdOwdCpuwWud/7Oi28PHCFFI3DMLKn1L7071xaOlf2tXDVeheLyBRuKl/LyYkEURgnmjLDeDxlhoJB2JqCMTtCiU+vDFytNXas02udHWZbYpbuVROGKMkCEg5DwYMuMhiZfQx39iVDou7ego3tah7bAK46lRUzhRk9miJBpiABsIdmGdJbmOCwu8ejYAwAt72hTnqtp21HTsDrSIRAbm8R/Sxcm9FJjygz0/P3fV5fCScJzlM7dJC6oxEw9BkI/ADc5tbNn3z1rX7aBoQxBiWuJbk+Je8U17m1O77WxBi/z0iCfyeMFPP7SutYzhZ0sCAGAAN3QdPlf5zw5V0U3dBgZFkvCmh/NnhQXPpg5bii8QMOw1WDo0pgaNsUFtrNUYGzTGBr2lYzyS1mkkUU7sS8nSh/wG2wt7jl/9e2H152O4WmAZpmFAJaH+dJ/oL8tCA/McvF5YZ3L58mq8XvjZz6u+2tY6hnv4nWIYiTUIAtkJjMRwSmmt4Uqd4Vb8kBQCP0KQHyVYEBo0pd8SDQZwddvOY1df05vbRnMpIh75Z5n4uQdiG1pkF64sRKGcM7N/Sog6rdTZ95xV7Drdc7JEM+itJkdSV8wOnjs/uEOArcWBm/0wDov72mF56Z6u+gtqrwcG//NlmGbNyi8sPGsyDcl3SpKsnBz/6omyN6rafhtvYYvRA4nASHjTIwX5LEokjSSmEPg+buHtBQzgxu6jRTVfDIzfAABiYuIBgKqr++c7AwDQOKTsH7ET7hdCgS4XGDScU539ua3qpMIb4N9gUSImxf0tMWY+OqwKHVaGDr8KUfuEbGEvynUt2352kVfZ6wz0wp5W+Zn6roMWuxLDNuR/CtFDep2KZ35s2f1eNeyF2dToB6ftoZFEAABU2DXU/I9wzN7dsLze9NOzV7uqbw/JLV68bEHm+us1XV2HS15oMG0SxtOQ6D7j1mZ0IxE4HiORz0wVsDIIQOzpkgIY8n2c6rad56s+GZg8frPg0uLCgmdJg2bQSCIygT/Qoz48XB6bxlivMTYo9dXdmpIuTanVcUuJ4XRS6KS4VxIlKwI1puW68iOlL49mxTAolixZvmPHcHnNgUCjoKUz+C8sl/TLQHW54dXvlP1y5P+X/PS0aTOvXbui0Yxjsn8gsGhKOH9WpHB+ePDswIW722MvqvnX+aqPHa4RCLcICJUS9vDUxNdJuBuJaqLgqnlTv2UzOgEABrP7YKFi12n5oUKV2eYWBeGXzwpeMSeYEUEuIYLmfl4os8duddsdXofd7bL3Gkeb0eU7iMjABMf09+6a1I6r+3uu7OnCWLh4PLG8fFTb2XHC3YwRQhACAaHGwNq4k0BAKAoxmEYU0YgiGklMI4l8f5MJ/H4i92OD3lJZ3rruasOvevOQXiwSHsWkotl0TEg0Je2FCELwjUcwxQNsV/VvPVeq7ujjY2FRIifHvxonXhoYG6vvOlRl/oieqMxYIuBH3RiXMAy5a9Mc5+5zt99IXEEGN5FWvg+RDL4DHEdWmc/MsrsMdqeOjOf5fNpe2H3o8vNVyh/vfy8+Ob+XZe5xeU9+26zrsloNLq8btlvcbofXZfc4LB6P22szurxu2G4eLetEwEp7cOm/qJEalKgWJa5G0EYVmYMtFGdNSu0p88FtvyhU46KDjENTyQQ+Cc+lEIJJOC6ZEEzCcyl4Pg5DY5Clo2Hl6MytXZrL3eqSLk1pj/aq0z3aYk8MsnRy3N8SJMsDl2jdmtIzFR/UdR6482vK6Wms55dL5mZxIGi4ehd/YDyARGDE3ElJ0lVx4mV+r6nZpjhZ/tbVpk1DiZpGCxfmJr/LokQOckGkOzNp7+SMHWhU7+rW7vTWtZkTwijtWFBCBJ19YwXqauOuT+uqTyqGl/1ji4kpC4NT5vO5Yf3Jn5p26/bXK2rP3s0xM46G8L77lp46ddRg+F9VD4JIeA4JF0Qh8JlU/sJJCbHiULOVYbLSTWam2UqB4VGV1vOBTNSmJxyQig7aHHq92eWGcUgkhEU6mFQ0k4LxlZdrwIHjFOC8/otJHSDODH+5tuaLLX1CiWQ8Ly/lw3jxskB5gYauw6evveeP80MQiJ7KyX0qTJrRRwLU2hjiLVzlbkhCh5URHlgLYe0AAOBBW3aucV3LAX3hcJl2nHuwobuX65W2KHjJO/GDBiYHwmnz6HtsBoVD32MzKOxGhV3XZTco7Qa53ahyIBBAmECTpDEk6YzQNDqRPniUblQdWT21Z1UVx+TVJ5WWOyWkB0EIKlHIJIezKBEsaiSTHMGkhFOIgmHK43lhj9pQ160p6dGV+cQE7E49ALDH6/IZSJfb6vE4USh8atij8aHLAk1gp/rimYoPGroO3/qdP/TQnzZt+nZs50aLSc8sDf3pUGdRxe+mzMttxJw5C0tKilWqkaln4wQBK2N22trAiECPtuxI6UutirOBh4Wws/JSPhCyM/0tJpv8zLX36KTQidF/8S/uiQT5wtwfw8WlAAAYAg1YUEIEqoDJDcOg9rTy2NeNzZdvrjZAcAwlZUFwygI+nX9jQX/4FePhrWeHOSt6+WPBWdP6NZb+631d/XDUvMBaE7Gxsd999x2HwzGbzU8++WRxcXHgkfdKHuH/ALITGT/8PWFgDblBoTNwi8vzy6qnO103tg4YtD055uSExP10ap/p5AHgHBmUX6/DivaCXBPgadwPvH7lUOENcgoCQqZHPDE96R+BFKR+JrAfQlPpuU+Gxc7oU73d2I4hB7sgJAwA8Npwyh8fhttS8Zg+NSCN1q5fTt3Xz99I5+Mf/CwpbGIfZeebhdcNe70waqjcFQ/a0yn1mvrYbwhvBjBwuE02h9btNXGj0RCuP3HJ64GbL2srjsorjyl8uY93GGgUgUkOZ1Oj+cxUPjOFx0gelJx1U2hXXjhT8X5TT/+UzTFjlDHCPzAQ90YZJigh9IEZye8HFliuad997OqrWlMzixI5I/k9PwcNAOBwmQqrPyuq+dLptgAAuLS4/An/DrSRMOZw4v0bDOFuQ4AJ9Lrhq/u7j3/T2FM7drkDCAKhaYyU+fykfD5wYKq/Yg8fI8x645OwhQ/0azz61APyy72yGyNWn7h48eL777+/d+/epUuXvvvuu5GRfXbD42gIw8IiOzpaHY7/R1pZOAziH3+KfH65ZFCpGgCAyw33qO3tCptc48BhECQ8Q6NZ2Ny+yGq78WSHIG+09GJWyt5gbj0AwIQE+yiwCnNdQF3vcu9TaFosu07LA3U3eIyk/AnrAjN/hzeBgQgKJ09/Upq6MBjZt3q7QW7/ZvVF/3DHY+g4DBWHoeMwVJW+elCCKISAclaKeJEUNA6BxiKxRCQShcCRURACIlDREBLCkVBoLAKNu4ntss3oainVNV/WkTSzk3DvAc+NpYPJJm/qOdbUfbxZfsLH8cFisSGiUBdJEZ8XFDeTy5UOsi5pKdFe2dddfqjHqLxrgxMBIVnUqGBmGp+ZwmemBdEThqKnDooWxZkz197rt9i/dcTEJAwamf4DIyI0VCqX99hsd1+XEYMiZse+mBXznD+M7fY4WhSnpbxcvyNhqEQ1CEKkhD0yI/k9Ah2JnXgQm3EEIt6I97vsnovbOk5+26ztvG0fE4GCQqP5FpVXLh+uPMOIhnDE6hNr1qxZv369y+WKiIg4cOBAeHgfCet7Tmv0fwDpMbQvn49FIaFOpb1dYWuX2zqV9k6lra3HJtc4BpaeQSIwceKlWTF/5dISAtt15qsqzvr4p3vw1N7hW7Kra9vfrzmtfWiZGBRpWuJbE6L+7B/lGmPD/otPtyhursA9jYef9rhk4jIhlogCAMjrTd88dEnfMy61G4kMDI2Lo/HxNB6OFoSj8fA0Pp4WhKPxcD4bqe+xNV3StpTomi5r5PVm+PqXFiVcMH/C13JdeVP3saae4/6yAEOBIyHFz+TG5QWJk2lQ34wu2As3l+jKDnRfOyw3KO5otsNAIBGYIHoCn5nKocVcF36jgwDhNxQSi0LhAQAma8+F6k/Hpj/3B/7/gEoU5qV8GCta0s8hDwO4uu23k2VvDlUEih1KzHsyJm0xH4G+8ZzxWPDXfnMf+aZEfpcqfY5oCEdTfQKCoLy8vA8//PCNN944ePBg4KXG0RA+/fQLW7duVqv/CJuPFlJebmb0c1L+DAhAAOnB527BTNrtS07wuMDOtyoKf+lPjI4SLpiT/rmf2e/2OC5Urz1X+fGYkzeIdEzOKrEgjrLlxXKrYRyLKg95AwwMEgWNea/GZLIeeOChdes+7ddOZmHj8rjxeUHh2Sw0to/fFfbCLSW6soPd5YfuvkW8u3jzzY/eeedvd/sufpd45JGnjh490Nk5uBLy3UIIJ3t22lo+I8X3sk157tiV1zrVlwY9ODSVPu1P0vg8buCS0atnOy4scJROB04cAEBjamxXXmhTnm9XnteaRkh0HiUmTMim0xmHD+8b5pgRDSEAYP369TU1NatXr05KSvI3+g0hm83+8ccfOzo6Pvjgg87Ozn6XGscyTHy+AIW6DbzK/z9o6jnR1HOCQ4stWPK2YMVFtLjW1+7Vcay/vphkdHijfihv/sVXd5tKFM5J+zxKON9/epvy3L7ipweKP90ULDrnkS/vZpzDor3VCvXBwYPowpjUjqIt7UVb2nFkVHxeUNJcXuRkti8SCSEgSQZDksFY9GZsS6mu7GDPpe0do+e1/i9BJJLc7Vv4vSIoKBiLvZ3FIm4L2pUXvjuUnSRZlSRdUVj9eV3ngYHHoLGImFzu1Ecloal9eACdVYYz33WQ21dmReb6hRqY5DAmOSxZ+hAAwGTr8VnENsV5paF6KIbqiKBQqAwGa2znBmLr1q2+6hODvvvrr79+/PHHR44MLuQ2jjtCPJ7gcNi93t+rxuD4QRBHTZ7HxxCQGAISS0DhKSgMHokhoHAkFI6EQuORmADJY1dNuvW3NbCtN9bl9jhqOnZrjPVZMc9hUL2NNqf2aOmrV5s23TvpmHcLCAQCi8WNJlSDp6Dj8rjJ8/iRk1jIvgVgOyoM61dfMo8kjvq/ByKReLM1T/6ADzgc3ul0er2/mwpHaBwyego7cS4vbgYXS+yzI6o9pzq5vqn+fG9OJIsSER9aIOLkBDPTfHWpBsJsU+wqfHhsvC00Gg1BkNM53Ap4NDvCYapPUKlUvV6v0dzIomax+pjePwzhHQUEgUkPiRe8FjMkKzIAXjd8YG1t1VZ8ctijiaHL/fU8++Fayy9HSl++B6Uv7wpGbwj9IFDRcXlByfm8iBy2ny6kbDZ/s/KitmtcQqTjAQyFKp23RJCT23biYPOh39xjYm38YQjHjN+LIcTgkdHTOElzeTHTOP3sn48OevLbpqEEMZAINI+REsLODOHkCNkTiTh2n9Nhz5lr75+t/PBmt4ajMYQ4BgtDIvdrtCh6PI57vvrEeKRPQAiIG0aSpDFC0+gMAaH5kqb2rKr1is4zbpVFbyMIVPQDHycmzBq84HA/OI3Q+scuNF3qzdFBI/ExIllq+KMh7Cz/MVpT0/5LawbVpvl/i2HKMI0IAg2dIRPOfzXaZw71PfZvVl2UN9zNknijATshLUL2oHhGPvK6a85pMjbu+bVu+yZT182FrP5Inxgz7o30iSGBJaJipnGS5vKip3EwA2ps6XtsV/Z1n9/UejMrP4hNjRSys0ScbCl/JgnXW2yksfvobxdWWx0jFwT147ZIrI1j9YnAbEQ+n79p0yahUNjZ2blq1aru7pHN24svvrFp07e3nmGKxiGFCVRJGkOSxhCn0gkDCp07LO76QnXdWXXtOZW69R5dz4pT6Ku+SmFcF4VpL9cXb223Gd1up9dhdTvMbrfTaze7XTaPy+HNzpgBQYhjxwZx6FMIwQmhBclhD19t3FBU8+XYKjX+D4PF4qxe/cTate+O+Qox0zkPf53qI69adM71qy+1l9+LohA4Bits/tLw+wrIQvFQxyjLL9ds+bH91GF46PrYCDSamzyRNyGHk5TOjUtpOrL78tq3HcZ78SPfy/jzn5/fv/+39vbWu30jfUBhY2Omc2NzOVGT2QNzljQd1vJDPeUHe9rL9cPrwgwPLJq8MPPbmJDFvpcWu2rn+ZXN8lOjPD0nZyqdzty3b+fY7+CWMaQhfOWVVwKzETdu3FhZWbl27doXXnghLi7u4YcfvvW+wyYwSawhc6eQKERwLEWSxhDGU/uFcIaBus1ad05Ve1bVUKi+R/gOEASmPymd90IUAgUBX63OH5v3fVTrGVp7F8/iQAikVTlcYs0fGD9IMhiPf5+Op6ABAA6L+4cnSvzxknsBrLjkiMUPimcuQOH66J0amhs6zh8PmTKTIpL2aW9pqN22senATndAKRiqJDwoLSsoLSsoNRNL7cOSMHd3Fn/wSnfxbU5S/AN3DMExlNhcbtwMrjCeCg2oA6VqsZQf6ik/1NNRMcbqZoMBmhj1dF7KRz5tGi/sPlvx0ZmK98fMoLnDGNIQ9stG7OjoyMjI6Onp4fF4Fy9eDAkJCTxYIgnH4XB1dTUw7I2KinU4HE1N9fHxSUgkUqlUdHd3slgcDofb09Ol02mFQjGZTG5ubnz0x8TwrJsmC5k1jubLOks7xqRykiXO6KkcGm8QspbXDavqHQ2XlM2laoSRaVHCNTWVGAwmLCzSarW0tjZTqbTgYKFGo1YoeoKCeAwGq6OjzWQyhoZK8XhCfX2N2+2OiYl3uVwNDbUEAlEslhiNhs7OdiaTxeXyFIoejUYtEIRQKNSWliabzRoeHoVGo6urK9BodHh4lM1mbWlp4onZnVbTSQAAIABJREFUyz9NFKb23qHD5N35es2lPS1isYRAIDY01LpcrpiYeLfbVV9fS6LSkhY/SM2cykhKhxBIt1GvratWVF4Byh6g7Km7XGi1Wny91NRUIpHIiIhoXy9kMkUoFGm1arm8h8MJYrHYXV0dBoPe10tjY53T6YyOjvN43PX1tTgcXiIJM5mMHR1tdDqDxwtWKuVqtSo4WEil0trami0WS1hYJAaDqa2tgiBEZGS0zWZraWkkkcghIWKtViOXd7PZXDab09XVaTDoRKJQIpHU1FTvcDiiomK9Xm99fQ0Wi5NKw00mU0dH6/VeFGq1ks8X0Gj0trYWi8UslUZgsdja2ioAoKioGLvd3tzc4OtFp9P29HT5eunu7tLrtSEhYhKJ7OslMjIGAFBXV+3rxWw2tbe30mgMPj/YYNDj8QSLxUynM3y9+AZnbW01ALB/cBKJJJEoVK/X+Qenrxff4GxqamBJMU//N5tARwIA3E7vqbWayiPKtrYWKpUeHCxQqZQqlSIoiM9gMNvbW81mU2hoGB6P908Bp9PZ2FhHJBJFIsn1XtgcTtD1KSAikynNzY12uy0iIhqJRPoHp8Vibmtr8Q1OtVqlVMp9g7OzuwvF4cXMzA+aPocQ0sfOue02Q8mF1v07qo4fYDJZ3CC+hx8SPGdxcE4uhLixgnRbrQ17tpjbm6WT80jRCRhaH3WegWg5sPPip2+FCUJ8UwCPJ4SGSoeaAq2tzf7BWV1dgUKh/IOTQqEKBCG+wcnl8phMVuDg9E0B/+D09eIbnAwGMyiIHzg4fb34BmfAFLC1tDRenwIaubw7cAr4BqdvCvgH5/UpMNTgbLZYLP7B6ZsCgYNz4BQICRFHRESXlBTr9bqoqFgYhv2D09eLb3D6euHxgv2D83ov1QAA/xTwDU7fFAgcnNenQIPDYY+MjIEgqLa2CovFSqURZrOpR9GeOEOcMjdEkIahcAfZYCgazOWHeoy1pJ46U1NTfd/BOcjz2Tc4EQhEbW1V38FJDw4WXB+cfAaDef3JGRbCzkoTvkPG83w91nUeOFr2DJfPMBj0XV0dvikgl3drtZrAKZCePhGLxZ0/f7rf85lAIPb03CHp9iF3Wh6Px+2+saPicrlqtRoAoNFouFxuv4Pz8ubKZAUYDAaJRMpkBbNm5QMAHntszdKlK9PSJgIAoqJiZbICiSQMAJCdPUUmK6DRaKNfKxi63Zd2dnbtZ+l3JH84uXDT02URyHwJdurWV69teKBJvzOpcRem5rTS7bixvUegIG4MLmd1yKqvUlZsEv1pV9gTGzPmvRBd8Nzs3Lm5AACBQCSTFcTHJwEAEhNTZbICH+1++vRZMlkBHk+AIEgmK5g9ewEAgMlkyWQFGRnZAIDw8GiZrCAsLAoAMHFijkxWwGAwAQBz5y6UyQoAAHg8QSYrmDp1Zngmc83ONL8V1DUB64F0cwMJADB16kyZrIBAIAIAFi8umLXy8Qkvvzd/zwXJ039jpkyEEEgAAIpC46RnxT+8Jv6V9+M//fG+QyUz//Pr1Nc/nv2XV6niMDyBKJMVTJ8+CwDA5wtksoKkpDQAQHx8kkxWIBSKAABTpsyQyQoIBBIAYNGiZfPmLQYA0Gh0mawgM3MyAEAqjZDJCnx2JT09UyYrYLE4AIBZs/JlsgIEAoHDYWWyghkz5gAA+PxgmawgOTkdABAbmyCTFYhEYgDA5Mm5MlkBiUQGANx339IFC5b4e8nOngIAkEjCZLKC6Og4AEBa2kSZrIDDCQIAzJw5TyYrQKFQGAxGJivIy5sLAAgK4stkBampEwAAMTHxMlmBWCwBAEyaNF0mKyCTqQCAhQvvX7jwfgAAhUKVyQomTZoOABCLJTJZQXr6xEceeSo1dYJMVhAUxPf3gsFgUCiUvxcOJ8jfS3R0nH9w5uRMlckKqFRaV7XReCDeY8ICAFAYxIy/cRY/PxEAIBKFymQFsbEJAICUlAyZrIDHCwYAzJgxRyYrwGKxCATCPwXYbK5MVpCengkAiIyMkckKJJJwAEBm5mSZrIBGowMA8vMXL1q0DABAJJJksoIpU2YAAIRCkUxWkJQzXZQ7L+dvH+Z8vnHBwUv5vxyWrF4TaAURWtXFf/696NFFKZqeSAoZABARES1b/ADVoD35/CPO79ZSGqvd5t4YJ4pAiC54NP2V9xmZU/tZQatKYSu7xLhaFK/ocOh7w9Kh82QLt5+as+aVuXMX+qfAhAk5AICwsCiZrCA8PBoAMGFCjkxWwGSyAABz5iyUyQogCPJNgWnTZgIAgoOFMllBYmKqf3AKBL7BmecfnIsXF8ybtwgAQKczZLKCzMxJ/sEZERENAMjIyJLJClgsNgBg9uwFMlkBAoHEYnEyWUFu7mwAQSHR8fMfeTp10jQAQFxcokxWEBIi9k8B3+BctGhZfr5vCtBksoKsrMkAAIkkXCYriIqK9U8BNpvrnwJIJNI3OH1TgMcLlskKUlIyAqZAqG9wPvXU82FhEb7B6ZsCVCpNJivIyZkKAAgNlcpkBTEx8f4pwOXywPUnJxqNQqNRMlnBzJnzAABcLk8mK/A9OX1TIDRUCgDIyZkmkxVQKFQAwIIFS3xTgEymLnty/sP/SX3/6qwV62Ji5pECrSDsAY3FGsUJpm57yhcLLh37qnlaqsw3OH1TYJjnMwBg/nyZb3CSSGSZrGDy5FwAgEgklskK4uISAQDJyen+KZCbO3vyrKjNp6a0XHeKRgrmPZx3fkn+8xkZWb2DU1YglUYAADIzJ8lkBXQ6AwCwYsVjjz32DACAQPBNgTwAgEAg8k3PO4MRyDL+bMTu7u6kpCSlUhkUFFRaWhocHDz8iWAUotsznwkPrIEwEEaVo6VE23xZO8o0ZzQWIclgRk5iRU/m8KL6U4wCoeu2tZfp28r0rWW6zkpDP62WWwcCCc36S3jemnBfIUAYBifXNx1YW+vtS+rBMViS2YukC5bSw6L6XcHrciHQw2VhKq5cvPD2s+bu/pmh/89BoVBzc2fv2rX1tlyNysU9uXkCL5IMAIBhcOCT2uNfD67HceuAEEgcnUEVh7HiU9hxyczYJAK7/4rTB5fV3HJ4T+PuLerqkXkBKBw+dM6iqKWr6eHRge12rVpeUiQvLZKXFBrbeoseP/TQn7bu+y3jxXfEMwPyU08evPTP122au0xLRqBQeCaHwOUTuTw8m0sM4hNYQQRuEJHLx7O4CFQvAdKi6NbWVmpqrmlqKrS1FXfstu+K6DY3jDT3hciE2Tyo74PcbnLXnFFWHlfUnFZa9XeaRoCAkJPjX5sS/5pP99/tsR+/+vfi2n8PdXx0dByZTLl06W7Wox2tIdy8efPFixfXrVu3Zs2atLS01atX34m7uwVQ2FhREj0kkSpMpIUk0AZSbPzwuuGeelNbma7tqr6tTK9ouiHodVPAkVEcCYkjIXKlpIgctiipN9vBonX+/HxZzWklAACJxWEpVAyFRgkJlebfH5w93T+Bew9WdDcf2Nl0YKeps40qljIiYxmRcYyIGEZkHIbSv1ywy2K+9MmbTfu3j+FuBwWBE8RJyuAkpmHIFHNXh6mr3dTVZu7qsKrk4FaC6b9nEGjoP23I8JcmPv198573q8f8ZRB5AhJPQOAE4RgsPJONZ7JxDBaBHYRjsHB0ZqAncyCM7S2qilJFaVHr8QOB0b5RgpsyMfL+VQgkSl5SKC8p1Lc0DPObCqfOmvi3D/CsXiqg02i4/Nk/xjDSMGQKRRhKDgmlhEgoIaEAgmq3blBdu7nKc0gMNvy+grjVfyZweDd7A1alXFtboamt0NRUaOsqrUr5zV7h3gRDQJj9bHjaIkFgzW1tp7XyuLLyuLzponYYCsKdQZzo/gWZ3/hznVvkp+s699d3HdSamsZwtW+/SnhsdUi/xtx5RafODkdPDeR7BgcH//TTTwKBAIKgl156affu3YFHjtYQ8vn8jRs30ul0rVa7evXqnp6ReRyTJ+eWll60WEZbZW1cwRYTQxJpIYm0kARqcCx1IIHYD7vZ3V6mbyvT6bptAAC3w+u0ewAAdpPb64VhT28tPa8HpvHwHAmRHUriSIkcCYnCxgIA3F6SzSOwugVuL9XtJRp1aHkzjMRTMBQalkJFDqE94bbb2k8dbtq/XX75Auz1hodHQRCor68NPIbIEzAiYxkRscyouOCc6T73KQCg7cSB4g9edRjGUvsGQiBokghOUjo7MZ2blE7kDV6E3eN0mrvbzV3tpq7e/5VXL42tx/EGkUhMS8s8c+b4bbwmhoB85Ju0qMm9WVPVp5SVx+QtV3SBIqjDgywQiWbki2fMY0TFj75ft82qqbmmLC9RVVxRV1yx64ab8zgSisjA4Cno7lqjd6zZRHPmLDx0aI/vbwyFmvbsm2ELbmRTdBedubT2LbvuBm8IjScGruTQRDI5JJQSEkoRhlJEoWRhKI4+SCkS5dVLlZv/03n+xIirKyQWF7H4wdhVTw21OfbDplE5DDqyQITEYIc5zGU1mzpaTR2txo5WU0erqbPN1Nl6W6xjZuakmpoqvf7mahKNAWQWNm9NePaDIX4KIQyDa4d6jn3d2Fl5G8kvtwEsSuSyKVvZ1D6uCLWxrr7zYH3XwXZloRd2AwB80eLq6ophLvX9uoRHHxpoCItPnukdjSNWn/jqq6/a29s/+eSTrKysXbt29Qvw/c7yCG8LECgoKIwckkQTJ9FCkmhB4WTEEMUiRgHI7uHY3AKrW2D3CKxugcs7eNr74IBhZdnlxv3b247vdwWsGBYsWIJAIHbv3jbUeeyE1Jx/fOHnzdvUygv/eL67aFQq2wgUip2Q6tv5sRPSMOThvNNDwWkyVmz4qvbXHz3DpsHeedxKHuEwQKIRKz5P8hcf9sFudrde0bVe0bWW6lqv6gaylMnBIaK8+aO3fy6L2aqSa2oq1BVXVBWl2vqawLQHCAKJc3l0Pp5Ix5AYGAIdQ6RjiDS07w+/FEBPnWnPe9W158biEhyYR8jPnJL52kdDrZBuBfqmuqrN37Qc2e11D8LuRuHwEYtXxK560r8rBQA4jHpDS4NVKbepFBZFt1WlsCp7rMoeq0qB8AIRK8rqtjpZeFpENDMqnhEVx4iIReEHV0IJhNtu8xnF7uKz9b/9PDbnxx3II8RT0NOfkE55OBRDuLGOrz2rOvBJ7W3lf95OYFCk/An/jpcug7z9vR02p66p+1hd5wFBBExnEYbPIxzREI5YfSI+Pr6jo8PpdE6dOvXjjz+Oi4sLvNQ4GsL09MyqqmvWm/fh3GFgiShBLEWURBcl0UTJNBoPP9IZkMEZb3DG2dwCm4fvhYdbgfYD7PU6jXqH0eA06ruLzjQd2GHq7K+jDQAQiUIhCGptHU7TFoUnpD33RsSiB4EvPgDDtds3lX75vl9qoR+QGAwvY5Iod55gSh6WMri1dtus6qoyZXmJw6Aj8YXX/wnQhMGLLJq7O678+6PWY/vuHccpgUCMi0scj3gDhICWvBuX/aBo0HdhLyyvN7dc0baW6por0EGZc0Qz8pnR/e2f1+3W1lfZ1UqbRmVTK206tVUpt2s1NrXCplEN9dsBADAE5PJPkpLmjdY3WH1Suef9akXTzfljpkyZMXAzjSaQUtb8LWLJyuE9t4PCbbMa25uNbS3Oju65yOwglgSEcO0EyIL12LAeK9arNnaX7lhfs+snv7MXhSdEyFbErXoKF6A/aVX2VG78umH3Fo/zhu4dkxQUK5wYH5IVF5IZxU/FovEAALfHpTR29uhaenStckO7HmW1MTCuYDoqUsyMSxp+vwgA6Co8deHt5+3am86WSU5Ob2qqNxrHxSDhyKicFeLpT0oDQzwtJdr9H9f6NTfuTbAT0iKXrBRNn2sqqiaeA6GESQPLcHphz7n6509d/maY64xoCEdTfQIA0NjYKJVKZ8+e3U909I8yTP1B4WBFifSQJJqvMDoGj/TJoeEoKAhFcdFzPfSZHiR7qNNdFrOuvlpTV2lTKZwmg8/m+f53GvVO822WKRHk5Ga+8Qme2Xs/htbG82/8RVNzw8mAxGD5mVNEufMEk/MGahQBACyKbmXZZdW1UtW1kn5bED+wVDqJLyDxhKRgIYknDErLokpuVPNSV14t+fxdZfnIhQ/9txT4OPt9IWwCMzSdEZpCFyX3jpBAaByZKttUq7v/jPW6XD2XzrWdONBx+ugYctVZIsKj69OH53/ZTW6T2kFiYnzpjwAAjxu+8HPbkS/rLbpb3bUjUdCU5+ZLlr3mAXS30+txeb0eGADgspgCNRRht8vU1W5sbTK2NxvbW4xtzRZFNwAgUTzpTdlmHl081PVtaLfOqpbL6500HC4s1EXB2tFeB9prw3h0JkX5bz+U79lgtRhQSHRYUGK8MNNn/4a54EC4PM4ubdPWsm8uWUqIwSFkgYgiFJMFIrIwFE3ss86za9WF77zYef62lTseGzB4ZGgaIzyLGZ7JEsZREQG1QruqjQfW1lafHKQg6D0CFIEomb0ocslKekSMv9Fts1b/9K3h8FUpM1fCm+6viQED+NOdIrNtOJ7RiIYQjFR9gkgkWq1WFAq1ePHiDz/8UCLpoy8/jobwkUee2r17m1Z7E1o79yyY0fGR968Onb1w4IrSplZq6yq1dVXauiptXaWpq/3Wt0eZmZMQCMSFC6NydWJpjMzXPgqZPsf30ut2l3/7We2vG/iZU0S5cwU5uShC/yWYpaez/cxR1bUSZVnJGNL2IQQybOGy5KdeClyzt508eOWrD00drYOegiaQOEnp3NSJ3JSJrJgEQ1tz496tLYd23XZSH53OWLz4gR9++Pr2XnYgIAhwJCRxCj00jS5OoXPDyBa3tMH4PAzf2DZ5nM6e4jNtJw52nD3qNA2u3zgioiaxV32VQqD1mrfKY4ruWqNZ67RonWat06RyWHROs9bpI0cQaOjZz0ZmrxD5PaVWvevIv+rPb24djQzhiy++0U+UB0JAqQv5s5+NZIn6+Bjby/XFWzuu7Ouym4aTrUAjMY/nvrM850UE4iZKMQ8Ku8uKhJBo1OBbOq/X06auI+NpTBIPgoZ7rFV1Xvxi/1+rOi/6W3B0JlkoFs/Ijy549IZ/ZdvG0i/fH/2Kbfnyh0+dOnqLeW8oDEKcTA/LZEZksUTJtIFCIqoWy8FP68oOdN8zLpj+oEkjI5esksxd3G954YdNrbz6n0+a9m2nEYQS3oxIwTwWXVCh+/upU0eHuexoDOH06dN91Sc++eQTf6PfEB4+fHjTpk1btmzJysravn17v8SH/48xwtEDicGIZuRH3v8QOz4lsN2uVTfs+VVxpVhbVzUGL8qIGDFGOBDS+fdnvPiOf/DBXg804NFj6mhtO3mw7cQBze2oQo4mkOJW/znmwcf9DCCvy1W3fdO177/0bXrQBBInOYObOjEoZSIzOh5C9q/5BXvcXRdONe7f3nnuuNc1MskbQyJzkjI4Sem6hprWY/vhwQSOxylGOCJIbPLczQdxbDEAAAG5KOhqSFO4adV6fcfYF4IQBKb9SZr/cpQvhu1xeX97u+rCfwfxpfcDN4x03+sx0VNvRNdULZbd71dXHR+B3B8YI4QgED8zaO4LkUERQ+5EnTZP2cGe4q3tLZe1Ax/NoZzYt+//OZzXuzzXmhXfHn8dhmE2JZhBDmJTglkUPo8tpaJp0JgeRAarpqqjuLKjuKK9sLrzks1pBgCgUVgeTRREE/PoYj49lEcT8+jiILqYSbqh8QvD8JHyn/9z9FWVsY/d4mVMyv7H535ijr6p7tzf1+ga+3DWhsKtxAiJDMzEZcLIbHZoGn2gEBoAAPbCXTXG85vbLu3sGDMTalyBxGBCps+NlK3kJGcEtnsc9pYjexVXimNXPkGTRvrbdY21pV+861Mvmpk3n8VmDR8j/Oid6AeW8Ps1Fjx8pejiDcreMNUnAACxsbE//PADi8VyuVzPPvvsnXONBgcLlUq5axQPuHsQRC4/QrYi/L4CXN9CWeqqstqtG9qO7x9XkgiVSocg6GYZaCS+IPvtz7kpE/u1G5ob2k4ebDt5UFdfffvusRfEoODkp1+RzL4PXF+GO42GthMH6JGxzKi4gcZ4UDj02ubDu5v2btPWV/V7C8dgcZMyOCkTuCkT6GFR/gsa25srN65rPvhbP6oFGo3mcIK67ngd7dS/vh678gkAgNdhTuC+j0HpAQDyBtPXy4uNqrH4gTF45AMfJ6bM7538RqVjw1MlLaU3wdSNnsJe+HpMUPgNM1Z/Xn3oi/quKoPTNnjirFgs8UWmoyaz570YKUy4EUvGNMXiTs3wWNHa4Au4vCqY0meDq2w2X9zWcXlnp+/DQhC0NPOvT838EIPqXSSdq9nz4e7H9ZY+DgAKBzv54dCsByUQyLHqZgFLCMljZcMNZK8W7SAhrRSXGg8bCRg3hYxlYFA4L+xtVVZXtBdWdhRVdhS3q+vgUe+MKHjG6mmvL5mwBoXs3VvbnJafzn74y/lPne4boVkslZ75+sch02b7XnqcjtIv36/dtnFEN09QEF+n0zqGjvIOCioXN+1xSdZyUSD/xQ9Vi6W+UF1/Qd1YpLl1//Y4gRoaJpkrC1/4QL9HpbG9uX7Hz437tzmNBgAAhEBK59+f9OSLgQTg7qIzpV++51H2oFCoW/Qd3rvVJ36nQKBQCY89G//w04E7GI/T2XZ8X+3Wjeqqsrt4byMCQiBiVvwp6cmXkBiMrr7aZ/8MzQ3j3S8rJjHt+bc4SelDHQB7PdraKnlpkaK0SF1dzsvICVuwNCgtux//Qldf3bhvW8+l84zIOG5yBic5gyoOG6Zfc3dn1eavG/duvbvkVXZ8yuwffvMZ6cJ3XmBiix74Z4JP41HZbF63vNggv7nnI1NIeOTbtODoXkJv6xXdhqdKRykrEQgECsp+UDT72YjAcCYMA12XVdFkUTSalE1mRaNZ0Wg2X6+HLElnzHspSprRKz2D8GCotZOpJXM4yAj/FbxeT6ujxBxR7E0rcxJveEQ8brjtik51GZ3reSeGMdnXaHOavzz43N6S7wNvjCslTXtckrZYEFiPTKNmkgga7GA0T22ntemsufas6srR1rGl+foQwopYM3ttTtQNuYBuXcu/D79U1LonsyAET0ZhSSgcEYWVzoNFjwBErxUnISrElM1IYFI2mbtrjd21xu5qY3etaQy/iB8MASH3SemEpcJ+FdmMSkf9BXX9BXVDodqXwXVvgiKSivPyRTPy+4mBwB53+5mj9Tt+6rl8YeDqAYUnxDz4eNyqp/zxGtjrady7reybtTb1LYU8x7H6xC3i9dc/+O67rxSK35NyND08OvsfnzMiYv0tVqW8bsfmht1bxsMFOhTmzFkAQYiDB3ePfOhgoIaGed3uocJ14wfR9Lkpf3mNLOjlVcJer66+Sl5aLC8tUl4pHkgUIvEF0vylYfPvHyU7H/Z6dA01usZa4aS8QHkBq0pR/dP6+t9+dtttHE7QE0/85d13X7tdH2pEIDHY/F8O+wx2V+GpE39ZBQBIXywo+CTR59JUt1r+XVCs7xntQy0ih/XQVyl+01X4S/tvb1e6nWPPjyZQ0bP+GpGzSoxEDTnfLTqnsskskUTAjN5xjjMKOBULGM2TMVD/GHMgNHCTKbLIFFloo3YAANgNs0NKH0G6e6nXHd5L/yn9c8m5Cr+hDU1jTH9CEpfLDRSDljeYTq5vLt3TBUFAksGImsyOmsweVHaqoUjzywtlt2ghYgQZz879Ii4k099iINV1Zf9gZtf4WxwebovpYau7dzCjESYRaRMF08djYdE5u2uM3bWm7hrjtNQlOzfsa6gbWXiIIyHNeDosdWFw4M8hrzcVbmmvP6++x8t+UUJCRTPyxTPyA1kwPliV8vpd/23cvcU6krwOjsFKeuL58PsK/JsNV/GZLWtWjMsdjw73UIwQgUb7kn5QOAISjQYA2DQqt/0OrYkgJCruoacSH3/OL2ymqb5Wufk/w5ewGSeMIUZ4jwCBRkctXU3k8uUlhYqyS85RsMkhBCIoPTtswbKQabMHcpE8Dru6qlxZdklZdklZXuLLtkQTSVHLHo5Z/hg2QDPTrtPU/PK97szhPz+25k7GCFP/8vfYVU8CAJxm096luX7yUcqC4BWfJfnIfpoO67qCYm3nyMVypz0umf9KtO8sj8u7863Kwl9urqbgUOBISLOfDQ9JpDME+OETZ4nqyKDqBfT2LAS44RQx2/V7Ln/XpW2aGrs4JXSa38HohxZTh2AbaF29ISIYcnclbO2J3Q4jPDAMFI2m5ss6XiQ5NLVPpYvmS9oT65uqTyoGuh6pXFzUZHbUFHZENitwR2s3uXe8WVGy65ZoKQgEcmHa44/nvkMjXmeAQ15F5IG2tO8A6L0VGCB7LPPltpm+5yQEYAK6mYm9RMeUIhGDZIXBXljbaVP4NtlNZt9uO9ClGRxNmfF0WNJcXuAioK1Mf3xdY+Vx+T3LfwEA+MhEorz8wE2CD26btfPc8ZbDuzsvnLqpRyU1NCzlmdeEk/O8Vot3479++XHcCW7D4G66RnP/tZkdlwIgaKicbpfV3Hb8YOO+rcqyy+OaqUYNDct++3NWbG9U3+N0lq//tOqn9YPSMf7AOAFDoYbOvi98wTISP0RZfllZdllZdlldXTYUjwZFIEbKVsSseMKfPQIAcBoNNb/+WPvrj3emoh4rLnnOj7uuO0VfbNzbR+M0aR5v5ZcpvoW/rtu2rqBI3TaILYQQkCCWEjWZHZvLFaf02gmDwr7hqdLWKzeCgmQ8PVGUY3Narrac9t5CdRsUBsGRkLhhvf84UhJHQkJjEZAXyWjP5tYsIGkiA4/v1DRuL/rX/isbfGwUAAAFz5gUvWBa7JJ06YxBaZwmbHvr5M9t3CG3R7AXrjimOPlNU+vVkaOeCCQkjKcm5/Mnrw71ZxGUHejZ/nrFrUTOEEho8UtpBemvcuvmI7xWP7wiAAAgAElEQVS9Jn+//u0z8o12s9tucttNLrvZTRClJP7lYwI7IIPT60bby4IoJUxqNQIagQNh1jp9zmdaEC56GieQ0Fp/QX1sXWND4QiuJiYpKFkyNYKXvPPiOoX+9qyKRgMEGs1JSONnTuFnTmFExvV71+Owd1442Xp0X9f5E7eyXeGmTMQxWG3H99/azd4qxtEQMhhMg8HgGXqNkPf1Fl5GzmguZepsa9q/vWn/Dov8NlflgBCI6OWPJf/5Zf9eRFN97cLbz+mb72alaSKRCACwWO51LYJ7AUgsLmLR8thVTwYKUbqs5rodP1X//O3NOrSJXH5QWtZQcif9u8Zg8/97iBoaDgDoKjx94q+rBi7XEmYFPfTvFB8PXt9jX7e8SNXS+7OSWdjISazoKZzISSwSs485aSnVbXiqxKh00ImcRPGkZPHk5NApEm48AkIAAOT6toNXNx28uqlbO5zkwiiBQCBTQqfOnrgsR3ofBdMnQfZKy+mthV9cqN03lN0l4ajZkflTY2UTw2f78tlhGN59ef1Xh17wohyiJJokgylNZ4hT6H4yiNvpvbyz8+S3Tf7vYfQQJdFWfJ7MDu111RoU9i0vldeeHUsGDpGOWfWv5MhJbAAAzsTjnXuMrc0AANhd1tXrktvVfaY/hkJNf/4t8cyFSEyfzFGXxWSoPA7Up1n0VkE0jSnGjaZyKuyFK48rjq1rHKbgM53ISQ6dkiKZlhI6VczulSizOIxfHXphX+kPo6cI+QAhEEgszm0b2SEBACALRPzMKfzMqby0rIGZVx6ns7v4TOvRvZ1nj7ust0c+E48nIJFI8+3Osb4p3E3XaO6/NgdnTfO/9DidHrsNXM/SReHwgSt9AADs9cpLCpv2b28/eei2uEzJQnH2W5/5KR5el+vaD19WbFh3532h/fD7dY3eLSAxGGn+0rjVT5P4N8KNHoe9YfeWqs3f+NK6hzsdiwuZNjts/tKg9GwIgdBUXzv3+jPG9hHMTMozr8Y99GcAgNNs2rdsxlC9xM7gPvx1qo8TYVQ6dr5VKYynRk1mB8dSBya8wV64/Bdbz86gBOGkJPFkMTt6qKw4GIbLWs8euLLhVNVO/15t9EAiUKmSadNil0yJWXTDPQgAAMDlcZ6o2Prrhc/re66O8mp4DDErct6kqIVHyv9bVH+w37sIFCSIpUrSGTgSqvC/bWOj0fqAISAXvhaT9aDoer4fuPBT694Pa4biwQ4KQRz1kW9SGYJeWk7NGdWvL1StKyiScOMAAFUdxU9+N8nj7f8QwFCo4hnzJXMXcxLTQN8fxdLTGWTQnvvhi+6WQm4YiSslcSREbhiZKyX5E0ABAF43XLq368Q3TfL6QR76NAIrKXRKSujUVMk0MTtmqN/9YsORj3Y/rjCMlheNpTEmvfcVf+Jkt81qVSnsWrVVJbdpVHaNyv/SYdAxouKDJ07hZ07xCzcGwuN0yEsKW4/u6zhz5GYzYvEYYro073LT8aFGaV7eXDabO3z6hIgdxab0L3lU133FZLs9isd3M6EeRSAiUCgAw0N9s5zEdOn8+8V58/vlZros5tZj+5r2b1dVXB2j0YKgyPtXpT7zml+KUFdfff7t58YjwWAMuKmE+j/gBwKFiluyIvmxZ2HaDa1nr8vVfHBnxcZ1g7KHWHHJYfPvF89c2M8/77ZZL3/2j4ZdvwzVFys2ac6G3T6naNF7Lzfs3jLMjcVM4zz8TRoaO+R2waR2NJw1CBvuTyYu4tOkgx7j8jjru6+I2FEkXB+FPJvTfLJyx4ErG8rbzo24V0Ah0WmS3GlxSyZH30cl9FfEtsHGrWe+2nlxncZ0T3PcoqdyCj5OpHB6t9GKJvPPz13tuDYqebMMmeD+DxJ8vwUMg+PrGg5+Vg974XBe0vdPXkQjMQCAb4+/vvH0+0NdgcQXSOYsDp2zaCClWV15tXHvttaje/zUMBITGxRG4khJZBamZFeXpqP/tgwBIabHL10x6eXwoKRBjZ/Tba9sL2JR+CGsXpe12W746tAL+6/8OOLPzYpNmvLPb4hBI1fNGxSmjtauotNdF04pSovGtvfgUoUfr9gbzktyuu2Xm46fqd51vmav3trHT5OSkkGl0oZPqH910ffzUx/t1/jMj7mlzSeHOSuw+oQPmZmZJ06cIBD6U5N/B+kTKBw+ZPocaf79QWlZ/dj2bptVU1OhqihVXStVVVwZ3g+GpdAYUfGMqDhmVDwzNpEc3KtTAHvcFRu/vvb9F6PJ6f4D9z4gBEI0Y1786jWBxDbY62k9uq9iw7/1TXUAADyTLZknC8tfGqgVBwCAPW6vx+P3k3ecPlL43suOAQmdSAwm/+fDvnO7i88ef2bFiDHsqEnsR79LC0yX9rjhllJt7RlV7VlViCv72blfCpj9H6xOt72q4+KVltNlrWcrO4ocLhsGhZsUvWBO0qoJ4bOQiD4aBV3aphMV28wOAwCAjKNBAEIi0QQMCQCAwxDRSAwaiUkSTybj6f16URg6TlftPFm5/f/YO+vwpq43jp8bbRprUknq7m7QQqFFihR3d4chgzEYDCbAGBu2Dbchw91dW+rurqm3cdffH+kvDWmburDxeXh4em9u7r2x857zyvdNL4tqr9utt8CSUNP3uHuGNfjDZVLFiz9zXx7L11JvDkfCJu10CZpnpdwUcqWXv05Oe9nYemJB8LYVoXsAABKZeNmJgFYXxPouHjajJ1uPnKBRQicTCUvePC14eKMqPlIh1xbNDXQYvTL0F5XmgAqJTJxZFpNQ9Dax8G16WbRYKkQjMcuH7ZoxYINKo6fVpaHDlHn+m37UcOe2ikwkrEqIKv/4tiLqHbu0qF3P1cDNInDv7DvqUgYAALlcllz84X3m3Q9Z99q+rm3VELbafQIA4OjoePDgwbCwsKYTjm40hG5unvn5ucKuS/vEUk1tx061HTO12cU7AIBTXlqbmlCXllibnkjPyUQT9fSd3FTGD2di3vQpzMLcjz9+3SVKK12IiYkZBEE9XxX+L0BHB2Nv75iWlgwgyCxomPvitZ+oAikUZe9fQHC46YAQDaUbZkFO/sMbhU/uoAl6g/b8pcoOENTVRPywoTImXP1gn6+2ui1cAwCQ8LgPZgxvY+jaYaDB0jP+3HpR9ofarHe1eZF1Qq6Uqme5Yczhwc4TVYcJJfyMsuikoveJRe8yabHq5d7q6OOooR6zwnwW2lE92vTWNKGaVfY249ab9JsZZdFK++fnFxAfH92xs/UK/pPNpvzkpoNv+CilYjmPLuYyxJw6Ea9ezKWLeQwxt17EqRMLudKwTY6qnNWqPM7Z5fEacUoYDH5iabiyrKKwOn3RcT+JtHUvLgRHmPQf5D17KdGnv0baM6+Slv/wZsGjm9wKzd+ym0XgqtC93tbBqj1SmSSrPC6h8G1S0bu00kihpJmQnrvFgO2T/7YwaKjpVC4NHyac1TgMoYMJ2LbXYeRUQxaKykQZ1cHw5YL7CacfFFxHkIgYAyMdPX2MIQWjb6BDNsQYGGHIBiI2syLqfXnk2+rEGC3i721nlNe87yaeVuZSSWUSGAyujHCrUCgU2RXx7zLupFdH1AtopaXFWs7WqiFstfsElUq9dOnSnDlzqqure9QQdpfEGgQZefnbjZtuEhCsa0Rt6Si5VKrR81YDmVicde1syokDfVAA+kuMsMM0lVij+g/0WLyW6j+w2ePFbFbR8/sFD2+od3uHIZHeq7e4zFnW4IFQKDKvnkk68quybN/AxXP03/eUdjRqzxYt7tOmYAhIAbvB8YBEoOcEfTM/eJsOssFRw+TVHnux9XnyPxJZO5Ih7aieYT4LRnjMJuNaadqnpJpZ+ibj1tuMWyr7p6JpG6a+D8kEM/uAl31gM40PWyL5ceXVb1NEvGaiKmb6dhfWJGNQWADA5fDfjz7/to3n3LZt953Hd4Gju+246ZpdRxSKqoSogke3atMSueUlVvpOK0L3DHIar3pcIOZdjzx8JWI/V9h6qjMaiVkRumd64HqVXYnOe/br3WU1bBoAwABv0t9n4oip31oCYwM2Eqb4ZISvYBQdefrNu8w7bXxRHQMGwVaG/jJ38BblZj23auvlSdXM0mCXSSGuk72tgpsKz74oP/Xj8RVaztmqIdTefQKHw925c2fNmjV5eXka/SiUdKMhHDlybGTkB05HtYbbgq4R1cDN28DN28DVy8DZo2mOkzoykZCem0nPTq/PTqNnpTELc9qSGdgruLi4AwBl9uw61dIC4+lO8HAjeLoTMDrwnbtzEpN7rsmZqYmOlwfBy4Po5UGwtdZdvColObUj3xwcDh8UFPLs2UON/YYevu6LvjILGqZMc1DIZRXRHwoe3ix7/6KlmZBxv6CBPx5STbYYeVnh27/i0IrH/PNUz8YBAFAZE/7yqzkdK+zpZzdi49i/VFN7uVx2L/7UyZfbOxz8h8MQAfajPCwHKnU72UIGAEAml/JFHACAWCoUSQQAgGpmaWZ5bEv+z6lTZ9+61Q673keAYFDwYuvQNXZN+4FoIJcqHv2e/fZUgZYPbVK/lZvHHwcAyBXyNWdDUorDWzxUjSFDRqSmJtbX1wEASPbOduNn2IyepF7nCgDACxB+uTiHSpxq2JXKJY/SLp15uo3ObaUIXQNPy6Btk8+Z6zc49rlCVmz+CxezflS95tuEqZNQ+ObQ4/WF1entumIb0UXjf5j2j8rM51Umf/vPeHUXqJ6uwSDnCSGuk/1shysjsnKF/LtHo8JjXmo5bVtihFq6T3h5eSUlfeLotra2Li4uVm1+BjHCNgLB4Ho29vquXoZu3gauXnq2DjKxmJ6b0Wj5ivJ7PR2074BGw9xc8J7uBJXxI+l9UiItlysuXKZt/ym7sqrrV8xwOORgh1WaPW9PgpcH0dDgkyGMzpCMGB+dkNTFlpjk4OIyeymruKDwye229CVvqjxZkxxr3G8QAEDC5z6YEcqrpLX3HihE83VhB4e4TlXtyaDFHHiwJrsiob2n+oIGcASE00fjyCiCERqnj8aSUQRDNM4AjSOj8PooJAZ++4eMVuv2IAg6MP9JgP0oAEAFvXDeEc8OJOUCAGBIpNmg4XbjppsHhujzMU7lWOcyLFzeMOQqIJBnzI+3Z7MxUgmfyy4pqs9KpX14WRkb0UYflQ5Sd0XonmmB6zRcjioUCkVJXXZaaWRqyUckHLV02E8qn4FMLr0Xd/L0q51sQVe2MzQmWf0294EtpWFB/D7z7s+35gnEzdfJKGtvgl0n66JwG86P1H7mthhC7d0ntOwB3WoIJ06c/vbtCxarJ+qamwJHoeVS6WdaEe/h4QODwZKT47v8zMZU9LJFltMmGTs54BAtC26p4PKke/fnHzpSJGhPero6eBzCwhxjZYmxMMOYm2EszDH2tlg3F7xucyrD6jBZkpETYmLj2/f9IRCIw4aNunv3euuHthn7SbP9N/6g0es8+pfvcu/8067zwGGIWUGbFoXsUHreAABMft2JF989SjjXmQL5LmTBguUXLpzq7bvofQzwJv+sSyNgyACAB/Gnf723vNWnjB49IT4+uvb/6mJUPUtX8/4uZv1dzPo5mvrqID5p911sJIh1YNNxzWTnSQX8iqj3ZR9e0iJeN83Saoqn1aDtk86p0qwkcEUtUVwCr31xY29U5DV1O4dFExYN2TEtcJ1yHQYAYAvop1/tvBd3smmtSAfwtAzaO/uOshRHoVBc+vDrqVfft+WL7ezshscTtDfTHu0939NykMbOKxH7S+tyVJvau09o2QM+yxjhf4DuiBGGDNJfvdxq4lgqEtn8h15SKkhJY6emszOyOFMnGU+ZYKz+0JYdWTfutN4Fzc4GO2yIgasz3soCY2GOsTDHaCw0W4LFlianshKTWbn5vJ+2OxgZogEAbI509MSYyJh2eAu7qQ0TwdJ20K4/9V0a0lIqY8NfrmmfUxSLJuyaeV25zgAAyBXyB/GnT7zY1rVT8k7yOcYIu4nh7jN+nnENAKBQKL65NLZpcaQGP2z/PflDBglu6mzWz8Wsn0aqpIqkkg+X0o5VYFgECxuCpY3yfx1SMwFOhVxWkxxf9uFF2fsXGpU/CB0M3swS39BY2IpsajMcFyzDoav0xPUEcWnEq4gfNrSkbmhh4LA+7FCgQ5hqT0F12uHHG7TXIbTKGJ9F3044oTSxYqlw771lz5PbOk1sSx1hq/Td7hNdnjX636ELs0YJeMT82Warllm6fNrfXCiUp2eyU9LYqemclDR2Shqbyfpkfjp4IPnQPlcfr0Zt64/R9K+3ZMYlaC7RKEboocEGw0L0hw8xtLTAgLZRTxcnJrMSk9mJyazEZFZBEU9lVlyd8a8fB1CM0AAADlc6ZnJseGRbrUVj1mhXA0MgvFZtdp23UirkP5wZyq1oh1OUQjT/fd4jVXpnVnnc7w9WZ5d3/Yq/k3x2WaPdyk/Tr4R6zAIA1HMq5/7lzuI3UxJNwJCDXSYNc5/uZzsMBrXo5GDwajJpsbeij8TkPW/6KIpAJFrZmw4cYhEyUr1pnwpWYV5FzAckFq+0fOqdjNRRyGXJJw6k/X2k1SlaoEPY+rCDqsJEAEBy8YeC6jRafX45vYBWn1/OKNSeMYuAI/XxxlSiBUXPwtsqeIJ/w6K5nlv13ZXJ6aVR2m9AHQrFGI1Ga88abZW+233iC72Lpzth1VLLOTNNcdjG7FmFArx8U3vsdMnjZ9XS1jp8wmDQ/Nlme35wNDHWUT39n2u0737IZrGkwYPIw0IMhg8xdHPBa2kJLhDISsoEtHIhrVxQWiYoKxfSygVZOdySUm0zJCcH3OvHAcrr8niycdNi337oVLuyroLqNwBjYFT0rB2NQRxNfH6f99AAbwIAUCgUZ9/8eP7d7j7iC/2CFvAY0j9r05SCJq/Tbuy4PkP1EE6HONh54jD36f62oU31xwEAAjEvtyIxkxabWR6bSYutZBS39aLmVhYhI81DRhq6+2qUTWtHyKgP3762MrZNqT0AACQcNS1w3aIhO7DoZqSe5Qp5LYtGo+fXcosgHRqKUC9g4+VCCgaiUojmFD0LfRy1afJnXmXyt5cn9KQgalfRjYZwzZpN169frKvriBLgf5zg4OEQBL17py2NSgszppisXWU1MOCTjDUmS3L+H9rx08W5+e3TeMRi4Vu+ttu0zkYV1RMIZAgErFkXK5sj/RBR/y68PjefV1omoJUL6+kdlEV2sMO+fhxoZqoDAODzZRNnxr980/p3SV/fYObMBUePHujYRbucIKdxP02/qgwKSqSiX+4ueZ5yubdvqkV27vz155+39vZd9CH62488OP+pMqT0w43ZH3MeDXIaP9R9eoDdSA21cQVQlNZnpxRFZNJiM2mxhTUZ8s4lKOiQDcyDR1iEjKT6B2kUxcslEm5lGYdWwqGVcGmlHFoxh1bCKS/tQP0fGUdZGfpLmM/CljJu2s6HrHs/3ZzXgcSi/v0HkkjkppnePYm2SrtOYmJihkBoiw/BYBAOC2dzvmRyakIk6sHaMxlU57fdzps3fKLRlZLGPna6+PL1ch6vI79MHk+2c3fO6fOle39ymj3dFIIABvPJTFAgkH2MZrx5X/fmfV1CEqvVhWYbyc3nhYyKfPMk0MIco6sLf3DDf9KsuGcvW7GFSCTS1LQZ5YReYVrguvWjDyonzmwB/bsrk5OK+rRsnqWlTW/fQt8iJu/53djjk/uvBgBsnXgaBsGU2uIqFApFelnU67QbbkNtLjw4WlDQZWL9Qnpd3t0reXevIHVxpgOH6Nk58arKlcaPX13ZVWmAdG713ntLSuQnB3n525k6GOFt4BIzIctYzDZUKLQPQQoUloEi1KJ064SgikbPPBv1W8fSawkEIvlTaZ6epxtXhBiMrkgklLesMLR8scWP2xy/3pJx/faXhJpPQCKREASJ29l1HYLAoX2u61dbKzfFYvnt+5XHTpVERHVZOkZ/f72De10HBJAkEkVMPOPNu7o37+uj4xgiUXc5+qwsdd8+CbCy1AUAiETyqXMTHj3VVnEFg8HQaB1B24T2uw8YDL4+7NC0gLXKzQp64caLYeoZbn0TLBb7peeJBhgU9vyaJFXFnopMWuzr9Btv0m8qPYE6OhixWNzJVWDP4+6KP3LQffBAssZ+hQwh4lCETCqrmkIr0uczSFgS29CEpWfERBNq0LhaFJYOwT9ZwwiF8r0H8vcdzG/vaNCx4a5r6bUYIZWCzkoM0SMiAQDPXtau2ZhWWNTLg9dnDQSBo4fcVy1tKKd9/qp24YrkququLwGEIODrTczK4XZsfdkBLMwxb54E2lrrAgDEYvmMBYn3HrZeAtiL4HSIe2bd8rcdrtxMLHr33ZXJXSWT/4Wex8HY+8zKGAQcqVAo0kojnyZffJ9xR0M5+rODgEf8uN1h7UprjTIqHk+WnMaKT2QlJLHiE5k5eTy5vNHHY2iAcnbEOTninBxwzo54JwespYXuJ00W83lfbUxvSxSjXUyeTPX309PYefpMaWGhNquhLrr91Vdf7du3TyAQAAAuXLiwadOmrr3DFtmz5xCVatLSowH9SGU5wxXcscp//NrR2zbboVCd9VP/Oxg/furEie3IYofBoDNHPVRv5oMb/uiWGx18jpiZ6uSmDFG+OjFjzNSJxi0dSaUa//LL4Z68Nw0M8CZ/r06I3K1Q/tsz66aGM60vc/bsF1W/5pkxYMPCkO+brgtVbNu229bWoSdvqcNAEJg93bQiP1Q1YkiYY84d91w419zNBQ+Ht291pKsLHzJYPyFikOpsCu7Yq+d9jKnNdGxultDQsNmzF2k/5sxpD4V8rMa/oUMbHapnz56dMmUKAIBEIhUVFSEQiC1btlRWVqpElI4cOTJp0qSWzt+NMUIGgy6TtbhoiI5luPi+27XT8asVVnA4hMHA9/zgNGeG6ar1aR8+9qHKql6Bz+dBbY5dw+HQueOe82c39OG7fb9y9qIksfhflZRIKxeGjIp6/TjAyQGHREJXz/tAixJv3m2mVZBUKtPS+av7wKIJRkRzCwOHDWP+oBAbgpRXIvYfe77lM0oQVdWDf0GD65GtzK6YTLpE0nHnnoE+ikBAIBEwHA4OQUDpKiPgEXA4pKsLR6NhUqni+ava8orOymG7OuOPHHQLGdRYuRgeSf9qY3pqege1MPl82dsP9f2CI1Yvs9y104lIQAAAZk41CRtptOPnnKOnimWyVpIGBAJ+55U4b9y4sWjRotu3b0+bNu327dtSqXT//v0HDhyQ/L+nkJOTk5+f36VLl5KTk5cuXZqdna3+9N4vn/D1Jp7808PXu6FeTaEAf18q+/b7rA5nG/6nQCCgS2e8Z05tWHlfvVk+f1lyV6Wr9DWoFPSrRwGuzngAgFSqmLUw8da9nm6bZ0yyoupZUogWVD0LQ4IZhWhO1bM0IprjdIjqh8nk0oOP1t6NPdHDt/eFzw4XJ/yWjbazppm2pHShQiZTPH1Rc/Zi2eNn1RJJu3/jeBzih20O61ZZqy5UVS369vusf67Ruqr1ljEVvf8Xl9nTG9sfJqWwVm1Ii4nrrL7YmdMeS5ZYaOwcNjz6zZsGB7V20W0AwG+//fbs2bPY2NiNGzeOGDEiKChI/VTdaAjt7BzLyopFotbDVHA49NUKq107HfG4hhVqXb148/asC5fLPpPmaF2GMRU9cSx15jRLAMDFK8V37lcymC12SVSujVQSMBcu05asTml1/vVZQzFCv3kSoBQHkEgUMxck3HnwSbwQjUabm1vl53d9WgoEQQuCty8b9nNLrcNV8EWcHddntqpF0gdxcfHoYan3fw3W1rZVVZXtytLy99X7bpPdhLEUGKx943B1jejiFdrZC2U5eW3N0pw51eTAXhdVQbBUqjh6qviH3Tksdtcn7Q8NNjh6yM3JoaGbulyuOHuhLCGZpUdEYHTgGAxcj4jEYGA6OnCSHhKDgWF1UWFTciortU1qWzWEQKvotvqz8Hh8ZWUlDvdJs/c+JLFmZqrz5+9uk8Y3ShMVFPFz87ilZYJSmqC0TFBcIiilCSoqhf++FY+Vpe6kcdQpE6mB/UjqvwqxWP78Ve21WxX3H1dpJKeg0bAbF33Hj2nQmDh1rnTVhjT1sPa/Fe22sJsk1pBw1JaJp8K8F7R0gFgqrGaV1bDKqlll1yMP51V2vbRND/BFYq3DbNu2+/r1i20snxgyWP+7b+xChxqq7ywtE0ilCuXEl8WWyOWAzZHKZAouVyqRKJydcEGBZI05WEQU/cz50pt3K/n8TwYHYyraxQnv4oRzccK7OONdnXH6ZJT6s9Z83XFfaFtAoWCbN9hu+8auVUlhJYvXGvz993ktB7TFEGoR3Uaj0ampqePGjcvNzZ0yZcratWtDQkLUT9WNMcL09BShsB0ebVq5cPLs+HFhlCMH3CzMMQAAW2tdZa6gOlKpoqJSWEoTFBXzE5JYMfHMxGTWZxoSc3LATZ5AnTzeWOUZ1gCFgo0Lo4wLo/D5sodPq6/dqnj6okYkkuvowO5c8Rs9wkh52JGTxeu+Sf+PrJ6ra0RDw6LfPg10dsQhkdC1C77T5yeo8kgFAmF6ekc0lrSAx5D2zr7jYx2i3Cypzc6vSq1hlVWxSquZpTWssho2rb1tdPom8fHtUMb6gjrZ2ek8Hkf7MRAExoVRvttkF9CPpNqpUICHT6r3HcxvVVPXwQ67aJ75gjnmqjyUoEByUCD5z/1uV2+U5+TxnB1xLs44Fyd8SwK/VdWiLTuyLl3tMl9oS4jF8j2/5V25Uf7n765jR7feJrOutqTzFw0PD5fL5VeuNNNHTCQSbdiw4datW3A4vLKycvHixRoH9H6MsClYLPyn7Y7rV2vm9baESCRPSmHFxDNj4phRsYzikr5ehmFjrbtorvnkCVQN/U8AgFSqeBdef/t+pQ4aNnOqaX9/zYxhJkty72GVhTlmaHBDxtSBPws3b8/8j1hBFS6tcOMAACAASURBVBQjtNIWAgDEYvn0+Yn3H3VLTYWVofP++Y9NSA3Vmbdjjh56vP6zKxfrPEQC4sHNfjye9OmLmmcva/MKvpQbtgMEApoxxWTrJjs3l8afvESiuHqz/LdDBRlZrVhQjVONHmG0eJ75mFGUVsOKKgQC2enzpTt3dYsvVDsTxlLnzDAVCmU8nozFlnK4Uj5fxuNLGQwJjy/j82UcrjQtg6N9MePvr2djo7koevu2vqamIfTWd0W3Bw8elpAQw+N1RGsAAEAkIMzNMJYWDe17lH+bm+qYmmC0f/zVNaKYOGZMPOP5q9oub2jXeWysdSNeDtTILRYK5a/e1t6+X/XgcRWdIbG3d4IgkJubbW2lO3OqycypJh5uzegBAgB++T1/+0/ZzT70r4dKQb950mgLp81LePC4GovF+vkFvn//qksu4WMzZO+s23gMCQAgV8j/fLLxRtQfXXLmvsno0ROePr3fdD8eh3jxoL/6OqagiP/sZc3TFzVvP9Rr+OX+mwQGDsrKymA21zjJxQl//aKPugnk82VnLpQe/KtQu+KudihG6HmzzBbPN1f+BNRhMCXZOdzMbE52Li8zm5Odyy0uEfTZuImVlY2uLjYzM60zJ+m7otvd1IYJBoOMqWhLc4yXBzGgn15AP5K9bYuN6T9G0w/9VXTvUVUfSSGhGKEjXg2ws2m4YR5P9vRlze17lY+f1XC4jTO1pm2YXJzwM6eazJxmov5id+7O2fVrXo/dfB9EwxZOnZsQlwjTEiO0tMAM6E+urBJGxzGEwlbc6RP9V2wadwQOQwAAhBL+Tzfnvs+82+UvoU/RbIwQi4U/u9c/KFBTfESJUCgPj6x/9rL26YuarJwOznr/BbQUI1w0z/zIATdVqIzOkBw5UfTXieK6+i7Lih/QnzR3lplcrsjI5OTk8TKzOd2hpNF9dEkbpk7SjYbQ3z8wIyOVz+92F4qBPiqgHynAX29AANnfl6jebEFJUTH/z+NFZy+UqRubnodIQLx9GujtSQQAcHnSpatTHzypbrbhraWlNQRBxcWFTR/y9SbOnGoyfbLJ0VPFvx0q6Pab7vNo2MLZizPKKkxVTT4hCLg44QcNJAcFkgcPJJubNdS2CwSyyBjGm/d1bz/UxyUwNdKvYBBsfdihaYHrlJs1bNo3F8fmV3Vx6FEDFyf8xrXWw4cYRsbQ37yvf/u+rqDHtZaCg4drLKZ1deGPb/dTlZ2dOldqaIAaNsSAgG8mvaCkVHDhctmBPwv/gwLC3t7+BQW5bLUugDgs4thht3mzGgp8OVzpj3tyT50r5fL+c2+OdkxNzTEY3e7I9G47fTFG2BngcMjNBR/YnzRquOHY0RR1lQQWW3rmfOlfJ4o6447oMDo6sKd3+ysHFLFYPnZqXJerEPUMSDhqqNu0mPwXTF5fuX91WygSyWcsSKysEiotX9AAsnq+XLNwuNIPEXSlaHhqOgcOIb+dcGKMT4PURWldzqaLY8rp3TjnCBmk/81627CRRho5gSWlAuVdvXlfX1HZ2UrqDqCjA3t4s9/wIQ3R6O9/ztnzWx4AAIGAAvuRRg43HDnc0MeLqJH9X08X7ztYcORkcbOTvP8IHm6E6xd9VCUEqens6fMS217t8IUephsN4axZC58+fdCs07xnsLHW/WqF1ZIFFuqzV6lUcedB5aEjRdGxPaf9CIdDNy/5KitD5HLFnMVJ125p8xj7+QVAEBQX1+dS+EJcJq8euc9M304g5t6M+uvqxwPNdivtedRtoRZYbHniGxcDMs7EWAeB5gIAAEyOQPIBABBCAkOIGAxF7vMVKIG/8vjEonfbrkzppibyCAQ0ZYLxN+tt/Hw0U6Kakp3LffO+7u37+rcf6rtPa2LVqq+PHz+k/BuNht292piZ/OMvuT/90kxtgKEBKnSo4ahQwxHDDJW9lJVUVAp37cs7e6G0A6XfnyOTJ8+MjHxfVVUJAFi+2OLwPldVk5bTf5eu/zbjvzwt0I6HhzeBQIyIeNeL99CbMcJBTuPDfBZefL83qzyu+24Dj0Msnm++dpW1RiVGdCzj5t3KyBhGQhKzW3+rEARO/eWxdGFDEczaTelHThZrf0rTGGGv42jis270QW/rYPWdPBH7euThax8PcYWdVY7oPFQK+u3TQNUcXEV5hTA8kv4xip6eojvT46SHRVCzT2/K64xLP99YKpF1vdXBYRFLFphvWGOt7KqhRC5X3H1YdfrvUhsr3aEhBiGD9A30m1nLSiSKV29rr92quPewqss9kKoYIQoFu/WP77iwhsT33fvyduxqxXMFQWDsaMqeH5zcXRuzQgqK+D/uyblyo6LPZmp0FcoYYW1N4cm/PFRKT1yedOW6tMvXy3v33vo4//IYoampeU1NlUrqrSmnV0S5mgcAAOIKXl18vzeh8E333QwMBo0Lo2xYY60usqeEz5fFJjDDP9IjY+iR0YwuH1x++dHpu2/slH+3ZUABABCJJAiCenExrY4hwXT58N2jveerWnfK5TL15tRcIfPqx4PXIw/zRe3IAu8OqBT0u2cDHOywmdmciEj6x2hGeCRdWU4zzH36lgkncTqtr70AAAAozAOvoG0vbdmRef6frpQ3Mqai1660XrnUUr3SSyCQnb9MO/hnYX5hY0AdBoM83PDDQgyGBhsMDiI3jXwLhfLHz6uv3qh48qKmq1YbVlY2xcWFSCR0/YKvStpi7/78bT+2NTMZBoPmzDD9+XsHdRufnsn5/uecTta3IBCQoQGqsqqPpoFQqSZWFpJLZ9xUqXBf3KFthEAgIhAI7RLB9suDqUOcNHam7n7IytDmWlPvPmFoaHjy5Ek7OzsOh3Pw4MHbt2+rH9lrMUI7queFNUnq4jcZtJiL7/dGZD9QdGdNnJcHYf1q61nTTJvtzyCTKdIyOBFR9I9R9I/RjDJaZ6OJG9ZYH9rnqvz71LnSFes+J/0qHaTunEGbZwdtVjZYBwBIZOJb0Ucuvv+lv/3IxUN2Whg4qg5m8euvROy/Ff2XQNybFWYkPSQEATqjcfqFQeG+HvPHWN+GElqZXPox55FUJkEhdJR9IXRRODgcCQDA6+jpoOB6JITT8KsGjh+Ux0dE0VdvSEvL6JSNd7DDjgujjBlFGTSArF4dW1cvPnaq+MjJ4to6betOBALq70caGqIfMkh/8EB9jfpaNkd6/1HVtVsVL9/Udt63AYdDV/72nj65YU3z++GCb7/Pau9JUCjYisUW32+xNzJsdJbGxDG3/5T9+l27uxfZWusuWWCxcK45mYTcdzD/14MFfdDN+NUKq/2/uKhGlTPnS9dt/uIO7TI8fpxgMclHY2f0svN1sUXKv8+ePfvkyZPbt2+TSKTExER7e/tNmzZt2LCBSqUqrcz58+cTExP//PNPMplsYmKSnp6ufqpuNITff//L6dN/VVe3qCBnQraZEbh+gv9yFEJHtbOCUXQj8o97cSfF0m7MDqAYoUePMBo0gBw0gOxg12L1BYMpycjiZGRy0jI4mdmctAxOu5Ke5840vXjaW2nr7zyomj4voY1VHKNHj4cg2JMn99p+ra4FDkNM6b9m0ZAdRN2GBbRCoXie8s+JF9tq2DTlHgiCBjqOXTrsJwdjb9UT+SLOnZhjFz/s5Qp7p4LTyIi6YsW6Xbu2KTc9rQb9OPUfil6DX7qgOu2HG7MLq9NbPgEAAIwLo/zxm6u1VcOaRipV/HGs6Mc9ue3K90MioUED9MeMMhoXRmla4VNYxD/4V+Hf/5S1twjPQB81bZLxrOmmAwNITbNUbt2tvHqz4sPH+o5NJo8cOauHOTJnRoNo8qEjhRu3ZnbkRAAAAHBYxMZ1NpvW2agH6YuK+Q+eVN9/VBUeSdeulYhGwyaPN1660HzIYAP1NKKCIv66b9KfPK/p8I11IRAExo+hbt9s5+/b4Gzg8qSr1qf9c+2LO7SthISE6usb3r7djCKMilYN4ciRIxctWjRz5szly5c7ODh88803cDgcgiCJRKI0hJWVlVeuXFm0aFFBQcHChQszMjLUT9X7dYQmZJvZQd+M8V6o3ratglF0Ofy3t+m3OEKmTN692cYUI3RQIFmZYe/lQdDejqu6RpSeycnI4qRncnLzePmFvJYao4SNNLp3zV9Z+/8uvH70pJhWC9dU9GKMkEI0dzbrN3/wVidTP9XO3MqkP59sTCx61/R4OAwxymvuopAdJmQb1c56btWFd3vux53qjgCbdlRaozAINito0/Lhu5Hwhkjbs+RLBx5+xRO1SWJRVxe+7Ru7zRtsVT0yaeXCr7dktNrvwkAfNXqE0djRRiOHGylb0qijUICYOMahI0W371d2srbV3AwzY4rJrGkmPl6a+nxFxfwLV2gXr9CKihsLMDBUouPaYQqZvPp9Tl1UgZSv+dHAYFB2yjp764b82L9OFK/f3AW6fQb6qG2b7VYvs9LwwdTTxY+f1dx/VPX8da2Gjq6bC37pQot5s8zIpOalwgAAdx5Ubfg2o/M+mw4Dg0HTJxtv22yvHhNNy+BMn5eQnfvFHdoO2hIjbNUQttp9QiwW7927d//+/evWrQsLCxs4cKD6qfpK+QQZR5keuH5y/9Ua7WwAABKZWCjmcQQMoYQvkPD4Ig5PxPYbnUC1rr3xMOne45yMDE5XOVPxOERgf1JQIHlgIMnTndBq5j0AQCCQFRTx8wt4BUX8/EJeQSE/v5BnZqLz7F5/ZRVtcio7ZFRkzysbtQUYDG5p4Ohg7G1v7GVv7OVg7K1aAiqp41ScfPn906QL2pvqIeDIMO8FC4K3G5OsVDvL6QWnXu14lXatW33dzaKPN9459aKqRzxXyPr9waqXqVfbex5He9zRQ27DQhr7fz57WXv8TDEehyCTkCQSikxCkklIkh6STEKRyUgyCalPRjWdS/H5stfv6h4/r3n8rJpW3sWuDkd73KxpJjOnmTjaf5IopFCADx/rz/9Du/OkljK1v93iIDim4fssF0vr44qr3mXXhuda68mDBpCDAsmDBpAtLRomo8dOF3+1sSvVay3MMdu+sZs6ybjpb0opq3T/cfXrd3VDgw2WLjBXl7ABAEgkisfPqs9dKjMyRO/b5aQ6A48n+2lv7uGjhT2cmIpEQnNmmG3dZKv+hotE8pPnSrbuzP7iDm0XMBiExcI5rWVmtGoIQWvdJyoqKnx9fSsrK6lUakFBARb7iZOmGw0hmazPYrFksnYYACyaMKnfyhkDv9bHUbUcZhJw13LoOdVmXZ04PJz+/kP9u3f1aWmcLsxPo1LQrs54Nxe8qzPe1Rnv6oJvOsfXTkERP2j4x/YKPSg/JB6vW4JteroGQ9ymKs2eLcW9pf7pQgn/asSBf8J/E4jbOr1FwlFjfBYtHPK9EcFMtTOnIvH4i62x+S+74NbbAByOGOEzfe3ww3rYBmn/1JKPP92aW8ko7vA5Z00zPbDXpe0dt1WU0QSPn9U8fFr99kN9D4yPvt7EBXPMZ083UZkKBYDecvTP15syZC1O6ahIkb8usx+W6abDRUByAMCpc6Ur16d2x+wFDoeCAskTxlImjKHaNNHTb0pOHvfcxbKLV2iqX5A+GbVvl9Pi+RYqZ2lGFmf1hh7q5o1GwxbNM9/yta16KhCfLzv1d+mpv+vzC+q15AZ+oSmWlpi/z3kJhYrpMzK4XG1h+LYYQi3dJwAAFy5ciIqKOnHixOLFixcuXDh48GD1U/W+a7QpSAR6jPfCSf1WEjBkXTQeq0OEqbVrN+73wGr46ZaeS6dLIiLo797Xv39fn5LC7nJlNXMzjIsTzt2V4GiPtbPF2tlgTU10WupPV1UtChr+sQP6IN3nGnUy8f1l9m2qnmVLBwjE3IKqtKzyuCsR+6tZZR24BBqJmRrw1bzBWwmYRlGuuIJXx59vza5I6MhNtw0YBPOyDp4+cM1gxynKPTK59Py73X+/2915jWwCHrFrp+Oa5VbaPecAALlcERvPfPi0+vGzmpS0dne6sbfH5uV1agKERsPGjaYsnGvuGmxxhmGZImhUqTWDeGbcmko9SomkGSNERoj9MGz2h/Sdi9/1QLWDhxtBaRF9vIgavyAeT3bzbsXZC2URUc2btwH9SccOu3u6N7w0hQJcukrbvD2rpra7ckqxWPjyRZbfrLdRtfQDALA50iMnig8fLaytE7erDdPnBYWCDgoiv3lTx2B0pZlfsMDsj8NuRCICAHDmLH7ZMm0Om7YYQiQSyWQyHRwcyssbA7QqQ2hiYnL+/HlTU9Pa2trly5fn5n7ySXWjIVy8eNW9eze0J8W2ETQSg0FidXUIy5Yb/7CHpPzZsGg2Mh6FYJ6B0G1+uCku5q/5Kv3Jk+4NqmMwcFtrXaVRtLNp+MPcTIfDlYWMikxO7UjTr8DAQTAY7OPH9117q2N8Fm4ef1w9NQkAUMOm5Vem5FWl5FUm51Uml9MLtHtB2whOR2/uoG+nD1ivg2wYcxUKxev0G6defU+rz+/8+dVxMesX6jFrmPt0A7yJamclo/jHm3PSSiO78EJeHoSdWx0QCIjJkjCYEgZDwmBKmv6tEfFqI8OHG3y/3T44WP/YseL1GzI603QTScA4rh5iOd0fgjfMIIlwyVxyxQh8LQxSAABqJKgYPimWp5cuxEkVmunTzIzywotRlS8zFLKe6G5mboYZH0aZOI4aHKSfmMw6e7H0+q0KOAKCwSAiEYFEwnA4uI4OHIOBcTjSuDiW0kgjENDaldY/fe+g6ubNYEr+uVZeWMQrLROUlQtLywTV/29NAIdDY8dSbG1179+vKiho98R09Aij00c8TE0afzj1dPEfx4r+Ol7MZDXYhtmzF719+6Ky8l+SI2NpiRk8WH/wIPKgQWRHRxwAIDGRFToimk7vAltoaIg6cdxj8uQGt59MBv4+L1u27KmWp8B1kDC0pjdOyhWpvqJ9t/tEl7NkicXpUx5KKxgVxVg2l7l7yhOKnrmuYSnBMrUWdc3KpdbISNN/de1axYavM6p7VoUWjYbhcYgu1NXtJEg4av2Yw5P7rVJu8kRspY5BXmVyt0rD6OONFw/ZOc53CQLekPUglUnux5+6ErG/M75KJdZGrqEeM0M9ZpmSbTUeepFyZf/D1b2VudouIAiMGUPZvs0uIKAxMPbmTd30GYn17f/+wJBw63mBdosHIfENo7ZcJBW+iJ9MqJwzhaJHbPgUVCIDH+M55Wg9w0EOxsNddIw+6XAiovNKbsQVX40RM7td8tTGRverNVazZ5uiUDACAaFl2V1UxP/7fNnff5fRaEIAgKmJzsFfXVTFHhoIhfKKaiGAA4opGottqHxNS+Pcv191735VQkLrXw8CHnHwV5clCxpbwlZWiQ78WXDy7L9QMtTZGTdoEHlQkH5wMNncvJmISXIye3hodAe+luqMG0c5fcqDQmkYqHNzefMXJMXEdFaRo+92n3Bz88zPzxUKuyata/58s7/PeSrzxePimKEjolksqQHe5NDCZ7YUd+Ux1yMPvy75cdBgveDB+iNGGJL+n3LGYEg2f5t17lzp59K0z8TEDIKg8vKOeCabYoA3+WXWLTeLQOVmcW3W1suTSut6TuLWXN9+2fBdw9ymq8pG5Qp5QuGbh/Fn3mfdk0jbN0cxIdsMc5se6jHLjuqh8VA1s/Rd1u08duyT8Gtdc+vdCQwGTZpE3b7Nzru5tswFBfwJE+My2la/CCHgBEcKycPcYpIPwbExvl4TkZe5/xm3qA4AoKMDmziWikBAEVHN9OyE4DCyj6XXolB0PyoM2aiWIOWJyu4mFl2O5ld0i3jQ0KEG69ZajRtH0SgF0Y5Mpnj+vPbc32UPHlRJJIoRwwyPHHTTrFGBA4AAoOUG6aWlgnv3qu4/qP7wob7Z9XfoUMMzRz0s/m8SKqtEu/flnbtU2mz6t7OzW2lpcYe7znUSHR2YVKporxcBj0f4+hL79dML6E8aOJDUdBWhRCJRwOFA+QGlpLCHh0bXaS171XK5gwdcli5tmFUoFOD48eLN32bh8UZoNLq0tLgD5+wq+mKMsCmzZpleuuilnCcmJbGGDY9WeatxOsRf59xTdQ9/lXZ91+0FEqlIXx+1/3fnBQvMVeGH9+/rV6xMy/kcOsV0YYzQ02rQ7pk3VMlH7zJu776zqFckYBxNfFaN2NvP7hPHBZNf9yz50sP4M0U12urVdNF4X5uh/e1HBtiNVK/TUMLg1bxJv/ky9WpaaSSFQtXShqmPAIdDM2aYbPvOzlUt857LlR4/XlJdI/p1r7OyZJ7Dkc6Zm/TwYXWzJ9ExxOt5mJE8zUnuZkRXEzj6k0oDbnFd5v5nNeHt69J19uyN1VuWWM/ubznVD0lsXBMo5PKqV1mFlyIZqbR2nVAF1lLfYoovioipeJFRF1OkgwRz5piuW2vt7q7Zm1oJmy2VShVMpkQikXO5MoFAJhLJfX2Jep/2Xq+pEV26VH72XGlREX98GNXKEuPshAsYQLaxw6A0FDMUAMibt4v19eJHj2ruP6iKimJUVYkAAHgc4vc9zssXW6pGjys3ytduSqd/GiTT10f5+hJ9fYm+PsShQ61gMIH2aLRQKGezJWy2lMWSslgSNlvKZks5HCmbI2WxJAUF/KgoRrvqSo2M0OPHUyaMpwwfbgiDgaIifm4uLzeXl5fPy8vj5eZyletmFSgUzNOT0K+fnr+fnr8/0ckJ19L8g8+XRUczPnygh0fQo6MZ06ebnDntoRyB09I4w0OjVR1x20hQEPnCeS9Vc93ycuGSpSnPn9eCf73E2siRYyMjP3A4HQmSqTN1qvHVKz7KoSE1lT10mObaHIlA75xycZh7Qx+1hMI3Wy9PUpaLDR1qcPKEu93/S+aFQvkve/P27SvQ3g2513FxcQcAyszsrAzNtMB1a0ftV7ol5XLZiVfbL4f/1vPFDOr42gydN3irn+0w9QQoAEBqyceHCWdep90QShoWKxAEORh797cf2d9upLvFAJVzVQVXyHyfefdl6rX4wteqAQiHwwcFhTx79rAHXksHQCKhuXPNvttqZ2/fuHxhs6VHjhQfOlyonGgPHWpw84Yvmaz81BTbv8/Zty9f+aERXU3I3pYkDzOShznGuJl1JABAyhXmnnhfdDVGIW13qHLq1Nm3bl0BAMAxKPPxXtZzA7EWn7QhZKaXVzxPr3qTxae1SbMehkIYD3O2mOqn72sJ/m9VEGLRQD3GMCOWB44DhxTKl/n8ee0ffxbFxjIFAllLFbcYDHzKFOriRRYhIfoa+TUfP9Kv36gIGkieOJGqKv1UnjkpkZ2UyBby5JPGUUxNdAAcNPxrbvATCuU11SJDfRQGDQcAAAVg0CUbt2Scv0QDn1o+X1+ilVXria/tQiJRxMUxP3yoD4+gR0TQ2S3UXNnY6E6aRJ0wnjpgAEl79hafL8vN5eXl8RgMiZcXwcuLoP7maMBkSiIi6OER9PBweny8pgLzvHlmf5/zVF4uI4MzbHh0G+NNOjqwn3503LTJRnWr165VrPkqTRVutLd30tXFpqR0YyZdq/T1GOGECdSbN3yVZemZmZwhQ5uficAg2Lqwg9MD1ys38yqTN14Mq+dUAgAwGPiO7+2/+cZW1dc+I4OzYmXaxx7Jt+4tdJC6WyaeGuk5R7nJ4tf/cGNWj9UwtApVz3KMz6KxPotUmi9KeCL2i5QrWeVxvtZD+tmPIGGNmj6XK2RF5z17lXotKu9pe92qvYiPD3HaVOPZs00tLBpXWkym5I8/iv74s0gjH8/ODnv/np/L/3uaX7lSvnR5msXiYPtln+R8q8MvozNSyxiptMoXGSJ61xTeQDCIEuJoM28A2UczzZidW82MzBEm5iNq6VgsnEhEEAgILBaBwTSMs1I9It/Vie9kJ9fRaXLiBggIqb9OPSsy++qeuJzsdngpbGx0Fy00X7jQ3MysxZNXV4vOnSs7dbq0+P+qAkgkNGua6c7vHBr09+EAwIAMUsARrQ+DPJ6MyZSYmrZ4uS5HJlMkJbHCw+nv3tdHRNDpdImPD3HiBOqECRQPD0Lrz28DUqkiPZ0TF8eMiWXGxjIyMrjas4VnzTK9eMFLuSbJzOQMGx5dpVX6FYWCLVlivn2bvep9YzAkq9ekXbvWxd3aO083GsKJE6e/ffuCxWoxtDB7tqm7Gz41jZOWxs7J4Tatig0LM7p7x085hcnJ4YYMidL+vs8d9O2qEb82lE8yir67MrmgKlWZA+nhQTh10qN//wYZJLlccepU6XfbspnM5pOgdJC6UrlEKuudqiAPDx8YDJacHN+xp1sYOO6eed2O6qnczKlI3HZ1SueTU7ocGATzsx0+1ndxsPNEJEJblZ5cIc+pSIjJex6T9zy9LFqL2BCBQBw2bNTdu9e74X47gq8vceoU42nTTGxtP1k91NeLD/9R9NdfRSxW86+FQEBcuewzZowRAECigO1IMc2Af1JcKxNKWBkVjJQyRmoZI6WMgpP7+hLd3PBXr1bk53fQEC5YsPzChVOqTSQSsrHBOjnhLAItJf3cK/TN5E1GDCpKFEhkBOAZzlguBIBYAYtikZ7RDTN4OIXawXBI4Y9nmaIFkSxypVjzsxbReVWvMyueZ9ATShTytnpr4HBoxAjDxYvMx4+nqC903r+vP3Gy5M6dqmYdPxgMfOUSyy0bbRubRsEAgyMRSeUUKrqlUqhmkUgU6ensxERWQiILjfZ88iS+tlZbk05dXTiBgCAQEEQikkhE6OkhCQQEAY8gEJAEAsLfX8/NDd/sDcjlCjpdYmCgWQwqlyvi4lj37lfdv19VVye2s8PaK8u67HTt7bF2dlgNTzIAoKCAHxvLiItnxcYyk5JY7VX4mz7d5PI/3kpbmJ3NHTosqrKymTEZgYDmzzfb8b29+qL5xYvaxUtSypsISjg7u+HxBFUz7WbBIOFohOZaliuSSruozqc3Y4R37/hNnNjw2xaL5VlZ3LQ0Tlo6OzWVnZ7OcXHB/0izSgAAIABJREFU37/nr6MDAwDk5/NChkQ1fQebMtJr7rZJZ1WqWlKZpIZVVsUqrWaWVrGK/UZkzV3F0cU2vGo2W3b9H879qxgF34SqZ2lIMDUimlGIFoYEUzyGJJTwM8tikkvCU0s+ppdF9WRcTXuMEA5DOBh7k3BGJKwhCWtEwlFIWEM9rCEZRyFhjfSwhqqXDwB4mnTxtwcrRZJeU6JqC0Rd/RGec8b5LtHIf6njVMTkPY/JfxGf/4rJb5NYs0pirXvutK34+RGnTjGZNs1YFRRRUVMjOnio8NixklbVNOBwaO8vTis3Ou4usc/kNYiY0BNLKl5kMFLLyEK2jxfe14fo40P09SWqRkmhUL731/x9+/JFovb5/5FI6O7dv+7e/c3RAevoiHNywllb66r8KAAAugQZzSZFc0hpXLxUoTl06CEkrlhuKhfPkX2S5m6MEoaS6oaR6slIMQBAoQBXP4ivpevybKx0zUgaJ2HnVsdvvMYva5+3xsAANXeu6ayZpjExzBMnSzIzW/+pYrHw1cusNm+wNdSwLhAAMJCYwnr5rs7QAGVtrWtlhTE3xyiHfrFYnpbGSUhgJSaxEhKYaWkc1ZvcJXWEBgaowYPJwYP1hwwxaMkoAgBEIvnbt/X37lc9eFDVrB1SP6GdHdbOTpdCQWdmcmNjmZ3M+QQATJlifPWKj/KLkZPDHTosukJNZhIGg2bPNtm5w0Hd+V9bK/7hx5wTJ0qaDcu0JUZ4ZqrHkn4WGjuHnYp+k69tWFDvPlFX13AkBEFEIhGB+ORb2ptZo7k5Q9TfrJYoKuIHh0SVlbV1KO9nF/rLrNu66OaD8ChCnc2IEySHGNUehRxRlzGoImYyv8aqpXPK5bK8qpTUkoiUkoiUkgil07UlkHCUDgorkgg6rBuuJWvU1Txgy4QTqtWeFiQy8Z9PNt6OOdqxe+gVnEz9xvouNiXZxBW8isl7XlCd1t4z6Ohg7O0d09KSu+P2WsXFBb9gvtm0acbWTWRTGAzJ/ftVN29VvnpV1/YQNdaCPOziQjmpIRwYSqxBPAl3sNP18SEqg4gtkZvLW70m7fXrNs0ekEhowQLzbd/ZNb3tZuHJEAkcYng9IUVAEiiaz8uEyWVUeoVlTZE+qw4CDeMfmy05f4GmSoUlupqYhLoaj3TTNWlsjyXhCJO33a7+0BOV6TgsYu0qq03rbFRaPEyWZMO3GRcuf5IThEBA5uYYHA6end2M40pJl2eNNjWKLJb0yZPqe/ernz2raSl82DNMnEi9fs1HuQrPy+MNHRZFowkhCEydavzjDw4qlz4AoL5efOBg4V9/FXO5Ld4whWLcatZoq4aw1e4TKqZNm+br67t161b1nb0ZI1y0yNzNFe/ujnd1xZuYNO98Ly0VBIdEFRe3r5LJ0cTn2wknjEnWeroGzR5AdowyC7qGpRSq7YOYhd4VMZNYRV4AAIlMrL6u0qCcXpBRFiORiTAoHB5DwiCxGDQOg8TiMSQdFFb5RIVCUcOmldfn0+j5tPp8Wn0+jZ5fTi/ocJcinI7eyhG/TPRfoZFm0hSZXFrNLP359vzUko8du9YX2ounJ+H77faTJ1M10vAYDMm9e1W3brfP/ikhe1n4/TELpacLAIAAWEgtm2zYYks/FkualMQiEBA+Po1JNJcvl2/6JlNLUgMKBVu40Oy7rXbN5n3IZIqiIn5WFjc7m5udw83K4lZXiwQCGZcrUy5nYUi4vr81dagTJcRJx7Bh+OMU1JTeSSx/lNL2AkQ9N1PjEa5W0/0b1FAVirzTH3KPv1X0SDtfXV34soUWWzbaRcUyVq1P6z55mg6jXNglJrL6TpbfuHGUmzd8lULq+fm8XbvzNn5t4+nZGLxkMCQHDxX+8UdRq56PttCqIWy1+4QSfX39u3fvjhw5UiD4ZGXVjYZwzZpN169frKvT5jRXQSIh3dzwrq54dze8iwve3R2vr48qLxcGh0R2QAlChQ5S15hkRSFaUPQsKEQLqp6FsZ4VRc/CkGAKhyFwFnGGfjeojjkAavy9ZaaLDx0svXA5Rx9r4Wk1yNMyyNMyyMrQBWpX9KBl6jgVSrsYmfP4Y86jZvszBAcPhyDo3bvG3JZQj1nrwg6qqiAEYl5C4RsWv57Fr2Pwapi8Oha/TrnJ5NWxBf/mPCDt6OsbzJy54OjRAz12RV9f4o7v7cePp6p/Qeh0lf3rYI9Ak5FuXrsmKdU0ZCJJ2cGH5zcRfH0bjVx9vTgxkZWYyE5MYiUmsgoKeAoFgMGgVassd+9yVAWHmEzJtu3ZJ0+WauRBoFCwRYvMv9tqZ2nZmLzD5yPu3y/JyuZmZ3Ozs7m5uby2+lchSM/VxCDAtj6+iJHcwfpXvD3F7+BMVZ5q7cf8xO9uSVg95NXHYuF8vqzDKdWLF6968eIxjVbapTfVpwkLM7p9y08ZvVKHxZIePlx46HBhS/FvDfr3H0gikbVnerdqCFvtPqHkwoULp0+fjoiI0DhV+ySk24WJiRkCoc17ow6DIQkPp4eHN47gVCpaoQCdVIQRSvhFNZlNa9RgMLguCs8VMgEAHh6ETRttZs40Ua70XdxQp8/Z7fjR9Njx4keP7j+//w8AgIAhe1gO9LQc5GE50MnUT8tiEfy/XYYuGg+HNfP2GuBNDPAmXlaDx/ouZvHrX6ReeZp4QUOEk0jUg8Eavl6mZNvN44+pl99FZD88+GhtFbOkI+/Ivx0kEmlqat4z1woIIO343j4srDG1VaEADx9WHz9R/Pp1XYdbIkAwyGXzKOvZAcpNQRUrbu1ldm714AfwXT878vkypeUrKWnGQsjliqNHi2/frjx4wGXWLFMAgJ4e8thR9wXzzVeuSk1OZoP/5/Jt3WKnnr9aVyc+eKjQ2fmn+fPndOSmFQpmejkzvVMCY5y86vAZxz1/nmQc6gIAMBxoF3xrdcI3NxgpXaMsoZ2OCeOpoFJN0eieyyntCzx5UjNxUtzdO34YTIN7nMOR/vFH0cFDhe1SJSUQiGRy8667tiORSF68eLFixQoikdiSuIytra2Tk1NTKwj6WveJXsTUVGf9Ouvlyy2VIrAqysoEz5/XPn9R+/p1g+YsGolxNvW3NHSSysQCMY8jYPDFXKGYJ5DwOAKGUMyTyMRUKlomhesoTE3Jtmb6dsr/zch2JiTrZtMjC6vTHyedf5F8uZ5bBf7ffUIslMwZtHlB8HZVg4gaNu3wo/XvMu90+9vx2QKHI4hEYpco3GohKIi843v7ESMMVXsUCnD3btWu3blKY9NhYGiE9+7JxiNclZusrMq4tZeFtR1J1AoNNTx6xE0VhpdKFUeOFOcX8LZ8a6suoFVbKz54qPDIkWIuV2poSKmtbb5+v+eAINtFA53WDoNgMACAQibPPvK64Fwzg1efQk+PzONx/oPdJ4YPN7h/z18uVxw5Urz/QGEHknEwGF04HK69+0RbkmW0d58AAOzcuVMgEKg/qqKv1xH2MAQCYtkyi/XrrJtK7clkithY5rPntc+f18THs1R9LYhEhL091sEB52CPdXDAOjjg7O2xBAICAFBczE9KYiensJOSWElJLBpNCINgRkRzU7Ktt3VwmPcCjS4QMrk0Ou/Zk8QLETkPXc36bx5/3NrIRfmQXC67FXPk1KsdvSIK8wUVISH6P+x0CAlp7Noolytu3arcvScvLa2zHw2KhPU/PIvk1bCirf6Qm7TlZtMOum1HRwe2dYvd1q12Gk1xldTWivcfKDh2rERLIkNvoe9n5fP7dDS5wYqXP05N/fmBTPifMzOfBT4+xLIyQW1tN0or7xhuP8lVszffijtpcWWN5Xnau09AEJSTkzNq1KjCwkLQhM9DYq2HQSKh8eOpY8cYjRplRG2uC119vfjjR4aeHtLREatSj22V2lpxUhIrKYmdlMxKTmYX5As8LAeP8V4Y4joFg/oke1Yk46NgGNVEJrs8/rf7K7u1h9G/hm4qn0CjYdOnm6xZbaUqRQUAyGSK69cr9vyS35Z8/VYh+1p6/TxJVVFAe5Cc+vMDuaQLuhg6OGCPHXUfNqzR+1RTI/p9f+Hx48Ua/sCzZ28sWTK981fsErCW+n6HZ+FtGpbdzDRa/KbrwurOKlV1E//iNkzdTZdIrHWy+0Q3xggZDLpM9lk2a5ZIFLdvV96+XQlBwNubOHq00ehRhgEBjWpG+vqo8eMpWs7AYEiwWLiGmpGhIWrECEOVP43FkkZHM6Kj9/yRsEOHMyTYbpGX1WCl8UPDG1L4eCL2qVc7bscc7XxHvf8IUqmsa/2ilpaYlSsslyyxMDRsDAxLpYqrV8v3/JLfJdK1cDTSad0wq9kBkDLjVKHIOfY27/QH0EVieLm5vOGh0XPmmB7Y7wIA+H1/wfHjJc1WUve+X1QNXkn9xzmnVCFDPXezwddXxq69wkzroN5pt8Jk0iWSvtJtpr1YkjBsoZQh6J0Ft0DA77wS5/z585XdJzr29C+u0bZCIiFDQw1HjzLUWCby+bK8PKXELS8vn5eTw83L49XViZFIyMUF7+VF8PYienkRvLyIGtFHdRQKkJXFSU4QcyqcTOQzDUCoQg4exJ8+/uK7/3IKaC8CQSA01HD1KsuxYynqco5CofzyZdqv+wo6rN6iAcnDzHPXJJxVw3JNyhWm7X5U/rTdBZRtgUhESCSK9oqJ9DKfhgzlImnq7oe0B71TJ/rvwwiH3jXScbG/uVyhuJ9RfSqm5HV+3efSpacL6UZDaGpqXlNT9e+LHiuXiZ6ehNJSQW4uj0YTtPF7Y2Oj6+1N9PIkeHkR/P31tPhUeVyQkwF7E56Xls5JT+dkZHDaksWOwcAdHbGOjjhnJ5xcAf74o63py/8mkEikkRG1Mx2s9PSQCxearVpp5eDwib+6qIh/4mTJ2bNlndfmUAJDIRxWhtguGgj9P0O4Nqog9af7gspea6NoZWVTXNxMBKXXMQy09f51qrKkEgBQdCU6c//znukb3EaoVBMGgy4SdVBDo+eBw6Cl/Sx+HuFghPtkIEqpZJ+MLrmcVM4WtnX0wFrqy4SSjnmtUXq6hg7mgvy67k5w086/M0aINsBRBjuKmfz6hOIeq0NqLzY2ugEBpID+pMBAPU9PorqWlQZSqSIvj5eWxlbqsqalcYqL+YaGaBcXnKMjztEB6+yMd3LCWlhg1Ku5a2pEO3bmnD1bpsrr+S/Qxhihvj7KwKDxn5ERykBf+Qd60CCyqokrAEChAC9e1B49Vvz4cY12SeJ2QXQy9to9CW/f4GCX8sVZB1+U3IrvKndox+hTMUINdM1IfodmERwa3rH6+OKEb26IGV2zLu88n1eMMNTe8MA4F3dq8/JbAACuWHo1qeJEdEliudZpGQTZzA1wWh8KQ8IFVSxGcikjhUZPKWVnV2mZpqDJWLKvpb6vlb6/Nd7WEHAlhGMVn0cbpq+++mrfvn3KavwLFy5s2rSp1afMmrXw6dMHTGbPefZ0zcnGQ52pQ531PMyU4RaFXMHOqaqPK6qLLaInlkh5fU4zQgkGA/fzIwYEkAIDSAEBJGPjVhJwJBKFFsOpTmoq++uNmW/etElq618AkUgaM2Zisz8qNBq2apXlxq9tTEx0tDevUcJkSs6fpx07XpyX19bRluxjadDfhk9j8MsZfBpDWMtpatggOMx+6WD75YMhRIO5rY8vTtl5j1/epsZG3cqqVV8fP36ot++iReAYlOfPE0xGuCk3BZXM+A3XWNna9A57jMmTZ0ZGvq+q6hM3owVHQ9z+sc5jnRtTHGgs4ban2Xl1vOUBFjM8TXSRn2jmxZUxT8aUXksu54k1PeooPV3PnydSgh2bXkUmlDDTyxkpZYzkUkYqTczkow3w+n5W+r6WZD8rVQKUCvaPMR/uPumil9gR2moIjxw58vr167t373bhtRG6KLlMLhd11n1HcKRShzpThzqrZovNopDJmenlSqPISC6Tifquz9bSEuPtTXR3x7u7ETw88HZ22LYM3DKZorhYkJPDzc/nTZhAVVcMuXevavO3WV0V1vrsgMOh+fPNfvzBQb2EXAupqeyjx4ovXy5ve5E1Aot23hBqMdUPUluUy0VSfjmDX87k0+hK06grMbVY7obzbBBPkQkl2X++Kr4a0zNaYv8GIMhuUZDj2qFKf7JMKEn96UH5k8527vwvQNZF/jDcYVWgFfL/gwlXLP3tXcGB94X8/ycn62GQ83xMVwRYulI+WSyyhNLLSbQbKZXhRXS5QgEAIPtY+vw6VYfSoKmmkMpUEztNFApRPQ9tgGv+QZmclVWZvvexdjUGA5IHAavZC6yiNlIo6hqHalsN4atXr3A4nJubW3Jy8tKlS7Ozs9UftbGx19HRycnJUijkTk6uIpGooCB3xIgx9fV1lZXlFRU0AwMjIyNKZWU5g0E3N7fC4/GFhflmc/wcFg/mfChOPv1CRGPZ2TnyeNySkiIikWRqalZXV1tTU0WlmpDJ+mVlJRwO29raDoPB5ORkyeUyF1d3uDVB6og1HuqCMdXTuFuFXM7LqEGgEWgbUrMfj1ws5WRWCV+Xlj5Pra6upFKNyWSD/7F3neFtVGl3Rhr13mVZbpLl3mvsON2GxCm0QCgfEOoCCyy9l2VhKQssbWHJUpZOOpDee3dc4m7LstWs3nuf74eMrMg1thM7bM6TB6zxaOZKvnPf+7Zzfr+LEIfDd3d3BAKBrKxcv98vFnfi8YTkZIHNZlUq5QwGk8OJ02rVRqOBz08kkyl9fRK32yUSZaBQqPb2FhQKJRJluN2uvj4JmUzh8xONRoNWq+Zw4hgMplIpt9msyckCPJ4gFnf6/f6srNxAwN/d3YnD4VNShDabFYfDU6lUp9MZvotQmFRUxGQwrOlpmFmzOOnpWBoNYbMF5PJgT4+37qxKoQjZ7dSGBo1crmKzuUwmy2jsv+ce+osvpOHxA/knvx/+7jvLk0+d9npRAkGq3W5TKGQ0Gj0uLl6n0xgM+vj4BAqFKpP1Op3O1NR0NBrd2dkGgoj09Ey3293X10MkkhITk00mo0ajYrE4LBa7v19ptZqTklIIBKJE0u31ejMyspFIuL9f7HYjhUKR3W5XKKS/30VrMOh4PD6VSpPJ+pxOh1CYhsFgOjvbAADMyMjyeDy9veLwXcxmk1rdH76LStVvsZgSE5OJRFL4LunpWQAAdHW1YzBYoVDkcNjlcimVSufx4p1OR3KysLu7g0ajy2R9LpfjT38qfOpJllB4HhmQ2x20WGCNxtffb7fbEQ4Huk9qksstMExzONC7d7d7vZ60tEwEAtHZ2YbBYITCtOjJqdfr9HpteHLK5VJCMa/w1WshxmiM1aAfIu+pJDRmwlDAVdjpqGwy9XU3vLgpHstGIpEdHa1oNDrqEaDGxyf8/ghET85UHA7X3d0RDAYzM3N8Pl9PT1d4clqtlv5+RXhyajQqk8mYkJBEIpHDkzMtLQOCBieny+WUSntjJieLyarKy9yze2tCQiIagzvX2eX3+9PTs1xeX3NHR2RyDvsISKW9Lpcz8ghAEJSWlhn9CJhMBo1m4BHo71dYrZboRyAzMycYDEQegfDkpNMZXC4venKG75Kamk4pTWA+VIIiD2xrJN8e7//qDD8+ITw5w49A+C7hydnT0+Xz+TIyskOhUHd3BxaLEwhSR56cvU6nMzI5w49A9OQc+ggkJiZXVMw9eHCPTqfJyMiGYTgyOcN3CU/O8F3i4uLDkzPqEWgHACDyCBAIxKSklPAjEF459R4LMoWI6fMSsASJROz1etLTs0AQjEzO8CMQPTnDd5HLpQ6HvSQr4/osxp9yiHT8ANVXCIZ/aNJ8LQ6KVYZh12duwLC6iHNTfjzm/C242ubdJjY3ZSTJV+QAYV0kGFb8VNfy4e702YWUPJ6XA9Hy+PiE8/ScY5dff9DdY/B3m/sOntOe7qkqm0sgELdv/zX8CIQnJ4VCxeMJavWAdZxb/M+MlFtjrrPtyEqVbjSmhWj1CQAAbr755rfeegsAgOeff37t2rXRZ463faKhoWHXrl1nzpx54oknvvzyy6qqqujfVlTMYTJZvb09gYC/pqbWbDZJJN1Lllyr12vOnj2tUilTUoSVlXMPHNhtNpsKC0tSUoQ//fxt4nVFCCKaUps2rzbN1qISmZmmo30yWV9cHK+mpvbs2VM6nSYzMycvr3DLlk12u23WrCpGItedjqOVJSQszA1ih1hxf4iggeW7Wup/2H31nCUCQeqGp78J8DHz77k+kIT10sDIbh2BhigFfEoBn7Ek4+hzP6QnZxcUFG/f/qvdbisrm83lxslkfcGgs6am1m63icWdFAq1pqa2u7tTqZQnJQnmzFlw5MgBo9GQl1ckEqWvW/e92+2aO3chkUhqb2/BYLA1NbVqtaqvT8LhxNXU1DY2ntVq1WlpmUVFpTt3/mazWcvKKuPi4hUKmd/vr66udbkc3d2dFAqlpqa2p6cbiUQmJwtAEDx27KDRaEhLy+fxMjds+FGl6rnrrrlkMvnbbz/w+1H33vuwVqtZu/aIUJi2bFmNxdIgl6vS0jKKi8t37dr65pvten3pvfcgS0rMCASIQoH33ENbsWLhP95VB4O1PT09CoUsISF5wYKa48cPGwz6nJz8jIzsTZt+djqds2fPp1KpXV0daDS6pqZWr9f19fWwWJyamtrm5kaNRiUSpZeWVuzZs91qNRcXz0pISDQa1WVl1BdfKMjNtWMwKadP2w3GtJ07zZ9/LuXzExcuvPrkyaMGgy47Oz8rK2fz5nVOp2P27Hk0Gl0s7kQgkDU1tQaDvrdXzGSyampqW1vPqdX9QmFaeXnl3r07LRZTcXF5YmKyRqPyer0LF14NAEBXVzuRSKypqZXJ+uRyaXx8QnX1YrG4s6pqAQqFys7O0+m2/+VRanTnn90O/fob/uGH11Op/OuuW9Xe3rJ374GyssqKisr9+3e1tvZfc01lSoqARFJ4vZ4FC66CIKizsw2PJ9TU1CoUMpmsj8eLr6mpras7qddrs7Jys8oKzyVoKVXJkVuYG+R8erwHH/LigxBxgHMLpWHStsyHtAwAAEA/RDiTg69Pt8t+DukQ826vxmCwHR2tOByhpqa2v18hk/Vxubyamtr6+tM6nSYjIyc/v2jbtl/sdlt5+WwOhyuT9brd7pqaWqvV2tPTRaXSampqu7s7+vsVycmCqqoFhw/vN5mMeXlFqalp69Z953a75s5dhMcT29tbsFhcTU2tWt0vlfZyuXE1NbUNDXVarfr/qnIfKyTz0U6gcOHvHyU+6tEShv9n8gGbm6gdXjJSWLH/yGGj0ZCbW5iWlrF+/Q8ul3POnAUkErmjozX8CGg06r4+CZvNrampbWqq12jUIlFGcXHZzp1brFZLaWkFj8dXKuV+v7W6utbtdnV3d5LJlJqaWolEHJ6c8+dXHzt2yGDQ5+YWpKdnbdz4k8vlrKpaQKFQvr79q5IPbyakMAEAEN45m5MvyGmjtp6pD0/OkpJZu3dvs1otJSUVfH5Cf7/S5/NVVy/x+Xzd3R0kErmmpra3t0ehkCYkJC1YcNWJE0cMBl1OTkFmZvbmzWudTmdV1Xwqldbd3QFBqMjkZLHYNTW1LS1NGo0qNTWtrKxy794dVqu5pGTWddet6u7u0Ok0CxdeHQqFurraSSRSTU2tVNqrUEj5/IRFixafOnXMYNDl5ORnZeX+8ss6p9NRWTmXTmf09HQBAFBTU2s0GiKPQFtbsxV05txVw5yf6maCIAIE9F5eHax974vw5Azv0ggEYk1NrVwu1asVVVmC2jmzzLJOv4kyKytVwCRDbm4cAcKdH+1sd6Bv+3KfEUm//vpVmI624dfnn765Y21TI212FdWT5ZdksAf8uTgy5r5iLgB4Tceaj3PoR6lkayu2bUNXyBco4GazAc4Xb/zL4/E89MzTRoK7ydzBKU0lpbNhJBjyBgJSG8dN6tp5pv7Xg7U1KwSCVHH7oYDLt3jxCiqVvn37rzgcvqamVqVSSqW9HE5cYmJyxBCOiVHUJyLnfPLJJ/PmzQMA4PDhwzGG8IKLZUgkklqtJhKH93OjMXfuovr60yPpkuDiKBVf3YWPP0+QzG9zK7eek2+qt0t0g0OEkPSCBFZlKqsylZzOBRGxY/bbPboj3ZqDHfrjPaPQcKCpeEZJMqMshVkmIKYMNheH/MG+70+Kvzg8GQqPqYVIlAGCQHd359injgPFxZQPP8iuqhrcozU32775VtnQYG1stE5SzwWHQy5ezLrh+rjlyzlhPp0YdHU5tmzRbt2mPXHCfAnKdggEQklJhcNR9+bfM6Ip0CwW/7vvST76qG+SlJLR4K8oyH5qMYoy4Jf4LK72d3cptw3yHKKpeAKfmZ/ysAhzKzjcpjMQdHf2/tDU/anLPaKsxMVGMZ/y9pLMatGFkT16A6HDvcbtnbrtHVqJceK0+JMBhEcXvHE9d1Fm+KVLaa5/er21fXoYPCoq5nR0tE1JSQRRwOIuzIxblEnJ4sX+DoYVW5o6/rknWtnjuhzuRyuyE6hjh/279I6nt3dsbdcCAIAi40ipbJKQTUplk4SsoDdgbpIbG2TWVlVM2ggEgbIE6qp83qqSRB4udhorrZ6NzeoNzaqTcvOwlV4INERIpDvlppBv+KUmHBtobx+tZWhMj3A86hPNzc3PP/88CIJvvvlmXt550qfjMoQYDKa5uXn58uXd3d033HDDI488Mn/+/PG8cXSACJBZLki4voi7IBNx/p7F1CRXbG5AoCFWZSqzPAUiDFM84tHZtIe7NPs7DHVSOHBhqxuWTRbeWZl8SzmIRESu1vHB3v6dLdNbtneRAILAjTfy3nk7I0ZtB4aBnh5nQ4M1zONcX28dJ1sugYCsrWWvvCGutpZNJI4rrmAw+Hbs0G3dpt29Wz9hZZb4eGx1NXNYwrAIqhexVq6MizDOu1zBf/1L+s4/ekymKcsK4+NpuS8vZ1UII0eU285QiH2XAAAgAElEQVS1v7srRniIQcmeX/oRgzpQ3BEMes+2v2NzyAozH2NScyOnBUO+rr6fmro+cbgmRVp9oRAy8G9cnbEqnxf5rpy+oNYxUFBGww2E0bAQIsaliEGnzrGtQ7ujU3dMavJf4hJlEBTdNzftwQWR4jjl1qauT/ZPjJ11ekHJiOMuyuRWZw2tJYGDoaDHH1kGfRZX54d75b82UjDIj67JubOYP/qVTS6/0u75UWbZGEJiBSxSKockZGHZ5GFPDvmD1naVqUlubpSbGuXhKQ0iEekPLUi9a062zTFHY5qtNVOH1FjIzO5151Rrz6kaRy80nRDGNITjUZ9YsGDBgQMHAACYN2/ekSNHoi81Xo9wyZIl77zzDhKJVKvV999//7B0bTEYf9UomkbgL89PvL442lEbFiFvwNQo15/o0Z3osYsny4JBErJznq9llKZEjpjqZa1vb7d1TzO/RknJLBAE6+pOTu1lsVjEE08Inn8udRTT1dfnamiwSiSu6P1ADEsOm42+6ioWHh+7OEokro0b1Rs3qWQy99KlnOXLOFddxRx6L683dOiQccdO3c6dunEWZMbHY2+4Ie6mG+MqKmiIISGBkeD3w199JX/9DXG0gvYkASIQKbeVp/954YByHgC4lOaWN7bqT0qiT0Mi0MXZz+SlPYAABz6+Sn/i8NnH7M4BmR4us7wg/eHEuJrIW2A41Ne//Wz7Pyw28VSNdiSwiZiXq0V/Kk+K1E34g/B/Tsvk/IX/+NfHI70LAYJlCdSlmezaDHYhjzJUl8zqCXzfoHxjnzhiTS8NOHPTCt+6IRKIDrp9kv8el3x7/FJyk1530y1nm0+bXBaIiEURMRARAxGwEBED4dEoIhYiYyECBoFEAAgQRcQCAIDAQEgMBAAARMSACAQSixpaThLyBQyne9X7OrSHOgEQzHrqav6yQUXu5NM9zyq1fOLAPPQFQ0qrR2Fxy8xuucUtt7gVFreJRvQUJJLnZlCz4oAJCMnBsKPPYGqSEwUsesEA57XX5Gx5cXO2zrIqn3d9LpeBj5Xi6dI71p1TrW1SdejGxbuUl1dIJlOOHTs0yjnjyRGuWbOmo6Nj9erVBQUFUZ9g0BC2t7c/++yzAAC8/fbb2dnZ0ZeaWX2E9KKkxBuK42qykJjz9JscUoP+RI/+RI+xTjrlk5t3VU7mk1fhuANKb3AwJFtf1/XZQb9tgg2ILAJ6aSYnGIJPysw9xokUaq5YsRKBQPz66/qJDWB0xMVhbruNX1RILiykpKURxm9XRkJXl2PTJs3GTerGxtidIBaLWLCAuWI5Z9kyDp8/jEiNROLatUu3Y6fu0CHjUMYTHg+7cmXcjSvjKisvwP4BABAKwWvXql55tSsiZgnh0UQBi5zOJQlYHoNDf6LH1q29IO+fkMRgV4n4ywsomXHhI3Aw1Pv9ye5/H4yZk3RK5vzSjyM+XzDkq29/r7nrsxAc6wfzOQuKMh/jMssHRw4HFJoDEvkvUvXuQGDqQ45ENPTkPMFT8wRE9ICFhmFgU6s6XEA//j7CODKmNoOzJJ11VRqLhDlvr+PwBd4/3Pv+kV77pAvCxw9CEiP3hWXMWYLIEY/W1vnJ/v7t5y5qRS4+nsaem8aZl84uF8JjCGaPF0GPX3dMrNnfoT3SHXCct4djlgtyX1pG49Pu6O5fIddEdFR/a9Pcv6lF5/ACAAAiEYziJM78DM789JjcU8xdHL16e4/OLtHZJTo0jUAvTKQXJBJTmKOYTGNdX8Nzm7yGAYcbhQSrRaxV+bxrs7kUbOyW95zatrZJte6cqs802kweD9foeAzhmOoTOp1uwYIFIAgeOHCAzWZHX2omMsugSNj4Zfn8pXkenT1s/1wqy9hviwIGQtRmsE0u/xmFxT0O2mIkDi26d47gjkrE76sDS23u/O7k6Q1nx896nMEmrsjirMjiVCTREL9/9Xqn75TMfFJmPiEzn1VahvbiDAsKhQaC4CVowSQSoYICclERpaiQUlREycwkQtB4p0R7u33jRvXGTerxqC6AIFBURFm+jLNiBaewkDL0BI8ndPiwcddu3c6depvNv3Jl3I0rebNnx9q/YBA+fNjY0zPic4VAIJBI7Icfd/ZaIVIahyzikFLZZBEHF0+LyS57TU7D6V7DSYn+lGQkUgwkFsUoTWFXidhVoggddhjWdlXza1timtgQIJSf8XBx5pMIxMBOzmBpOVT3qMnaMcqXw2PNLsp6gseaHX0wEHBJ1bsl8l8U2oOh0AU8RBASh0aR0SgSGkUO/8OgKWgUGYMmF/Lj5ycjrk08gEUOLK9H+0xPb28/LR94vibALINGIqpS6LUZ7KUZ7EhJBQAAOof3jf3iNafkvkvI/8KeI8p8/CqScHCNs7Sp2t/fZaqfSvFOEIGg5fHZ89I489Kj7zVJBBwe7ZFu9b52/fGeUbb7pQL6T/fMSkUNWF0XEvkpl/n+mqPGehlrdip3fjp7TlqknjaCkD/olBrsvXq7WGuX6Ow9OpfSPOwWAU3F0/IT6IWJtMJEahYvsiTCoZD4P0fEaw7DoWH+oBgIsSSdvSqftzyLQ0CfFyuCYeC0wrzmlPyHBmVguDuSyRQIgkZnlkmJX8amF8Yc7Oj73uaQRl6Orj4BAMCqVavefvttEASfeeaZ9evPczP+aFyjhfGUu0oSbiuMDxcKewOhOqXlSK/pSK/xhMw8yhYVh0JWFSdcs6qklIrNsDjI/gAAAA4kstXmPdOiapSbm9W2Vo095qlGIsDZybTlmZxrsrkiJmGEaw8gEIJb1LYTMvMpufmkzDxdJQajAItF5OWRi4piaVFdrmA0x1soBJw4YZ6w5EJcHGbJEvbiq9k1NcyIkProCNu/DRvVmzdrdLoRw25oNHneLX9nULPhVKs/0Rjg6UPocRVAOXr1+lMSw0mJ8aw04PIRk5nsOSLWbBGjKAmBid3nBt2+rk8P9v14KnpFAEFEMq+2KPOxSEYwFPI3dH7Y1PnxOM0Yl1lelPkYnzM/5qn0+ix9/dt75JvVhpMwfN70Q6NIFKKQShbRSCIKSUgjpZGJyREbPBJoaPOqpJ8xvsPP7+zc0j6VWYB5AsY/lmaWJQyW6faaXC/t6lp7rv+SZd5BJCLxuqK0hxZgGINWWbO/o/2DPS7FpHaWEBHLqhRy5qWzq0QRsrcI4GDIrbYGnN6Ayxd0+wIOr9/hCbr9AZcv4PIGbJ6A2x/yBwAACNg9MAzDgVC4Oi/o8YerSDw6+0jlJAMDQIDPL0x9eVFaJKDdSid9kCPQ4dDACJ18fqtbe7Rbe7BTd7wn6L7gYkAEGqJm8WiFidSceNm6M4YzfWO+BY9CLs/irMrnLclgY6HzfOQeo/P1feKfGvuHNYeTxCTVJy6iIXzqqZe//fY/l4bPno5H3VYYf1dJQmH8MN5GGIEQ3NhvPdpnOtxrPCY1mVx+HhlbmUSrTKZVJNGK46mosZrW/UG4U+84p7KdU9s0dk+NiFWbwWYSYkPkIRg+JbcYnL5ZidQYHr9onJKb3zrQs7VDO3SNqK5eAoKIvXu3j/GxL3NAEFhRQVuymL1kCTs/nzw0HhMMwkeOmDZsVG3aNJr9AwAABRFz0+4ryH0ECkatUCAcYFj9cTp/vN7D0pg9XTZJv1NmJKaymGWCoWsZAABwIOg1OYetI/DbPYaTEt0xse5ot9c0GPFGIjFpSavy0h6gEAfjckZr26G6vxgtreP6IqJAIiQIE64VJlzLoGTH/Mrl1kiUW2xOKY2URiEJqaRUAi7uQq8fgVyz51jD8zHlOW+//clzzz0y4WsC4bKsPN7fF6enMgb3hQ391ud3du7p1k/myhcEiIAR3lUluL0Cif29c84flK49o9zaZOu6sAJdDJPEXZgRV53FKE4aamkCDo/uRI/2UNfy9JodGzfJ5dIpGf9QpLOI391cENlkeAKhl3Z3baRS0p+oGTqTXf1m7aEuzcFOU4NsuhhZyVjomizuqnxeTRoTjRy0iGKD8/V94p+a+oO/m8Oqqvk0GmPr1k2Tud3dd98dVp8YSZ5+dMysHGE08ChkCIY9gdH+iggQrBEx7ypNuDabizl/99Ghc/iCoVwuCTFcvDsEw3qnjzOylbIGYQQaIl2IjJTLH9zbrd/Srt3WodP9XiwgZOArkmizEmkVSbS8ODI0JNHVqrG/fbBn3TlV9C7pouYIZybodNSiRczqRaylS9ksFnrPHv2GjeotW7QWyxjuFAoiZKfek5f2IBY9YjokjFDIb7J16k2NCu0huWY3KZ3DnCVgzRLSCxKHun0DgGFbt1Z3TKw7JjafU8SsKRg0JUuwOif1Xhx2sMwvEPQ0d3/W0PHBBcUzh4JGThMmXJuacB2ZmDL22VEIhfxen8Xrt/n8VgraXcBFsvBeHNJFgFxBOLhVviiEGFAVDgRcZ9vfbRV/EUleThXXKAoJPjAr6eXqNFbUNnGf2PDczo565aWjFMdyyBkPL4pflh8dFffo7bpjYv1xsf5kb0wGLhq4OGpcdSa3OouWlzC0ZculsugOd2kPdxnPSsPZk4vHNUrGQg9VJL9cLYqQnzX2W29f29SmtQMAgKbiB4poQNDaodYe7NQc6rxQY39RQcej/q+I/9z81Djy4HrbpXe8sV/8c5MqGIKnRI9wkphxoVEkArw6jXVvWeKyTA4KCTp9QZPLZ3T5jS6fwekzufxGl8/o8plc/lQGYXUJP6Z7xuELbGhWf3VGcVxqAgCAhkPNSaHPEzDmCuiFPApy5IILGAY69Y6TMvNxqemkzNypdwBIZPk1+YuW52WT0AK7S2B3sYaLLWgd3q3t2i3t2n1iw+j5SDwKWZJAqUikVSTRFqYyo0sMek2udw9JvjmrGN3wTwYIBAqDpmJQFAyaBiFxMBzw+e0+v80XsPv89kmu2lMICALJZGg8rQ4oiJAtvCsv7SEsZrBFMkCzaQmHnadcDFIOjZweKdqMgdnW3dj5kUTxKwwHkRgUvSiROUvIqhCS0zgACAacXv1Jif6YWHdMPGwhPhHPy0m9P1PwfyhoMP7m8Znbe75uk/zX7Z1KZlcWrUCYcK0w4Zqh/l8w5LM6eq32Hqu912Lvsdh7rA6J12cFACCOjPloRc6NeYNv2SvWP7S5VW6DynJfyEy5HQQHNo5Ga9vR+qd1poYpHHMYZCz0zDzh43MFkRUchoF3DvW8tLsreAkp5SgZcZlPXs0si91PwMGQuUmhOy7WHRNHKqeIyUzuosy46qxhe/gs7SrtwU7tke5LY2kSqLhHZyffX55E/r0OJRCC3znY89q+7pg2FWp2vNfkmEbdkjGBQyEfmJX07AJhtPvRqXO8vl+8tkkVmu6mtYtoCOl0htVqDQbHWzmWSMXdXZpwd2nCeDpDh+KU3PzVGcW6c6qREoFkLFSVTJ8rYMxNoZfwqWErW6ewHJeaTsrNJ2Vmk2u4xRcEWRVC4erZzHIByR8Q2Fxho0jX2w409a87KD6jsEzgr0jHox6uTHm0Kjm6+Fht835wtPfzU7IQhAEAwOkcpuIUQuLKcl4QJd0EALDXb4VDAX/AGQx5A0F3IOAOhnz+gDMU8oMgiEFTMWha2PJh0FQUNFoKMxjy+f12X8Dh81l9Abvbo5eqdik0+33+mdiPBUH4bOHq/LQ/YzGMyMEAzeaoahBLN8o/OWw06AEAgJBYOiWbRc9nUfOZ9HwaSQSC54W2rI7eps6PxfJNkX0Ahk7A82mWdvUInakgk5qTI7ovNeG66FSczSlrEa/p6vs5ELxYUicgiOAyywX8FQgQabFLLHax1S6xu5QwHDtOBAjeX5741pIM6u+NgFqH98mt7T82DkZBOYySOUX/oFOywi9hONTR+92Z1rcoVOyU5zJ4ZOxfa9LuKk2IhEMOSYy3/NSgsV/SFgtWZSrv6mx2lQjDHEZywWuwG+qk4dKqmF/BoZCpQa7e16450DGK0hCVSnc67VOlOlfAIz85V7gqnxedrxEbnHesbToln35y9gkDj0I+VJn8zHxhdKigU+96aZ9kU+NUFjRdKKY/NIpCgsszOfeWJV6dzho2jDk6DE7f9w3Kr84owoGCcYKARibT8F16x/jTtpTMOOHq2XE12ZEe/JAv0Pz6pDRCCWjk/eVJT84VxFMGWwvMbv8ePW6HFvXdhg0x58cxZ80r+eBCY2UTRjDk69cdlfbvkKp2TRW57ZjAY9k0ckb4ZwiJRSIH9o9oFDnsxOAwrOzUu3GYwZbTIN1qq2rw5Pb0rTtp+Lbp0UeeGVaGCYLwTEpOPGduduo90XFUu1NxrvvTrr6fgqHhqwnwWHY8ey6fMy+eMw+PPW+h1JvPnev6tK9/+1CDNC3I4ZLW3JBXmTTw6WAY+PKM/NkdHUPFxxEglJt2f3HmUxA0kGFyebR5s0zPvLTgYgwsi0P6+JrsRakDfzW1zXvzT/VHei+56DQIUtK5rCoRe46IlsePKEEORcgfNJ7pU+9v1xzoHI/Y05SERkEQuDqN9eRcYQzRT5/J9dGxvi9Oy13jLmKfySCioYdnJz81TxBxAz6VkR/+9KdpHNJFNIR//vOT69Z9ZzCMmCEXMQn3lCWuLuHH5OrCtu3LM4oeg5OGQ9HwKBoORcOh6AM/oMMHkSC4pV3zW5v2UtZn4+NpgtsrEq4tjPRTS74+1vnJvsn0KqGRiDuK+c8uEEbXF3iCwJqTff880iu3uAEAgCB8Wc4L2cK7IxGtCwUMB70+i9dn8fot/oATBJFoiIRGkSAIj4II0SG+Yd+rMdb19W+X9u90uJSR4yACDLcPIwkYiICG8BiIiKFTcU5XQNcou1BdITIxJT/twbTkm5GI2PqjkeAjGF2Lmt25PTAi1PP10c6P9jEYzJtvvvPTT98f5V0oiJidenee6IHomKrTrT7X/Vln7w9hrw5CYrnMWXzOXD5nPp2SOeRJgeWaA81dn6n0x6OPIkAwi0Ns1VwiN5qIhoQMvJCBFzAI4R/mC5iDJYUa+wObW8I5ghGvgOdXFb4V3ddvMDe3Sb7uUfwSDE6xx4YAwVeqRS9Xi8L73UAIfnFX57uHJdMVFUNRcKxZwnB5MIY+8OgFvX798R71vg7dkS6//QJ4GO6++8E9e7YrlfKJDQaNRNxaGP/kXEHO+RqBx6WmD472/dqmuZTB5EsDEgb6S1XKE3MFFj/i4Xpox86to5ycsYLPK4ol8m78ttfcN1rPfjTp9pw5cz766CMKhWI2m++7777GxsboM6ctR5hIxfU9vzDaBQzB8IEe45dn5L+2abwXLVU2JcByyKUf3RpprNYc7Gx6YdMkqUqRCHBlbtzzC1Pz4wZLFv1B+Oem/s8bGUmCv5OJyeGDPr/tVPPfVLqjCCQaQuIQIAoFEUAQiUYRAQDEoAfqZgfMns/i9Vu8PqvPP4Z+NBpFQUF4FIRHQSQuszwlvpbDKB1qd21Aj7+o35XdDXC9kZK8CNhu31t1HXRPQE7EdqOgRq3jTJvm2FGxQTGaUWRSc/PTHxbwl8WELkeBzSV1zm8CavQwIgQAQNe/9ou/ODLmu6Lxe4rxwej4qttrEMs20imZccxZEWc0Gh6vSabe3dK9xmQ7jwk2hY6/qyQhnLTe3Kr58y8tUx76C8dO8uLIQgZBwMALGfiRqr3c/uDr+8TvHZGMk/AsJX5pZcEb0TlIj9fU2fdje+83U876tjid9f3NhZFa6y3t2jvXNVmGOKyXEiACJGfGscqFToVRd2wibQaTRI2I9c2qfB55MCwUCMGbWtT/PNJ7RnFhLdSXHShYKIGKG3PvuOj1vOwbEmMObr7rlPL0QD5+FNLtcB+hXC5fvXr1gQMHFi9e/Nprr5WXl0df6iIawpyc/J6ebo9nxKzJkQcr56TQAQBQ2Tz/rVN8XafoHZWAYEYBiUMX/n2Q8NfWpan7y0+TT1aDIFCbwX75quzyeAIAAN4Q5hfF9Ye0C+Hf/1IKzYEj9U863ZdC/xOPZSfzlqTwl8axKmOqTmBUwLbwjLO0FQAHl1q22/fWmU62J9YAhABQgUG1Ov31MtPxOvmZDo3F7QcRIJpOTBIszObdw4LKos/30Q1e2BSwe3x2t8tiCNdqBoLuiI9i8rWwXqMSUxkAAAAw3Pbe7r4fBujosFicSJTe0jLeeDUE4bMEq/PTH4qOtcaOP+TXGs8qtYeU2kMGS0t0Mx8WQlyfG3d3acICISN6V2dy+R/b0vZ9g3K4610wiGjo3vKEx6oESbSx0+e7uvR//qXlQh8lFEQszX42O3U1CA5ubmA4KFXtauv5OsbxnSQSqbj1/1dcnjjQCdBrct34ff0YSugzHpmZOXK5dCSNgVFwa2H8f2/KjzQYWD2BL07LPjkuDYeC/hfA4cRhMJjRO0/GNIRjkm7LZLLXX39906ZNt9xyy/vvv4/DnfcoTWeO8LbC+FX5vC/OyHd26i5Gi+VFBwhmPLww9d654Vdeg+Ps4z+bm6dg7VuxYmUWBUgHyOLQ4wbvQGk+HukqJHy58dRX2zq0CAzqUvIoYtG0gsX3itKvxyqSwMCgj+jjqXXzdnmwWr/NzXa4/2WxcOFxufJaNOqko/S0vMZkSog+7hUoHZVN3pQoYohgyCbWmpsU5maluVnhUphwcdRZ/7mTkEgHAAAOwS1vbJVvqo+cz+XGPfros8PmCEcBhMRlCe/MT/tzdCOE1S5Rag8rtYdU+uP+QGyWqJhPubs04daC+EhNylBs79A9sLlZaZ040ymHiHlkdvJDlcm04e7i8AV6DK4eo7PH4OwxunoMzh6js38St/v83798/tGBLMGdRPx5PM5mW1dbz9fd8g1TxfqGRiLeX571cGVy+KUnEHr0t9YvTk8wrjgTMLEc4ZNzBe8uzQrvoBQW9/tHer+uU1xKarqZgPG0T4xpCMck3V6wYMFnn30WFxf3+eef33///XT6eYHWi2gIr7562YkTR+z2MSJylzv4y/LzXl0RJiIKeQPnXvutf/tk9bJzc8qSOffG0ZZH/kD51Kbbkn+goC0AAMjwmM1C3hazV7qlqX9ni996cXeOGDoh96XlYd8X4UNjuhJQO0RE34BadDDore9436b/5sD9pWF/xeUPrvy+3u4Lzi7gl2ewC2m4JCAU8RtDMPKUsXyPaonaMxiIQ4ChIlp9RdJeJEunImA1OIwVDVkwKBsKsqEgGxqyoaGwTxzuZA9ndOBgqOnlX2K+bSKRVFU1f9eu0fINIwFCYjMFd7DpxSr9MaX2kN2pGHpOmLrh7tLEAt55TfeBELyzU/dVncLtD35+fW4KfaACxeoJPLWt/as6+YVmwkRMwlPzhHcU86PpOayewDdnFU0qW9jmTXn0deXKWzdu/AkEkUlxNVnCu/icudFLhM9v7VVuN1paTNYOo7XD55+sD3dzAe+LlXkR1tPv6pUPbm65TOtBFiy4qrm5wWgcb+cMCALvLc16Yu4ACcNZpWXp13W6S0tWPkMgEmXg8YRz5+pHOWdMQwiMRbqNx+M9Hk8oFMrOzv7hhx8KC88jbJtxfYSXI+gFicUf3DyQb4dh8ZdHuz49MH5CZzSKQiEmU4gCCklAZ6VTKAIyOgUCBrL3IZwHXnT4GuyRq/r1mKiyIDEF/1pRmhkAtYe7Fb816k/0XAwKCe7CzNyXl0dKCVwKU9Mrv1oa+/PT/1yU9WSkqoWLld6X+i0fr3D5g8u+PnNQcl6JKRmHnl2RXJo1hwgs0hhLHP5BE4IC/RWs41fF7WFhdMDIgEEgbBStaJQNDfWR8WcpxPVv7FQdaJ/qTzw8sBCiNoN9a2H80kxODHFUt97537OKb+sVatvAKkZAI99cnPHw7ORIsHSf2HDfxmapeVzuVHki9Zn5qddmc6JjrUqr58OjvV+ckds8l85doJKEWcK70pJuQqOGodpxuPpN1naTtcNobTNZO6z23qGs4mMik03ceHtxFmegQqRda39gc8vRvolUk2IhxMVrw51aoJGI/96Uf2vhgPTxnm79Dd/VO0blV/sfx3gM4eik2+vXrz9y5Minn3768ccfy+Xy6HOAKx7hVAHPo5Z+clukCUm9r73pxc3DRi8RIMRhlMTzq+jMdApJQIQSUPDwwmAAAHgyey1LjoUIbgAAKD7/MplumUJH9A88MP147Csl6WGmQa/Bodx+TvlbU7Sm8WSAImGzn6sdlH2BYen6uo4P9kZKCWjktHklH7LpReGXSDCwiLPjs12vHOg5r9eYiOeLklaKEm6gkkXRx+GQHev+JRW3LZPhFTIIiVTcUNqd0WFw+vaK9bu69Lu79BHdn8l4hEMBIcBqEfPmgvjrsrnk88n1Xf7ghmb1V2fkx6SmYfc8Vcn0L2/MS2cNlOM6fIHnd3R+dlI2tOuUS8Kk0PHJNHwyDbc4nT1XcF7QplVjf++w5Ocm1SWojg57hDEHURBBlLgyS7iaTskc5b3BkM9s6+pVbmkR/+eCKk6JaOg/K3NvKRiwCjAMfFOveGZ7h8E53qKVZBr+pUWpdxQnGJy+RpW1SWVr7Lc2qqy9JtclK0kd0yNEgFB4o0DGQptuL4k0SPzY2H/3+nOXsvR9pmGqPMLRSbcFAsH69etJJNLBgwcfeeSRmI7P6e8j/MMAImCK3rmRPWdgufeZnQGnDwAAJBaFQCORbixWnkJQpGIkCQjP2O0BIYLbuviYO6s3fClHn8EhMzqlBkBpvpUEvVyWEK6SN2FQrxanSUmDZIOWNpVyS+MoIdMlGewXF6ZuaFb/96xiJPeCVZma/9drsJwBC+1WW869+pvhdKwugZBBeuum1w4bb/SHBjJYZlvX4bOP60wNaBRFwF8uSloZxyyPmWYWu6RL+mNH7/fR3fooJJhExacy8UIGgU/BsghoBgHNwKMZeFT4h1HMJAwDjSrr7m79ri5drwf70MPD9xGOHyAIzE6i31zAuymfxzqfSxaGgVNy8zdnFWvPqcZ0zrAQ4rWr0p+YK47teJwAACAASURBVIgM/mifac0pGY+MTaHjk2m4ZDo+hY6PcTEjOCQxvntYsrNLd8lW89Ep1jiMUi6zlE7JYlCyqCTRSOzedqf8dMvfepXbLujWD1Uk/2NpZkS4wOjyPbejc8yQMp+CfXGR6O7ShGg2ywhsnkCTyhYxje06+8XTDR4lR0jAxRVnPZnMW3Ks8TmXdc+Ou8silMj/PNL71Pb26aZVmWaMJ0dIF5KInFgdN22rxWsbsGczl3R7zKrR6QIGTc1LezCOVWG191odkjA9lc3RN1I/9fgBIhBZT16V8n8VkSOQloHtScSKE9FKDgAP/23DqECQbvXTrEG63YPVO/0Kr1/tNPerWySOPoNTZhyqjLg4nbXx9pLwqmGHgddyUrr45xU9Br1+8X+O9H57PFpGioKFPliRfVfJQH2K3Rv45qzyk+N9YsNgJQiais94ZFHiDcUDmmQwLP+lof293QFn7B5fQMcfeqAigYrTeTjf9N4hcaQPfBw4qDac5jBKYtoBPT6zRP6LWL5xYmxeFCzEImAYBBSXhF2UyqzNYAsZw7Bm2zyBOp1/Z3NfeAUcni1oBPAp2Ew2qVrEvLmAlziE3qhNa/+psf/npjHE1YaihE/5+qaCXO4whCbDIhiCN7dq3j0sqbvkpfMlJbPOnj01njMRCBSNlEanZNIpWQxqFp2SFUM1oDacOtn0ssHSMv67J1JxH1+TfU02N3LkhMz84OaWZvUwUaU4Mub5BaL7yxMxI2wjhsLlD/7U2P/pCWmTaurDVMNWjWLRtIKMR7OFd0dacfLIh+5N24BBeGEYeHp7+/tHLkz06g+J8VSNjomZS7o9A4FBU3JFf8pJvQ+Nil2VYDhodymtdonF3mO1SywOiddrdvuMHq9x/DycSCSGgOWmLJkvunYRRsHH9iQircM0qgfoVrdA6kQpHB65xSaxqPtcSrOr3+xSmofam5EwK5G27e7SMDWD2x98sFXfXpnOnp0KRm2N7b36lje2hsXYlmSw/3NDHp8Su6sKwfCuLv1Hx/r29RqTbipLe2A+ijJgAzw6W/NrW3THhhFMFzLwB/9UESbDc/qCy745qweWl+W8OJTILRjyydV7xbINcs3+qWU0TWMRlmZwlmSw5qYwRloN5RZ3Y7+1SWUL20WZeXBLkUTDZbCIOVxSJpuYzSVlsklDlUUBAJCZ3T839f/cpBp2OR4n0EjECwtTn1+YOqzj4gmEpCaXzOKWmd1Sk2t9s2oGSnSNCRyGmcJfVpL1TISmAIZD3bJ1da1vuzwXQNu2PIvz8TXZybSBXU4gBH90rO+ve7ojKTQ2EfPsfOGDFUk41GDX6Sm5+dU93Wqbp4BHKYwnF/AoBTzysKW2AACckJk/PSHd2Ky+eAFJFETIFf0pL+3BoUsNB6u9K2XNK9t/+6FhvD2aHEZJAmdBl2yd3XkZF9bOZEwns8xkgIIIBFyc1dELj69eH40i54ruzxXdP2zaf3R4vCa31+DxGl0ebeQHn9+Bx7JwWDYBF4cf+C8Hg6aOdBEYDmrNZ6XK3XL1botdMvod582rBkHw0KG9o5+WxSHtuqcsbI0CIfiBzS0/SEzxtXmJK4uJyb87iDBs/q3xPrHyzij+5YMSYxINJ6Cf51HJUajtIt4BHsODRAIAoNx2ru3tHcOSa8Rawf+eOSQxAgBAIiTOLX4vnh3uJ4G1xrNi2UaJ8tcwDfTFAwGNrBaxajPYS9JZoxPVmt3+JpWNiEZmsImkkRQnAAAAAL3Tt/6c6ucm1QnZ8CnACSAvjvzu0sxgCJaa3TKzS2p2y8xumcUVqbKZdrzyytt/+9tzk7kCGkUpynwsJ/XeSODUH3A0dn7cIl4zbOIQBRHolCwmNYdBzWFSc5XaQ3Vt7+Ag4KVq0VNzhRGWHIXF/ZctbUd6TU/NEzwyOyVa+vWs0vLqnu4dncOkxpNp+MJ4cgGPXMCjFMdT4s/fBWod3i9Pyz8/JZtMf0sEEWYZJAKdKbijMPOx6M5Uv0dcxLG3WAcS6jDsP93y9+buNQAwxtziMsqKsp7gc+YDA22dO1u6/6Mxnpn8gGcOystn02j0qcrrTwyXU44QjSJzmeVxzIo41iwmLQ8BQh6fWa0/rtId79cfs9iGcVwAAECjSDmp9+WK/hShXAEAwOboaxavQYBIClFIJiZTiAIigT+SUsFk4PNbFZpDMvVuheaA1zfeSNf4ZZgSqLjd95ZnsokAAMAw8OKuzrcO9oAQUnDbrLQH5yNx6GKD9eE2KdMzEPW1uP2PbWn7tl6JAMHaDPbDs5OvErGiGV6dEHIbifjNL+dMLUoyFsJACDwKSURDKCRIxaEgBEjGom4t4A21gr8DzEi5lYCLE8s32Rxjy3hOORbkCJ657Xr52T2FPHJuHHmk9NuwMLn8bVp7m9b+W5tmn9hwWfa2Tg5TJcNEIQrK815J5i2OHLE7Fadb/tar3IrDMBnUHCY1h0HNZVBzKMSUGPYipfbg/tMPen2WLA7ps+ty5gkGeX+8gVC069+ksr26p2tYRc+hAEFggZD5YEXSNVncaCbrQAje0q799IT0oMQwmR3PCy+8sX79j4hAXknW09FdmDaHNB78/q15MhQCOGmo/Fl6qzeEjXzSg3WPuj3DuwpcZnlx1pO/byvPg97c1NK9prd/28wRjZkM/uAyTBeqPjEssBg6l1HOY1VyWbMYlKxRKLhcHq1Kd1ylP6bSHbc5ZQAAoCBiTuo9eWkPRjtqNoe0ofODHtmmmFJvBAJFIiRSiCkUopBCTCETUwg4LhbDwGEY4/+WYDjk9updHp3LrbXYe+SafRr9qQnUlBMIBGAE9YmhYODR2+8ui/B0fHSs74mt7SEY5vCpax6Zew046DGfxOLu+b6uo04afomhEzKfvLp8XtpSpX5RvwF/IeKLwPBWcPqBREIUCsVkMgIAACHADDaxgEcu5FEKeOTCeEp0rMzg9LVq7B06R5vW3qFztGns2v/JLq5osFicKVSf4LGrKvP/FtG4AADA67NG70dHgs0p23PiLpO1HQSB24v47y7NjBG4btHY/7qn65c2TcR0IZGYZN5im0NqtLaPbh54ZOx95Yn3lSXGOIgdOkcM0RcZCyGjNom+YOjDo317xcPbrey0m7JTHqGSBkujnW51T++//jq7c3HaAAd6r8l13Y8ageh9Nn2gic3tNRyqe1ShORB9qTjmrOKsp3jsqsiREByw2Lqjv8nw9dt6vuro+36kiAseyw772QxqLpWc2tn7Q7vkmwksRxcbOBweiUQ6HNMpdDPjcoQQEsek5jJpeXRKFptRRCenDztIGA76/PaRQpF2p0Jnqo9nz41mVbY5ZY0dH4hlGy9oKoAgEodhYjEMPJaFw7CwGAYOy8JjWBCE9/hMbo/e6da4PFqXR+vy6Nwe/bSoEBDQyE13lFydNsCK8lNj/7pzqk+vy41kBJ0Q8ouMxP3xTDgYkq47I15zOOH6otS7qlDkgUAixuMv+O3sjQFvOnM0taYInL7g0q/PHO6dWVZwTCTT8LlxJLs30Kqxj786/womDBBEZqTcWpL97EgMdiE4YLGJDZYWo6WViOfniu4LP++BgOtw/RMSxa8AANBwqDeXZNxfnogAwQ6d47W93Rua1VFdKKAwYUVZzkskQgIAAIGgx2Bp1psatcZ6nal+JK5UCAGuyOI8VJm8UMi8IM2b39o0T25rj07iJsZVF2c9xaINNnF7fOZzXZ8wQr/+sCo7oka7v8dw60+NOocXgUCVZD2dn/7w764w3Cr+8nTL68GQj8eqLMp6iseqHPx+Qn6xfFNj54c2h5RJzc0V3S9MuDa6XjcQcHXL1rf0fGG1S0iERCY1N2z8mNQcPG6w7CgMs63rRNPL/boLY+X9X8D0h0aRSAyDks2i5bNoBUxaHo2cNpLbFwr5deZGjf60xnBKY6zz+e00clo8ew6PXcVjVaBRI+40J2YCpxETUKiPadGNxo4u/T8oZOJtFSA08MWGvIFoTXZTvaz1nR22Lg0IAtWprAcrkhKpuEAItnsDvmDI6Qt6AkG3P+T2Bz2BkNMX8AVCh3tNM1MXbWIUa1cQxlSFRmOARpEKMx7LEd2HRKADQY/J2mG0tBgsLQZzi8nWEZ07FPBXzCv5IFJy1dz97zMtfw8/tuWJVCGDECPiyqYXV+S/xmGUjHRrl0enMzXoTA06Y73DpUQgIAgioCEiEolFQQQUROCRybMFCXk8FhKJ4eI0BbRGPHKMSiVvIPTB0d6/7++h0+cVZT0Vce8AAPAHnC3dn7f2rHlmLveValFYCTwYgv+2T/zGfnH0yHmsyvml/yLiB+R/jdY2n98ex5wVOSEU8nfL1jd2fhRTIIPHcrKEd2YJ7owmi4fhkD9gH2UNjIZUtfPUub+Gw2YzAeMJjc6/+7WM+TfEHNz69t397cOnS7Ozs7/44gs2m+1wOB544IFTp07xeLxvv/02ISFBqVTecccdKtV5hukiGsKnnnr522//M3KkBZxT9A6bXkQjp4/UkAQAQCDg0prOqg2nNfqTOlNDIDh8WhsEkUxqLo89O549h8ssh5ADjo7dKW/o+EAs33h5BdOrq5eAIGLv3u0X9C4ECH6wPOvRqkG1wkhGEAAAkoCV8+IyRkly9FvcamvHP/eo9rROxahnBJhM9urVf3rvvdeneyCXJd5++5PnnnvkIl2ciOejIaLF3jP6fpROzriq8r8R0c1+3dH9p//k8cZyzRDx/PLcl4QJ10QWMZdH5/bq6eSM8WuYDAM44Hed8Nn2eJ2HLc7BrR4IgDcX8FaX8MN0P62W3E3yZSqPcPAE0N+nXn+k7k0q2vHDLYXRyou3/dxwcLgMAgZNnVP0noC/LOZ4KOTvlP7U1PlJtORZDJBIjCjxhpzU+0ZhOfAHHEZru9HSFva289IehJADIaJg0Nss/ryx86OpIo+dDKqq5tNojK1bN41yzpInPs1ffEfMwZ+fWSZrOhz+OUZ9wmQyvfbaa1u2bLnppptef/319PT0b775prW19b333nvyySdzcnLuuuuu6EtNZ2j0xqsO08jpMQdhOGi2dRvMzXpzk97cZDC3XKgbh0Cg2PSiePYcp1vVLdtweZnAyeOR2ckfrshGgODGFvWff2mNYS/kzEvPeWEpjksJOL1dnx6QrqsbQYr9Cq5g2oBBUxaUfZbIXRR+6XAp95y4K9KSiEaRCtIfzRXdH2nOCwQ9LeI1TZ2f+AMOCMKzaPkcejGbUcymF+GxnImNIRj0KjT7JcrfZOq9EWuRwSY+v+SOfuB2qXNwuwkH3S2S/57r+sztNSzNZH+7qiCiN7u9Q3fnuibjqAJtGSm3Vua/EZZHDoZ8nX0/nuv6xOEab41hPHtOruj+BO4iEES43BqDtc1oaTVaWo2WNptTGl1UT8TzZ+W9IuCviBxxutWnW97okW8es3h12jGmIYxRn5BKpWvWrPH7/Wlpadu3bxeJRAqFoqysTK1Wx8XFnT59OjHxPJ6ai2gI4+MTdDpNDJNNNOaXfpyWdBMMh6x2id7cpDefM5ibDZaWsDLq/zIoFBoIghbLBPW77ylLDARDYUdwKFAUXPJNpcpt5yYvGjUDgUKh2Gxuf/8wfNlXMCaSkwVS6Yxo8QZBRHHW00WZjw2kDIOeow1P98g3Z6TcVpL9TFTGEZYofjvd8sZIzhMRH8+mF7PpRRxGMQ7LDoX8gYDLF7AHg15/wOkPOIJBry/gCAScIIhM4C5k0wtjVsVA0C1X75UofguGfEWZT0QHQjEI7zz2oWrurl+a2z9qsKwUEZ6blzJKOHQkUEjCeSUfGMwt57r+NTGFNSI+Phj0ur1jU35zmeWVBW8wqbmRI1pj3Ymml/TmifShTwnIZAoEQeECt5EwpiEcqj4BgmBNTc1bb7318ssv79ixw+fzEQgEv9+PRqPtdjsGc1751XTmCBnUHDRENFha/YELFvH6Y2MCOcIrCONKjnAyuEg5wgkjmbdkfunHkZ50p1sdrR6sMzWcPPeK1nh2Cu9IxPMF/BXChBXRxS9DEQy4mPDWp0tOMDADpd0hGET8rrEySjh0JgAEEenJt5RmPxcRHYPhkFi+saH9/YuROOQyyuI5c+0uhdnaabZ1D/VzxpMjHNMQAuerT7BYrK+//lqhULz55ptKpRIAAJVKVVBQoNPpuFxufX19fPx55RRT3zkXQWvrOY9ntE5Vo+WPk5qaWqhUSvCCStmu4He43Z7W1mnb217uOHv25HQP4TxIVTt/PbDkqspvqSQhAAARK+hwqc60/v1ixPQcLmVz92fN3Z+RCIkC/nIh/xomLS/6BH/A2S755lz3Zx6v8dcTxA+WZy3JYAMAELGC+3sMt/3UOJNbcWA41Nn3Y69yS2HG47mi+xAIFAgi0pJuSk24rqPvh4aOf47U2nhBwGPZoqSV6cm3Ukmp0be2O+UmW6fZ1mWydpht3Ra7WKtVu91TkKpct25dWH0CAIC1a9f+4x//2L17d+S3+/btu/HGGz/99NOVK1fu3RvLVXJltb2CK7iCGQ00ijS/9JNwe34g4Grq+ldz978vWQKFTEwW8JcL+CsoREHEBEafsEDI+OianFwuyRcMPbO94+PjfZcRiTaFKJiV92oS7+rIkUDA1Sxe09z9b59/IpyCCBBKiFuUnnxLYlz1eChKQnDAau/df/pPJmvHKKeNxyOMqE84HA6LxWI0Dv6ZmEwmj8f75ptvaDSayWRavXq1Wn1eCPoiGsLS0oq2tmaXa1xd4VcQjaSkFBAEZ0i25vICHk/Iyck/c+bEdA/kssS8edWHD++b7lEMC7Ao83EyIelM21sut2bs0y8CEAjUSJV3GAjxzk1z9rb0bW+5LLlAeazZZbkvsOnFkSMen7mp8+M2ydfjV9SikoTpybeKklbGFCgFgh65eh+ExFDJaSR8QgyRUBjH265r65hUNGKS6hMXMTR67bU3KRSyK4ZwAsjPL0YgEFcM4QRAJpOvvfamK4ZwYrjjjvtnqiGEGzr+Ob0jGKX+3BsI6ZJrOk9/dynHM4VQ6Y//emBpMm9Jac5z4Up+LJo2K+/VnNT7Gjre65KuG5YnBEJiiXg+Ec+nEFOECddymeUxJ+hMjd3StT2KX31+6+9vwVFJqTRyOo2cRiWL6OQMEiExBHjyCzMmaQjvuOOOsPrExN5+ET3CuXMX1defjtEluYLxQCTKAEGgu7tzugdy+YFAIJSUVMzU1XymY8mSa3bu/G26R3FZoqJiTkdH24QrvWcIQBAhSlxZnPV0mKYnDIu9p6Hjn4GAi4jnkwgJRHx82P6NxBbk9ujF8o1d0rVmW9eYd0Qi0BkZs2DA3N5+AYpdU44rOcIruIIruIIrGAQCgcoU3F6U8XikrHQ8CIX8cs3+LunPCs2BcXZvQ1hk9d/zg97Q3heaJjrYqcEkKBjGwi23rFYq5TNQmHfmo6RkVnx8gko1Iq/EFYwECoV2ww23tLRM83N1meLBBx8fpzDvFcTg+utvNpuNDscfIQAGwyG9qbG999tA0M2i5SKRsSKmYYRCfrtTbrC0qHTHuuUbDtc/3tX3k9UuGac0HikOd91X5YkVLFYGmcdI6jw8nZmgi5gjzMnJP3hwz8W7/h8YPB4fgUDU1c2sWvbLAjgcNicnf7pHcbmipKQCAD6Y7lFclsjIyDl3rgEAJtIOP71AQGDVU1lWhVN52miU2CMNKYGAq7Hjw3bJNwXpjyTxrna61XanwuFS2J0Ku0thd8pdHu04bd5QMNPJyz8tJfEGuDDZmeNiSb14uIih0dTUdIVC6vVOsJ+GxMN57X6f/fKgyZ5asFgcAACmUBDnfwcYDCYhIbmnZ+zkxBUMRVZWXnt783SP4rJESopQo5mafrhLjAWv5uauSgr/7Db5+s8alWeM/WfOM4pTC2EN96q3ClB4CAAAOAQ3/UcuXm/QaKZzDzFTcoQgEqQlEVhZFFYmmZVJYWVSsBSUy+g9+k5717bhhVSu4Aqu4AquYDLIXZW04NXcYX/lNnmVdab+uik1iiBQ9oBo1sPpYcvjcwR2P9PYd2j6d/zTqD4BsLMprMwBy8dMJ6NwwycslacNB15rsUj/h9owJqY+cQXAFfWJyeGiqk/8sfHQQ09s27ZZLpdO90AuAPEl9Ou+rkBAIAAAxh47no7G0THDnumx+Cwyp7nXYZY5zX0OS5/TIncGfRcWF4WwyJo380WLB5SnLHLntj+fNUns41GfuNi4iDlCGo2ORI5WjLP8szICa/jvHQAAOAiDSBAAAH4587Zf59V/2VP3RU/QO8GQ9OUFPJ6AQAzTdnoFYwKCkHQ6Y+zzrmA4hGPyFwkYMgpHQ1tkf8wdLZVKR6HQ0z2KCwCJh6v9sDhsBQ1dtg23Hvd7ggwhiV/OiC9lxJcwcPTBj4OlorlUNDefFjkCB2Gbyj1gHfscZqnTKnPate6RHEcSF7f0XyXsrIFcoOKUYefj9R6rHwAAHA5PIpEv3icdD6YzNLri87LkuezIS4fGo++0Gjptug6rodPmNvnK/5yWf3sKAjkwSIvceej1VvnxKeDB+wODwMYmVjLRBMgic1rlLpvKFQpcPoxPV/CHA5GDFSzkCqu58aUMEASa18pOfdzltf9viaPNNEBY5I0/VrIyKQAAuE2+dauO2frPz26CACOVxC9j8MuY8aV0LHVcNj7gCVpkzvP+SZ0uozeugLb04xI8c8DtOfej9OjbbaHgDFqXLqIhxOHwXq8nFBrRh8u/LTmugKbvtOk7bPpOq9s0jGoXM5284NXcuILBnUj3DtXRd9qc+pnLaTt5oFAoEAR9vtFkzKIBYZG8YnpiJStpNouRRor+VSgI21Vuq9xpkTutCpdV5rTIXVal84/qWyMQCAwGeznWLMwEEAgEp3NqPDZqMkFYzRVWx3FzqTHLjNvkPfZ+Z8evihmvgncBwGJxPp8vFLoc1D1BYMn7ReEQZSgA/3LPqf660YQyQARIScTTUoi0ZCI1mUBNItAFxIhVGxM+RwCJQSBRCAAAgv7Q4TdaWzecR0R3ocvdxcB0yjCNEyACzL4hofKJTCxlQMjeZw+c/Lizea0MDsIAACAgEM/A4FkYAhOLo6OJHCyOjiGwMBjSiML3AAD43YH+OpPsmN4ksU9yhFOOccowMUSkxNmspNksXjEdwl5ISygMaFosvfs1kv0ac+8fofMpgv9lGSY0AYoropvEdrtmgs27k5VhAgF2FkVYzRVWc+lC0ujnqhvNh15v0XdOhNl5BuKFF95Yt+47iaR7ugcyNkrvT614LCP888G/tbSsnYj0EpoIUZMJtGQiLWXAOlITCWjiaLk2t8m3/S9nVfWx5DvjkWG62LiIOUKVShkITEEABA7BrRvkkv2aqqeyMq/hAyCAJkHzXszJuzU5FIDxjBETvGNCsJA751nArnHLj+vlx/TykwavbUZEbKxWy0gyTCASTKxkpS2OS5zNIrCHaXQNBWB1k9mp85D5eAofHx3oj7oKwM2jcvOolY9nmPscvfu1kv0abYsFDl32W3S/3/+/qcorXMSd92IOkfv/7Z13eFvV3fjPvdp7D2vLlm3pWrIdr8SJMwkJhBKSNAMotA0t9KWk9C2FAmV1UDp5X/qDQlmlbRgpkAQIYWSH7DjTe2/J2nvP3x/XURSvyI4TO3nv58mTx7q6uufo6Ps94zvOIQMAQq6ordlja/Lamj3WZo+nL5jlL9vbO8GkZgiwZFS+lskvYPK1TFERG61AJolY0njS0bnH3LXfklPKmf84wsihAAByZnHu/Gj+DWMpNZuNkch4p87NENSLRXMeLkT/bviwb3KjIAAg6o9bGzzWhksO96ZwSRcGRSpbSWMpLo6O9lbv55tODTfAAgAA8Ho940eTXANmSvpElkgruIufM1x2sjk5UomUpcHde9jWd8RmrnenZpIJGwDAklORNXLdHfKRfQ0AwNXt7ztq7z9qGzjpiAYuJl8SaXimjMqSU1lyKlNGZclpLBmVIaWglopMAtZw135L117zwAlHInZjGk5vSOgi8sKn9Xk3ice6IRaM21u81mavrdlja/Y62ryTds8QKDhePoOvZfILmYJCJq+AOdYiIBqI9x6ydu619HxjycwGxpNxlQ9oyjbm4UhDEhh0RI682Nz86cCNZCmdmXBz6eu31KA/mem0c/t9x6+BplN5JJaSZm/xxoIzNyn8Kg6Een1JR0fblG+xBuOhso15VQ/mZxoDw+5owB4J2iIBWzhoj/it4ZAzGnSM50dkiCmKGoGimj+qHzjijXXttxx8viFzUJkqIBiiC8kBe3isMBaJRAZBELqywZNxmmU5yBq5rJIHJZlQTA3HlHBMliTXB2KH+46b+o7Y+o7afKYJtDORhlctEObdLFYtEKJprZlEffGebywDtQ7zebezwze1Pm0cEaZySUFH5CppIJlMyc8vHGeLNTpXTOOKaBwhhcmjsnhUFp/KEVKZPAr6N1tAJFNPbn3lyLt/iEVmuqMRgqHiu5TVP9WmR6OINwbB0PgWqng4YW30mOvc5vMuS507045aUTEnc4s1CIaYUgq/kMkrYPILGPwCJktBheDxOo2gI9K1z9K119x/3D5OeD1LTl3wZJF60cUg1cEzzgPPN1y/llKdTt/X1zOTzxggMQkb/lPDVtIAAL7B0JZ1h0POGRFpIRLlkEik6c08uQ58hKPCkFAEWlbIGfFbwkFHZKIZLWkgHCQqYilqhMoagdjAhnCXNIi1yfPZf50M2qdGXKg8kmKeQFkjUMzlU7ikZDzlNQbdaF5Ob8DdE3D3BnzmEEgN+QiPde6adVd5/sJqIi4PjqrhmApKXJIYEPa56ne/f+6Ldxx9k9xIBUeClXMFeTfnqBeL0i7YTGKhhLXRY6lzDZ53WercfsvljT9EBj7trKXySTQBmSYgUfkkmpBM45PQaYfPFDr1ZkfTtv4pHw7H8RHST34lmgAAIABJREFUuKKFG39lWHb3qCeiDcNj6dv9t0c7jn85tdWbQviFzJt+UywysIdep0Djtr4jf2kOe2MsGTWdoSvQMkc1oacJ2CLmOpelzm2ucz296cXnX/k5L5/Jy2cItEyuhpGZ3QtHc6G4CEpSIUABSTKUIoEUJRGixP34eISYihFxEL3pwPb9bz4DsjuaVr1ItODJIpacOvQNEqmBkw5bs8fe6rW3+ZydvpkT8EzhEhk5lGggHvXFI/7YyFizGe4jhHDQyteqlDUCAEA8nPjoO0dtzZ7LfuraMBN8hFdxIFy1av3+/bs8HvfVK2JqITEJ8jl8ZY1AUSNgiIc2wfMOBD+5/8Skk59gPCQp46Ljn0DLukx7p/DJQE7EwidENRRGLh7OhZJZpdf01x85t/OdlkOfJGKTHLNhHCSt4mmW5eQuEY+T3Om3hC11bnO9KxFJkpgEMptIZhHILAKJSSCziCQWgcwijL9iyMRnDp1+q7Px475Jz2NGwmSybrrplu3b/5N5EYcnVqx+cO53HidRJ2ZUbzv6+Z5Xf+G1ziynI56Mm7OpoPR7uenMImeXf99zdSPDEFAoXJIQYfK1TCHCEhdz0hs8Zg+U4BI9d+OCc7PpMc5/9e+vXno4lV38JI4El23Mq3xAMzLaKxlPOTt99jafvdWL/puqKWmWUHkkaQVXWsmTVvF4eYzMr56IJqP+eMQfi/riEW8s4osJ2ZLWwz3H3prOs4TGoeYxpGxjLgAApMBXj55p+/KqrE8mh06nZzCY03uG6HXmI7xmIGvkS35djHY0IWf0swdPWuonMKIzpVTlfIGyRiCfwx9pewQAJOMpGIeD4iI4LodjMjgmh2NyKC4e/zyQSNBn6Thv6TgX8rqKbtrAkxdkvhvyOut3v3du5zvOgfbsqzoMCIbEJWxpBU9UzBYXc8YZFCdNIpJM+4cAAH5L+PRbHQ0f912ljA7NnFtv+tHvOdK89BW3qdvnHAy6bAGXJeC2Bd22gNMS9NgDLmvAZSmYt3LJA7+jsocOoImFg4c3v1C7/dXkVER+XTnKGsHiZw1M2dAqKhFJ1r7RfvqtzuzX1lQeSVzMFpVwxMVskZ49vh014gZx4808+t3wGEcQjErLN9t3/OGHiXi2AfGMHMr8xxHNspzxb/Nbwi2fDjR81DdqzMVY4Eiw5uYcwwYlS0HzDYZ8pqDPFPKaQj5TyGsM+kyhTPcHlU+SVfKklTxpJXcSsQjN2/v3/bp+Cid2UwKyRr70+aGd6Gvf6Dj2EnbQ6XCu4kC4fPm3jh79xue7Xo3+yvnCFS+Vo6ahWCjx5c9O93xjveynaEJy9cOFulWykQujVCJlrnP3HrHRwAqVYS1focURLjPMJBI+a3dd39lT5vZzlo5zTmPnRaMTBCkM80pXbCyoWYknZnRSqVRv3aH6Xe+Zmmtdpq4sJ+ZjwcihiIvZomKOuIQtRFiXTdKIhxNhdyzsiQbtkaAjEnJGA/ZIyBkJOqJBeyTkjIScUQgH6dcpyn+Ql2myC1jDp9/ubPioLx6+ogrT6YyamkVffbUDAMBTFC79rz+oK5am33UZO/e+/uRlDZ5kOnvhfb8qvW1j2ohq6278+v/990DjdB5RJDKwyzbm5d8iB2Co4x44Yd/3q/or2asFgiFuLh2d9IhL2DwN09MfsLV67c0eW6uXSZs3d8Nv2Dkq9OZUKtl25HO/YzAWDkYCnng0EgsHIgFvPBaOhYORgLdi9YNFSzagN3fV7tr+m3sn5Geli8j8QiZfyxRomQItayx/ZCqZ6jtiq9/S2/2NdfyINraKpl+nRFbLxs8HD3tiPlPQbw6zlTROLn3Ue2KhhKvbT6TiSUw8kUEYGWuWxnTGufPh0zPE/cZW0WoeQ3IXD/liuw9YPt90aqYFh+fna6lU2vnzp6exDterj/DaINKzV/69Cs1ASCZS+56ta9o+ppWMQMWX35c7a2PesE1TfeZQ32Fb72Fb/3F7Kka89Wev6BatHfUJqVTSa+312FtY7HDMP/DJi2/Zey4fzk5hcvVL7y69beOwBSIAIBYJ2nuarV0N1u4GW3ejtbM+7J+8pRrGQfxCpriEw9XQk7FUyB2NeGJhdzTojIbd0YgnFnJHsx/GcCRYv1ZR/kMNXXRxOAzaI6f/0Vm/pXec5xDI1EQ8Ntb6DPUR/uaF52ru/WXZ7ffD+CHHZyToO/reH09tfy37ZYpEW7H84ZdEmguHOqVS57/efOCtZ0Lea3oKOZGBL11fXrLqNhZnNi6sT8GRGPtf/tCxw39qav5siiMt03mEfKV26YN/VJUtSb9laq7d/epjg63j9VYQBN+86S9lt9+PvuxvOPrx02sjwUnm6RIoOF4Bk1/IFOiY/EImv4AxzLjiN4cbPu5r2to3zHWNI8C5N4kNGxSyKv6V9HDRQHzwrMtY6zCecljq3ZkOSwIFR2ISSAwCkUkgMfAkBuG2TUvjiqG0dK8x+PmmU/bW6VwDkBiEqh/nF9+tSo/Zzi7/h3cejvpnXOjmDe4jvEpRo9cYtpJ2xxuzh/z5KXDsry21b3QMuwfCQchq+ZyfFGYaEk2nnZ17zb2HLibs85Xa1c+8y1MUpu8JeRzoEGXrbrR2N9p7mtEZdGbUaPbIDfNKb9tYWHPHJQvES/HaBmxdjdbuhs4TX03v+gYFR4SL1ioqfqjJzAkJOSPNnxqbP+l3tPsAADCeIFTrJbpKibZCoq3kSvMABAVc1qDb5rMbAy70f6vPbgq4rDG/q/KWuzQ3b6SwhgKLUqlk/a73Dr7z64BzwpvcQzCu/I4fzf/e02nnYsjj2PfmU/W7388yHmTSECn0kjtuMay4jSetxiWkw97tPrt7118fdZmm+CzTioo5DS3N8+55snzlA+k5hN9pPvD2cw17PsjyKy/c+Fz1XY+if5vbz/7nl6tDnvE2LskWCCiqBYY7lerFIjgjqC2ZSHXvtzR82Nt31M6UUorWKpA1cirvEluL1xhs/KivfdcgmUlgSKhMKYUhoTAlVIaUwpRSM2euUX/cdNo5UOsw1jpsTZ50yDQE49IykIhFR650dYieuyRZ9l9qdBUbC8a/fuxs1/4pOFcBgiGBjslR083nXZ7+y6+wYRykX6+cvamAwhlaB6eSqabt/cdeah0/kH66uMGjRm8YqDzSyr9XCYuGtout+6Dn4AuNaZuMskZQ8xjCy7/oTnC0+Q7/pan38CV7oiKL193y3y8TKTT05Zkdbx59709+p3nKa0thcpEl6+VF1cI8A0eaN06EpK278eznbzfu3TLpOfsoQJB2/iqWSIEuQ7Mce3BEGFkjr7hfg6ZaAwCgBA8X1YRNioRbzeBo8cQJx3egDDQe3/PqL8ztZyf3cRQ6L2fpg3/ULlg9tY8dCZUt4Ehy86pv0i26hS0qhsZ1GCdikRMf/b9jH/xlStI8cHgihcnVzLllwcbnqCz+UBHxaO22V4++98doaGJZAbPX/XTxD38LIAgAYO9t+c+Td/jsU2YZoovIRWsVRWsVmbYEkIJitkICdxDgLwZDJhOp7gOWhv/09h21j2MPpHCIDCmFIaL4zCFbi3eYuZWnKDQsu0d/0wY6bxQXZjTkTyYurrFgPEygDv1qUJKc6fJPJuLndv7j0OYXspwW0AQkxTyBYq5AMVeQ3hbDOxDsP27vP27vP+5Ara8UFo8rzePK8sN+d/vRnYp5gvmPIzzNxe5o4ITj0B8br9+8lGvDVRwI77vvwU8++dDpHPNXL5j7LUGu3th0wtRcO1FNu8YQafgVL5Ur5g0FUHTuNn/1izMcFb3mUV36IgAgYA0ff7mt6ZP+TF3C4YlLfvRC+R0/Ql/GwsEvX/pJ077xtk+rrp4Pw/CRIwevsNoEMlWYqxfmGkSaElFeMV+lI5Cow+6JhgJN+z86t/MfV96ti/KKlz70Z7l+bvpK0G2zdjVYu+pt3U3W7gZ7T/MwyySBTGWJlCyRgimUscVKeVkBX5NLwImhBGfE44dA+x0Yd5lNkXx24/43n2k68PFULd3UFUuXb/oftkSNvkylknVfbT74zq+D7oszHhwBHrbX6zAgCKIL+TSWmMqUMPhSGiuHyhBTWBIqQ0ymi3G40X3GqVTEaT7TtPur3rNHDcvvLV5+T3p+47X27339ydZDn162/iQaU26YxxIpKEwuhcGlMC/8Y/EpTC6RMtw31nny671/f8I5MNz+kSUlt37vlp/+FYJxAAC3uXfLE7e7Td2Te9SowDhIvVhk2KCUV/NhiEx0/AQXLgcApPDWJLE1EG5u3Xfw5Dt7fYOTdKCS6Sztwm8XL7tHoqucwmqH/Z5jH/x5LBP9OJsGAwCgJAWK50BxMRwXQ/GcpF8IJ3Pw+Iu32V2bqYYvwQVzubs3cPjPzV37pn62PbWUlVWxWOz9+3dNYx2m00e4+pl3C+ffAQBIJRPW7kZj43Fj08mBxmMeS99YH5lGYDy09Hel2tuHjFSe/iBTSkk782PB+Om3O8/+sysWusS5xRTIVj2zWaKtQF86+tu2/+Yee2/z+GVludfoRIFgHFemEeUVqytu0i1YgyddsswabD19buc/mg58HAtPeIVBZfEXfP+Zklu/h3Z8Y5FMxB39bfaeJhyRzBLKmUI5hcnN5vlJnC1F6ojEWjuPHTn1wX5rg43GEdJ5OXSemMGX0LlihkBK4wiZAhmDn0OhMQ9/8OLxLf8zcqlEYhBEBranP5CNiWkkeCK5cs1Dc+/+BYE8NJ+IBLyHN//+9Gevw/ikfp2ibGPeqPv+gBSEiyC4UDU+VAWS2cUiQqkkrsdqPF7/+efnt++KRy+6wXIKy5dtejGnsDx9pefMvt1/e8zRPzyJjURjyvVzFaULFMU1orzi8X+dNM6Bjr1/f6Lz5NdZ1XNstAvX3P74mzg8EQDgd5q3PL7yspI/CaQl+auf3UJnDHeQAwCiocBg6ylj0wlj80lj08mwz3XZp0EQrCpbbFj2nYJ5tw9zMcQiwUQsCgCAcfiR84YJ4TZ173/7mdZDn+IIMEtB4+bROSqapIInrRi5aTAeFzIAdzU+WoTDXV5Z4tRDUc4bEV/o5Gvtde/3XBdbRN3gPkIul+fxeBKJMX2zm7a007mj7AvldwwONJ0wNp4YaDxmbj93hXGPUwkE5j2iK/9BXua1ZCLVtLXv+CttI5Oc1OU3rXzi7bSzquXgti/+56Fs1r40Gg0AMFXnAIwKmc5CQ2z4Sl3m9UjA27Dng/Nf/svalVVGFIwnlN1+f829vyTTh0zHiVik/dgXLJFi1AVolkSCPkv76UiilZ5rYussKdwlyb8+U8jW6rW3eO2tXnuL1zNwcS9NHA7PYrHSdggcAeZrmeJitsjAFhnYHBUdQCCVTHXtt5zf3D1wcjK+KwZfuvj+3yKL1oIL+8EGvN0Jwbt4QdOIeyE4ko8LVeNDs8dZ46ZJQRGAdyaIrV5v7fntO89/WB92jx7aA0GwYdl3Fv3g1+k0jwtmzD9AME6un6soma8omZ/94BcN+UNeZyzka9izpXbbq9mHFI1PbuXNq599FxWDkNf54VNrxg+3mSji/Flrf/OftNEymYiPaSpIpby2gZDPFfI6Qx57yOu8+M/nDHocyXhMt3CN/ua7GPxLPLLJeKyzdnf9rnc7T3w9slmIFDpaIovFCQb9sdhQDBeOAM95RF70bTn60jcYbno7p/y2J5gCRfqzEdCU4L8HyKM6eqGULzc6UEUnLiCQ2KPdcOFrQZEUfhAACI4p0Sse9+n3f7bOY7xujqujUKg4HM7vn87DD6bNRwjBuKIl66W6Kpm+mq/SjeXKCvtcPecO9pze23163wxZKZbeq57/OIKuBbsPWI682DLy/AoIgufd8/i8e55Av1ciHt3/xtOnPnltGqp7OWT66tIVG7ULVg+b//qd5p4z+3vOHug5s9/vGBz1s6qyJUsf/CNfqU1faT/2xb7Xn0SDOCAI5khzhWq9IFcvUBcJ1Xq2WAku3Uw8EY/6bCavbcBr6fPaBrzWAa9twD3Y4zJ2plJDk1mmjKpdKdOulLIVtFGrEQvGh9KuW7z2Vm/EGxMWsUTFHJGBLdAyccSxvaQt3nObu9t2GieR+CXXz13+0xf5Sv3F70I+HWVvDvr6faYQCdZQiQtphBo8PPyo20TSG0/Y4nF7NGaLhG2xmDWWcAbdpmjIFk/4ErFk5+7BgVpHNuGgZDqr5t5flq18IN37RwJeIoU26uCXTMTN7edMzSf9jsELA4Ar5HWGfa6Q1zlVI99IZPrqdb/9mERjAgCioUDj3i0tB7f11R+58gluYc3Kbz3+JjrKJuOxXX97tGHPB+L8UqmuSqKrkmgrGHzJlTzf2tVQv+u9xn3/ybR+T4jS76rnP4ag+1UlEykYJhL8y/He1VDqwgQRSiUoh6LMD1N4BwAglUy521hJy2wOdxmdIxv2tFQq6bUOOAfanf3tbnMHzLDSFR7hrISgkAEgPNH1A3xgEXqnvbflo6e/PUM6zOuCGZE+QaIyJMhsqa5KVjRHoqscy+zgHOjoObOv+/Te3nPfTMKnSGHxePICnryAK8vnKQrpHKHfZfXZjD670Wsz+qwDXrvRZzNm2qAywRPJZAaHTGdTGJzcRXl5i/O699l9piSeSMIRSAQSFcbjiRQ6Gl3GEinSliuf3fjJ8981Np3MvqpXyTQ6DmQGx3Dz3aUrNmYGtaax97b0nN3fc2Z/f91hNLKGLVHf9MDv8+felnFP857Xnug5s2+cUkhUBl+F8OT50VDAaxvwWvr9Lku2PjwI5Mzi6lZKNctysjwmdCSpRMpvDadDclCCjkj9lt76Lb3Zx9TRhOSy7+fqN6gpyWVEz3qQHJLYZDLafHCbpKAyM38fxWc3Nh/Y2nRgq7ntzOQqPxYCFbL0oT8rSxaMfCuVTJjbz/XVHe47f6i//shlteZKj2EaA5GmZMML29OLVwBAwGVtPfxpyzfb++uOpGc8E2LOhp8tvO9X6EQz7Hd/8tt7e84eGHYPUyCT6ColukqprkqkKRknmjqTkMfRuP/D+l3vWTrOZ1+fsbZYU9YIbnmx7JIj4ZIMovfbeP9N6cN/kqmwsetdl9EuVtwqVJUMe0LQY285uK35wNbBtjOj9k4ULlE+mx9yRxW5P5j/3afQuWbAafno2fVTLmxXgxvcNPr00y+8+ebLFsvoi4mxgGCcQIXI9NVyw1xV6aK0XTGTZCJubD7ZX3cYVeywzw0ASMSjqHMLjeNKJZNECo0nL+DI8vmKQq4sP0t3VNBj99lNPpsxmYiTGRwKg0NmsMkMzuSsfD1n9n32+x8EPfYJferWW1dCEPzFF59MosQrRG6YV7ri+7mVy0ZtrmQiPth62jnQgSxem94NIOxzHdr8wtkdbyXHNoNPLehOswLdUPI1UzreT+M1Bi31bku9x1LvsjZ5Y8G4UM+a9d1czfKczLToRDTZttN4bnP3OPF1JCaByiOVfleNrJanF5pQkp4yrqGCZQAaZR0W9Nhbv/mk6cDHAw3HJtfjZ4l24ZolD/yOKZClkglLZ13f+UPo4DehkOCXX/7HT35y39WoHleWv+75jzmS3GHXA05L6+FPmw9uy759cHji8p/+tXj5PehLl6nro6fXXnY3JRhPYAnlZAaHwuRRGBwKk4tq99AfTC6FwbX1No9lAr0sjzzy1PbtW7q7O0e+xVHTb/9bJVtFS0SSrh6/s8vv6vJHnfzC8p+pim8Z64HRUKD96I7GfR/1nNmXvWbpl9516yOvoH7ZWDj42e83th/7YqLf5RqzaNHNPJ5g69b3p7EOMzp9AoJgUV6xqmyRqmyJrGjOsOCOGU4qlTz6/p8Pb/79DPJxZg0EwSJNiapskWrWYpm+eqypdDIRP/fFO4f+9fw1zjEfBolJEOiYAi0LHRcpXJK9xWOuc1sa3JZ6d8g5eqdGE5CK71bp1ymHHdlobXBHfHESkwDjIQIVjyfBeDKOQMXD+FGUxdHhO/VGR9uXJqHKkBkxGwl4247uaD6wtefM/ms2PyCQqbKialNLbSQwI2PlIUiqq9ItXFM4f9VIo6XfMdh66NPe89+Y2856bQNjPYPM4Kx59j1FyXz0Zd/5Q9t/e8/0il82EOl4CofoNYaGZXEoimuWPPA7cUFZ+koiHu0+tbdx34cdx76YXGKMsmTB6ufeR332qWRiz2uPn/709Yk+hExn03liOi+HzhXTuSISne02dVm6Guy9zfHIVKaGQzCOyuIFXJfftOuqchUHQqlUbrWa097jKwRPosiK5qjKlqjKFonyirM5QGAYPrvJ0d/mHGh39Lc5+toiAQ+dJ2YK5UyBjMHLYQrlDIGUwctJ5xEPIxGPhn3usM8V9rtDPlfY54pHw4lYNBYOplLJSMADAAj7PSCVioYDyXjMa+03tZya3JdlsTgQBLndM0K98SSKrKhaVbZYXbZYmGdIt3zP2QN7//6Erbtxeqs3DAKBIBSKs9+LAEeCtd+Sld6rHj/tYSTWBnftGx1d+ywXuzYIQhavy6ta1nro067a3WPZ2GcyKlVuTxabGV0hEARLi2brFqwpnH/HqMl5AZfV3H7W3HZ2sO2Muf1c2kXNlWnW/fbjtNm57uvNX//1v6+ed3NCiMUSl8s5ibN5IQhGlqxf8P1nPJa+pn0fthz6JJvo1vHhK7Xrnt/KEg0F5tRue2Xf608NW3BDEEzjithiJVMoZwpldF7O0LDHy6FzRePMfZ0DHbbuBktnnbWr0dpVP1YAQTbkzV6++IfPx0K+Hb9e73RMzGw2tcwIH+FEobB4qtJFaKcMwTDqh8cTSOiSMR3HFQl4h4a9/jZnf1s2NiJUOJgCKZ2XA0FQyOe6MPi5oqGrGMM5jGvvI8wSKouvLF2oLF3QdWpP25Ed012dURjnGKbxkc/hl96rVi0UjnN6RiKajIcT9jbfqTfah22YcGNwlXyEYwFBsExfrV2wunD+HaMGkKP4HYODbWftvc2zbruPzOAAAFKp5IG3nj3x0V+vWVUvy0w7honGFa37zYfptWbbkR0dx79kCuUssYIplLOECoZAglpQr5Cgx27trDe1nGrcu2VkAs9YiPNnLX7g+bRj277/H2/9/qdXXplJcxUHwrvu+v6XX342Q5Y11xcVFXMgCKqtPTbdFbn+YLE4t922atKOd7aCJtAxE7FULBSPBeKJaDIaiMdCiUQ0GfHOiNMnrioPPviz117732tfLgTBcsPcvNm35BSUifJLxz8tKxoK7PjjD9qP7rxm1cuGNWvuPHr0oNk8+eXRlEMgU+946l+a2WO6IcchFg6iOxd6bQMBlzUa9PNVOlFeMTtHNY41ztRcW7fr3ZaDW8P+MQ87ZIkUCzY+iyxel35OLOTv3vXWtr89M4l6ThUz2keIgYHxfw4I4ko14oJZ4vxScf4skaYkc1z02ga2PrvB0lk3jRW8joBg3M0P/Tm9Dfowwj4XmrPkNvf4bEa/0+K3m/wui89mHCvAmEihCdRFArVelFcszDUI1EXpbSPTxKPhtiM76ne/33Nmf2aEBJnOqr7rsfI7fpS2uybjsTOfv3Xk3T9Mu5f3Kg6ElZXVjY11weC1syjeMCiVagiCroG35saDSqXp9SXTe8jn9cvChUsPHtwz3bW4BAiCOdI8dFxk8HL2/v3Jq7FD75Uza1ZlZ2eb1ztTjn3PpGrtwwVzv+Wx9nmtA15rv9c64LH0ea19V+7ugSCYnaMSF5TpFn1bU7V8WICFz25s2LOlftd7HnNv2cr75979i8xY9LYjO/a/9YzL2CmVyikUakdH6xVW5kq4Ln2ENzwz1kc485m0jxADXHMf4Y3ETPMRXnuoLD6yZH3x8nuEuYZhb4V9LtS5izLYenrf67/sbxiarc6EPMKstl8CAEgkkm3btj311FOrVq3as2ePz3f5wJN4PN7T0xWLzYiYruuLZDJpt1sc0xpGdZ2SSqVCoVBvL7aYngyxWHR6J+bXL/F4rK+v93o/de5KiEWCppbas5+/3X50ZyIWYUvU6S1505lvHkvfrlce2fPaL7zWi3HdyWTC4bDbbNOcQZEV//znPx999FEAwM9//vN33pnOoRsDAwMDY4aDbl/+rV+88fMdlid2+R7+sKt0xcaxktOmnWxXhC+//PLDDz/s9/t7enpeeOGF//3fS0LLiotnqVQai8UEAFRVNY/PF1gsg/fd9yCXK4Bh2OVySKVyBCmOx2OBgL+wENFoCt1uRywWKy+fLZcrjcZ+MplSXj6HxWLZbFY+X2gwzIJh2Ot1q9V5hYVFwaA/HA4ZDKVqtcZqHQQAVFXNEwiEZrOJyWSVllZSKBSn0yGRyBCkOJGI+f3+ggKdRqN1u52xWLS8vEqhUBmN/SQSuaJiDovFttksfL7AYCjD4WCPx61S5RYWFoVCgVAopNeXqNX5Nps5mUzOnl0jFIrMZhODwZw1q5JKpTqd9pwcaVFRSSIR9/t9BQVajUbr8bii0WhZWZVCoTYa+0gkUkVFNZvNsdksPB6/uLgMj8d5PG6FQqXV6sPhYCgULCoqyc3Nt9stiURi9ux5IlHO4KCRTmfMmlVFo1HVao3BUMrnC5PJhN/vy8/X5udrvV53NBqZNatSqcw1mfqJRGJFRTWHw7FaLVwur7i4nEDAu90uuVyl0+kjkVAwGESQ4tzcfLvdmkjEq6rmisU5g4NGGo1eVlZFo9EcDrtIlKPXl6ZSSZ/Pq9EU5ufrfD5PJBIpKSlXqfIGBwfweHxl5Vwul2u1mtlsbklJOZFIcLtdcrlSpzNEIuFgMKDT6fPyChwOWzwer6yszsmRDg4aqVRaWdlsOp3ucNiEQrFeXwpAyufz5uUVFBTo/H5vJBIuLi5TqfIGB40wjKuqmsvj8SwWM4vFKS2tIBKJbrdTJlPodIZoNBIMBrTaory8QqfTHo/HKirmSCQyk2mAQqGWl89mMBh2u00gEBnRW4TpAAAI8klEQVQMs5hM1rJlt/n9/sJCxO/3RSJhVDjNZhMEQVVV83g8vsUyyGKxS0srSCSSy+VEhTMWi6aF0+UaEk6ZTGEyDaDCyWQy7fa0cEJerwcVzkDgonBaLCZUOFEVQIWTTCa7XEPCiarABeFES6lCVeCCcKIqIDAYylAVQIUTVQFUOK3WwVQqNXt2DaoCqHCiKnBBOFEV0KZVoKwsrQKkiopqVAVQ4URVQKlUa7X6DRvuOXbsECqcNps5kUikVQAVTlQFxGJJUVFJpnCiKjBMOFEVyBTOTBXIFM60ClwQTqrDYReLc4qKLhFOVAVKSyuUyty0cKIqwOFkCmemChhyc4eEM0MFLgonqgIjhfOCChhxOFxl5ZBwXlABotvtRFUAFU6dTv+97z0wODjgdrsqK6tR4URVABVOVAUgCHi9ntzc/IKCtHCWqVR5ZrMJhuGqqrkXhJOTFk5UBVDhRFUAFc6KijlSqTytAqhwoipwQTg1hYUIKpyj9s+oCqDCeTX6Zz5f0HL2qLn+m3jfOWt306d/eSjh7NNp9SP75/XrvzNnzvyzZ2uH9c8ikeSaJR1km5YuEonsdjsAwOFwiETD9xHOzc1HEAMOh4NhCEEMeXkFAAC9vrSoqFgikQEAeDwBghjYbA4AQKFQIYiBRCIDAAoLEa22CABAJBIRxKBUqgEALBYbQQxCoQgAIBZLEMRApzMBAGq1BkEMOBweAAhBDBpNAQCASqUiiEEqlQMAeDw+ghg4HB4AQC5XIoiBQqEAAPLzdVqtHgBAIBAQxKBS5QIAGAwWghhEohwAgEiUgyAGBuNiKXg8AQCAIIb8/EIAAIVysRQul48gBh5PAACQShUIYqBQqAAAjaYQQQwAADwejyAGtToPAMBkXiwF/S5MJgsAoFLlpkvR6QwaTWYpColElpdXgCAGHo8PAJBK5QhioFJpAACNpgBBDBAE4fEEBDGo1RoAAIPBRBCDSCQBAIhEYgQxMJlsAIBSqUYQA5FIBADodPr8fB0AgEKhIIhBLlcCALhcHoIY+HwBAEAikWWUUoggBgiCcTj8sFLEYgkAQCgUpX9QtBQSiQQA0GqLCgsRAACZTEYQg0KhAgBwOFwEMfD5QgBATo4UQQw0Gj39XXA4GIeDEcSQm5sPAGAwGAhikEikAACBQIQgBg4HFRt1ptigpZBIaClqAACHw0E/qNeXSKUyBDHQ6XQAANqS6VJQsaHR6AhiQIWTzxdmCOcl3wUVThKJlBZONpuTFk70uzAYjAwVwEMQWkohAIBKpaXFhs8XIIiBw+GmVYBMpgAACgoQnU6foQK5AAAmk40gBpFIDAAQi6UjhROCoLRwoqXIZIq0CnC5AgCATKZMC2d+vlanQ4WTMEw40R8UVYHy8jkAALU6D0EMBEJaBbTDVABVZy53uHDm5w+pAKpoI1UALQUVTlQF0FK0Wn1mKTKZMkPRLpaCnsqCig0AY6oAKpws1kXhRFVAqy0qKECF86IKoMKJqnOmCqBiA8PQpSrAQBBDTo4kLZzpPq2kpJzF4l4qnCQEMcjlqrTYoCogkUgzhDM/Uzjz8vIBAHQ6Pa0CF4STnRZOIpGUWQqRSEorGlqKQCAaVsqo/TMqNtegf85XymN9Z4Me+1j9M4KUGAxlI/tnqXT4tuPTj8lkEgqFAACxWGw0GrP5iEZTiHYoGBNFIBCh0owxUUgkEjoIYUwCBCme7ipcr6jVeeicA2OicLk8sXiUDYZmIv/+978feughAMCmTZv++c9/Tnd1MDAwMDAwri0SiWTXrl21tbVff/11Tk5Wo/ejjz6DLWsmx9Klt958822Xvw9jBHy+8NFHp3OLiuuaP/zh5emuwvXKj3/8CGqfxJgoNTWLbr/929NbhzFOcx6ByWRatmzZhB7N4XBxuGyDcTAyoVJpMDzhXcUxAAB4PI7LHeXoLoxswGauk4bN5hIIU7B15/9BKBQq6gLHwMDAwMDAuOGgUKjYsmZyEAgENM4NY6LAMIzFLEwaNCwTYxKQyRQYxgxgk2EmdHdXcaBatWo9GieNMVFKSspLSsqnuxbXJQwGa/XqDdNdi+uV7373gemuwvXKihV3oHH1GBNFp9NXVc2d7lpgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgTBSJRLJ79+6WlpY9e/ZIJJLprs51A41GM5lM6N9YG2ZJUVHR0aNHOzo6zp07N2fOHIA13USQSqX79u1ra2trb29ftWoVwFpvglRXVweDQfRvrOmyZNOmTYFAwG632+32F198EdyoTYcdZz8JHn/88cHBwVQqhb7E2jBLTpw4sXLlSgDA+vXrW1tbAdZ0E+Hll19+7LHHAABz5861WCwAa72JUFhYuHPnTkxnJ8orr7yyevXqzCs3ZtP19/ejJ1Tk5OT09fVNd3WuD3A4HB6PTysV1oZZsmnTJvRw14KCgvb2doA13UQwGAxsNptKpa5YsaKhoQFgrZc1YrF49+7dQqEQ09mJsmfPnuPHj/v9/sOHD2u1WnCjNl00GkX7JiKRGIlEprs61xNppcLaMHsgCFq2bNnp06dXrFgBsKabOB0dHalUavny5QBrveyg0+m7du3Kz88HmM5OnD/96U9Lliyh0+nPPvvs4cOHwY3adJM4zh4DJa1UWBtmiUAg2LFjx6uvviqTydArWNNlD41GgyCIQCBs2LChq6sLYK2XHaWlpalLUalUWNNNFAaD4ff7wQyQuquy6faePXvWrVsHAFi7du3u3buvRhE3PFgbZsmWLVteeeWVH//4xwMDA+gVrOmyZ+vWrXfeeWcsFuvv7yeRSABrvew4d+4cdAEAAARBPT09WNNlA4lEam1tLSgoAAAsW7bs1KlT4EaVukkcZ4+Bkl4RYm2YDSwWK5VK2TMAWNNNhKKiouPHj3d0dDQ3N6OmUaz1JgqmsxPl1ltvraura2xs3LNnT25uLsCaDgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD42rz/wFYdH0yVQ4z9AAAAABJRU5ErkJggg==",
"image/svg+xml": [],
"text/plain": [
"Plot{Plots.GadflyPackage() n=20}"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# here's how we might adjust for a dark background\n",
"lightcolors = map(c->Plots.lighten(c,0.3), newgrad_newcolors')\n",
"plot(Plots.fakedata(50,20)/3 .+ reverse(1:20)', l=(3, lightcolors), bg=:black)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\"\n",
" width=\"250.0mm\" height=\"25.0mm\"\n",
" shape-rendering=\"crispEdges\">\n",
"<rect x=\"0.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#483D8B\" stroke=\"none\" />\n",
"<rect x=\"2.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#504090\" stroke=\"none\" />\n",
"<rect x=\"5.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#594495\" stroke=\"none\" />\n",
"<rect x=\"7.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#61479A\" stroke=\"none\" />\n",
"<rect x=\"10.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6A4B9F\" stroke=\"none\" />\n",
"<rect x=\"12.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#724EA4\" stroke=\"none\" />\n",
"<rect x=\"15.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7A52A9\" stroke=\"none\" />\n",
"<rect x=\"17.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#8355AE\" stroke=\"none\" />\n",
"<rect x=\"20.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#8B59B3\" stroke=\"none\" />\n",
"<rect x=\"22.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#935CB8\" stroke=\"none\" />\n",
"<rect x=\"25.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#9C60BD\" stroke=\"none\" />\n",
"<rect x=\"27.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A463C2\" stroke=\"none\" />\n",
"<rect x=\"30.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#AD67C7\" stroke=\"none\" />\n",
"<rect x=\"32.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B56ACC\" stroke=\"none\" />\n",
"<rect x=\"35.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#BD6ED1\" stroke=\"none\" />\n",
"<rect x=\"37.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C671D6\" stroke=\"none\" />\n",
"<rect x=\"40.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CE75DB\" stroke=\"none\" />\n",
"<rect x=\"42.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D778E0\" stroke=\"none\" />\n",
"<rect x=\"45.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DF7CE5\" stroke=\"none\" />\n",
"<rect x=\"47.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E77FEA\" stroke=\"none\" />\n",
"<rect x=\"50.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#ED83ED\" stroke=\"none\" />\n",
"<rect x=\"52.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E889E8\" stroke=\"none\" />\n",
"<rect x=\"55.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#E48EE4\" stroke=\"none\" />\n",
"<rect x=\"57.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DF93DF\" stroke=\"none\" />\n",
"<rect x=\"60.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#DA99DA\" stroke=\"none\" />\n",
"<rect x=\"62.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D59ED5\" stroke=\"none\" />\n",
"<rect x=\"65.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#D1A4D1\" stroke=\"none\" />\n",
"<rect x=\"67.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#CCA9CC\" stroke=\"none\" />\n",
"<rect x=\"70.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C7AFC7\" stroke=\"none\" />\n",
"<rect x=\"72.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C2B4C2\" stroke=\"none\" />\n",
"<rect x=\"75.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#BEBABE\" stroke=\"none\" />\n",
"<rect x=\"77.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B9BFB9\" stroke=\"none\" />\n",
"<rect x=\"80.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B4C5B4\" stroke=\"none\" />\n",
"<rect x=\"82.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#AFCAAF\" stroke=\"none\" />\n",
"<rect x=\"85.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#ABCFAB\" stroke=\"none\" />\n",
"<rect x=\"87.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A6D5A6\" stroke=\"none\" />\n",
"<rect x=\"90.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A1DAA1\" stroke=\"none\" />\n",
"<rect x=\"92.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#9CE09C\" stroke=\"none\" />\n",
"<rect x=\"95.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#98E598\" stroke=\"none\" />\n",
"<rect x=\"97.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#93EB93\" stroke=\"none\" />\n",
"<rect x=\"100.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#8DEC90\" stroke=\"none\" />\n",
"<rect x=\"102.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#86E790\" stroke=\"none\" />\n",
"<rect x=\"105.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7FE28F\" stroke=\"none\" />\n",
"<rect x=\"107.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#77DD8F\" stroke=\"none\" />\n",
"<rect x=\"110.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#70D88F\" stroke=\"none\" />\n",
"<rect x=\"112.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#69D38F\" stroke=\"none\" />\n",
"<rect x=\"115.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#61CE8E\" stroke=\"none\" />\n",
"<rect x=\"117.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5AC98E\" stroke=\"none\" />\n",
"<rect x=\"120.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#53C48E\" stroke=\"none\" />\n",
"<rect x=\"122.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4CBF8E\" stroke=\"none\" />\n",
"<rect x=\"125.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#44BA8D\" stroke=\"none\" />\n",
"<rect x=\"127.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3DB58D\" stroke=\"none\" />\n",
"<rect x=\"130.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#36B08D\" stroke=\"none\" />\n",
"<rect x=\"132.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2FAB8D\" stroke=\"none\" />\n",
"<rect x=\"135.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#27A68C\" stroke=\"none\" />\n",
"<rect x=\"137.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#20A18C\" stroke=\"none\" />\n",
"<rect x=\"140.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#199C8C\" stroke=\"none\" />\n",
"<rect x=\"142.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#11978C\" stroke=\"none\" />\n",
"<rect x=\"145.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0A928B\" stroke=\"none\" />\n",
"<rect x=\"147.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#038D8B\" stroke=\"none\" />\n",
"<rect x=\"150.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#028D8D\" stroke=\"none\" />\n",
"<rect x=\"152.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#069190\" stroke=\"none\" />\n",
"<rect x=\"155.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#099494\" stroke=\"none\" />\n",
"<rect x=\"157.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#0D9897\" stroke=\"none\" />\n",
"<rect x=\"160.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#119B9A\" stroke=\"none\" />\n",
"<rect x=\"162.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#149F9D\" stroke=\"none\" />\n",
"<rect x=\"165.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#18A2A1\" stroke=\"none\" />\n",
"<rect x=\"167.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1CA6A4\" stroke=\"none\" />\n",
"<rect x=\"170.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#1FA9A7\" stroke=\"none\" />\n",
"<rect x=\"172.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#23ADAB\" stroke=\"none\" />\n",
"<rect x=\"175.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#27B0AE\" stroke=\"none\" />\n",
"<rect x=\"177.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2AB4B1\" stroke=\"none\" />\n",
"<rect x=\"180.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#2EB8B4\" stroke=\"none\" />\n",
"<rect x=\"182.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#31BBB8\" stroke=\"none\" />\n",
"<rect x=\"185.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#35BFBB\" stroke=\"none\" />\n",
"<rect x=\"187.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#39C2BE\" stroke=\"none\" />\n",
"<rect x=\"190.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#3CC6C1\" stroke=\"none\" />\n",
"<rect x=\"192.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#40C9C5\" stroke=\"none\" />\n",
"<rect x=\"195.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#44CDC8\" stroke=\"none\" />\n",
"<rect x=\"197.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#47D0CB\" stroke=\"none\" />\n",
"<rect x=\"200.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#4DC9C9\" stroke=\"none\" />\n",
"<rect x=\"202.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#54C0C6\" stroke=\"none\" />\n",
"<rect x=\"205.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#5AB6C2\" stroke=\"none\" />\n",
"<rect x=\"207.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#60ADBE\" stroke=\"none\" />\n",
"<rect x=\"210.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#67A3BB\" stroke=\"none\" />\n",
"<rect x=\"212.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#6D9AB7\" stroke=\"none\" />\n",
"<rect x=\"215.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7490B4\" stroke=\"none\" />\n",
"<rect x=\"217.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#7A87B0\" stroke=\"none\" />\n",
"<rect x=\"220.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#807DAC\" stroke=\"none\" />\n",
"<rect x=\"222.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#8774A9\" stroke=\"none\" />\n",
"<rect x=\"225.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#8D6AA5\" stroke=\"none\" />\n",
"<rect x=\"227.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#9461A2\" stroke=\"none\" />\n",
"<rect x=\"230.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#9A579E\" stroke=\"none\" />\n",
"<rect x=\"232.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A14E9B\" stroke=\"none\" />\n",
"<rect x=\"235.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#A74497\" stroke=\"none\" />\n",
"<rect x=\"237.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#AD3B93\" stroke=\"none\" />\n",
"<rect x=\"240.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#B43190\" stroke=\"none\" />\n",
"<rect x=\"242.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#BA288C\" stroke=\"none\" />\n",
"<rect x=\"245.0mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C11E89\" stroke=\"none\" />\n",
"<rect x=\"247.5mm\" y=\"0.0mm\"\n",
" width=\"2.5mm\" height=\"25.0mm\"\n",
" fill=\"#C71585\" stroke=\"none\" />\n",
"</svg>"
],
"text/plain": [
"100-element Array{ColorTypes.RGB{T<:Union{AbstractFloat,FixedPointNumbers.FixedPoint}},1}:\n",
" RGB{U8}(0.282,0.239,0.545) \n",
" RGB{Float64}(0.315231,0.252882,0.564706) \n",
" RGB{Float64}(0.348109,0.266548,0.584314) \n",
" RGB{Float64}(0.380986,0.280214,0.603922) \n",
" RGB{Float64}(0.413864,0.29388,0.623529) \n",
" RGB{Float64}(0.446742,0.307546,0.643137) \n",
" RGB{Float64}(0.47962,0.321212,0.662745) \n",
" RGB{Float64}(0.512498,0.334878,0.682353) \n",
" RGB{Float64}(0.545375,0.348544,0.701961) \n",
" RGB{Float64}(0.578253,0.36221,0.721569) \n",
" RGB{Float64}(0.611131,0.375876,0.741176) \n",
" RGB{Float64}(0.644009,0.389542,0.760784) \n",
" RGB{Float64}(0.676887,0.403209,0.780392) \n",
" ⋮ \n",
" RGB{Float64}(0.503704,0.491939,0.676253) \n",
" RGB{Float64}(0.528857,0.454704,0.662191) \n",
" RGB{Float64}(0.554011,0.417469,0.648128) \n",
" RGB{Float64}(0.579164,0.380234,0.634066) \n",
" RGB{Float64}(0.604318,0.342999,0.620004) \n",
" RGB{Float64}(0.629471,0.305764,0.605942) \n",
" RGB{Float64}(0.654625,0.268528,0.59188) \n",
" RGB{Float64}(0.679778,0.231293,0.577817) \n",
" RGB{Float64}(0.704932,0.194058,0.563755) \n",
" RGB{Float64}(0.730085,0.156823,0.549693) \n",
" RGB{Float64}(0.755239,0.119588,0.535631) \n",
" RGB{Float64}(0.780392,0.0823529,0.521569)"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# and could consider other palettes for backgrounds with a certain hue, for example orange background:\n",
"orangebg_colorgradient = colorscheme([colorant\"darkslateblue\", colorant\"violet\", \n",
" colorant\"lightgreen\", colorant\"darkcyan\",colorant\"mediumturquoise\", colorant\"mediumvioletred\"])\n",
"RGB[getColorZ(orangebg_colorgradient,z) for z in linspace(0,1,100)]"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFA500\" id=\"fig-1035657d02684b2ea92231707539c377-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-1035657d02684b2ea92231707539c377-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-1035657d02684b2ea92231707539c377-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-1035657d02684b2ea92231707539c377-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-1035657d02684b2ea92231707539c377-element-5\">\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y10</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-1035657d02684b2ea92231707539c377-element-6\">\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#483D8B\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#C71585\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#48BC8E\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#D69DD6\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#36C0BC\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#B068C9\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#099493\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#9CE09C\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#788BB1\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#7C53AA\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-1035657d02684b2ea92231707539c377-element-7\">\n",
" <text x=\"150.37\" y=\"32.24\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-1035657d02684b2ea92231707539c377-element-9)\" id=\"fig-1035657d02684b2ea92231707539c377-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-1035657d02684b2ea92231707539c377-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-1035657d02684b2ea92231707539c377-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,66.46 L 149.37 66.46\"/>\n",
" <path fill=\"none\" d=\"M6.13,34.73 L 149.37 34.73\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-1035657d02684b2ea92231707539c377-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-1035657d02684b2ea92231707539c377-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#483D8B\" id=\"fig-1035657d02684b2ea92231707539c377-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,34.73 L 13.7 33.33 16.49 36.07 19.27 32.92 22.06 31.24 24.84 30.4 27.63 31.05 30.41 35.32 33.2 34.89 35.98 33.26 38.76 36.69 41.55 33.76 44.33 32.98 47.12 33.28 49.9 31.32 52.69 32.53 55.47 34.26 58.26 32.66 61.04 33.01 63.83 35.18 66.61 33.38 69.4 29.75 72.18 33.3 74.97 30.85 77.75 32.04 80.53 30.97 83.32 34.81 86.1 37.2 88.89 35.64 91.67 37.47 94.46 34.44 97.24 35.96 100.03 35.09 102.81 34.67 105.6 34.78 108.38 34.87 111.17 35.42 113.95 35 116.74 34.11 119.52 31.72 122.3 35.1 125.09 33.14 127.87 33.94 130.66 31.99 133.44 33.55 136.23 36.07 139.01 35.64 141.8 33.73 144.58 31.27 147.37 34.44\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#C71585\" id=\"fig-1035657d02684b2ea92231707539c377-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 39.33 16.49 35.41 19.27 35.33 22.06 37 24.84 35.12 27.63 38.02 30.41 40.13 33.2 39.38 35.98 42.52 38.76 40.99 41.55 40.45 44.33 41.6 47.12 39.43 49.9 39.61 52.69 39.63 55.47 41.83 58.26 41.43 61.04 42.85 63.83 43.83 66.61 41.38 69.4 42.26 72.18 39.8 74.97 38.8 77.75 41.43 80.53 44.57 83.32 46.9 86.1 49.35 88.89 48.35 91.67 49.02 94.46 48.54 97.24 44.58 100.03 42.07 102.81 41 105.6 43.05 108.38 43.63 111.17 40.47 113.95 37.96 116.74 40.49 119.52 41.2 122.3 44.03 125.09 41.56 127.87 40.06 130.66 38.8 133.44 37.48 136.23 40.95 139.01 41.66 141.8 39.55 144.58 40.92 147.37 41.05\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#48BC8D\" id=\"fig-1035657d02684b2ea92231707539c377-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,47.42 L 13.7 49.95 16.49 50.03 19.27 49.69 22.06 49.53 24.84 48.43 27.63 43.53 30.41 42.91 33.2 43.38 35.98 42.02 38.76 42.18 41.55 43.89 44.33 44.15 47.12 42.32 49.9 42.02 52.69 40.4 55.47 41.32 58.26 45.02 61.04 43.88 63.83 42.37 66.61 42.67 69.4 44.91 72.18 48.39 74.97 46.7 77.75 47.88 80.53 52.05 83.32 51.25 86.1 50.34 88.89 52.32 91.67 51.73 94.46 54.01 97.24 53.44 100.03 52.78 102.81 50.41 105.6 53.32 108.38 53.58 111.17 52.33 113.95 51.73 116.74 50.25 119.52 47.41 122.3 47.03 125.09 47.04 127.87 49.91 130.66 50.21 133.44 51.41 136.23 49.86 139.01 50.4 141.8 48.21 144.58 50.56 147.37 46.53\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D69DD6\" id=\"fig-1035657d02684b2ea92231707539c377-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,53.77 L 13.7 54.68 16.49 55.34 19.27 56.33 22.06 57.7 24.84 58.94 27.63 59.98 30.41 60.35 33.2 57.9 35.98 58.52 38.76 58.35 41.55 56.38 44.33 56.6 47.12 57.31 49.9 54.98 52.69 57.43 55.47 58.04 58.26 61.04 61.04 60.4 63.83 59.95 66.61 58.9 69.4 57.21 72.18 55.8 74.97 57.19 77.75 60.61 80.53 59.61 83.32 59.21 86.1 53.95 88.89 55.51 91.67 56.89 94.46 60.9 97.24 63.36 100.03 59.75 102.81 61.06 105.6 62.69 108.38 61.2 111.17 61.58 113.95 62.37 116.74 64.04 119.52 63.2 122.3 63.66 125.09 63.26 127.87 56.98 130.66 56.41 133.44 56.08 136.23 56.73 139.01 57.14 141.8 59.41 144.58 52.32 147.37 54.11\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#36BFBC\" id=\"fig-1035657d02684b2ea92231707539c377-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 56.96 16.49 56.17 19.27 56.7 22.06 56.42 24.84 54.8 27.63 52.9 30.41 53.38 33.2 57.02 35.98 59.34 38.76 57.8 41.55 60.22 44.33 62.34 47.12 61.55 49.9 63.9 52.69 62.92 55.47 64.63 58.26 66.08 61.04 66.15 63.83 63.93 66.61 64.73 69.4 66.77 72.18 68.61 74.97 69.4 77.75 69.65 80.53 67.93 83.32 68.46 86.1 68.27 88.89 66.9 91.67 64.91 94.46 67.02 97.24 66.44 100.03 65.38 102.81 65.91 105.6 63.52 108.38 59.4 111.17 63.03 113.95 62.65 116.74 62.02 119.52 64.93 122.3 66.54 125.09 64.83 127.87 66.45 130.66 66.27 133.44 65.16 136.23 65.15 139.01 64.84 141.8 63.01 144.58 63.41 147.37 63.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B068C9\" id=\"fig-1035657d02684b2ea92231707539c377-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,66.46 L 13.7 68.62 16.49 63.42 19.27 62.37 22.06 63.93 24.84 68.22 27.63 70.44 30.41 70.26 33.2 68.7 35.98 71.64 38.76 73.03 41.55 70.08 44.33 65.5 47.12 65.32 49.9 65.49 52.69 66.89 55.47 67.14 58.26 65.74 61.04 63.9 63.83 61.26 66.61 60.71 69.4 62.69 72.18 62.47 74.97 60.64 77.75 65.44 80.53 65.18 83.32 68.73 86.1 71.86 88.89 67.46 91.67 66.85 94.46 64.78 97.24 63.92 100.03 65.45 102.81 63.97 105.6 64.19 108.38 64.95 111.17 65.14 113.95 65.99 116.74 66.06 119.52 65.63 122.3 65.82 125.09 66.4 127.87 66.53 130.66 69.97 133.44 71.18 136.23 67.1 139.01 63.01 141.8 61.63 144.58 64.53 147.37 64.66\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#099493\" id=\"fig-1035657d02684b2ea92231707539c377-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,72.8 L 13.7 74.33 16.49 73.55 19.27 71.89 22.06 71.69 24.84 66.75 27.63 70.77 30.41 67.32 33.2 69.17 35.98 69.32 38.76 68.49 41.55 67.68 44.33 65.97 47.12 64.61 49.9 66.83 52.69 70.86 55.47 69.46 58.26 69.61 61.04 68.95 63.83 69.76 66.61 71.59 69.4 71.11 72.18 70.35 74.97 69.28 77.75 68.52 80.53 67.67 83.32 63 86.1 63.63 88.89 64.01 91.67 63.18 94.46 64.49 97.24 65.04 100.03 64.37 102.81 62.45 105.6 61.99 108.38 59.45 111.17 63.39 113.95 67.17 116.74 69.52 119.52 68.51 122.3 69.85 125.09 67.28 127.87 69.99 130.66 65.04 133.44 63.59 136.23 66.97 139.01 67.2 141.8 68.09 144.58 65.49 147.37 68.19\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#9CE09C\" id=\"fig-1035657d02684b2ea92231707539c377-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,79.15 L 13.7 78.63 16.49 77.69 19.27 76.02 22.06 76 24.84 75.86 27.63 75.03 30.41 75.02 33.2 75.84 35.98 82.31 38.76 80.83 41.55 81.04 44.33 78.72 47.12 79.47 49.9 77.9 52.69 77.43 55.47 75.3 58.26 72.53 61.04 74.35 63.83 75.3 66.61 77.07 69.4 74.09 72.18 69.76 74.97 67.74 77.75 67.11 80.53 70.71 83.32 69.28 86.1 72.95 88.89 72.97 91.67 70.47 94.46 72.3 97.24 71.58 100.03 69.86 102.81 71.24 105.6 70.24 108.38 72.28 111.17 72.91 113.95 72.5 116.74 70.92 119.52 74.11 122.3 69.64 125.09 71.84 127.87 72.1 130.66 75.37 133.44 72.68 136.23 73.26 139.01 74.57 141.8 75.68 144.58 76.97 147.37 77.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#788AB1\" id=\"fig-1035657d02684b2ea92231707539c377-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,85.5 L 13.7 83.49 16.49 84.34 19.27 85.47 22.06 85.2 24.84 84.83 27.63 79.85 30.41 77.74 33.2 80.94 35.98 82.04 38.76 77.73 41.55 70.73 44.33 71.44 47.12 74.11 49.9 76.53 52.69 79.87 55.47 85.15 58.26 83.82 61.04 82.61 63.83 82.35 66.61 81.88 69.4 83.4 72.18 80.63 74.97 81.85 77.75 81.27 80.53 82.64 83.32 82.13 86.1 80.34 88.89 79.85 91.67 81.97 94.46 85.29 97.24 84.06 100.03 82.26 102.81 85.55 105.6 88.37 108.38 86.11 111.17 84.16 113.95 81.67 116.74 85.42 119.52 83.73 122.3 88.95 125.09 89.02 127.87 84.47 130.66 84.98 133.44 85.05 136.23 86.6 139.01 86.48 141.8 84.06 144.58 81.26 147.37 79.92\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#7C53AA\" id=\"fig-1035657d02684b2ea92231707539c377-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,91.84 L 13.7 89.51 16.49 88.76 19.27 88.72 22.06 85.03 24.84 82.99 27.63 83.66 30.41 84.45 33.2 86.84 35.98 85.25 38.76 87.44 41.55 88.9 44.33 90.73 47.12 87.07 49.9 88.8 52.69 91.43 55.47 90.44 58.26 90.62 61.04 87.21 63.83 88.58 66.61 90.41 69.4 91.47 72.18 91.11 74.97 92.37 77.75 95.17 80.53 95.63 83.32 94.27 86.1 93.6 88.89 90.44 91.67 93.21 94.46 92.84 97.24 90.61 100.03 89.95 102.81 85.31 105.6 85.06 108.38 80.78 111.17 78.72 113.95 79.17 116.74 75.6 119.52 75.34 122.3 70.84 125.09 72.24 127.87 71.98 130.66 73.91 133.44 74.63 136.23 74.22 139.01 75.11 141.8 73.29 144.58 72.03 147.37 71.72\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-1035657d02684b2ea92231707539c377-element-24\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"66.46\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"34.73\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-1035657d02684b2ea92231707539c377-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/html": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFA500\" id=\"fig-1035657d02684b2ea92231707539c377-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-1035657d02684b2ea92231707539c377-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-1035657d02684b2ea92231707539c377-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-1035657d02684b2ea92231707539c377-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-1035657d02684b2ea92231707539c377-element-5\">\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y10</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-1035657d02684b2ea92231707539c377-element-6\">\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#483D8B\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#C71585\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#48BC8E\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#D69DD6\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#36C0BC\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#B068C9\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#099493\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#9CE09C\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#788BB1\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#7C53AA\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-1035657d02684b2ea92231707539c377-element-7\">\n",
" <text x=\"150.37\" y=\"32.24\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-1035657d02684b2ea92231707539c377-element-9)\" id=\"fig-1035657d02684b2ea92231707539c377-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-1035657d02684b2ea92231707539c377-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-1035657d02684b2ea92231707539c377-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,66.46 L 149.37 66.46\"/>\n",
" <path fill=\"none\" d=\"M6.13,34.73 L 149.37 34.73\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-1035657d02684b2ea92231707539c377-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-1035657d02684b2ea92231707539c377-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#483D8B\" id=\"fig-1035657d02684b2ea92231707539c377-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,34.73 L 13.7 33.33 16.49 36.07 19.27 32.92 22.06 31.24 24.84 30.4 27.63 31.05 30.41 35.32 33.2 34.89 35.98 33.26 38.76 36.69 41.55 33.76 44.33 32.98 47.12 33.28 49.9 31.32 52.69 32.53 55.47 34.26 58.26 32.66 61.04 33.01 63.83 35.18 66.61 33.38 69.4 29.75 72.18 33.3 74.97 30.85 77.75 32.04 80.53 30.97 83.32 34.81 86.1 37.2 88.89 35.64 91.67 37.47 94.46 34.44 97.24 35.96 100.03 35.09 102.81 34.67 105.6 34.78 108.38 34.87 111.17 35.42 113.95 35 116.74 34.11 119.52 31.72 122.3 35.1 125.09 33.14 127.87 33.94 130.66 31.99 133.44 33.55 136.23 36.07 139.01 35.64 141.8 33.73 144.58 31.27 147.37 34.44\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#C71585\" id=\"fig-1035657d02684b2ea92231707539c377-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 39.33 16.49 35.41 19.27 35.33 22.06 37 24.84 35.12 27.63 38.02 30.41 40.13 33.2 39.38 35.98 42.52 38.76 40.99 41.55 40.45 44.33 41.6 47.12 39.43 49.9 39.61 52.69 39.63 55.47 41.83 58.26 41.43 61.04 42.85 63.83 43.83 66.61 41.38 69.4 42.26 72.18 39.8 74.97 38.8 77.75 41.43 80.53 44.57 83.32 46.9 86.1 49.35 88.89 48.35 91.67 49.02 94.46 48.54 97.24 44.58 100.03 42.07 102.81 41 105.6 43.05 108.38 43.63 111.17 40.47 113.95 37.96 116.74 40.49 119.52 41.2 122.3 44.03 125.09 41.56 127.87 40.06 130.66 38.8 133.44 37.48 136.23 40.95 139.01 41.66 141.8 39.55 144.58 40.92 147.37 41.05\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#48BC8D\" id=\"fig-1035657d02684b2ea92231707539c377-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,47.42 L 13.7 49.95 16.49 50.03 19.27 49.69 22.06 49.53 24.84 48.43 27.63 43.53 30.41 42.91 33.2 43.38 35.98 42.02 38.76 42.18 41.55 43.89 44.33 44.15 47.12 42.32 49.9 42.02 52.69 40.4 55.47 41.32 58.26 45.02 61.04 43.88 63.83 42.37 66.61 42.67 69.4 44.91 72.18 48.39 74.97 46.7 77.75 47.88 80.53 52.05 83.32 51.25 86.1 50.34 88.89 52.32 91.67 51.73 94.46 54.01 97.24 53.44 100.03 52.78 102.81 50.41 105.6 53.32 108.38 53.58 111.17 52.33 113.95 51.73 116.74 50.25 119.52 47.41 122.3 47.03 125.09 47.04 127.87 49.91 130.66 50.21 133.44 51.41 136.23 49.86 139.01 50.4 141.8 48.21 144.58 50.56 147.37 46.53\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D69DD6\" id=\"fig-1035657d02684b2ea92231707539c377-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,53.77 L 13.7 54.68 16.49 55.34 19.27 56.33 22.06 57.7 24.84 58.94 27.63 59.98 30.41 60.35 33.2 57.9 35.98 58.52 38.76 58.35 41.55 56.38 44.33 56.6 47.12 57.31 49.9 54.98 52.69 57.43 55.47 58.04 58.26 61.04 61.04 60.4 63.83 59.95 66.61 58.9 69.4 57.21 72.18 55.8 74.97 57.19 77.75 60.61 80.53 59.61 83.32 59.21 86.1 53.95 88.89 55.51 91.67 56.89 94.46 60.9 97.24 63.36 100.03 59.75 102.81 61.06 105.6 62.69 108.38 61.2 111.17 61.58 113.95 62.37 116.74 64.04 119.52 63.2 122.3 63.66 125.09 63.26 127.87 56.98 130.66 56.41 133.44 56.08 136.23 56.73 139.01 57.14 141.8 59.41 144.58 52.32 147.37 54.11\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#36BFBC\" id=\"fig-1035657d02684b2ea92231707539c377-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 56.96 16.49 56.17 19.27 56.7 22.06 56.42 24.84 54.8 27.63 52.9 30.41 53.38 33.2 57.02 35.98 59.34 38.76 57.8 41.55 60.22 44.33 62.34 47.12 61.55 49.9 63.9 52.69 62.92 55.47 64.63 58.26 66.08 61.04 66.15 63.83 63.93 66.61 64.73 69.4 66.77 72.18 68.61 74.97 69.4 77.75 69.65 80.53 67.93 83.32 68.46 86.1 68.27 88.89 66.9 91.67 64.91 94.46 67.02 97.24 66.44 100.03 65.38 102.81 65.91 105.6 63.52 108.38 59.4 111.17 63.03 113.95 62.65 116.74 62.02 119.52 64.93 122.3 66.54 125.09 64.83 127.87 66.45 130.66 66.27 133.44 65.16 136.23 65.15 139.01 64.84 141.8 63.01 144.58 63.41 147.37 63.15\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B068C9\" id=\"fig-1035657d02684b2ea92231707539c377-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,66.46 L 13.7 68.62 16.49 63.42 19.27 62.37 22.06 63.93 24.84 68.22 27.63 70.44 30.41 70.26 33.2 68.7 35.98 71.64 38.76 73.03 41.55 70.08 44.33 65.5 47.12 65.32 49.9 65.49 52.69 66.89 55.47 67.14 58.26 65.74 61.04 63.9 63.83 61.26 66.61 60.71 69.4 62.69 72.18 62.47 74.97 60.64 77.75 65.44 80.53 65.18 83.32 68.73 86.1 71.86 88.89 67.46 91.67 66.85 94.46 64.78 97.24 63.92 100.03 65.45 102.81 63.97 105.6 64.19 108.38 64.95 111.17 65.14 113.95 65.99 116.74 66.06 119.52 65.63 122.3 65.82 125.09 66.4 127.87 66.53 130.66 69.97 133.44 71.18 136.23 67.1 139.01 63.01 141.8 61.63 144.58 64.53 147.37 64.66\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#099493\" id=\"fig-1035657d02684b2ea92231707539c377-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,72.8 L 13.7 74.33 16.49 73.55 19.27 71.89 22.06 71.69 24.84 66.75 27.63 70.77 30.41 67.32 33.2 69.17 35.98 69.32 38.76 68.49 41.55 67.68 44.33 65.97 47.12 64.61 49.9 66.83 52.69 70.86 55.47 69.46 58.26 69.61 61.04 68.95 63.83 69.76 66.61 71.59 69.4 71.11 72.18 70.35 74.97 69.28 77.75 68.52 80.53 67.67 83.32 63 86.1 63.63 88.89 64.01 91.67 63.18 94.46 64.49 97.24 65.04 100.03 64.37 102.81 62.45 105.6 61.99 108.38 59.45 111.17 63.39 113.95 67.17 116.74 69.52 119.52 68.51 122.3 69.85 125.09 67.28 127.87 69.99 130.66 65.04 133.44 63.59 136.23 66.97 139.01 67.2 141.8 68.09 144.58 65.49 147.37 68.19\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#9CE09C\" id=\"fig-1035657d02684b2ea92231707539c377-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,79.15 L 13.7 78.63 16.49 77.69 19.27 76.02 22.06 76 24.84 75.86 27.63 75.03 30.41 75.02 33.2 75.84 35.98 82.31 38.76 80.83 41.55 81.04 44.33 78.72 47.12 79.47 49.9 77.9 52.69 77.43 55.47 75.3 58.26 72.53 61.04 74.35 63.83 75.3 66.61 77.07 69.4 74.09 72.18 69.76 74.97 67.74 77.75 67.11 80.53 70.71 83.32 69.28 86.1 72.95 88.89 72.97 91.67 70.47 94.46 72.3 97.24 71.58 100.03 69.86 102.81 71.24 105.6 70.24 108.38 72.28 111.17 72.91 113.95 72.5 116.74 70.92 119.52 74.11 122.3 69.64 125.09 71.84 127.87 72.1 130.66 75.37 133.44 72.68 136.23 73.26 139.01 74.57 141.8 75.68 144.58 76.97 147.37 77.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#788AB1\" id=\"fig-1035657d02684b2ea92231707539c377-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,85.5 L 13.7 83.49 16.49 84.34 19.27 85.47 22.06 85.2 24.84 84.83 27.63 79.85 30.41 77.74 33.2 80.94 35.98 82.04 38.76 77.73 41.55 70.73 44.33 71.44 47.12 74.11 49.9 76.53 52.69 79.87 55.47 85.15 58.26 83.82 61.04 82.61 63.83 82.35 66.61 81.88 69.4 83.4 72.18 80.63 74.97 81.85 77.75 81.27 80.53 82.64 83.32 82.13 86.1 80.34 88.89 79.85 91.67 81.97 94.46 85.29 97.24 84.06 100.03 82.26 102.81 85.55 105.6 88.37 108.38 86.11 111.17 84.16 113.95 81.67 116.74 85.42 119.52 83.73 122.3 88.95 125.09 89.02 127.87 84.47 130.66 84.98 133.44 85.05 136.23 86.6 139.01 86.48 141.8 84.06 144.58 81.26 147.37 79.92\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#7C53AA\" id=\"fig-1035657d02684b2ea92231707539c377-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,91.84 L 13.7 89.51 16.49 88.76 19.27 88.72 22.06 85.03 24.84 82.99 27.63 83.66 30.41 84.45 33.2 86.84 35.98 85.25 38.76 87.44 41.55 88.9 44.33 90.73 47.12 87.07 49.9 88.8 52.69 91.43 55.47 90.44 58.26 90.62 61.04 87.21 63.83 88.58 66.61 90.41 69.4 91.47 72.18 91.11 74.97 92.37 77.75 95.17 80.53 95.63 83.32 94.27 86.1 93.6 88.89 90.44 91.67 93.21 94.46 92.84 97.24 90.61 100.03 89.95 102.81 85.31 105.6 85.06 108.38 80.78 111.17 78.72 113.95 79.17 116.74 75.6 119.52 75.34 122.3 70.84 125.09 72.24 127.87 71.98 130.66 73.91 133.44 74.63 136.23 74.22 139.01 75.11 141.8 73.29 144.58 72.03 147.37 71.72\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-1035657d02684b2ea92231707539c377-element-24\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"66.46\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"34.73\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-1035657d02684b2ea92231707539c377-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/plain": [
"Compose.SVG(158.73015873015876,105.82010582010584,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=13241, maxsize=Inf, ptr=13242, mark=-1),nothing,\"fig-1035657d02684b2ea92231707539c377\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(Compose.Property{Compose.FillPrimitive}=>nothing),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-1035657d02684b2ea92231707539c377-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-1035657d02684b2ea92231707539c377-element-24\",false,24,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-1035657d02684b2ea92231707539c377-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-1035657d02684b2ea92231707539c377-element-8\\\")\\n .init_gadfly();\"],false,:none)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd2AUZd7Hn6nb+2ZLCqmQEEJvoYfewQKIogKKBRVPQE/vVTw9Pc/e9dTzznJnA1EUpUnvHQIESICQns3uZnud+v4xIUZKSJYswyTz+YsNs8/zJTwzzzy/CrFfARERERERkQ4LzLcAERERERERPhE3QhERERGRDk0cN8KINJuFJfEbvx1DomYSNfOtQpCwsCQizeZbhVAJSXvwLUGoRCWZDCznW4UgoVADiVn51RDHjdBufJBEDPEbvx3jVw7zq0bwrUKQUIjeblzItwqhUmN5hm8JQsWhn09gyXyrECRBxUCvegK/GtD4DS0PFcJMJH7jt2NwsgoAiG8VggRiIvJwId8qhIoytIdvCUJFHjmBMH6+VQgSjKyFmRC/GiAxalREREREpCMTR9OoTzWahpXxG78dE5HmRKQ5fKsQJAyi8KnG8K1CqLg10/mWIFT8ymEUoudbhSCJSjLCsu78amhuIwxGQeLDDX9+fwNQzAfGB4DxAbC0ZYdIj2YKjaivWWFHJCTNC8nEsIVYoGG1RzOFbxVCpV43h28JQsWrGk+hRr5VCJKINCco78evhiv6CF9ZDd5eB2yeho+na8D/HgY3t0at3r0cpb3XJq+DoggdApDoI4wFhPbp3cv5ViFUTPWf8C1BqOi8P2FUHd8qBIksfFwCn+NXwxV9hDQDWBZgdwPugjEvgUAUnKgEvVLBp/eBnMQ/XgwrAYQgtA8AQCNqwNIIE2AByiAKiCVhJsTCEgaSwkwYYgkGVrAQCtMBCNDckRGhfQCCaVgFAQqmgyyEMbAcYqIwG2FgGQvhMBOEWKrJLCyNaADLIIy/RbPAKgDBCO1tySwMomABijB+wDLNzcJGICbKwHIWwmA6CAHq6rNAUhaWwEwIYsmrzwLhDCxr8SwoAysgloCZcAtmQRhECbEUzASvNssf/0ObneWi/9CrzHLxf2jzs1xx2Vw6S7PL5tJZWrQ4G2Zp6eLkZmnx4kTUAEAtXJwNs1x1cf5hljgszhhugZYuTm6WlizOhllasjgvzNKyxdkwSwsXZwhiyRYuzguztHBxEjATbunibJilhYtTGM9nFkJhJtzme95lQZ679fJ/AUMAhsHzPwDughNV4IFR4K27gN0H3loL7in4w8U20+Me7c3qwFYAQGXSayFZD3Vgm838eL3udgZWysOFPtVYe8JDCOWRkBUOwwKX/nZ5+CjC+KqtL/jUYzW+dSSaUJ34AoGnKYN7Q4p+NtNSACBZtNitneE03INHKzCqrs60xK29RRXYDrFMZfLrIXkvdWBrVJJZa3maRvXy8FGfcpQ94WGE9kmIcof+Hpf+DnnkOEJ7a6zPe9UTtL61FKqvTnwxiqcrg3tD8j428+MAILLoabfmJqdxAU5UYlSdLWGxW3erKrATZonK5DdCij5q/xZCklZjWUahBkX4iF9ZYE94BKYDEuK8Uz+3Xn+nLHICpT01lr96NZO1vjUUoq1O/HtUkqUM7g7Le9rMT7AQJouc8minO4wLMKIap2rrEh5162YoA3tgNlyZ/EZQMUDt30TgnWqsz1KYiYVwr3qSS387zIYl0VKn/q56/V2y6CmUdtdal3k0UzS+9Qyiqkp8KSLJVgV3hWXdbeY/s7BEFinyaKY4jPdjpA0na+oSHnHrZiqD+2AmVJn0WkAxSOPfSOIpNda/kphFEToYUA6pM/0JYiJS4ly9bk694W5ptASl62st/+fRTNP41zOwvCrp5Yg0RxXcGZF1qzU/ycIyWeSEVzPRYXwAo+pwstpufMilm6UI7UeYYFXSywHFUI3/NxJLrLE+R2JWRehgQDGozvQYxJLS6Nl67ex6w1xp9CxKOW3mpzza6ZrARhbCq5JeCUu7qYI7ItKcWstfGFghjxz3qic4Eh5EKSdOVtmND7p0tynChxAmUJX4kl9ZoPFvoDBLtfV5AktWhvYHFQPrTIsZSBZSDIhIuzgN8yTRUoxy2Mx/9mhvUge2AAiuTHo1LOuhCmyLSrvUWv6PhtXyyDGfapw9YSFCuSVkhcN4n0t3uzx8BGH81Ykv+lSjNb71FGqqTvwbgaUqQ/uC8v515iUQYKXREpd2ptMwX0KUYZS9zrzUrb1ZHdwKAFOZ9Dp3C0QlWbWWp2lEKw8X+pSj7QkPI7RHQlQ4DPe69HfII4UI7au2Pu9Vj9f61lKooTrxxSiWpgztDcn72sxLAYBl0dNu7S1Ow73c4qwzLXZrb1EFdkAsVZn8ekjeWx3YEsUzaq3P0KhBHj7iV42yJzwM0wEJUeY0zK/Xz2lYnNbnvJpJWt8aCtFVJ/49imcqg3tCst428+MAwmSRU27tdKdxgV8xVOPfaEt4zK27VRnYDbORyuQ3g/J+6sBmAk+tsS6j0ARF+LBfMcJuWgQzQQlx3qm/u15/pyx6EqXdNZZnvZopWt9aGtFUJb4UwTurgrvDsh42859ZCJNFTno0Ux3G+zCiBqdq6xIWuXUzG26BpNe5W4DEU7hbQBE6FFAOrTM9CjFhKVFar7+zXn+XNHIapV21lqc9mqka3wYGllcl/SMizVYFd4WleTbLkywslUWKPJrJDuP93OKsMz7s1s1SBvfDTKgq6dWAYrDGv5HEk2usf21YnMrBdaY/QSwhjZ6t191Rb7hbSpxBqfpa81882mka/28sIq1KfDkszVUFd0RkubXmpxoWp2aCw/ggSjlwsspuXGgzPyGPHsfIuqrEfwSUwzX+DSRmrbE+T+JJitCBoDK/zvQYBChp9IxLN9tpmHfhFnjSo52u9m9iIbQq6dWwLE8V2B6RZtda/sIgSnn4uE893m5ciFL1OFnpMN7v0s3mboHqxL/7lCM1/vUUZq62/o3AU5Sh/UHFgDrTEggw0miJSzvLaZgviZ7HKMdln89Raeday//RiIb353NFyvtu3Uy95/uLns8B5TB5+Hj8Nr+mXCVqFJoDLrrAHwHWh0DgP1cfuiL5LUvdazhZc00COyQu7QwAwaKJLwZIzFprfrJT1WN8CxEkZ9OWZ5XN4luFIKmyvmh0fSmNlvAtRHh4NZNI1Gys/4xHDS3KI4ySoMdfwOqloIsVbDgG+mW0aGiL/U2MclyTuo6K2r9JzCOMDZRyWuxv8K1CqKTUPsW3BKFicn6IUi6+VQgSZWAXC8Uxo70ltGh6CQbevgvMeAfQDLBqwX/ub9HQOFF5TdI6MCjt5luCUIFYUlx4MSOJlvItQaiIpq+YQW6AmMo4JtRXJb5kdryHkbXxmqD94tFMYwGs867iW4jwIDFLXcKjyTX/x7cQQXI+9T/p5ffwrUKQ1JifNni+lUR5jn4UIj71WBJJMLi/5lFDHA+kDCxjRfteTDAQDiCxMUhsQGLt45ihIbECRowwsIwFCN8qBAkLYby3ZxBLrImIiIiIdGjieOygUAMbzxNnO4ZBFAyi4FuFIGEBSqFiz5MYEZt/xQyF6FkI41uFIGFgOQ2r+NUQx42wxvIMiZniN347xqOa6FFP5luFIKGwhBrLMr5VCJXy5Pf4liBUbKYlUTydbxWCxK8qcOtm8Kshjic2aaQEZqPxG78dg1F1cX1HacdATFTM5YoZeeQ65S+3P6TEOZgJ8q1CkKCUEzAUvxpEH6GIiIiISIcmjseOkKwnA8viN347hsCSCTyFbxWChIFlIVkvvlUIlYAin28JQiUsyxO7zsUGiVmjeBq/GuK4EToN8yhEF7/x2zEBRX5AMYhvFYKERrROwzy+VQgVW8ISviUIlXrtbBJLvPp1IpcQkvf2q0byqyGOPkK1fxPCBOI3fjtGFi1mWTEFMxZgOqD2b+JbhVARazjEjCqwHaXFEmuxIImWogTPHaxEH6GIiIiISIcmjqZRl24WjWjjN347Jijrw3vLZoFCIxqX7ja+VQgVh7FldYRFLsGtmS5mYcZGWJYXUAzmV0McN8KAYhAtFruKiagkIyppWY8PkT/CwHLRvRozXuUYviUIlaC8P41o+FYhSAi8U0Saza+GKzbmvXYw0oaT1RDLc4KIEEFoH05WcR2lRVoFBGicqMIoG99CBAlOVuJkFd8qBAlG23GiEmYJvoUID4QJ4EQlSnt41CD6CEVEREREOjRxNI3aTEspNCF+47djfKoxPvVYvlUIEgo12kxL+VYhVCoTX+ZbglCxGxcSeCe+VQiSgHKIRzOVXw1xTJ8g8GRGrEIbExSiFdswxQYLYWItgpiJ4qJnOkYILImBpHyrECQ0oqFQI78a4mgaZWA5zEYAy8RrgvYLC2EAQJDob4gBCGYgKcyE+NYhSBhEAdNiwcxYYGAZxBAQoPkWIjxuhMddHE+E4sMoZiCW5FuCYGEZmBUXXoyIu2DMwEyYbwlC5UZ43MXR/laR/BYh1hyKCZd2hks3i28VgoTErBXJb/OtQqicTVvOtwShUmV9MSLpwrcKQeLVTHIa5vOrIY4nQpRyQaxoKIgFhAmyYhum2GBplKrnW4RQwSieK10JF5R2ib6M2ICZEMx3qpiYPiEiIiIi0qGJ47EjIs1mYUn8xm/HkKhZLNcUGyws4b1KhXAJSXvwLUGoRCWZjFhIKyYo1EBiVn41xHEjtBsfJBFD/MZvx/iVw/yqEXyrECQUorcbF/KtQqjUWJ7hW4JQcejnE1gy3yoESVAx0KuewK+GOPoI5aFCmInEb/x2DE5WASC2YYoFiInIw4V8qxAqytAeviUIFXnkBML4+VYhSDCylvcUA9FHKCIiIiLSoYmjadSnGk3DyviN346JSHMi0hy+VQgSBlH4VGILhRhxa6bzLUGo+JXDKETPtwpBEpVkhGXd+dUQx43Qo5lCI+r4jd+OCUnzQjIxbCEWaFjt0UzhW4VQqdfN4VuCUPGqxvNeJ0ygRKQ5vLdfjWMbJoT2SYiKG6FqgOCAmTBO1aK0m28hwgMCLErV42Ql30IECUq7JUQp3yoECcL4JWQFzEb5FiI8YDaCUTZ+039FH6GIiIiISIcmjqZRp36eaDSPjYAiX2yzHhsUouO9XJNwsZkW8y1BqLh0s3lPhhMoIXlvv6qAXw1x3AhD8p4MLPYliQUCSxZ7CcUGC0tDsp58qxAqAbn4+hUjIWkeDav4ViFISMwaxdP51RBH0yiBp2CkTfQRxgCF6ACAUNrFtxDhwUIYiVlwQvQRxkJUkiGJij7CWCCwRJRywayYOd1qaETDQqjoIxQREREREeGNOJpGayzLxIKZseFVT/SoJ/OtQpCQqKnGsoxvFUKlPPk9viUIFZtpSRRP41uFIPGrClzauGUvtIw4llijUD0LIfEbvx1DwwoAiW2YYgJCKFSscBsj4ptrzFCInoVwvlUIEgaWM3xnnIumURERERGRDk0cjx0UamDjeeJsxzCIgkEUfKsQJCxAxRNhzIgnwpihED0LYXyrECQMLOc94DauPsJnSMwUv/HbMR6V6COMEQpLEH2EMSP6CGPGZlrCew6AQPGrCty6GfxqiOOJDSeqYDF3IiZQ2gMgsQ1TLEAsKeZOxIxYXy1mcLJazJ2IDYT2soDnaBLRRygiIiIi0qGJZ2UZWU8GlsVv/HaMWFkmZhhYFpL14luFUAko8vmWIFTCsjyx61xskJiV98yTeNYaNcyjEF38xm/HiLVGY4ZGtE7DPL5VCBVbwhK+JQiVeu1sEkvkW4UgCcl7+1Uj+dUQRx+h2r8JYQLxG78dI4sWs6zoI4wFmA6o/Zv4ViFUdN5VfEsQKqrAdrEmYmxIoqUoUcevBtFHKCIiIiLSoRE71N+IhGXdQ1KxQ30s0LDKo5nKtwqhUq+7g28JQsWrGid2qI+NiDQnKOvLr4Y4boQ+1WjRexwbYUl2RJbDtwpBwiBKn2o03yqEiltzE98ShIpfOVxsvxobUUlGWM7zez/yXNyKnWKkDSerIZaK1wTtF4T24WQVQvv4FiI8IEDjRBVG2fgWIkhwshInq/hWIUgw2o4TlTBL8C1EeCBMACcqUdrDowbRRygiIiIi0qGJo2nUZlpKoQnxG78d41ON8anH8q1CkFCo0WZayrcKoVKZ+DLfEoSK3biQwDvxrUKQBJRDePfrxzF9gsCTGbEKbUxQiFZswxQbLISJtQhiJopn8C1BqBBYEgNJ+VYhSGhEw3ucURxNoxRqQCgvBEQfYavhWk/AdJBvIcKDBSiNalCqnm8hgoREzRjFc0aXQKEQPcL4IbG6cuthYDkLEITx86hB9BGKiIiIiHRo4mh/q0h+ixBrDsWESzvDpZvFtwpBQmLWiuS3+VYhVM6mLedbglCpsr4YkXThW4Ug8WomOQ3z+dUQRx8hSrkglo7f+O0YhAmy8XxHac+wtGgXjRnRLhozKO2CxNyJmICZEMx3qphoGhURERER6dDE8dhB4CmsGDUaExSiE6tUxIYYNXotRCVi1GiMEFiiGDUaGzSioVADvxrimke4hBTzCGPCpxrtU4/hW4UgEfMIr4VKq5hHGCN240NiHmFsBJRDPJpp/GqIo49QHiqEmUj8xm/H4GQVAGIbpliAmIg8XMi3CqGiDO3hW4JQkUdO8JsAIFwwshZmQvxqEH2EIiIiIiIdGrH7xI1IRJoTkYrdJ2KBQRQ+lWhVjhG3ZjrfEoSKXzlM9OvHRlSSEZZ151eD2I/wRiQkzQvJxH6EsUDDao9mCt8qhEq9bg7fEoSKVzWe9zphAiUizQnK+/GrIY5tmCCWkkRLxb4kMQABBqPqUMrJtxDhAUEszIQlRCnfQgQJxBKyaDHfKgQJBEgJUQ6zYb6FCA8I0BjlxCg7nxpEH6GIiIiISEcmjqZRp36eaDSPjYAiP6AYxLcKQUIhOt7LNQkXm2kx3xKEiks3m8SsfKsQJCF5b7+qgF8NcdwIQ/KeDCxmmMYCgSWLWeGxwcLSkKwn3yqESkAuvn7FSEiaR8MqvlUIEhKzRvF0fjXE0TRK4CkYaRP7ksQAhegAgFDaxbcQ4cFCGIlZcKKSbyGCJCrJkERF92osEFgiSrlgVsycbjU0omEhlN8SwaKPUERERESkQxNH02iNZRmJmuM3fjvGq57oUU/mW4UgIVFTjWUZ3yqESnnye3xLECo205Ionsa3CkHiVxW4tHHLXmgZcSyxRqF6FkLiN347hoYVABLbMMUEhPBewFe4iG+uMUMhehbC+VYhSBhYzvCdcS6aRkVEREREOjRxPHZQqIGN54mzHcMgCgZR8K1CkLAAFU+EMSOeCGOGQvRi17nYYGA57wG3cfURPkNipviN347xqEQfYYxQWILoI4wZ0UcYMzbTEt5zAASKX1Xg1s3gV0McT2w4UQWLuRMxgdIeAIltmGIBYkkxdyJmxNJ0MYOT1WLuRGwgtJcFPEeTiD5CEREREZEOTTwry8h6MrAsfuO3Y8TKMjHDwLKQrBffKoRKQJHPtwShEpbliV3nYoPErLxnnsSz1qhhHoXo4jd+O0asNRozNKJ1GubxrUKo2BKW8C1BqNRrZ5NYIt8qBElI3tuvGsmvhjj6CJXBPQgTit/47RhJtFTMI4wNmAkpg3v4ViFUNIGNfEsQKorQAYT28q1CkOBEBUJ5+NUg+ghFRERERDo0Yof6G5GwrHtIKnaojwUaVnk0U/lWIVTqdXfwLUGoeFXjxA71sRGR5gRlffnVEMeN0KcaLXqPYyMsyY7IcvhWIUgYROlTjeZbhVBxa27iW4JQ8SuHi+1XYyMqyQjLeX7vR56LW7FTjLThZDXEUvGaoP2C0D6crEJoH99ChAcEaJyowigb30IECU5W4mQV3yoECUbbcaISZgm+hQgPhAngRCVK8+kmFH2EIiIiIiIdmjiaRu3GhWLVx9jwK4f5lSP4ViFIKERvT3iIbxVCRaxOFzNOw3wCS+JbhSAJKgZ4VeP41RDH9ImItAsDSeI3fjuGRM1i+kRssLAkIunCtwqhEpJ251uCUIngmUpYLJQfCxRq5L3aexxNoxRqQCgvBEQfYavhWk/AdJBvIcKDBSiNalCqnm8hgoREzRhVx7cKQUIheoTxQ2J15dbDwHIWIAjj51GD6CMUEREREenQxNH+VpH8FiHWHIoJl3aGSzeLbxWChMSsFclv861CqJxNW863BKFSZX1RtMnHhlczyWmYz6+GOPoIYSYMATZ+47djYJZgWdFHGBssLBb2ixWEDfAtQajATBgCNN8qBAnEkhAT5VuDaBoVEREREenAxPHYQeApLITFb/x2DIXoxCoVscFCmNjBKmaikgy+JQgVAktkICnfKgQJjWh4T7SL40ZoMy0h0YT4jd+O8alG+9Rj+FYhSCjUaDMt5VuFUKm0vsy3BKFiNz5E4J34ViFIAsohHs00fjXE0UcoDxXCTCR+47djcLIKAIhvFYIEYiLycCHfKoSKMiR2sIoReeQEvwkAwgUja3n364s+QhERERGRDk0cTaMBxSBGLLUQE1E8XfTWxAYDKwKKwXyrECo+lWiQj5GgvD+NaPhWIUgIPCUizeZXQxw3QpduFiWujJgIyvsG5f34ViFIaER9LSmYNr/+ve23smwHtUvbDffzLUGouDXTea8TJlDCsu68v7zGsQ0TxFKSaKnYlyQGIMBgVB1KOfkWIjwgiIWZsIQojeG7UQr7y+oHDlR0xVAqz3q+zbXd+EAsIYsW861CkECAlBDlMBvmW4jwgACNUU6MsvOpQfQRiohwvLv91rUn8wEACMy8NOWTHonn+FYkIiJyPYijadSpnyfEZDiGhU/a0r7YP+HbQ6OP12REKR5SIQOK/IBi0PWftx1AIbrYyjVtKu7L7YIAAJqBX/5tjjPY4Qz7NtNiviUIFZduNolZ+VYhSELy3n5VAb8a4pg+EZL3VPs3CKXqUJiUHKrM3lfW9UBlV2/49xgfFKYzE6pzzWXdrGW55jKd/HpESBNYMoBgEBRj2VsNC0tDsp6t/VaZy/rejgYnAQSxLAu5w6q/b7jrtWn/RJFWrGCWhaI0JkWF6g4IyAcB8BbfKgRJSJonDx3GQC3fQoQHiVlJ1KwCW3nUEEfTaESaLSHKeC8i1zx1ft2+8tx9ZbnHazNI+uqvBYlqZ66lrJu1LNdSlqK1Q1BciqlyXnexIU4MsLAkiqdJI61wdIUI6aMr/1TtNQIAUvV1C4esWrbmXm4xTO6255FhP7RwHIpG3tw6a3957tjsA1PydidpWu3iPWNPXl88YHLunnQDP8/TkLSHPHKMl6mFTlSSeSPkwwkRCjWwEI6RfL5DdFAfYZUnYVNJ333luefrL2PN0MoCA1JP4Sh5oia93G25UgzhiKyjT43piL++SrcpWeuI00vAdYZloZd+u2tnaXcAgAyLvnPruyla+68nB72//RbugiUjvxubffCq4wQJ6Qvr5xZWZ3EfIYjtl1I8LW9n35SSq/6ifFH55pK+G07351ZjJ13du7e+I0HFznYi7YEgIf1gx83zB65NUHr41nJF4hg1WmNZJo0UI8yN1V02TEq+PDDhjc2zj9VkesKqpn/VSVc3vuuBe/LXPDjk50HpRQM6nZ7Sbc9NPXZ2s5w3q9wQAJ6wim7SFKLcZclKqEnWOtpcpFc9MSLJlkbPtPnI10iIkL6zfca722ZsP9cTAiBFZ8daYzm8DpCoqc60RBXY3sLrfzw2fNXxYdyfnxj9bY/EUgBAl4Qqu19fWp8IADhUld2/02l9sybx+qDmqdUPFNtTm/wMqvEat5zps/VcL8CCFJ0DQy7uUM2y0KHK7M/3T3p324z95V0bV6M3ovRGFANTT7Xwn9CGlCe/p/Wtvf7ztgMqdUsxyoYxN+6znhecQc1fVj9wtLrLkcouI7scxS+5CwAAflVBUN5XFuFhwTcSxxNhRfJblrrXcLImXhO0nu3nen6ye2p9kyAIBGbyLOcHpp3MTy2yaq7S1pyikRJHSpEtbVdpj2J7CgDAoPB+fNvrCryNK8m5tDMABOvdN1ZzuKLa9Nc2317n1zX+RIGHJ+Tsn9J9t0Xl4lFYU0jMWmt+slPVYy25uKg2/anVD1AMAgCY1n3XwiGrGv+KoLClqx4+60wCAJhV7vdufVslvbzVq8xtefbXex0BLfdxSt5uh1+3vyKnqSFBhkXH5hyc2m0X99pk8+t/O93/t+J+jd/iQGCGZhretJ4e9+XQjOMt/4e3CWfTlmeViY0wW407pHp607Jc48lHBn3Ot5YbiDKXddmv9zYGnfVIPPfi5E8vfSP0aiaRqNlY/9l1F/g7HcU0WuE2f7jzpkbLFQAgz1o6qdve/imnlZJWp/4EorIHvnvcFVIDACZ03fenEd+3pdYbD4pB/ndg3IqjBczluiRCEJufVjS9+86egso3cIdUi1Y+Vh9UAwCyzRWvT/vworiYOr/u0e8f80XlAIC+KcUvTPr3pUbOwprMF9bNDRIyAAACM48M+2FC130AgFqv4ZeTg9ef6s/9FQcEsX2SSygGOVaTeZG9PdNYPTb74MjOR97ZNmP3+TwAgFIS/mDmm6Yb2JokwlHuMv917b3cC+Kjw1dOzN17nQWEScmne6Ykax1Tu+1qVWxXXCmsznph/dwg8YeOHAWdj/x51Dc3oFcljqZRBpZDgAZ89+YNk5Iv9k98c8tttT4j9xO93Ldo+A/3Dfol3VCLo5c5ql8VHKUsavf2cz0BAOfqk7pZyyzqtjwSsRAGIPQG6fNZ6TH9dc2928/1ZAEEAFBJQ48VrOidfKbWZ/BFuPBaqMpj2ljcb/f57gjMdNLZEZjhTS4EM7AMYq/iYGNY+G/r5p93WQEAamnwH1M/UUkvfh9SSiIZxtotZ3sDANX6jAwL9Uz6w06/9Uzvl367K0JJAAAyLPrM+C9HZDXU+1ZJw31TSqZ135Wg9Np8em9EyYmr9Rnr/PrGiupqaXBi132Lhv8wp99vOeYKCUr2ST6z9WzvECElaOysPWVM9qHr+dRgEMVVf3UiTTla3fmZXxe4L5i1D1Vmd7eWmlXu6ybgpC3t6V/vO1LV5ZHd1sAAACAASURBVFBl9vZzvYxKb4qOz8x0js0lfV7aeFeUwgEAKmloQs7+YnsnAECZy0owaO/kPzh9boTHXRw3wsqkV2XhY/xWZN92ttdz6+YfqszmjjIIzNzUfccz4/7bxVQJXVsVrU46e7nLUuE2AwAV2dImdN2Pwm32H+nW3hKRdZVFitpqwNhgWeiXk4Nf3HC3I9BgDu2dfObvkz/NtZR1Saia0m1PV0u5N6Kw+Q3ck90TVu0rz11zMj8YlWUlVMf2kkEzMMUgMW+lJGapsf5V41vX/GVf7J+w6UxfAAAEsc+M+7JzQvVlL0vU1CMQU1iTBQAosqVnNnEJf3+04P2dt9AMAgDQy30vTf1X90uK0aAwzf2i8hLPhwhpjdfIvUwgMDOg0+n5+WsfHb5yQOrppjk5EpTsnFC9qaQvCyB7QAdDLOe2vD6cS/1K71lx3aYTOhtO93954xzucc/BsPC+8txhmcdisDO1Fs5O89bWWf5oQ7qXPyrffq7XsZqsNL3NoPDFW8CV+O7IqH/uuolhYACASeV+ZerHo7MPhUnpqbpUAMBJW7pGFsw2VTZe79NMCCgGycNH+RIM4roRhqV5ivARvuKJK9zmf/x218rCEWGy4WyeZy19buLno7scutRIHRvdrec3FPcnKCwQlUdJvF+nNqtNRWKJMBuRRK/fE/BS3CHVSxvv/On4MO5ZjyPUvYN+fXjoj/ILDlEIAoma+lFdDg/PLGRYuMJt4a6MUniRLX1jcT+90peut7Vq0n1luc+vn/fJ7mlrT+bvLO1xpKrLGUdKtSfBE1ZSDCLFyKu+bbCwNIqnK5tNwdxXlvvhrpu5zfuOfhsndt3fzMXdrGXnnIlVXhMA0MGKnCEZx5WSyEe7pn97eDQ3Qidd3SvTPm7mNRyCgEXtGpF1dHT2YRylBqWdXDJy+cTcvZ10dhi+zGnPpHIzAD5ekwkAOFGb3ivpnEl1nQykQXlfjX/j9ZlL0LAs9OWBCZ/umcq9YZuUnoW3ek6XgTCBRym8sKrz6OzDcY0jq/Ik/HXNPdvO9eZerZSSsBQjuC3Z7tetOz2w1m/INlXK8euavcaw8Ac7bl5xdCR3a2QYa16Z9jFnLeuTfKbCY65wmwEAhyqzM4y1KRfeKSnMBAArjZZcT6kX0T59hJtK+r69dSYXBAEA0Mn99+b/Oqrz4Ta3Mm0q7vv6ltkAAAhi37jpg67m8rYaORCVtflLZZTCjtdkHqrscsqeqsTDerk/QenRy31GhVev8BkUPp3Mz/2K9pzPe3vbjAuWT5Cmr31yzDdp+uYSffwR+bpTA1cXDW4aANInueTh4T8mqq+eUVfmtvxr19TDVV2av0wtDZpV7l7JZ+7uvz62I7jNZ1i08k+BqAw0HHD/ddVVESSkf7qQaJimsyVqnZwbDwDQPbH02fGft/n/FM3Af/554UlbGgDApPR8MPPN63DCEGkhBI2+ueW2bWd7cR87J1Q9N/EzvdxX4kh54qeFBIUBAPJTi56d8EXLHzgnbWlmlaslxziWhdacyv/X7qmNRa96Jp19fNS3Miz63eHRPx0fSlzIh5ag5K29ts7stfX6VHiIUPjLG+fsK8vlPvZJLnlm/Jcy7PedmKDRv6x+gFvVEpR8eerHOW33wLxG4rgRhmQ9pdESmInlBvaGFd8XFpiV7il5u1v73SNVnZ9dcy+3CyIwM7Xbrjv7b2jzwM5Glq1ZcLAiGwDQSVf3/oy3r/24WeE2f7h7Vq1H996tb6ilbZB8Uu4yH6rMPlSZfaI2g2i2aAAK01pZQC0LljoTuZ9AEHtT9x3zBq69bNzzpdAMvONcz//sm9S4HeIINbvvppk9t1zJje+LKL48MH7dqYGNAZMtIc9y/v/G/ffSQj8MLItIsq9kZiFodOmPj3CxoEaF9/0Zb2lkLfoNl7kti1cuijQxggEACjofWVKwvK0MDBdh9+seWrGYi7UZmnHs6XH/jccsFxFQ5CuD1zvWQ1j4Iorn183jnuYAgPzUoifHfi1FibAsD4+WbS/p/Nqm27lIqFm9t8wfuOaqA4ZJyUe7pm843R+C2HR9bb9Oxf1STudayi7rHXCHVO9sm7mvvCv3EUOouQPX3dJ9e+OOa/frPts/cdvZXo3RWAaF7+7+68ZmH4yrs9kTVj639h4ulh4AMLrLoccKVlz6quqLypf++EiVJwEAoJEF37z5/US1k8SsDCSREGXxk3dV4mgarbU8JQ8dbq2P0BdRfHVo7Gub7jhWk3WwMkchieSYK1r+9fP11mfWLOBMBCla+0tTPhmTfaiFD/HYyLOWrj81kGJQLiDioniKVhEkZJ/tnfTW1ttqvdogITljTxnZ+TAc0/INErL95bk/Hhv24c6blx8Zdbgqu9ZnoC8X89kUhoVDpNQdavD8GxTeZ8Z9OaXbnpZ77GCITTPYJnTdT9DoGUcKy0I0CxdWZ+083yPdYDP9MYiAYpCfjg97cf3dRbZ07r6FIWZC7r5nx38xudueQekneySeyzTWmJVulSQMQWyEkjSGrdoDuq1ne+eYKy7K0qXQBHvCI5f1EVa4zS+sn1viSAEAoDD9/KT/pOhamgOqlQWsatfO0h6NP5nVe8vDQ3+MX1iQQhKxqut3lPYEAFS4zUaFL+sKjsw2pCLpTdFH2AzVnoSnfn6ASzAFANzUfcfikSu4N6G6hEelRGlnTRFJo0W2dADAybq0RE1980WCuFCXC9HskDusKrKl/1bc/6fjw844UsKkRCcLNJo395XlLluz4JwzifuYpq99cfK/B6efaBruoJBEhmYc79fpdKXHxLn2w6Rkb1m3veW5mcZqY3wch9Ve41OrHyxzWbiPt/XevHDoT5e9NSQoOaDT6W1ne0UoPErhB8tzCrKOkrr8sCyPXx9hHE+ELt0sjW8DQrfUveGPyH84Nvyn40PDpKTpz+/N/3VGr60tGcEZ1Dz2wyIuTVAv97118/um6xK+tbpo8Ic7bgYAoDD9zq3vZhhanTrJstD60wM+3z+xaZlTAMD07jsfHPJTq4Zyh1SvbJxzwpZ+6QELgtjOxqq+KcU9k8+SFOYMapxBjTOgqQ+pnX6tM6ThDIYcwzKPLRq28krJcy2h1Jn47vYZjS+JEMSOzT5476Bf1JIQAGBfeddP90zl3g05eiadvX/w6mZ+eywLuUKqNafyvzk0hts4UYS+b9DqaXm7Gq+hEY1XPUHv/q7pFykGWXF05DeHRjdW0bt/8Oqbe7Q06b6Rj3dNW3V8GAwxDw1bNTn3elSCfWfbjHWnBgIAJCj53q1vxzsg0GG8P8H5SVynEC4najNeWDeXS6eBIeaBwT9P6/77wnNrpiuDezGqjmWh59fP4yyEOEK9Ov3DpoEhjVAM8vXBMd8dGdX4bofCdKM3pykZhpq+nYo51wP3Ewhib+6xY+6Aq9hpdp3v/p89k2ouRMtLUPIvY/43MO1kLP/4K1NYnfXSb3dybhQYYh4aumpyt6vcGiWOlCd/epCzr2SbK56buR2VKJTBVhv/2pAbwkcYiMp+PDZ81fGhoSZJJ0pJuPG5PHfA2tl9Njc/SJCQPv7jw2VuCwBAjkdem/bPDON1yuVnWejPPy08YUsHAGQZq9++5d1WHRRO2tL+ufOmsxde9AAAiWpn4/JdXLB8XM6BFg7lj8ifXP3gRXXjdHJ/3+TiviklfVJKmre1RinMEdDWh9QsC/dKaoO6NiwL/Vo06PP9ExvTidTS4B19N+4v79rUHWjV1C/I/2Vw+okWDnugIue1zbf7I3Lu4+guhx4dvhK/Qk2ys86kt7bManyLR2F6Vp/Nd/b9LQZLEcUgz6+bN7Xb7gHXq+xLlMIWrXys0m0CAGQYat665b24mjdELos7pNpypvfn+ydyL1IyLPrkmK+aKf0TJiWLf1xU7jIDAAwK3zu3vGtQeJteUO1JeHXT7ZxxAgCgwMOLhv8wMO3k0erOB8pzDlTkXFRpoSlGhXfpqO9aeHtSNPLLycFfHxrD3SwIzCwavnJ8TnPRYS0nSmH/2Td59YnB3FupBCWfHPPVoLQWxbrvK8v92/q53EtAfmrRsglfwhB/OVfNb4TBKOi8BNR8AAAANW4w9yNQWQ+S9eDLhSBRd8VvNeLRTFEFtiN0c4fxICH78diwVceGNc277JxQdWe/DT2Tzj6/bv6Rqs7cD+/st2FOv9+uNA5FI8+sWcBZGDirV5/k6xqDVOVJeHjFEs4DN3/gmlm9t7TkW/VBzb/3Ttp6tnejQd+o8N6b/+uA7vTba4fuKE4HAGAI9eq0j1riVQ4R0v/75X7uBIbATJ61tG9ySd+U4nRDLb8ZrK6Q+pPdUxuDC5oixyOz+2y6qfvO1nrabH79i+vvbjQTZRhrlo370qKup2GVX1Wg9a4GABA0+tXBcSsLRzQejjubqhaPWM5XSevYKK1PXPzDIm5pxWAhaBX1ujsM7q+v9LfrTw8wyL1tGB19g1PrNewuy9t9Pu9UXWpTl9tzE/+TZbzYTO1VjVOEDzc207b5DH9a+Sh3fOxsqnp92ofci9plQl0Szy0d9e1FFv7z9dYDFTkHyruesqc2Ne0MzyxcNHxlayOnbD7D078s4N6tIYi9u9/62X03tWqESzldl/rGltsaLTo6mX/ZhC9aFS34y4nBH+y8mfvz+J5nHhvEpyniij7CV1aDOz4ANg/gLlj0BRjcBXz9CHD4wbd7wE39rj60PWGhInTwSj7CECFdcWTkP36bc6gyu9FglWGseXTEygX5vyRrHSjMDMs4dtaZXOM1AgCO1WTSLNIr6eylQ7Es9ObW2/aWdQMAQBC7pGD5kIyWni3aCrU0hMLMkerOAICTtvRhmcfUzRoVSRr9vrDgH7/decaRwoUa4yh5W+8tT439Kiuh2q8c1qNztKiEdYXUDAsfrMwp6Hy0afzVpUQp7Nk1956qSwMAwBDzl7Ff3ZO/ppu1TCf3X2PG5LUjw6JDM453NVecsqcGog3HOBhixnfdv2z8l31TSmLwtCkl4TFdDrlCam4vdIdUm8/0SdfbzAa2Xn+XxrfupC1t2ZoFe8q6Nb6uzh+4dnHBiuarht6A6OR+OR49WJkDAChxpGQlVCVrW93XooXUWJZdyUe4qaTvW1tnbT7Tt6g2Pc1ga8NfI8tCdQF9iSOlsDrrjCOlymOq8iTUhzR2v84flfujiggpIWmUZhAEZmJzmbeKUmfirycHfbRr+hf7Jx6u6uIIaBsLIKQbal+e+nHK5coLOw3zpdESlG4o06iUhLuYK7ee6c2wsCuotvn1Q9JPeMKqVzbN+fHYcC7RCEOo+QPXLhq+UiG5OJRPJw90s5aNyzkwLW9XVkK1BCWjJP7gkJ/uHrA+hvRcpSQ8IqvweE1mfUgDAFRYk+ULK/t1Ko7tyUDRyH8PjX976yxvmCsTAYZmHH9h8r9bW3W5i6mSoPCGIFKZdGT6Th4LcVzxREgzgGUBdjfgLkhZBPa/AKxaUOsBA58FFe/+4WISs7IQhpNVgGUJPAViSYysDcj7o7QXpZwo7aIRNY1oEcqFMAEKTWBgWZ2DfPDbxxrt42l62+xBhwelncTpOgZWUKgBoX0I7QkD00vrZh4sS+Muu6Xv4QX9l0OAaZyFhSWfHZi+4kB/7oI7B+2Z3XsDwgQo1MjAcoy0QSxBYEkAgnGikgUoiSdCTBSj/jALhegYRIVSTpgJkZiFhXAsWsPSgJInApbCyRoWlpCoGWaCKFVPwyoa1SGUG2H8TWcJI8lPrLjjnD0BAJCbWPOPm7/BaRsDyynUCNN+lHZHIKMtmGRzwlUuza+nhti8v1s/BmeeuT9/hUkdJDELzIQYSErDSpcPfvzbWZ6wAgCQbbW9Ou0jHAoSWCKAUJyoZAFM4kkQS2CkLcqqn1s792hFJwAABLGPjtk0rvNOmAmSqJmFJRhZA7EUgacAlsHJahbCScwCM2GUctCwkkb1CO1BaB+FGhhYgZJ2mI00/If+cRYGllFoAkwHUNpFI1oaUaNUPcwESdTEwtJLZsFIzPrHWbx0NPTV0Sk/HMnvail/cNCqFCvbsGwAILBk7j/0j7NoaESD0vUw3ThLLcSSBJYMAMDJKhbCfike+69tw0ka4f7tt/ffM7l/1Tc7Mn893qfxLb57cvXi4V9ZNfW/zwJJKczUdJami/P3WSAIJypZCCWxRIiJYJSdQRQU0rhs9AyiRCkHzIS53xhGVDddnA2zcMvmklvg4sXZMMuli1NPw6qXVo/bX9YFAKCRhV+/6YNkjZ3AUy6zOBtmuXhxElgSgBCcqLj0FuAWJ3cLRPB0dWBbwy1A1ECAIvBOgKWOnNW8uH5uowcLgtgR2SV3919nVVQ1zELVQUz0wuK8MEvDsvn9FqARrStqrq2Ha92qSn9qtcdY61bWePUt6YDWiBQlUYSRoFEMIVEElmIECkWkOAUgLFnryDGcybB4rUYKpx0tvwVCwWi5Q7m3ss+eczl1PvXFT0mIzTbbhqQdnph3FJOrL7s4w7Ie8tBBlPY0XZw/nx730ZYCbpCROaePlKd4LgQBpOrtfx79VYrlcrfAJYuTm+Xixdkwy6WL04vQ3ksXJx1yvLRhDhfiDgAYklm0eMI2CfBe9vl8YZaLFmek2o68tvmOUmdDXIxCErl/xPYxWTthJnxh2VRf9Hy+ZHG6Gp/PKFH36sYZDKp9aMJRbWTXRYuTgSQofZ2KGF/xRAhDAIbB8z80nAif+hb8fRZAYCBBwdPLwbKb/3Cx03CvX1XAeTtt5ieikkxlcA8Ly5yGexhYKoucDCgGu3S3YXQ9Tla7tDO96gkWsL/OLTlfn5hoYhcN/t99BTvx7DspzKQIHw7L8pz6uRCgpNFzAc2Y3H5d7ZXVNW4NAOBUrTVIKvokn7VZnohKOyuDu1cXT/xi12BOxrieZZOm5aC0Byer3NpbvOqJskgRwvjrEhYFFIPVgc00oq0zPUqiVkX4UFia6zTMgwAjjZ71qce4tTfjRCVGOeoNd9f7RlW93aX+YE9qwpiovIsquIvEku3GB2lYJY+cCMoHuvS3I7RfQla4NTd5NZNk0VMI7XOaFnZK1e06zDIs7PCrGFU2Rlbvtw3bUHnT2sJu3+wf8tmeMauP9tx2pvuRqi6BaIMpOE1fe+9s2YRhsIXcSOKJduNCGlapgrui0i4Ry4w8w6GdJ5MYFq4PKB0R8+DUI3bjwoByqDqwhYEVdabFJJ4kCRz++6b7DpV14gacP7ak77DeGFmLUXUu/RyfaowidAhmwzbzE2FpN1VwB4mZ7QkPUbBWHjkWkvep189BmKCEKPdopno0U6TREpT2OIwP+JXDVYFtLCK1mZYQeCdlaH9UkuUw3MtCiCxa7FcOc+tmYlQdRtpcutt96rFc8QSbaWlY1lMV2E5hZnvCwxSil4cLw/Je9fo7YSYip86l5uYNGmS9pcv3CZJyh/E+v3KEKrCdhTCbaSmBpylD+6KSTIdhAQvjssipgHKYSzcTpZw4WePW3eZVj5OHCxEmaDMtDsn7qAPbKDRB1W1W77Sqk2dAkJACAB2vTllzpPPJ2oZztgIP3zkxeOtUnZXeCABkMz8exdOVob1RPM1hvI+BJbLIqYBiiEs368LinOVVj5dHjiNMoM70p6C8nzqwlUb1dQmLKDRBET4SknavN9wNsYSUKPWqx3u00yVEOUo5nYb5ftVIVXAPAIzN/ERUkqUM7iEknRzG+xlIJoucDCryXbrZKOXCyWqX5lavZqIscgJh/HUJjwaVA9X+LdzipDCzInT4wuKkucXp0d6Ub9q043RqmJREKWzbmd5drZV05n0RSWdVcDeBpTiMDzCwUhY5EVQMcOluR2kvTla6tTd71ZNkkZMI47MnPBxQDlH7N9GIps70JxJLVIQOhiVdnYZ5EMRKo2d8qtFu7S3K0H6Mstfr7/KpRitD+2E2Wmt+8rg979Uf+/1xr4LKnMa1JweECIkps0fIMFEWKUZorz3hoYByqNq/mUGUdabHuFki0uxi5J7tRUn/29X/412Tlx/ot/F0771l3U7VJlW5dd6w4rIFbJuBYhCCRsOkJBCV+yIyV1DpDGptPr3NqympS9xdlvfriX6rjgzYX9mtzGmshQuC6uEm6CjChmymx8PS7srAzppI1v7w/fvPZ209kfj9sQmf7x759b7BG4v7nbYlBaO/R+ohCOiddOaW3ntmzcwcN9A3QP0dI09zGO5lIVQWPR1QDXdpZ6KkHadqXbrbQvK+ytB+mAnZzEvCsl6qwDYKM6m7zQx5fedrZQCAMqeRCw+BIHZ0PvvU+O8s0vMOwwK/aoQquANAiM30OCFJVwb3RiXpDuN9LLc4lUNdulkoVY+TNS7dbV71eHn4GMIE60yPBRV91YGtFGq0JzxCoUZF+EhI2qPecDcMSEm01Kue4NFOlxBlKFXPPZ914R3DMwvL6IIqGwQAqHSbCp39enSTqamiS5/P8siJC7fAAHVgC43qao2P/nwg5811BVx5XgBAn+SSP99ebs0dhBMVGOV06uf5VSNVoT2AZWzmhuczgXVyGB9gYIUsUhRUDHTpZl/0fB6Ssjcrfwwhz730+RyS97luLSmuEiwDzWk4ESY+DI7+A5jUwOYBfZ8B1e9ffWi7caHesxylrtjSocZnLKlLGZF19KoeLIpG/rHxzsYs5ml5u6YT9cGK5Pqg+nxNGssCCcOq8LBZ7mNIFLAQHZECAKQJzrRbflGmVl1dayMsVLenf8VPE+koDgDQ5Z3uMv9rqDUVIr44MOHbQ6NbcqVKGrqr//pJXfdeahDwK4cBAKsC28AfLekLh6xqGqgGAGBY+LXNs7ee6c19bLl7sp3hiyhe2XjHRfn4g9KKHh72A4+1ptqWwprMZ39dwDkLUYR+bMSK0V0Ote0UNZZlibYXmv7kfL31iZ8WcumMJpV7ScHyn04M2XPhTgQAqKSh2b03Tc3bfamX93y9dc/5vN1l3c41CQS7FARmzEpXss6RoPQwLBQhcYpBg1EpzSAhUkJSaITGoiROMmiQkF6pOWjzSFEiw1hjVHhrvMZKj6nRP3dZJCjZL+X04PQTA1JPtdwb5zTMV/s24OTFvkOKQZ755b7Cmkzuo0HhWzLyu+scwdAUloU+2zdpxdEC7mOGoeaFyf/Wy69yj9T4jG9svq0xe1KCkgvyf5ncbU+bBB8EFQMoWKvxb2jmGn9EHv5jFi8AQCcLtFUWb0s3wrv/CQZmgYfHgvc3gIOl4PMHrz5027ZhohjklY13cIlcWUF2TiXRaLhvDog15R/qNGU9qrh6GkDUrS395hZvSWbTH+p7nuh893cQ0lLjNUmjD3+/mAvzuwgEZiwqV4q2LkXnSNba89OLuESCS7moDVNjDD0CM3+f8kljkweWhd7ZNmP96QHcx9l9Ns0dcJUam+0YhoX/e3Dcd4dHsSykk/kfHPrT8MxCvkW1MSdtaX9bP4/LsYEg9vY+m+7st6GFD6Myt+Xfe6aQFPpYwQqL+vKvpxe1YbL5DEtXPcR1WdHKAq9P/zBJ6wAAFNWmf7p38um63/svWlSuuQPWjcg6ygLopC1tT1m33ee72XyGS6dQS4PJWkey1pGscSRpHSlau1Vd36qeCWFSQjNwmJTQDBKhMZJCSRqNUliQkJ5zJp11Jp91JHkuuK9aCHdv5ljKh6Sd6JtSfKUI5Gaosr5odH152Tphvqj8TysftfkMQzOOLxrx/ZXu+uvJquPDPtk9lXurMKvcL07+10UevjApqfYaq9ymKm9ClSdhX1luYzWJrubypaO+TdK0maO6JW2Y3t46s/FB18jLUz/uebmokUaaxns2T0s3who3mPcxcAeBXgE+fxBYrxjc+zsUakAoLwTaLNqbZuDXNt9+oLjXwvOEsjWjoopwyqTfTIMOQFd2xtr39itfNYmONBhGMGWQDDRY8439jmbN+R60+N3nVF3q0lUPSxAyWetI1tlTtXXJOkeyzp6sdrTwhmcQBQAAphtSHSgaeXL1g9zrmFoafPfWd7jy9h/tmv7T8aHcNRe10+uw7C3rvqey54L+P1xLBuSNjM1neHbNPZWehjetgs5HFhcsbz6nwh1S/ffguPWnBnBGSClKzB24bnrezkt3UBI1Y1Rd47ceX/UQF2ooxyOvTPuoaagky0K7znf/fN9ErvIcR6q+zhNWXpQLCwCQoGTflOLBaSf6dTrdwlI+14gjoD3rTDrrSD7rTDrjSG6sEcGhloSSdXZuM+ZuUquqdZvxpVCIHmH8V+rdUea2nLEnj80+eC1TtC3bz/V8ffNszuKtlgbvH7zaH5VXuROqvAnVngRnk6atjaAIfWe/DTN7bW3bVAcGlrMAab70ylU3wns/AZN6gVsHAHcQ9HkanHkDvLEGvL0O2DygJSmCN0QeYcthGGTtq08YbCoAgB8F600oLo3cN2yVUeOGMRJCKQQnAcwgkigZUFT8PMF9omvjdxUp1ekzVitTL05uJbzq0m9v9pxqsKpBMGMduTN54qaKnybaduRzPzTlH8y4bVXL90J3SKWVBdowacEdUi1a+SeuVkCGseaNmz749tDo746M4v52XM6Bx0asuAG7fInEg0BU9uKGuxuba+Zayp4d//llNxiCwn44Nmz5kVEXFangvvVYwYoU7eUz9IOE9M8/L+Qq7eEI9cLkT3tcrtkkxSBrTuZ/fWjspZsfAEApCQ9MPTkovahfymlJ689YbUh9UH3Wkewn5IlqZ7LOfiOcyW4ECquz/rZ+buiPLQOvRLqh9vFR38ZQLaRNuOpGuP4Y+Gwb+HYR+GQzKKkFr8+5ON6zeQTWob522+DyHycDAFgIfJGC1anJV6Z/1CXhMoUbOHxn08u+nxqymRt/out2On3Gz7jOCwAALGTbPqjil3EM2eAzUCTXZM75Xm5teCku/2li7ZaGI1fCgMOZt//Q8r3wWrhsh/pie8qff3qIcxEl0ASDfwAAIABJREFUax2NGTzDMwufHPM1v+moNw6t6lAvXCgaeW/HrRtONwRLWzX1z0/8T9NdjWUhLge8aWp235Rid0jVWFsAR6g5/Tbc2nNbo5eaM40SNPrMr/cdr8kAACAw8/S4L5vPkg4R0hWFBT8WDud8bwaFLz+taHD6iR6J59qwN9kNTjOm0RuZUmfisjX3ctbvpqAwbVG7kjX2JK0zWetI0jhyzBVxKqvbJqZRkgZdloKTr4IJr4B354KeDbGDvxs1m6cVUcutBWbCUJt25Q3VWCtXj+f+XNO5rgpNenbs/5rZBQEA6qzz3Z94v25nfuXaMZzZ012U4z2TkThqp7Hf0fMrpnmLG16rIZROmbjRWrCraWhM6rR1DIHX7RoAAHDs74NIiLRbV7fhv+hKwCzBXhJKl22qfHT491yzi8ZdcGDqqSdGfyPugk1g+er8dT1BEXpxwfJEjfOL/RNYFqr1Gpb8+Mgz47/g/McnajM+2TP1jD258fo0nW3B4F/6phRTDLL88KhvjoymaISg0c/2Tdp5vkdjkQGEDdAM/PJvd3K7IASxjxWsuGqtEDkemdt/3ZTcPZvP9M6zns8xVXRA4wTMhG+QTtqtIsNY88bNH7y68Q4coZK0jiSNI1nrSNI6LCrXdcvqg1gSYq61XRSGgHHdwcebgTf0+y7YGg0CMY0yFFr01oPBaisAQJ5Y223xx8X1SbmWshZ+PerSlf84yXU8t/EnEMywF0o2SE3OzNtXqtIvU92bpeEzX97mKmwIk0savyVlIp8N27hyl9yfeyae+9vkT8WaWx2Z7ed6vrF5dmMo6byBa0/Wpu1uEtWpk/nv6r9hfNf9Td+WytyWt7fMaiwDi8L0bX02z+69CYGZt7fNbDxo3jdo9S09W12RVUSkzWlJsMzmIjD5NfC3GeCJKb9f08ITYRw3QgJPwUjblbzHraXRSgljZPelH8ossVQf9pzqUrZySsTZJJgNYq3D96RM2QBjV9TJUkjJZ3e4i3K4jylTNiSN2RbD7C2HQnQAQJdNJqUZ+JlfFxyt7pxjLn9pyr+aLzfTAWEhjMQsONGcnaCdcaou9W/r5l0aJ4mj5C09ts/qveWyi4Rh4R8Kh//34DjiQi5Bmr420+rddGGdd/Ag5NZCYIko5YLZeLV7u0YYEmvmEccvNKJhIbSZRDsAwPdHC/ZXdL3ohw8M/jmzSQAXSQPtAlDyJkhqUgGU/42wDX2E7qKc4k/vBCwEAMiYtco0uKVFqC+FpeFGS6nM4si8/fuWJBqyNFLy2R3uExf2wsm/JY3dGrOGq3JZH2Ejvqj8na0zFxcsF5u1XkoH8RFehM2vf3bNvY1JOxDEjux8ZN6AtRdVsLyUak/C21tncvXimzIpd+8jw37ogBbOmLlhfYRRt7Z2y1D73r6p09aZh+7jW85laImP8KpQNFh9BPxzI9jwVCxfj2M/wiieIY8ci60xb1OokLz4k7u5HHltbnHq9HUtSSC8EhDMKtMqjX0LcXUgc/aPEkOL+jRBMKvvfsp/PjXq0gEAfGczMFVQ2Sle/eEo1IAwIQlx+Qq2EpQckVUYQ8nBjgAL4SRuVYRif1USIkpJeFSXIyX2ZJvfkGctfWbsf6fm7W5JM2q1NDQ2+6BaGiyypVNMQ8TAsMxjS0Yuvw5VPW8o/KVpmDLY8ozhiyAkqdLI6da2X40r0Xp95a9jS7+5xX8+laURX0mmJvscrr3h6kvQqA5iSCkReydXAMDnO8CT34DPHwSWy+R9XB0B+AhL/j2H8+1hymCPJ9/FVAG+lNBRyakP5wfKUwAAAGLTZ/xsHtI2DU1ERK4dikGKbGk9L5fncFXq/Lp3ts08UtW5T3LJ8xP/c41JdYLDvrff+RXTlZ2qshd8iSoEb2gJ1VhqNg2vP9qdpf8Qc4drfN2Xfoipb6Dd+gYhjifCgGIQSruv0Udo39O/ZvMwAACA2C5zv1Uk89lAB0Zpfa8T3uLOpE8FAOQ5mUN4NZrsczG/RV6JKJ5Oo3qUvh5dhdsZDKwIyvvjZAfyETYCQ6wl1k7USklkVOfDxkTz3T2/5jfn7/pTvX5k+U+TAAMTHo37ZI4+7zQibbXrPSjvjzBBmOXZZ+8/n1r2/bTynyaFaizgQjk6VVoFQ2AMidFRSeB8J2O/wmZKi1x/CDyFxKzN+wjjTevK3bYKl24WhcR0TL1AxG4s+3ES92fzkH3abvw3QkNlka4PfSZPtHEf7Xv6nXjrgYjjMqWkroWgvG9Q3oJOVyKXQCNql27W1a+LGxe9gwsICGKzhkztUOFXLAOfXz69cu2Yxj0jbDMVvXN/2JbQ2qHcmukkar76dXGChTwns4veva/onfvdRTmN/xxN9pncRz7t9tjHned/y72v+8s6la2c0uxY15uwrHtAMZhfDXE8EUIsJYmWwiwR29dZGjn9r7mESwcAkFnsXeZ/0+YHr9iAMdLYrzDq0oVrzQAA0q9yHOgjS6iPLZD1skCAwai6xiafIi0HgliYCUuI0us8L0sjnlPZVetGl357K67xK5KE1Pu3EYglZFH+XzevDwyJnf1itvNQQ79oZacqMqgADExHpPWHe6izylrlToMAKSHKYfZ6m1VZGq4/0v3s/2bWbh1KuC8UT4BYfc+TWXO+TxyzQ6L3AACkBjeCE97izgCAYFUSpg4oU+IV4tBaIEBjlBOj2uz5GYuGG9ZHWPHLuJqNIwAAMEp1W/zRDfhkse3Mr1g1kaEaQgwsw/ekTlsLoR3LuSISKE9xHuxVf6R7Y3FaALFpt/xiGbaXV10izUGFZMWf3uUvbagbbuxXmDl7pa80reTfc+ioBAAA40SXed9qc2/c1wI6KrHv6WfbNjjq/r14EITQxj6FiaO3yyyXaZN79n8znQd7AQAglM596N+qjFY0lOcXf2lq2H7xMV2XW9xW/s44boQu3SyNbwNCXyWA+7I4D/U4+79Z3AE/dfpa68idba2ubQhWJJV8fjsXSgoAUKZWdp73rUTX3D85bDN5i7O8JZnmIfuvdJsFZX0ABCtC/JTodRXmRd0aVB5G5WFEFkblYVQaQeRhRBLj4f56QiMar3qC3v1dvCeKOA3Ogz2dh3pdyTDeacqGxDjnm7Y5DuP9Cc5P+FYRdwi35tTH88K2hmwT68gdqdPWc9UTg5VJpz+ey73TQAidMfvHhP5HWjKmWzNdGdzbWLI8rhBetW3bIPueAVT49zKhMEaa8g9ZR+1o5vnDkFjRu/cFK5MAAJgq0H3ph7jW2yZ6EGkk5udDWJZHw2qune2VKP32Zvvei71FuQ/9W93l8rafoipw36fA7gNKCfjoXpCfdRUNcSyxFlAMUgZ2tnYjjLq1ZSunNmbsabqcsxbsav4rPKLoVN39/9k77/CoyuyPn/e26TWT3juhd+lFpChFRIpiAVSK2LGt7rq6qz9X3bWsawOkKyCIBRAVRKRXAWkhpPeeTG+3vL8/bhhi2kzKJAHyeXh47tzcufNOMnPPfd9zzvf73MeZG2eKA7bmRp7/z+MJc7fWSWeyZpXpSrwY/9ymGlk/c0Zc98c+VzTUg+GSxHVIIBRYOvvrqeXHBzT4U0TylMwpRsemP/SkxBV91y6JvgOKfQRCblUM9V8g5GzyijO9K0/1seTU1XFidCZD/z9MaQm2gjAAyNs5gXcxkZP3+Gkk/sCkvO2GD4T2kuDLn81zGzUAAAhHT/sxdOy1K4wisrDH08tTP53vqtRjnszceDdnVfhyI26TD5I5U/0dCO1FIcX7RlSc6Y050rOTVllDRh4LHn7cq9kcQbNJD2288O5S1qpgLcorq+d2f3Il0bpGLOPF5IyNswBw6NhDISOPkZJm55jdTBRLBTcdCL1Sx31Cr4BX74Zp/WHLMZj3GaT9x8vT/TgjdEqTJe4c30XksECUHBha8ONtoikuANBqS69nP2E0na7xpS4YFe0bmf/D+JpCCYTDxh0IH3fAkh0txj97ccNZdFpl7fn0cklAXQUZMevePneXHlxVuiur54oX8dZDye2J877SJDflFuYPMCFxMTFSp19WtEoPD875Zgrmydo7SZkzoPdFw6Az6vgcQJh3SC+vfNCz5hYy6mjMXT+0j1Z767FLe8ud5zp6FH7EkhWT9vn9nF0GAIji4+/dZhjQgGkla1ZdXj5PFHSEP08ZG8MliafZYv/p3JrSEop+HWG6kgC1rIllIWWhYw4bBp5tVjAzZ8SmfrpA/BgHDjodf9+2lg0JC0TBj+MKfxntGRKlcISOOhwy6igpa4bCDkcFYMTQbFPJL68zwjruEzGBsHgc0CRcKYbJ/4b097yMobPkCG354VlfTb92FUY4aMipqKk/U/LrpqfHkhWTvm6OZ8IHCENDbtqU3KFOzLRkxorLL9Kgip5PLffFN9ivGC8lZ3wxS7xAAIC2Wzopc3J2Ke+UcQ4pb5dxTmntm1BfQIQQOXlP2K0Hr5cw0BQY5f84rnD3WM8ORPLalHTDgLO6Xql1LkOCm0lbNVcsTACAwFt+j5vzXacqWL85qTrXI2P9bDGpT0pcSQ9/qUlqtOeSd0jTVt1vzqjR3DEMPBN/77eoI9orzVficndOsuWF196pScoMHXtI2y29ZV+ukoNDcrZNFbdjZuwMGXW0uWdgzar0DbPN6XH1f0TJnCGjj4SMOtKGV2+vgbC++wTGsOcCvLQZXp8Fd/T1cn4/BsKikFcCK1Z4ndbwLqZg1/iSg0M8EtiykLK42d9dR4lcD6xVkbFujik9vs5+RArK6HxtcrqmW4YishARgjU34tJHj4j2T6qYvJTHVtdWAjSpb8dAaM0/NOvVsUA4ywy2gnBbfhgABA096VMhK0b5P40r3D1GDNuI4qPv3NVgoYfA0pxdxjuknEPqMa6qQ5lUvT56VLEzLOUQdD/G68qxvs+F+Lnb2i2/yFJB5YbFYSWvt+E5MU9mfTW9/ER/8aEspDx4xDFDv3NN3L4IHJWxbo5H5D2g3/mE+7d2yGW0WeRG/C+64ImOHoVfKD18S862KeJFhlZZuy1ep4jwov4ocFTGhtlVf/QQH2pTrkRM2quILGrwnqYkaJnO+I3EndOGY7YXhebtmOCxSgUARPEBfc+Fjj3c+uLBrE0zyo4PAABECilL1qgTm1Fobc6ITV8/hzXX2B2rE7L1vS8W7xtRu2yHlLpCRh0NHXOYknu5y7eoxrBkgN7Y1MTUlxzh4lWQEg5r98PZf0G5GR5aAZEB8PKdEKH3/o78mCPkKD1GXuYQ1RdSsrdNdVfXtBsSNBs+4bewWw92/ktGg9BKW7dH1xb8fKsYV6SBlZrkDG23dHVCVp0WXWV0QeK8zVdW34cFwpITlbF+duKCTZ4vGE8oAHlvR8M86SgNsuWHWfPD7AVhtsLQ2vGpeP8wdUJ28Ihj+l6pjf0+Obs8Y/1s4+WauQujMScu2KSKacCFAwAImmU0LDSyUu1EzFfK276Rj3EjCgAKo+GX++iwTKH78b7914cNvXOdNKhdukEQyVFt2dbJu5j0NXM9vyJNcnrSQ5u8JkIIikucvylz04yKU/0AoPJML97NJC3Y2Mp8jL/pyE44f1J+on/211PFWz2poTLl0bX18xH1ISgucd7mnK+nlh4ZDADG1CRjahIpc6rjc9QJWZqkLHloiWdCxpF6jJi2GrCrWluw67byU309q0oEzYaMPBoy+mhbpYpiZm23lwRZcyMxT6Svu6fns580XeVXA0ZFe0fl/3ibJw0UPn5/xKS9iBCCh50oP9mvcM8YsXiQd0oKd48p2T8seMSx0LGHaGUDxtEiAiEXyLqGiC1gzpAa9wkAuOcjeGEKTOzt63P9OCMUCDmBnYAbXhFym9Q5X0+t7YukSU6PnbVdavD+Ae382PLCKaXda7VI6eHB2VvvFLeDRxyLnVljdogRDYBQIy2Y1tzI8hP9bflh9qIQT/NGE9BqS9DQU8HDTtT5Ctnywq+smeu5iVMnZiXO29zE57UxMKDfpP1XqaZUNq6fEJbDj+ZOTdD8EsL7WT8CEQKStlWqhjWrLq940LNiHzjodNw93zXjLg2j7G1TSg8NER+pk7KSH97QmYtvBVJB8M3+ALQJ9qKQ8pP9dD1T1fE5bXtmU1ri5RUPiCkxZVRB8qL1zf2QF/x0a8FP4+rvp+R2dWK2OjFLk5AlCbMgwd16S0LOJiv8ZUzpwSGerzYihMBBZyIm7a2xE2873Cb1+XeXihM7eVhJ+IR96oTsJn45nF2W+eVMjw8PpbAn3L9Vm/InnXHMkxWn+hbuGV3b5Idg3LLgclLmImiWpFlS5iRolvBsMIJh4AWSbko703gp2VYQWmenYdDZ2sHb4z6hlIB2IQTUsmOpWO7lV9FhgdCaF3Hxg8WelYro6bsazFrf8OTvGl+4e4y4HTX157BxB6DxQOiq1OftnFB5tmeD2UcAoOR2RWSRIqLIXhRivJxY+zBECroeqcEjj2sSsgDhsiODcr6ZUvNlQzhs7KHIybtbIFmQTkd8prrrEnPNviCZzRvnOHVSknJGksRB3SWBRLZgpPPsKOfZ4IZMptoAb4HQURIkNVT60u7pKDNc/my+pzcmfMK+yNv3tiAlk79zQuEvo8VtZXR+t8XrOm3mu/0DIWeXVZzuU368v1jTjwghfMK+8Am/tVVK1V4UevHDhaIptyK8uPuTK1tQ1ggAlWd6VZ7pZc6M5WzyBg+g1daAPhejp//Q4tUsgaVLDg4t2jO6dlOErmdq1JTdbSjWUQdLdtSljx+5lv5HWB5cpk7KUidmqeNzaq9q1mkVU8XmJc7b3Fj3BeaJitN9ivaMcZQZfBnGgDf/Tctb0mjnoZXuEx1pw5TzzZSSg0OChp6KmnI9FcW0MRhlbry7/GQ/AACEE+7fahjwR30bJs4mK9wztuTQkDoVK7TaoogoUkQUifGv9v2Rs0JfdmRw2fEBdb66sqAKaVB59YUacy9S6oqfu03f24sLeX3KSN0n6ruPS67N6YP46qXmb25x1ZzKjegzTNI+POSosrub+VPklmHXh5XvR3BlAMCaVY4yg7MiwFku/jPwTknImMPBw0+0YCGxaRumwl9G5/8wnpK6tD3S9L0uaVOuEEzD8zNLTlTaigc4uxwAECnEztweNLTljhZFv4zO2zlB3FaEF6csXdU5lZ0zYrYk5LSLQB1GxrSE8uMDqs+n1F/VUCdkJ9y/tfUtbu5qzYUPloj1axKdscfTy1u7roiRvSTInB5nTo8zZ8aIH4/aBPQ7n3D/lmbfUGJUfqJ//o/japo6AABAFZsXNfWndiiVKDsyKGvL9AZ+gLA8tESTmK1OzHJVa/K+v91z3xw65lDUlD1eQz4WiMozvQr3jPG0bDZG/OrMQPPqFr4BAABYvR9e/Rp2Pt8Se3rwayAsCXrWULWe4hoQOBDhXRJ7UXCDvvA3FZgnL6940JSWAACI4lMWrYUBcYCQ2rwHAASOKj04pHDPGE9JJyBs6H8uoP85RUSR1y+2wFFVZ3uVHLylxjTjz8hCypIe+lLWzOwdh8gd8hFfKifaUM2tK4X5aY5Dcy0/KxoyJq126refm3cyOiy7JylcjePRxbYlH5SwJQZPt0wdGI05bPz+4CEnmyXWw1GGCv28kLJ36+zHApGzbUrp4Vtq7yRoVpOcoe9zSdc9tXZkqr6Qkr5ujphwJRh30rzNrde5LT10S/a2mjSVKi4nZemaTpgvzA97K7KoRXfUPuOs0Jef6F9+sr+nMkCEYNxSQ6W9qGb5i5Lb4+du0/W83OIX4h3Si/9dZC8JBgBK7ujx5Io2nldhZC8ONqfHmTNizVmxnK3m62kYcC7+vq2+z2gFjsr8Ylbl2Z6ePbKQsqgpu3U9U9tytE1iyws3ZcSb02MtWTGNfR9FKLkjfu625o0NI1tRCOYo3sXwLongpgSXhHczAkfxDqnA0m4UHjS/SGva0dq30Qo6S/vETQ7vlFz630Kxb8kc5U57PsOmIhSCkyhRsuejyUqZ1A4SuyCxg8FQGDfy18DQbGUzjR5thaGlh2+pONVHcNd80A0DzsXN+baxKZEHDpFGQlVOaKtIdQWpqSQ0xyQ986lrt3j9XWlLLN9GNi0ViFH+j+PSj469MJTa/SDNUwAAt/zITVrnxehAojOGT/gtcPDp1tRPCSydvm6OZxJcH0QK6rhsXZ9L+l6Xqi+kXCsvVNqSF61XRnm3bvaF8pP9MzfOEGOhvs+FpPmbb4TGEp+p+L132ZFbzFnRdRb2ldH5QUN+D+h3jpS4i/aNyP9hfE2nJsIhI49FTfupBXcMmCNTV8w3X4kDAILiui1Zq07IbqP30eDrodzvby/+bbj4yDDwTMJ923z543I2Wdqq+y1ZMeJDRmuKmPRr4ODTHdVsg3nSmhdhTo8zZcRZs6LqTNaVUQWJ8zd3iFCGv+lEDfU3OW6Tev/Gx/aO058ffm3a1AQD3ZeXmraFNrP2hHdIy0/1LTs6MGjI7w02D2FAP8mHZFLhYsyrJDVGQokbsUIO4SsXWb4f6rzg46tXX0jJ+GLWwfGKPffRAIAwzHrf3fMPuzSwUhpYKTXU/G/JiS7aO7L2iq4koCpi0j7DgLNeLxDFdGi6tFeI83IAb9QLFgSYtSrSVj7gmRAHDjodPOJ49YWUqvM9GjAZqNX9KQ2s7LZ4bdtWbxX9OjJv+yRxO2T0kZi7mtch42/81VCPUc63k0sODK29j1baDAPPBg05VWeiZs2NTF83x5OLUkQUJT74VfNKjjHK+HKmKKoJCCc+sCWgv99VAlxMQtHmnqUHBokPAwefjr/3Gy89+FW6yyvmeT6EoWMPRt6xt3YbVccicJQ1O8qUEWdOj7PmRQQPO+EnLWVfGur9TUfmCLvwkEcFb1betl/aT2iOMRaDuTm2X2ZZf6WhbRbZ8qmgDzT3XKJjvB4pxe451l9m2H9jcPNe2lFmKPxl7MqZ8eeiggBAITg/qny3fikp75KU7B9avH+EZ8UJAGRBFeET9xr6n2/w+mIilBuV43fJh3NXf4ckCBrWpiiQKCpIdSVWVePo8EtJPY9GccU6wQIAjtLA6vPdq851t+aH15+mdFu03h9CBznfTPGEhM6mo+uPHKHAUZlfzqw800t8iAhBk5wRNOR3XY/Uxq6qvEOa9dVdntVCUuKOmbndR81PAMj/YXzhnjHidtS0n8JuPdiqN+AbBaFvGCo3FH/RTey1AICgoafiZn/XWCy0FYRdXvGgWLGJCCFmxs7gEcfbYZwtA3Ok/+wETJo7WCrYULnGT+f3hU4qun1dwyEymwoDwJFcmdSbC1U2FbZZedtBaZ/as67YC3y/3wRWgl0KgeleQMaVOijKTkhthMyGpHYkLaYM/NXLfThf/rj5676u9NaMmQfiG8WYL5STxC7A2lCY1wqWQMGo580G3hQgmPSCubcrI1Bo+V/WguSPG54tI3UAkMgWvFv5YYOxnHdIi/cPK94/nK9VRycPKQ27bb++zyXPvbMTMd8qRn+tGGtH0vonqY9ScPzFtGGA61r+yV2tqTrfvepCd0tGDBYIXc/UxHlf+eveHKMra++tadNur/mKj7S56DbvlKStvl9cogQAXY/LsbO2+1gFU3ZkUM63kz2tsYaBZ2Jn7fBa81m79CNk5LGYu9sp81Qjus2WZW2ZXna0pvU7eNiJ2Fnb68dCY2pS+tp7xWwcQbMJD27R97rUPuPshPgiuv2TfMhZJrHOznute6K5kgaPL6yGBz6BgirAGP49F6Z7c3ftyhG2DZWEOpWJuUzHpNLRGXSEG9EAgAAH89XRXEkUVxLNlURxpZFcqSc0ZtARG5Xjj0l61g6B/V1pU85kov+OAYDAQWci7/ilwatGFh32kXpmaq2p21jH6YWW78WJTnPJoUPeV99zha4pt6Iwf6f9QC93ll4wBQhmHW9B0PaprDQ6+rmAx8X+iqn2Q0vN3zR2JGeXFf82omT/UNEfR4SUuHW9UrX9zx/vr9+oGl9VqyE3niukBa4UG4y0HBMNL+oSIMy37Jpp21fnrXF2uTkzRtfjsl+TNAJHpX7ykKhH2h4ZrA6ijmJn0JBTsbO+b1ZFpb0kOH3tPZ6aQ0lAlb53qjIqXxlV2GBHvPFictrq+8Veb32vS7VFKtoPjDI3zfDoEIWMPBYzY2ftWFh2fED2luniICmFPXnhhsYkLLrw8IFmzs+yW+rsfKvq0z7umglAHdHtSb0hLgienwJHrsBd70Ppp17O78dAaNRMUVkPkHynl8xuESxQGXREGhOVSsekMjHlhNb7c66GxiiuhAfitCS5dggc5Eqda9vdzZ0LAEXnp0hDLXpDUyY+YjJvjWqyBdXk0hSCY571xyn2w77HLQ6RWxTjNinHexr+4tjCZabN8Vx7mHZ+pxi1XFVz8/6Scf0o59kmDuZs8qK9I0sODfEU+1weRP5yL1UZdm0xOZormWfdmyIJc+0qzdk2VQDCqkW2KId65kFLMC+mPH9nkk1ETavtaOeZZ0xfSVrqHd0aOJvs4v8Wi/khSubs/tQKeUi7aqw3SKVubkD1xjY5lbM8IPXTBde6MCfui5zUki5MgaVzvplcdnRQnf2Uwq6MKlBGFygiC5XR+bTSZssPv/TRI+I0q75sob8xqSYoHKdFM20sEJkb765JUgKEjj4SLSaDMSr4+daCn24V90sCqlIWt5fiUifGKe3GI4XC8XsTx3gNhHVEt+eNgsgAYCj47RK8sAkuvO1lDF05wpbwrube/bJ+bOMCdSF8FYPZItLAeROZQ4BvcV6aa9udyOZ7dtbvI2wMI6H8XDXtV9kAT0xNZPOfMG9NZL0XOmZS4e9p7smia8R8aeDute6ZZfuVwu2kb4cBvaGdf0TaCwDk2PlhxfvhfKPNNiKsVVF66JbfTYN23hFYkHgtBKor8W07Lbc5T+oGFRZmzrVsq7kCyoIqui1eV3v2UElqXtfOT6N0CGUZAAAgAElEQVRr3CHi2MK/G9f4q7u/SVzV2gvvLxGzRIzO1POp5W1iDtca2ipHaM2LSFvxYI2rHyHE3L0zeHirEmCVZ3plbZlee4W8DhKdkXcxYmNfhwjZF4S+YahaL3XVyKxggcj4Ylbl6RqNr9CxB6Om7MnacqfH40wRVdht4Xpa1ZScyk2CLzlCr4Gwvug2ACQsg8xS+OlF71prfgyEVsVQueMcIXSMYpP/OC1J/qtucZ2dEuxOZAtS2JwUd243NkdcouSALKCC8qjgbDosjwzOpUOKyQBPOQwCPNR54T7b7ji27vTLxcQCQhKXrzK455iEjzR355M1QpEECCOc5yL4Mi1vNfAmjWDRC2a9YGFwTXhggdqkHL9VcasnTiezec+YNje24O4/bITs8YBlJWQAAMSxhe9X/bfp6ptLdMxWxbhj0h6ePVIrjPieveVnjqo3r1PF5iUv3FBf85cF6mPN3Z7vlVqwvWxc18fd3o5RAGArDL30vxrdE3loaY8nVzTLv6bNMatuU1t+aeVJjJcT09fMrUmAUVzCg1taINdQH84mt2RHWfMirLkRtvyIa221f4ZW2no8/Vn7KzXa5IOkriskf+1WBvNE+vo5VX/UlPxIDVXOihr5Z23KlcT5mzqz2F574mYiBULetHWa10AIfxbdtrlAzgAnwDcn4aXNkPWBlzF05QibBw/E4wHP5tChAGDgjb3YzG7u3BQ2J44tIsF7NsKNqDwqJI8MLqIMI5znYrg2qxjmgPxaMXaTcryYnmwQBXbqBZOWt1YTqoKrjYAMZh+0/nSXbT/hw/j9QTod+WzAE+L0+g7H0SdMW+sfY0PSfbIBP8iH5VDX9AYZzE21H5x8Md15PKnybK86Ajr63hcTHtjaxOLYD/Jhn6nvEteESRAeMW+fbj/QZu/KZ0xpCZdXPigKBqkTs1IWr/VfeV47UHGqb+amGWIjICV3JD/yhSoup+1fBiNneYA1L0KMi/bCULHjjWDc3R9f1VZ9n60H82T62ntqKyoDQNAtv8fO/q4FcoY3M74Ewl8v1ohuPz8FJr0N80bCvcPgyBWY9SEUfuTl/H4MhGWGR/XGLRTnZ5Hl9uUH+bCP1DMBQCa4VlW82bLiFK9YlCMBCJW1qRxhg5SQAZ+oZ5yUNNo5Xoee7qynTV95XZD0NzvkIz5RzxC3XzR+McZ52vOjdDpil3zYb9L+zlrS/gjwOMepB6w/BfE1vb2YJ0xXEip+7119oQfvZHy0w73ExP6fZp6n0Gac49ST5i3NbQhpPRWn+mV8ebfYv2EYcC7h/i0d1WhfFPJKaxysiveNyN0+SXwjjMbc7dG17ZP4xDxpLwyx5kVIgys0iY1aDPqVioAFavNupt7qDubIK2vnVl+oEaqOmPRrxKS97T66To1NMZgjtBrL7iaO8SUQekS3w3VwsQAeXgkVFqBJ+OAB70ujfrRhckqTBCTxftz1gw1JNyhruqHn2H/xUxQE0Q3HBxum+oTwlf+sXnmK6ZZHBVdSWiOhrELqalJlJJSeChERGXbNt+yaaj/kj4rQ5jLVfugCE3dA2hcAPlTPSuAKDLzxN2n/XfKh6fSflOFkgutW5+9T7YfqrOIiUtCmXNGmXHHB8XzrMzHKnb68bnd39oeV772hXXCZiQaAvbKB+VTQK8a1hvbt+TEMPOMyqvN3TgCAit97E4w7dub2DnEis0t7tfi5BT+N85SByELKui1e55OtT1uASF4RVaiIao8Kr8ZwMvFKQlF/P6L4xPmbrqyea0pLjJ31fdCQU+0/tk4ORxm8+n/dY91zu72uSWpkLbNbjoedZ2B4MoTrAAB6RMCxfzRjDH6cEXJUAMmZUBv1encGPldN3aYYCwDBfNWKirf8N3UQSAUAtK0PAIdIE6GsItRVhMpEqnq70kM6okKkMexI+qThmUIyEAACBaMdSW1/bgqM5won24+McZyW4aY6yTBQPKVp1joEC9Qn6hk/yWvMknSC5dXq1clse/tCZ389rfRQzT2vJjEzccGm9leiZ6lgr07aDWJKj0/9ZEGNkmpsbvIjGzqnqrj/4Eg9KVgQbngpXuAoW364Kvb6MxtvBwRCjoEkWzev6Lyi2zcYxWTA4sAXxVSW11r/LlpAFh3+jP6pOh39Euwe7Thzh+NoMuvfXqsf5UM/Uc8QU4Zawfrfyvc9667tAxaIjA2zPQossqCK5IXrpYHXQWaBs8nO/fsJ0TlBk5SZvHBD59EJ66ILXyBfu9tfpy4Ie1PmvEQKN0h98H81c8RKje7u7IWWHQ33abcRRs00hzRF5mq59P71iE6waLH1uKSmIjSaK5lr3fOcedMo51mD4GtfAUuHFIe8rLY0Ow2TyBb0c6Ufl/ZwIsaJmItM/DjnKV8KoNoKhHBA3wuUzGlMSwRAnE1efqK/PKy0ud4grSE7erXO9H1zn5W+/h5bXgQA0GpL98dWkdKbUV64KPivDFdEte/N042BWT3eKh8id57vwDG0JBF1E3KeiT8s7Q0ACPAiy/edIa92Q3K7/egEx4mxzt//XfXRZxXvTLMfVDTTZKM1pLA5fzWuFdso0+mID9Wz2u2lPYSMPpI0f5NoCcK7JFdW3Veyf1j7D8N3yo4NrLH1QDjhvq/buXuviy7ahK6lUe8IQDxuWJZNhQHABMeJZ0ybO3pEXfiRvbKB/9HMFbcfsuycZfu1/cdgLwpJW/mAq7pGriho2MnYu3d0SPlM0zjLA879+3FR6ydk1NGYGT7VKHXRRWfDjzNCNxOJG+9pu474WX6LGAXl2Dnf0h6+ORyp40h9O7zQjQdGtJtpwILYd8Y5Tk221+j/rlFNPuVzL0obIg8r6fnMZ8roGrGhsiODLq94kGtcV6WtcEnifD8Y80TmlzPFKCgPLY2a9pPfxnUd4KbDBN8037uoA09qOCqgY8fgx0BYErSMper5vV1vOJDkC8VEcfsu237/tUzUxqwaZ1bf1g4vdOPBUYaSoGdbeZJFlu/E2hwM6D+ae0WXDB/x0QHDK7Ta0v2Jzw0Da7yHTGkJF95b6iwztMnJGyM/9C3fDy7cM8aSEwUAiOLj7/u6Bfa5NxJlhqVupkUFizc9VuVwo2Za08eUsS+lO4/W+ecQBjT9rKPpIF/g0xj8GAilzitEk5Xu1wVbFbeKDdcBvGmmbV/7vCjNldJsx0swX48gweXRe2wxDOb+Zlwr3vSYCOUb2gVN6PV4KCYDXtEtvCf4n//RzE2j2+CaSFBcwn3boqb+LPbXO8sDLnyw2JwR2/ozN4bvBQvW3MjCPWPF7cjbf1FE3ICSws1C6s688eQk24GNygnbyFDkzZVXAAUP2jr/MFz7Vj68AradAACotkHs08DxkFYMb3wHDt9k7LpyhE1RRuoWGv4iXgSfM20c5+hqhr2JuMDEvaR7VJRjHec49ZypUVsGN6K2KsZtUYyr3fuRzOZNtR8a5TjbetvkilN9szbfVaMiRnHxc7d1rIWhwNLn310quiOpYvO6P7GyA9yOOj1mQlFMBpSS+mIqoIQIqKC0fJMTj0iubLH5u45SOuwQ0uioZwOe5IGI5wr/r2q5pvEWgxL2DSNft8MhilkgJ2q67Ou4Tzw3GR74FL58DIIfBV9inB+VZW4A0e21ysliFExi825t0iWkbWmu6HYXHgRCYZf1adrk00d6urMWWb4Xtd/2ygYmcAXTbQ2IkZ5iun2qnlFE1V20TKOj0jRzP1dNm+Q4Ntl+pDVqNYaBZyWGqiur7mMtSoGj0jfMdhk1/jBe91F0O2/HRDEKkhJXwv1bu6KgAMRh9dQqwV5GyEsIfQkZUELpm7tIfoZJsiHps6ZNN0lRugsx/9HMFW8OVADq1kWKW3vAktXgcMOXh+HNOfDgZ/DJAghSe3+iiB8DYZVuNuPOZRp/eyVkwA7FiIfMO9qzW8t3LjPRv8n6gdgyYW7XlgmbfAAgoisQtgCeVFfpZrdJIASAqfZD6XTkHtkgAPhcNS2WLaptUlFOaFeopx+SXtMx7M7mzLTuOyLt6XHpMhLKzYrbtipuHeo8P81+qJe7hUqYqpi8nss+vfzZfEdpIGCUt32Sq0obM+OHtg1CZQGLvAZC4+XEkoM1KjwxM35o0CD3pgIDek9zz16ZNxN0H9grG0hj7knz1pshFq5WTRGl/+WYWwCtdf+mSZjQC5b/CiY7KCSw5zwkXS0VQPdB9gcQ02S9ih8Doda0swlX3mpC9Vfd4iLKUEAGvmxc3yHmqE2AAS1XThdN/kY6/+jBtquBuNx5oT1f7kaCFMxaU1sW8T9u3ppLBV+ho3gg/qV98MPK94P4ag6R38lHbVROcFxV01ULtocsOyc4TiDAQ13nH7Hs+FE2ZJdimOjYzANxSNrnkLRPDFd8p/3gpHqqib4g0Rl7Lvskfe29xtQkACg9NMRZFpj00Jdt2MAeUO1lFYk1qzK/mOXRBw+8pf2WSTonGNB/NbMbjIJKwRHGl4fylWFcRShfEcCbmlDhOCDtK4r8/SQfwgD7qPlbvw25U3CaSdohHy5uL7bvi+TawDBkzpAa94m+0deWQ9F9Pi2NdliOcKvi1tWqKeJ2Cpvzj6rPVbgTteL+Ju3/tvZ+AGAwt6LirQ4xbu2ik1BOaJ8yPFNNqAAggS2Yb921UjUtlwoRf4oAT3CceMiys/7aDg/EUWnPHfIR55iE2vufMW2e4DjRssFgnsjeNq3sSI1juzy0tNvide3k6IvR5RUPimFYojP2fuF/Heue2OFgQB+r7/5BXqN4MNB9OcWdI4a9MK6iWRc0DOgDzZzdssHiw5m2fQ9bdrT9iP3DKUkKC9RQl6+VVjZCtiTg+QpSCwAjnH/81bjO61NKub+ZuOl1dkYwS+TEtbqN2u4THjo+EFbpZmvMu8nGUyNfKid+oazpTIjiSt+oWh4otKvqf2M4kGSJ4QWxaH62be+CdukdrI1N1h8QobB31eY0G57UmNST9NVfte1pLzDxL+mWeHyMPcRyRY+bt3V3e1kwyKFCt8tH7JMNEM2kFIJjeeU7AXxLoxdGeTsmFP06SnwkNVR2W7JOamhSlRQjc3psxek+mCdU8bmq2FxZcAPeW+WGRYEVKxo7R/nxAZmbZgAAIJyyZJ0mOb2xI28GMKDP1NO3y0eKD8fwJc9Ur2daYW0tAPEfzdx9sv7iw7nW3Q9YO3trJga0STlevIwvsPzgo/rEO9r79kkHAIBOsHxW8Q4tieUJdSvTGRwPO87Ap7/A7r+05Ol+1BotNzyisJ9sQlO8tztTJ1hOSbphQCZCeVDaZ4A7Tduh2qTZVNhm5fj3NPdWkyoA0AmWv5rW0bi9FT2syuE8pZc528DX+2aDp/RVuns05ja+ggTx1UrsqN1cL8OuBZYfnjF9FeyDvKRWsN7iunSH4+hhaR8rIWcRnU8Fj61lu9g8EGiSM2mlzXQ5ETDi7PLK073V8TmMtoFMhL0opHjfiMzNM0oODrUVhNmLQqsvpJQeGlJ6aIg1J9JtVhGEQCttiMAAUBz0ot54zRiZNausOVHV57uXHR1U+POtZccHACYAIGT00ZARLVndvZH4XH3nd/Kae5FxjlP3SiLkrssU33KRdAR4iOtCHhWSRwUDwHkmnsJ8T7bzFgrYkPRf2nm75MMAEAA6I0kqJ3WDXKlEk9m+g9I+G5S3i9t/MW6I54rsioFuJlruaJWNwdqD8OImWLsEQjQtebofZ4ROabLEnYMELwmMw9Leb2vvFysLVNj+WvUqr/fXbY6DkOyX9vtJNqRO+9dTpi2THB3whRfduVpmiHOTgwmJi4mROtP8cfL3NPeKhTMjnOcWW75rQSHoeSb+Rf1SMfe8zLRpvONka8ZTfaFb+vo5orYLQbOJ877S9UwVf+Q2aipO96k42dde7MXpDQBIiVsZk6eKzaUTaFRR6SgOthcF24tDWGsDBnuykLJez318k7fPr1FN3qIYJ26PcZ5+3riRlcTSbDEhtDa/wwH5hm6+R3p+keX7u2zNNuhuB3KpkNd1C0TftNr0cmf+zbi2sRLQKlL9aMDzZkIBAJMcx54ybQEAjgrAiKG9tRL6lU7RR3iOSfin7iHRf47B7MvG9be42mkydJmJ/kk25IC0r+PPHsJhXMVEx/GZtn03VVtPF03jRtR/NPdNcJwY6Ept8Uk+Vd8lrqe1doEUAACseRFpKx9gLUoAQIQQdeePpNRVcaqvOSNWLGnxINEZDQP+oFVWc2aMJSumwSDnFVptSVmyTh7WkdesDmeDatJGxQRxe4Tzj78YN7Rt3TsL1Gu6h09LkgEAAV5q/maK/XAbnr/1HJD2/UAzR7xmIsAzbPuthMzjIB/GVfzD+HkEV1bnWRjQq7pHTkpSACCEr/qk8t8yb9OkdsOPgbAo5JXAihU+Tmuy6PC/6RaJ9QgkCE+at06wH2/b8bBA2QmpHUmshMyOZNlU6M+yW3Lo0NrHMJgb7jw30XGstzuzAyuYTerbMRBac3vnJm8AWCqo3LA4rOT1jh5IozgRs9TwfDEZAACDXZf+Uf15K0/oqtJdXj7PUdpweTgld+j7XjAMOKuOyxUVakQcJYGWrBhzVowlM8aj7l0HUuKShZTJw0rkoaXykFJ5eEmXucQm5fj1V1f2hjovvGxaJ9qVlAQt0xm/kbhz2uRVXIj5u+4RscYKAX7avKXNr4ctgwdijWryN4ox4qqGDLueMW0e6fwDALYqbl2jmizuVwqOv5rW9nX9KYv8o3yo6OiCAL9T9XFPd82qr0U1hiUD9MZt7f1mauHH9gmO0uN6xQWNEccWvlf5odhQwQPxgXp2FVLdY/Pe2+vBiZhSUl9C6kvJgFJKX0roxIBnJWR2JLETUrbJNxvLFU10HB/nOKVsR9+fxuAJBaAuh6wWgcgOF/BtGil2LzNtfkG/FAM6Iem+VzawlYpFEn11jyeXp62635IV49lJUJy2R5ph4FltypUGlzFlIeWykPKgYScBwFWttWTGmLNiqitHqhUn5GEl8pAyeViJRGesHTu72Kq41RMFB7suvWxcR0FNAQFH6jFi2uqFJNj9WvWqv+kXX6JjMKAP1LNpgRvr9FezCgsUBbzXW38TofyX9oE/mETxYSRX9jfjmqirU51Ztl/D+fJ/a+5zIsZKyF7RLnrU/M0djqPiT4vJgJWqGkHRGbbfPFEQAARCLpA+t777Bz/OCAVCTmAn4GYsGhgJ5d91i9LpCPFhX1e6GttERzoldgCAXHCSIMiwiwSBBbKc1JWS+lJSV0rqTYSyBYOUCa7RzjOTHMf8bYDeLDCiARDqZL2V1weIEJC09akaf/OZ6q7vFSMBQCk4Pqt4O0BotOPWRzBPZH89rfxEf223dMOgM7oeaS2wiRdIBcFfx1JQfuVbxegVqjvF7f6utFeNqxh87Q5DIGRIcCNoy8I6G5K+rF9yhY4CABKEPu4MPW8yCCY9bw4UqgN4c4Bg0vGtakXnELlTNnyTcjyPyDi2MIEtiOcK47mCSLasznpvOh35hna+R4B+uPPcMtNmOa7bP5NOR/xD90glURPY7rLtf8SyAwCe1z92iYkFgBi2+MPK92vrDvpyuSslA01E3WAZyRXJcNvMWzpXIAQAByH5p+ahs5LENh8PAqwQnArskGOnTHApsWO46/xIx1lZ51MG7wqELec6CYQuxCwNeE4UZrvFdfG16lWtPyeL6fNcSm/mItXSOueODYQXmPhu7hyqTWNJm4ABfacYtVI1TVz36+NO/2f15wz+032GPwIhAFiQ/C/6R7Po8MYOIEHQ8pYgoTqWK55qPxjDNqN/47C09xrV5PoFLwDAYDaWK47nChPYgni2MIsO+1Q1Q5TSJUCYb9k107avsQBcQWpf0z2cSdWMebDrUjxbuEk5HgAo4D+o+CCeK6x9vC+Xu//TPrtdcXudnR9XPD/QdabB4z/aDS9uAhkDADBvFLx7XxPnBvBrIMyLeD+k9N8M22xZehao/2jnHpD2bdazKMwbBGMwXxXMVwdzVcFClY43K7FTjp0ywSnHrk4Y8BqjSjsTEKGv3tLRA7n+YOnQ4uAXowqe7uiBeOcCE/eC/jHx2toaSXc3on9nuh2S9T4u6WFD0kQ2/0XjF+F8A22CXsmI2ZKQM7tlw2gl38hHf66eNsx5/iXj+k6luXiaSVqrmuJZpurpzny9eqW03lW7IPQNQ9X61juf1MdEKF/UL/UIODQBAtzXnX6n7cBgV2rT08QrdNRK1bQLTDPsJ0U0gvUl44Y+bi8tpA4keUdz/zFpjzr751l21U94mTR3sFSwoXJNEyf0GggfXgF39IW7B0O1Dfr/FSb2hom94S6fZe/8mCOkuCrUojtTGri/GDeMkZ7mgHQhhkUUC6QLMQJCNiQDADuSCoAQggDOFCxUBfPVQXyVgTfdMBWepGDD/nTIupHBPMW1vJerPenpzrrTdvA7xSgAWK6e3s99Rd+4JGF9nIg5Iel+WNr7pCSlds1zOh35uOHZxebvWtD50yEdOzwQH6vv/lE+FAAOS3u/q733eePGziC2mUZHrVFN9qTEAKA7m/PP6s/rR0EAoPgqPy3haATr+5X/LaYM5YSmgtRWEeoyUldJaipITQWhrf2nx4DOMElnmKQwrmKa4+AEx4n6ZZllpG6tcvJvsn7iHZh4/vutPw90Xc6iwzKp8Ew6PJMKF2Vf6pDM5v21eq0vsicy7Pq7cfUq1dRtijGend3cuQ123BOCnWjOJ79BZg+BNfvh7sGw9TjcPQjO5sLZXHjgE+gbDZ8vhG5hXp7eKdonuuji5sSFmMcMz4prU0OcF181el8gtSHpCUmPQ9LepyTd6rskIsCeC9xw57knzVtbKervb2yE7E3tvNNMUu2dkxzHnjR1pPB0PhW0XnnHYWkvzy9Tit3T7Qdm2/Z2nop/ETuSVpCaIsrwi3TQUWlPodYNtBw7J9hPTLMfDOUrAcCGpF8pb/tePspjFsZg9i7bgdm2vfVTfWZCkUGFZ9IRWXRYJhVRSBkmOY4vMX3bXE+xn+RDPlbdzSFSgt0fV7zbsoUK8GFGyPKQ9CxcegcmvQ0fzoMvD8Ok3jA4Ht7bBbvPw6FXvZy/4xvqu6hPV0N9i/FrQ70/uEjHPh/wuHjBfd745a2NVAaWkbqTkpQTku5nJEn165+juZIRzj9GuP5AGN7W3p9N1dwAB/Cm58wb61SxN4Fd2lvubD+nwxJS/6puoSikAgDhfLknX3Wn7eASSwcIT5cT2i9VE3+RDfJ4B1KYn+Q4dq9tT9PzdZckvk0a6ltDGanbKR/+k3yIBck9OxHgIc6LyVzut/LRnopCBPhWx+/zLLt8VLVkgWqxreZZSeIbmvnzrD9OtR9q8ABfGup9yREuXgUp4bB2P5z917VjLE4IXQrW1V4G6UeJtaKQv8ntZ5qQWOuiMUzq292S2C6JtRbAUUGlQU+3ucSa/wgSjDYku8zEAMB5ScI45ylPMpsF6hyT8IN8+HL19HWqO05IuhdSgbVv+WO5oqn2w4+btt1n293bnakVrFrBOsF+womYNCYaADkI6a+ygQ4k6e3ObFr4SiQz4kOD8Wv/vNG6XKJjXtY/WkrqAQABftD600vGDcVUQA4VBgBpTDSLqH7eclFtiJlQbFDe/h/tfVfoKPG+BAEe4zzzN+PaW52/e60wKAl6VuLObo3EWutRYGc/95Vp9kPBQlUpqTcSKgAAQAVU0FkmyXW1u6OPO+Nl47qp9sOKehPBxmhN1jaErxrjPNPPnd6Y+YZFNdYu69u0xNpB6bA0pm4F5WT7njD+WnGQQgIPrYCnJsHAWOjxIkzsBQEq2HkaCqpg/igvg/RjjlBpO0p2+uK9zonEldXVR9gyCMGutB3t6FE0j3nWH09IuxeSgRYk/0g1c7Hlu1OSbiclKX8wic6GWtPiucIRjj9GOv9ocKGJBm6R5fuB7svvqu+tItUY0DbF2LOSpBerv4jk664xYEAFVOAVOuoyHZ1GR2U7C8Zq7n3CtLXFt/8+8pu0//uae8Q1OgZzy0ybRjvPAMCzxk2slhYtHrcoxkkwO9e623/DqCC1l+noy3T0ZSY6nYqovdQ80JW6wLorji1s4um1UdhPkq0TCWorJNg9yX5skv3YOSZhu3xE7fXSSK7sYcuOdtPt8hDUpB4v484jOS8T02Q2fYxDVWenTvjTaUd2AwLB3OEgoeGDB2Dmf4EXIFQLqxd5H2FXjrCLLjqeS0zsc/rHPRmp+kiwu487Y5ArdaArNcQ3UzAzofhAPeeotKfnDAst2yfbj1QTqit0VBodlcZEp1GRNkJW54kpbM4r1Wt0/lnLwYA2KcZ/oZoovlmtYP179eoUNsdzAAfk67oFJyTdxYcLzd/PsLeZ2KYb0elUxGUm+jIdk0pHV5INKDR3Z3MWWH7o2VIL5c6GuF56TNLzTvuBSfZj7V+Ry+IohFwU+DfR00r3CT8GQrNqnMJ2nOxQN4nrFKe0GwBInZc7eiDXHwKpsMqHerVZ74SsVN/5jXx0nZ3hfPlA5+VB7tRe7oza7du+s0s2dIX6Ts+ymEaw+iI9YeCNfzeuSWTzW/CKTcAC9b52jmjBAwBRXOk/qlfWj+tuRL2me+QMkwQACPBj5m2T7a3y6Kki1TvkI35numVTofW9tDxEcyXzrT8MaVFKwqIcKXNcpLqMS+tRwr5u4qcYqI8DqDXQUJ+lSxInEAqZw1c7wwZZvR9e/Rp2Pg99orwfXJ/O2EfYRVcfYYu5jvoI6+BG9FLDc4VkIIO53mzGQFfqIFdqGFfR+jPnU0HvaO7PuNoJVweF4Ejm8pPYvCR3/tnAp3dy1eJKGoPZp81fjXW01CuqHmZC8U/dQxfpWPFhf/eVl6vXNpamciLmFd0isdENAV5m2nxbi5w6cqjQbYoxv8n6c9BA/JNidwJbkMzmJbF5yWxea/y3/ddHeF0jgCzDeUAAJQDI0e8hzM4gu2wAACAASURBVN8ZVNdYypc+Qn/jx0BoVQyVO84Rnbt6u2WcZnoflA2L43IS3FmxfK60rStjXUwsICRxdV4rsk6LQCjssj6tNPnsKLLosApC28edIWnrjjQOyPWq279WjMWAGMwmcIVi5Eti88L4Ck+jgll12xV34Vua+8X1UgR4pm3fAssPLe5k4IHIosMv0rEXmdhzTILovwMAdziOLjVta3qZzo6kL+uXiM5oBAh/MW4QxZ19AQM6I0naJh9zRpJUe8GZBCGaLUni8pLdeclsXhRX0lZLhTb5IKnrSidJE3YeTPxdxeybnocIXAZquZ5aiWolod1MpEDIO7bSuytH2DxcSPKp+qGvFDMEVPPtIkAI54oTuKwENjvenZ3AZYXzRQTu+HbgLrqoQzodSWAhhitu+upfQAW9pnvY08kw2HXpBeMXvlcYOpDkMh19kYm9xMRepqPrGJwhwI+Yt/uY9rMSshd1S0WBMQrzfzOu9VrowQG5T9b/G8WYHOpPxjI93ZkzbAf6udMabIfvwk/kur90CP3r7JSgK6H0K1Ki/Rp1vOLHQFhmeFRv3HK9yHz4wiUm+R+6F3MoL4vQUsEVy+emuNOeMX3KtOhbZ1GOBCBU1s5oyNnJ4Uh9lf6eoPJPOnog1yVFIa+IDlY2QvaW9oFTTDdxfyRf+mrV6ia6oUtI/RU6KpWJuUjHZtHhfCO6SArsfNa0cajzgu9DMhHKF/SPib2GJAihXIVWsOoFs4636LA5gDdrBWsAb9IKFhKEH+VDtstGVtWyMiBBGOk8O8O2v83znXWoCFigNu9mfK4yvRlw4W7Zrm8BAIErinmwnFtmF265+kOsIXcEUW+SyGRTDOYIrcbix/Jgr/ixfcIpTRL+fDNYBwxSBG64HnTROEStVt23VjWXv5ppGOo6qRDsWXR0HhnBoT/9Gp2EJJVISqWTBCBeMr7fgpdjqeCu9omWgQmJU5Lk/bgbE7LBYgTfsUt7iRsKwfGPqs9Xq6aIEln5ZPDTAU+/ZFrf31WzfmUilGl01BU68goddYWObKIAR8+be7DZ3d3ZPdisOLaouUuRGsH6r+pPX9A/VkgG8kAUUEEFEOTLExXYOcl+dJr9UNO1+22Fk4lXEi3xOr6BMXHTxQ0l+auMOBdJP1zNz6vgnhBACoBM/DS7MCCEfo2j1OxVUYXGKKseYrYl1NkZHviLTNKwyHi5GRavgoxSUMlg2e1w92AvQ/XjjNDNRNJsCcKNesFUcI9X8w8oid+UxD4FuZ+AjjcCbJAsKuY13Yuedk6FYF9m+niK/WfxIYuoPCoyi4rJoGOz6ehMKqaIDPMsnL5a/fYd9j3NfUWO1AGgrgq0FoARzdIhjNu/t/+dk0ruEQs/IYh+R060UL/bJYmrk5neKxv4oXq2x3ZgSk33RaTYCN8gCHAUV9rdnd2Dze7hzg5pix7zckL7fMDjTbxobYL5qun2AxMdx9tTDs1Nh1FcFeHzAvINDwZJhms/jzUAEMUskBM1yrccDizlXrHw4z1HKshDgZL3pEJqE2c7m/7X3JJpdXYO7/WYQVvzUa8juj08CQbHw5MTocoKRUbo2XCh2DU6MkeY7frehWtu3klkUhL7VMRuBXkEQWdRZRMQ2qSY9Zl6vvtq9fkA19m/V/87pF5jcm2chOQtzdM/yscDgFRwra54LL5Wm1QXXfgDAZSZrt081gEIGnKngXqfRs1w5GmCNDr6dd2CynpucLVRC7YkLj/JnZfE5nV356iwX5Q0bISsCqlNpLKSUFcTKiOhqiLVRkJZSaiNhMpEKhPd+TPsvw13nr9h9PevX8zC7UXu9wCARgXxkol/XvlDJv7OMvZFHmqkvTXkd6H0S02czWsg/PkcrNkPm5+AFb/ClWL48gjMHQZr9kN8MKxdDD28BUI/Lo0WhL0ZXP6/xhTkeKwWQFrrocbETzfx0wnWpiQOqMjdHT5HzKEi/6H7yyUmWXwoF+zPm/7ny/ROKrheNr6fTUdfppOchGRZwP9tKFuibk57slEzDQOhM33XwqHfxLB0SGngkxFFL3f0QNqbKu4hHoumqYSJn2bmJ+jJ9QH0SgKa0cibHb06NvehOjuT2dz/Vrz3uu4hsYBTRGw88AS/0HaRFlMIDgU46uvjdAaKgv8aYNwscd0gbfitx8TNEje05Df18l9YQ36nJA+Wsi+Z+cmIcFCGHGhdve2tPWDJanC44cvD8OE8+PBnUEoh90P48CdYtAoOexPd9mMgbBoSmeMlE524m4WfaOEnuHGNM5YACrNwu1m4HbFOBXFETpyUEWekxEXkZ82n2mBA3yqmfKhZ5EA1ohvd3WmvVr8Vw/m64MZg9+tVb84P/MRGyEvI4Le1T/9f1et+G297g0HSeWbtXQAADwFV/LzaezBIK/lFRv7uQPpjDbEFoVblDgME8ztVH61STeOBSGLzkri8KLasa9bVRWOwOMJWUxfDa6hvGjyGhMow+jk1scMmG0YQrZUxokmY0AuW/womO/SJAoMKlowDlRQeHgNvfu/96X4U3VZb9nqVlaFQhYI4rqM2qsjdFKrksZaHAM8P3TjWJoww8TOruYdswnA3jgSQUFCFkB8LoI9LBz4b8MYP8okcogGAAfYp0/KXje/phObdsWgEczyXvUc+FgBl0TEy7Ozt9lWxQupKk7k6qayMQ+iX696IkEtGtEoJwk+QglVt2dvRo2hvyrllDmEAAEjRpXDmaTdO5HAwAGCQW4XRFjyRRkUMyvF6Hp2p0WsGCcIgV+pg16V4rlArWDuDX2CnQmU7SLVLVc51QRW/wCEMAgAlcUBLftXEkQyRq+QPyZ1eLiYlVaNM1uQ6O6OCd8ml1wRbPKLbw5PgXD7YXDAwDrYchzITLKgr2VQXP+YIOSqA5EzNncm5cayFn2ARJjqFlEYOESREupw4LUO/K8n9zVr5aZoKUv+J6pFdivGeDtxYNve16re7sS1Xi3hPs/Qr5QwAoDH3WcUzPd1NJYQ9CKQCAAi+02kRmPlpxdzrGDMAoKdWBVHvQie7IGKgeEpzIzXteIXF4VmuHzHQABDJLFQQhwCQmZ9czi1j8bVeOjlxLIh6R0o09QlkqeAu86+WwZF6UrA0URt484Axmenay0EwAEQwjysJLzemAiHHQDbtU+Q1RwgALA/aR+DKexCug6JqmL8cCqsgUA0rHoakUGiaziuxxuJQuzDIIQy0CwM8C6d1QOBUEfvU1HYFcag1a6csojYr716tvM9O1Ph4McDea932iHl9yxoBPXCIWmJ47zzTHQCC+fL1ZUu0PswsO6XEGirnnqzkFkMtnQ41+UMo9bJfJ+jN5fqVWGsxxexbJv5OAJATJ6KYawukGKRV3LxKbqEAnrJ+QUN+H0h9SDVSR5MRsyUhZ7bfR3wj0iWx5sHKjy1gPwEACpXFM7d6XZb3RWKtwtTfYo+tszM04ICUqeltbaXoth9zhFLnFcKbiVcT0KhYQ27XkNsBgIcAO9/fIQy04wFOoRtcbebDIDULt5vdt5OoWk3uUhM7ZISvIkxXz4B+lN/2qfqhsqs6GgjwJPsvj5lXBfJtIPNIYe6dylcfCPqsggwoJQNf0v/9o4oXSG/NXjRXCo20JHcIAkiL3W9ZhIniQwIcAsgAwMxP5nBgOPM4CZ3FdRIJLv9djFgcWsU9wqBcLbUFQacolHfhRBM/RdwOpN6r/SMEzgBquYbcVsE9ZeTvAiABCBN/l1mYrCG2BVAraVS3kM3rClUXjSF1Z96QcpItwMjPFDc05Le+JKcprgIEL9MYg+a0QdOU7O36QzWi2y3j+pNYE0Dh4PtXweAcNErPJpF/XpljUK6a3K4hd9Ioz+upcqnIDzSPHpFea7aMZXOXmT4Z7GrYJbzFnJAMeCrgLbG5cKFl/SPm9W17fr/C4aAC9hOn0EN8qCAOhNEvlHPPeT7uEiIjgl5U/6p6I8HhkEp+kZGbKa5AUqhcT32uIzs+HBa4P7YKtwKAktgbwTze2GEuIbmMe9EmDPXsQcBqSDEcdsni35hgkLI4lMUhHA7lsVZCpMmIP9owl9QgHA7KdP+KMQmA4yUTaXR9dPReZ6LbmXTMMcngo9JBZ5leLKIYzMa47REubbRLE+2iI9w0jcWFOywjzmrIbzTk9wjqrtpbkaKcMuyQTfpKeZdHFEYtWBaa191t2+F1utYyPlc/uFL1IAAQGH9Q9dItzqZanlspum3jR3KgI5GRBCOFqklURUAL/wpOoUeB+2NxuR8AdOSGYPptUb6kgnu0gntCXCmlUFkks1iCOr7Ap81FtzkIruQWGvlZYma0NhSq0FMrOzAcOoS+ue5NAADAxzLTJURG08fbhBEV3FKH0M+zBwGrIb8NoFbQqBAAzKrbrkcHq85AB4puY6BdQjKLI1gcwuIwDsJYHMIKIbUKDz3wEpQuJ8/I0BkZcVr8o7ctldzicu5pAFAQxyKZBb485QYX3W4rGyYbIT8h6S/Gv9KrC5gNQmIIZ+kYJxPjpiNdFEbISFdy1DELXVRJqsuIwEpSX04YnMSfhN9I4O+y/bDIvFYjmFs51CYQEHom4F/HJAMBQCeY1pctCWpcubHFOUIBq0q4v5n5ulllBCyJjCRUX/2/SkpcUhAnmp43W/gJxezbYrsnQnww9YaW3Fz7ABM/vYR9HYMoO2INp59SkB1s+9CGOUIOB1ZyC438bAzXPjASIo0TDLUvMRSq0FOfa8mviHYPh3nu9XZhEPjQj1wbmzCkklsqPlEEAachvwuglufGvteVI2wZ7ZsjJF043in0dAg9nUJPF+4mLlQ0FwqVydAZGXlajs5KiEtt0aKGMl0/szgSAMLoZ9XkLl+ec4PbMBk1U1TWAyTfkuiCAaXTcUclg47JBp+ju9cR8xRRYpsVtVbcb6DrzDLTJ/FsdivP4wtGQvNg0GdiLO/lvvRZxTKqEatVh6wXxkjubJ46ux0PKHa/zeJw359CoyI5cVxOHFcQx/9cQIEquUXl3FPihI9E5jD6KcVVkaTa2Phhhex/Rb8xBFwI/YqG7EgdAJ5QWVRjtKYdrTkJhw1V3MJqfjaupfkgJVIN1MdK4lcBJEbunir+YQ4bPD9t/3BoE0blu5cDAELuOOaO5t7d24WBldzSPy+WchL5hXD+eRoVtPFYbwJMqgkKx2mqLfwjGwK5cZRT6OUUejpwT5fQXUzSe3kOOGmihIISGpWQYHbgHk6hZ+27uj8djNw0ymcghyFyGVTzr7GiqsawCUPy3WsAgARjgmS0j2V0Tmk3HikUjjZOSDWLTpojXKGev0p1f/39csE+yH1mmPPEENfJEK6snDSk0/HpdFwanZBOxxeQ4R6RzyZQYlsgVxEoVM6wbR/rOOSH4TfKBSZlieF9FlEAMMX+08vV77fJSiwGqoJ9opJ/2FNGJCN+RyDwWMuDlsc67ENVFINy5eQxOXFchs6Wc097ppUMyo1gHmVQo/cKLtwt372cw6IUMjZQ/zNQn7b+TXUIPARUco8YuXuEhkJg7V4RDFIjN7uSf/jqGwcAoFClnvxcS232fzgkctxfiy1GOnJDMP2m1yc0iEPoV8EtsQmjPHsoVBLL3EkiP66OdNFMiCzXjsYq5wEAADMoR0qk0lBMoRKaKKKgmEalJKorVowx48Q9HEJ/u9DfgftdlSJq/IXBwaBcmshhUK6G2MEQXnRzith3zfwdAKAn1wfR//LlvXUS/BgIq3SzNebdJG9s7hO/U9zxL+2y2nvi2eyhrpPDnCd6uy/QjcyiAMCBpBl0XDodf4WOz6JjEEYaXi5j43ScWsMTeo7S8ISBN4ei9TrqS38njRtji2L6u9qaoobBrt/frHpdVU92wCbrD4hQ2H2STnbj2CL2HafQU3xIgDWYfkND/qkzWgAlj7U81vOg5bGWwwa7MMguDKpVWN8wcuJ4OP0UibxkPlgcWsCucAk18vBacpueWsmgXF/G37bwpMaknqSvbqqHtxHIau6ecv4pAas8uxoMgbXBIDFyMyv5Rzgc4tkpJ45HMo/4VQvJzN9RxL4LAASyx0smkNCqvkkn7lXBPWrlx4gLAGpyZxjd0vK7m5VqzZ1K2zF/dGFa+HGF7Ed1dlKoRIYuSInzUuKcDF0kUAvKtpFbiLPjfg5hgEPo58aRTVeqE2ANo19QkvsaO4AHbYZrv5hKj2Wmes1Ye3DIevKEuum8/keusbvd3evs/D/5d73IhhdCDItrNjCAyQ7cBi9j6HQ5wiPSW54L+KfodtSDTZ1m+3Go82Rw4+k0r2CgTfxdldxCFl8TXiWRSUeu15JbKOSnpYymeF333E75JHE7hsv/T+XfIrk//Tm95giLqJAwrgQAGfk5ZeyLnumLjDgdRr/o49IWxqQT97ILQ2zCEIfQt/6aiZbcGkz/08cLOg+qQvdHduFaCS6JqmXEOSn6Q4b+kBHnW/RdbTYtyxE6hd4l7KtOfO2b5jUE1gZjxsjfXcUv9DSw66gvg6k3mjUG38FAZbt2unE0ABioTw3Uh21y2toXXN8TPF2I+C9HmOf6wo5rZIMU5AEZcUGKzlGo5ZfEBsGYcUMki2PcQrQbR7txNIujWRxcu28YQAikPgqgPmvwS1HFP1jGvgQAMuJMNDPX95f2JUe41D53rWtonZ27lP8bQ9f8wuu4T6S/CxQJAP/P3ndHSVFtX597K3ae7sk5MjAMOYMSRQXEiKI+UcyKAQMqJkQx8FAxYML4zBgQ01NEERNBck7DJCbHns5d+X5/VNMMwzB5AL/324vF6qqurqruqapz7zn77A1fboStRfDvK1o5h24MhALfk5OKUXucUHayuXdGPSsiDgD6Svteq7uf60QnYmMQoD3q+fXqzZKWFl6JkGTF3zuo99s+eOkS+NSxn5pv+I8jXgMEAEYtsKBh4WhhQ3gD3Z2r2dFlGZ34om3WWn7E+ODfN1dHS2ooqYVAiaJfi6Tf7pgjHQE+oA0IqCMDZERQywWAGPp5B/1++3ZC2ErlGY96XnNvahwu5NFOA95pwDs5VNBJ57wTngPmRDat7Qw0lVhrlXtc6vTwcJhBlTHMMxb8a3tFcwgwdfId9erN+mIc82gE9VW79tBGuNQrquT5AEChhkzunC7MbZSRV3ziRACgkCedu4CG/1OZaStELpORK7HWxbYbgtanWPoSABAomfzEk/wXIcBLWqoIGbXyfTJJ0Fda8Kp49qHjHRGKpO/1nFA884iNal5ftFkodCRB7InsGXS0GgibuE88fxUAQL0PLn4BVj0IhqaM76Y4jWqEFXTcDdGvOLEdAOLU6ndr74zqekM+yqNOqlduEUmPRiuJiVrroP5jwhtO+Lmug0udXq08Rgi1yRx8O7pBwgQAaKLd6fr5Uv/7LcxQvdj8gfnKz80Xhz2hege5O6sijRpicXEC8wCPuqYbWiMWGWI41DEdfeRUr/GrZwqkn0pOaNzDoUMp7NWtZly7GboXzH1hCigCxUG/H0m/3gnbE1QhLfZokwEAISmFudaAt3fR2YagAV8ortILkzHMsw6qK7l2GhiKxW8kkgIAJmp9MnPj6Sah97+GCvk5jzoVAKzU9wnMA6fqNFTiKJdfDmhD9EUOH0xi7micedIliAEAgy+LH9PlxkGtBkJZhew5sO9ZmLQIlsyE/ikAADOXwk3j4cymGqXNoBtFt6ti5vBifhuHSG5svT3q+SoqFgAsmveNuvsS1K5xUzsWhMOH7PTnHDqoQPyRug6SSapHvdCrTsRI4HAh6i5ZfVQr31Or3KdPPhIlpl+Q32kSBEw0hP42ZJVp1yb7LhdJXx93ZpAZLkuJfm2kXxvXoJ27zHT9Y1HXb+b7qogK766WUXeYgmPEX7Pp27qwJQghiUYdlw824J026vtI+l0r9QOPdzG4BghSIbJxBUKFyCAZasU/ItTF2owKHVUTNcvsb2VMI2pZFfLLDeo1BEKieka8MZm5zUr90Mnanon6w6+NVUg0AOXXxlqplRh1ZTXaqVzr084GAAZVJTBzUZdOrMsSnor1v+TRLgbAMkmmwGXA7aMu/8+iJmoWo9R0bR+hQuKq5AX6jRPPPNLl6dC2A6OglfpeJQ6B9AEAlUR5tPMNeG84FtYpd4okBwBs9NcW3L5WVJ/5jIBhQMtZ5R/kvjvU5CYrr2I3pVGh6jiFYX85HK6HjfmgB7WCanhzDTx5WZvOoRsl1iQ2SUNt6m4REXd/5ILDdDIAsER63vlYmtK6LkwnoFmoXyzUL0FtgFO51qtN1MmWIulVKf+7Vr7HTn8cQX3RtcQ5Akyl/LRHPV9f5NAhDuX3kPo/Xhb7cpyzkJMA4OcIXzVruLX6PKMPH/kUbDIHlzs8NczRp3OmwGYL7E8RPgJQzipzEzIW1yXndEIZvHtAWFTEUkU2+A5ona6WI2j9g6S/R50EgINa/3LllSR6VtdKlRLESGzTG6YxNDDUKbc3KDPDTFoa1cXQz1qp/3bJ7AeDkMjcUSx9qRKHQqLKpCWp3DVd1XGvEqtTvUl/HUm/2uVmWCKbYcA7HNRb9cosAKhR5pjwhla5gv8HAJCYRA3xrW/XHjQoM/Sr1Ig387it3jXdBARKHPMEjw9Wy48QoFViL5XfiaEX2amPNDB71cn6ZhF4eXv3rFI2hY5qfbvWcPkIOO85WBASvIJP1sGlw1r8QCN0Y2pUw0ZMBCCtzK40hB62z//NcCYAYEKebHhqYvCP7jqn5iCTJKd6tVuZ1phCiVHASn1vw98ZcEsCd22ECpZy6ZVAyKALTHhDIjtbL+0oJMoNQ/5tv+pPU4hnkSDR91RFxsj0AYP4eaRHj5E6YmT6Uqd1mM+AAHZZtr0S7ZAQAwAGIjzZ8Mzo4CluZm8jGtR/Vcvz9NcW6udE5t6urBcirCG+2TyEQuLc6oUN6hWNGJ6qnV4WTS3pciJPQBtaKr2nP8Ws1HcJzNwu2W2tcm+9chMAsKgonT2/ky6Dx0OjTFj1E6APS5/pono83pvKXnEy3UD/odCwAWlSF07QNWIskH7T6wtt8XA4aQhoQ8qll8IFBRu1gscHquWHAYBHB9K4i9u7Q4IYAIRatDdoNTUKx7pPEAI974Of5kJGDLQFpz4QvmC7/XNz6Le7y730X752Dyi6BBqxuNTpDeoMuREPHgBYdNhGfWOlvmHa2VsaRpPWAhv1dRzzWJMnCwH0nmXG29ZrdAcoq6ZkisJ2gzm8gVUTZrjXXuT/nQMXBT4MHgp5d7G9749c4MI2AMCg3eN6fbr/n2FqX6/MqlVm668jqK/imHldVos6LhASwvq0s1zaxX51VLjPEgAMeGcs/UTLtkSdQYNyZbXymP66M8U8ApykJUskVSZpdcodOkM4kb3bgld12bkegR4IAUAkmcXicl1PIJJ+I7qLiKndBw2hm/nH5wrv9CCnRtyyywNhg3JVtfIoALCoJIObfJzJ+6mETBLK5VcbOeURnVwayzxppz5t797aEghricWtNZ1wJ2KX4UhtpZPuE6e4feITy2VLrKGOj8t9K+51v95dZ9M2EKC96rlO9dpwW94RaCa80UZ9Y6Z+blevtEB6lR1tNoco+rUo+rUTPfR/NYxdEPFAEwU4lkiX+76e6Vt2fLshAJTRifdEPl1ChzpDLvetuNu99B9hHV4jPxg2VXfQ78XQz3XJbhu3Twikt1u9xKNOVYmt8TYUuKKZxRHUiu5+uFTJC1yqXqNQk9lbTbhV9QYsknSZpEkkRSKpsqaz2OOOpbADj/eksdO7g8bS2IapQbmmWnkIABBSU5ir2uvrcpJxP3Xz6/X94o3afm4OcypMAbu6fQIXiit11lIs/ZSdPm04jUegAV8lPaPzwnQgELL4MR0woukSibX3/gi5T+g0mfaiG8kyfuMwU2ALdWLR7dWGsYts9xCEAGC88NcjrsWtq8J0MxBoHD4UQX1pwusRaBKkHOmuQzJJ9mpnNygzJJJKYXdbJoh+7cwy6S0V7ACAQIln5jnoD1rYPkM5PFLcso4frtsiYkImB1cvanh8QvAv7gTDJavmPTe4Zjfbu4qOBYC9bE4+mzFa3ECTbmlO6EKYqHUyidcL7EFtIALZiLtAY0nDxiAzSPUkVSlP1Cu3CVq/RjJpxIC3R9GvxbPzDXjHSeBDmqi1AW24QuIBsF8bZ6F+ORFRVtBynMr1lfJTTvVmjzrFr50haH1kkqSBpUkUBIB4+iEWd8u8x2seE+FZqb824F1BbbBMkgBwUBtmo7/qXIIUl8uLg2QIhwqprk5Ev66c84x7DCHEK6N8Y5+LyUmVi9IRMA4wCHvo9uuHNAuvOsGlXgkAFPLEMw92Oaes80CgWKifEcgBbZh+idqoH63UDx3YlcwmEqAMQqdyMwPT4N4pEGdrfctmccraJ7Zz/WZHLZKAAYD+0p5X6x7opAVud4AA71XPcqsX+bWRjbNqAMCgUgPeyaAyFpUxqJRBpQyqbjzDcKvTqpQnCKFAF6Rm7zbhdW05aB0Veb9jgZn47nS/lS23iacgAfOk4/6fDRP0xd7SwcX1jzq0jjM/TxaocvlFr3o2AACQOPqJCLoDijBIJvESSZe0TJGkSyQzqA1ookHMoCor9Y2N+ubki90oJKpY+lKvSnKoIJW7onHbn0wSPepUj3q+SDJPtAcEAouKQ/KPuJhFRQa842ScOoBC4orE71SwAEAE/Xkc/XiHdxVOhiOkWvDKSPrdrvIqeV0Yd39wWnhQQ2HqrajvrpR/6pKdnyqUSB/pvQqR9DvR9OJTfTotwaeNq5Ce08Ccws0wolOpF9oZnLKG+resM9+1XA0AqUrp27V3davzQ+ehQKxbOd+tXSRpLTywZAaXM6iURWWEMGG7Phqqk7lb23Xbi3Q8Bq1dck0E0FLrde9bQoIO8WrVs/Xz2xhHTyEIYcvkpUekn7UE9j4rXtniJ7BI0iWth0TSRZIpaekSST+RADECwUKttlHfdUEjygAAIABJREFUmPCGU1hiEbQ+h6WP9dSCGa9JYu9UwepVJ7vV84LaoCYTPhrV83gPC8UsLmZQMYsOM6jqpDXzBfh+TaTePerUClnPWpMkZpaZ6giRza+OKpXfOnYoSUx4XST9jhFv7MT5wpPB8xYKk5qstBi5jYYFadpJlQ7vwoZ6QcstlpaD3kTPnd1e5euTD0nLrFHuS2Jv69iF2paG+u7GqawRLjNP+9h8+dt1sxOU0/0vHUZQ6+fRLvKo57XQLd4YHMpLYm9pL9GmwzZM35kmL7LdpZt1sESa4371Iv/pLpSlEWOp/J+g1g8AEMhJzO0m6q/GGxDgg1qfoDY4qA0KagP1CUrLMOCdNvy1hf7x+IqFPkfvcr6lDlG27y28q2fq2yb+mLZOj3pBhbxIf83j/aKW1WTOilHAgldbqe9NeEM3ae60BY1rhGGUyy/o5Hga1aWzF1Dt7DGVSVyxtELXd6ZRrUKiGsd+Hu2OZN614F/aO1KRgbo1cNUyMWQmZTIZZ1p2v1mdqRIAgF6R1AZyT1fpUrUFXVgjrJCf1fus/kdEX/8/t2Fqi+i2HxtNXS1KdBKgi7jLJFkiSTJJ0f9XSFOvRBP+O5GZ3QFqfrtEt5tgEzf4Ycc8Lw4xTicHfpnretlATrGRestQia1E+kiX+8EgJLM3sKg4SAYG1MFBMlDQclu2W6NRHYsKWFTEoSKarhasKdGet4/uXDW4fNluXy+XL8fl6+ULppgMpUN6PmYzd6kRKEHF1RfuK7pTVsxxjrXDc+c0eb9GfsCpNvUpRUg1oXVW6nsztfrk2xkej9qom6Pr3mqyUiW2Iuk7nfBlwasT2TvbvkMCTIn0sT7KYVBlGneJTOKcyk0e9dzGE0QWlTio92z0N23sjAwSZob/+pVyiNFms1rPjvX9p272fPmSF3xjAAAQzIirekt4uu2n2kl0lei2QuIKxF/0xps09jIe7+mKszut0RbR7e7GaSSx9k8HAV4iyeHoiECIpl9GcAqq3DVU9COOR3exufpislK+0Lmgx+mdJlVIzGHpY93SE4HSgm8UjWoMeDeLCkP/cFGTaZ+qcR5fltvf0+Xr6fb18gQyNa1pHKWwmJu+JD3+K0BdkHUUpcidBfdX1o0PrxnV947oiM1NjlkqvenXztAXDHiXFX9vpVd20jji5MCvnVkqvaXP5KLo16PoV9r4wWrlsQblSgBASEplruaP6NTIJKVeuc6tXtxY6l03sbLTH7fMyvEQw6W+m9cqoX4khyMiMz7i05qbY2UFgefM4AM7xRgAYFnmtaifrgr+MxqKwqhV5tQrNwKAEW1N4ZqxovvfxNqsaw7GjW6ycsruxfHuE5acPtsAD30OALDwcriiaQtiU3RjIPRYzjL5N1LNkf7/Dy1D4HsBAC90nE0gIXax7Y5vTFP0RQMJPuh6aVLgdOnJbRYySTksfXz8xBpA5dAhI95mwDsMeFsLYnKKatx88N+1zqGEtGQoE0acY+2A7Kc4plOsotKayXsK75XkY1LlVmPBuEFXN0nAqsRaIb9swFut+L8sLu7MQbsJDbYL7e5vm32rWp7XoIYq0Dbqqzjm8VZJpI0TwrH0Aju9rMkGColsUGc2qFc0tr5iUWEs/bSJan5+UEEizvfetl8NqU/ExkTHxETd5lpxVkNvn3YWgOaEiqlinqBpABBps/7EftFT3nQSxMm85tGG4F66c/LIGhgKxN/1sksic4eFOq1v2K6CyGVo2GQItiSV/FePmXmxTQPh5N3PJxwJhMe7T8TfDn/MAwAY+yTULm3lHLqxfaI6ZrYpsJXSTob5zv9n8JjHyUycQei4qBIF6mhhQ7Zc8Dc/VEKsgpjfDaPLmYThwhbmBM8vDaFdbJ+vTBe8ZrvxTev1ufKBePWkSt1TyG2i1nm1KQR4DD4j3myjvouk3oxjn3LQH5mpPzmc1wLzXpKtG/YsqXcNPL7fwMSXR0dsSY5ZmZX0cUbCl25fT0GKAgBfMKW0ZrLVWGgydIRYIUjRWw48lV92japxAACIpMT+4BcSNcKKsoNjGuyWfY23x0i0Ud8a8SYKdQ3JvstRHv+kw/Vls28ZqU2C1kcmKQAgkt6C1s9CrWkh4SGS7HLptSPaOt/HMC8evw1GQRPeYKeXYfBKJFsDIwCoYPdoF4qkpwHvavLnzlejJ3tn52sxAIAAEuLjoqMj+wjeS2smySHaLTKANQWbVqvVABAUxXUR44cE5njlm7zq+QFtpAp2Grm7Q+29NvJmXjxEq52a37vU6V71HABgUEkc8/Q/QvFcVsz5pVeXVJ8fF7kWdSi/4jePFLhsY7AlLnRJ5IB6c2qTlT1q1lvEkEsBz8An6+DS4fDRWoi1wqT+8PFaGJwODX7YVACzJrZyDt04I/SZRhqDu/CJ+wj/DyeCyKYDQpxY2PldFTBpDzvmF9Mh+c2e0qFnnE8mqUcZTEHEb+YGreeHreeHV1NHZ2O8Jj7uWjg+eLJbsiQtkwDN4fx2cUZEKXL9niUefxYAACJmviTCctBmOhBhPmizHGSoY56nmsYcOHxzftkMouuAI5IR/0Vu+qsYt7mBh6DD1efvLbpLVkK1WJOhbECPZ6JsW/PLZuwtuhMAWMZz1pBLWfrUOmy0Dx7LRKv3hIrJBOgq+Qm3eom+yOP9ScwtzU62NGIplr7UHRM5nJ/KTm/VjoAA51SurldnaSQkg45AiKTfiaTf1ZVad6uJl/huLdciAAAjSEiMt0dEsBp6qiwmVtYT6RpCim4Me6+y+3e5GgAoipqe2Pu+2tjGgyMWHTbhP83UWiPe1EYZWA2hSiouUTkhs9FvHMqLeZ0T3caF4o/6jxZLP22nP+7Erk4GZMVcWH55QcWVsmIBgKToVYN6Pd4BxwKJTdawsWXrtFZnhMe7T/y2DyY8DQDwxzwY06uVc/i/GuH//whg4zO2e38xjtMXzcQ/r+G5DLl4PT98HT9sB9dPOgEVBRNyq+fdmb7PTt65dghBMW797ld8wRQAQKD177EoNa71ylCde/C2g/ODYqy+aDUWDO41z2pqvZIaEON2HHqktiEk6IuQlpH4WU7qmxQWAEDTmDXblvmDyQCQHr+8X1bXKOacPmhQrqlW5uqWCDSqTWJv5dG+YzfBZfLrPnUsAFDgTeUuZVFbNfRVYqtTbm9Q/1VLlELNX0B8xaS+hBTkaazrSIDkkZKQkmayWABgRp3tbLcZgFioVdH0EhYVqcQqk+R6LX1k4Ow6FQOA2Wx6xNz3XLe52QPy+IAZ/27Gv/F4X5MZWBDxe9mcnWzuHrb3Li7Xh0yz3W9d5Ws3l7uN8KrnlMsvAwAFrkx+/OlAnjoRZMVcWHF5QXkoBIaRGvftgKyFXVJ3b4JWAyEA3PIu5CTC+3/AjoUAAL0fgEVXAAA8+BnsfbaV/XdjIKyJmuVwfUErJ5sLoGlsRd240przjFxVr9Q3ObbLTQ27HV7zaABs8XWl+PiXpotett0qo5b8RszEP1TcNkTc8bnp4rBs23n+nx9yv8CQ01R22R9MXrf71aAYBwAIqf1zFht6xcbUtkmrT1YsOw49VFF3lr6IsZSb9mpGwhdN7mRNYyTFJskRouxw+XrmlVyvqKGHssVYOLDHU3brMUnsqvrRG/c9r5/PuEFXW42nNU2pMSri5iVUPdnqZi51WvURsQgKeRKZ2434KMPZqdxQo9ynv05k7rVQLTeGhlBPzJ9KQw8ocfu1+H1qooc0b6VqRWqv5KyglQeAnCD3QGWkCe2IZhYf38r9l5I1yXuX/odMio/+RP08SzD7tNEBdWgjsaGjYFCZlfpBZVfs5jJ3cbm72N6HmEz1WBkNBOQB15JL/N8f//G6yOusnp9ZueNuaCXShwFtKAA46Hdj6Oc7vJ9uRbMhkGU84Rp5RsLnfTNfaNc+/aZhCo6weX9uYZu2BMI1e0PuE/dPBQCImQW/PQIEYMLTUPNGK+fQjTZMAp+tIa717boOTk/f0przymsmymroj1RWe3Z28geZicvakfU6DSDTsYDaRPdoOy7zf9NbPvCwY55u+hgGAtJDLhwpbh4pbOon7qVABYBzAmsedMzfyg0AgB9M55TT8Yucj0dop12Wz+PPXL/nFVGKBACMpSG9Ho2Ky6vk2mr1wNDeoTkPl1RP3V0wR1GNmsbuLry3yjnayFeKcoQkR0hyhCjZw5dTY2Ck9Ej5IDvpPxg3rZPFRf4VY/+7pmEEIdSegntG9b2jk1/zpCHA923LZhHUVwyqLZdf1IhRJdZS+d145kFdCSGgDatV79E3s9MftjEK/ij3uT1wZbXWUm9uBDA9KK5PdNoWqwoAvIZuq3WnMPPNeE2z24+m8+/hV78gTASAiur6uWnTvlJvT9Y+Igwf0Ib5tNF+dUwNlVhDK7W0Wseo5azxEH+hk57awjkQQM/ZZvNEmBL4pclbAptpxqZmP9UWCKS3HgURKHbqdEyKKqqpoPyKJiHQxJdnp/wnKfqnXQX3H666EAAKKy6nKKF3WjtUoxU6SqZjW96Gl31msemcitaOufVG9wKM4F8hXja8MhOmPg+EwKszWz+HbpwRSmwyI1eh7hfAFaTo0uopJTVTfIG0Zjcw8pW9015LjFrdHXP27oBC2QFQJxlozcKDLY87HlzHDbdo3mHitlHC5hHipqjmDqQgepHtru9MIVHdJLVicd0jaUorEpd5TOYq41nlVMLtnreTlS7zCm4WDd7cv/e+pA9FKSwM6z03xv43QYzMxLFS+6Q4/cGkrXkLGjy5bdw+wrJ/YI+nrKb8E23gDaT9vu0TjdAAMKz33PjI39t1Ps1CBfyKML4PVTGMLraiLnYA1yFyGW2vTAtabpm8VCG6kxyJoZ+3Uv8tllYoJBIADHh7CntN68xSws8NTPtAGtFkfSz25FBV2diZjHrHkbEZyGJHbB4vLUyo0xABgLudv10ZXNhyG75EqDN9c/co8QDA89z0JPd4cX05FV9Bx5fT8eVUvNjiSB0Tkq4U95X29ZP39pAKnrbPOcBkAwAF6tP1T40XjpF9kJgEWnHijjbsVsiLPOoFAGClfkhg7uvYTroJLYXAmJUYKRu4oSLi0e4LXVWhSVtO6tLslLY2yKuUjSC6k7nD09d9oruhaWxl/diSmvNqG4Y3ocubDGUJkb9V1I/TSzU6HNbdfdJfbJLF+h8EAZTHZmVJhVQb2Cgfm6e/Zr1JQwgALJrvGeeCYWIzBo1lVMLPxvE/GyYUMSFmF0uka7yfzfR91k0SsnXuQRv3LtZTlDTlH5E7J9K2vTM7JIQ6WHJDXul1x7deUFhgGRfHNnB0A8u4I8z70xOWt6pNs7vw3sLyywHAxJdPGHxF53MSS8Ux9wYuAwAMpCdVNZwuGkEVDaeLsqka1Gl6YYnm+FHu86fSYyqzezqzhUZtojzIJKlUelMiGfoijer1KEhBfTp3aavaYH8qPW7xzzisOfTFOOR50PBTH6oiB1fa8VGdDZFkV8sPN8CwR5NqdIfqEeK2l+rmtuVbH1DjRnnnCoQGgOioyLi4VuzpDBrOFJgsge0hUIPV5an4FQwhup8bW2dFvVDApAEAQ5RnnfNHCRsBgBA2QIb6tTMx+DhUwKJ8Fhe3XaBcIxaB9CyV/hNqouem86ilRoKTDE1jf9/+gTeQEV7TOAQ6sf1Z++zf+NEAgAlcvI7vWRYiHEg5a+KSvktRyhLUSr2wIiPahSOclL0eOxoomxPb67HDRdkCyPBs/fxOnmcn3Se6MRCWJTwTW/tKNynI7S2683DVhU1KtTTlT4hakxL330jLTkBEI3Rx5bSDh2+QlCOa5IgkRf/SO+01A3dai7q5bBcQwHb3adEL/Ad/xnzHQ0HEAwAF6n2uV8M1knrsWG0cu8o4YS+T0+xnk5XyB1wvNxs7O4Nq56jN+/+tNy2wjGdE7t12S2h8IzNx1dGzkyoe7tienZ5+DZ4+LONiGRfHuljGyTEunQXTXsiKZfWW5ZIcAQA5aW9kJ7/fsVPSUaeZ+3nmhQkjjWHHgeFU0TC6aARVNIQ+bEZt1RXTAG1VUn+Q+/4o5+5RE8PrU7HzLv7XmewGQxtMD1RiK5NfC2qDG69LZm804b9b+FSQMPOD578ujtOO9LpMY7e9bPzCgU5IMn/atvg7c38AsGi+T2tuilHb2hr4ljj67sB0AAAE6WmpZtPR3zBKdSaqFYlKZaJamShXZCmVlsAFbu0qvfwJADRUxzDPWqmQTmE9dtwa/YJePueI9HTNDxnBbL96RmNPbwBAoLDoMIvyOVzAoXwWF7CoCIGsAS+TNImkSlqqRFIlkippaWGHWwAw4K2pbNc30WuAfpT7nk3v41C7K/17i2bnl12lv24cAgFglXHCYtsdbnw0oU2p6NJ1hswKCgAIgpVDhB2ZMgYtWq0PIt6DTyiO+G3gg7iGj9r9xboOp9iPsGOocQ3fsPuoUygCLSpiS3LsjwlRvx3/zJIVS17JdYWVl2laqPxOYTEzcVmP5PdpqlvyS51Hh7VGuwkH2R5zHE/WUnoSDC73rciWC1cZx2/hBmpwzPzJQILjhHUlVNJe9ihh+dzAmrvcSyO1rsn0VtRN2HpwgS4Ww7HOUX3ubJyibOxHeMpRXHnJzvy5AEBTwbOGXMqzdR3e1Sz/VXr+0AiSAIx2XK+kDgq0dKo+A9dm4LpMXJtJ1WZQtWmonm00f/UT9lclZ6XUZ6WSW6Od8NkUjby3cX/cyv9pay0NS4CrkJ/VG+AAIJp+OZJuqYF5q5p6o//qg2qoLBSBAi8av7ycbUlQ8FPzpUtst+i21Y+5nj3P3xKx4rjTQ9N8t/wk5wKAmVKfiv07hxzWg1+zYqQi6VEtz9MrdjqMeGMs/RSH8wGgDA29PebRKtoEALyGHqiMyhSa5/U0BkIqBQ1H0sgnRCIz20I1rT52BgTQD3LfBcEpe9TEq9mNb5raV32s9wxYt/MNvcsoJ3VpVvJHegisoxz/tt39l2FUeMscOa8B22pwDNbQ9D+NadV6LCTfjxD3pLY+nPqP+E3vulfb9926FP/A1ChBv+/4wO3rCQAmQ1lKzH+TY380cK20fvuFxP3Ft5XXnQUk9ATh2PoBPZ6Jc5wC67J/ImqpqDmOJw+yPZp9lyHKCHHzOYHfxojreE3UEFphPH+p9fqw5KlF893qee+SwPeYdDyJRwAXll++t2i2nr00cDWj+t5hNhx1VpIQuyhi9iEma4SweaS4Ocz9OVUgBP+x/UO3vwcAJMesHNTz8Y7tZ7OSNt57rx78vjG/MYIu3KykbVLTNilpm9T0Bq2ZaWJjYCBJuCET16ZTdWWa/U+5h3Bcw4wFxInM/p5U9fviyKpGgvJWJNzArbuTXxOHTugPo2lsnWtIUd1spzszwlE1OOVqlmleMUAGapFw7rPCucqR/PNE+sBS8ycJyFXrGlZSfT6FBZZp4GgXy7pZ2sUybprxvBV12Re2UK16dHD9887HWvvBmqJGswzzPqRH/bOYA9+aX8etpFWRR51ao9wf1jlCoJipNYLWWyZJNYyyMKHOSasAYFTRQxXRmXKtmfoDg0/UMkWSpZs4tvHcEMgMKmXxYRYVxtAvdqHk+mql1xOBqVvVo33o/zZ8PZtvnlt0PBTV8Pu2T/xCIgDEOtaPyA1xoH4wnfOidZb3yPQuSq1/0PXSaGEDAEjAlDMJpZBet3021ZAIABqCb84IHEhSAYAC1a66IzRXpOp0EFeE6nZoDQ61wa66Bkm7DORUTku6MRAqdCSluDtn5tkMymvP3nLgKQCgsDhx6DSebYd4ktPTd2/RXU5PiBrH0N4Jg6/ozDi9m6BRJgDA6umlRRBE/HzHQ3/wZ4TXYEL6S7vPDa6ZEPzzeCOteux4KeLWsEsiAORKB+a6X+4pHerA0X2BlB35j9a7++uLJr58VN87jPzRfEMVFTs3cr5OZ9Chd4OMDG4eKW5ueyata1HnHrRu1xsAAIiM6X+j3dJuDWUN0BjvfduUFACYyuz6wvx243cJoDw1ZrOatlFJ36ik7Vfj1TY/ggEgBTunMHumsLtHU/kcUmQ6VpPrP5aGvyhOLFSPTl84pFzFbryH/zUTH/0ZJcVWXX9GlXN0TcOIcD8JADC0Nzv5/YyEL5qURfeqCTf7Z2xXQ2V7E5KeNnxzE7fW7cvZV3RbrWsonBgahgCnqXygn/mHRNtah20nhdvnLLFa6XWR9zZ9MPGE4fv7+dbnlBqY6+Q7GxplSsOoZJRnEms9lAYAEar3zbq7koiP0rw6N5AAL5IMUcuSSA+RZIpalkwSATAChcFlLDrMwmEGFbO4hEWHGVTZ5X4ja5WsJ4JT1ylNPeMo0FaY3zyb2dfsp5pgZ/6DxZUXAwDLeMYPupJn62qo6IURd6/nh4e3mRr46W73UstxOpqyYl6/51WXNwcAMJYz+/w73v6X/QS0cw0bCVCnVoPsH5Ya1Qi9ZsvnfiEJAHokfdQ7vf2zaYIq6ifsLrhHkKIBID7y92G928q2P2k4tanRYi0yT409p7m7RUPoNetNH5un95ALzg2uOTv4W5xS0/LeNnGDn42YXUqHSlAYtMt839zifb/triOE4ILyKw8cviWkZAZgNRaM7HtX4zHQZm7go45HXfiEBtWZctFIcfNIYXN/afdJ7oncvH9hRd0EALBb9o4ecGN7pTfeE8+4I3AFABiQvNX6dBpuiVwnEaqYRBap0QVaVIEWXaBGF2rRh1WH3KgfDgMZTB8+j9k9hdnbhzqG2Ru2YVIBL5cGLRYmNq4dUqCdy+wbRJxJvugoZz+loX8Lmq5GrqpX2lIhctt6NX2dnLVOySzSjkbW4XTR28aP4kTT/sO3VtSPC+dp2giMpUjrjmj7ppiITVbzoTb+pI8FL3heOBsAaKT9Yn5pOF3Ulk+JJLtaeixAQkVQDH4TXmumfq/him+PfkyvkEWrdU/g0tz6t09kw6QBrxI7DTXd5P8VxhYldUFw6mrlaGHCCNKt/J/rlcy/lXQAsKHgH9bns3Ert22Nc+SGfS/qf5fBPeclxvzynXHykohbfChUDY1Tah50vThS3HyiPUiKbd2uNzz+TACgsJgev5xlXTQO0FSAooIM7acpv/46aB+lGSKi699r4XxqlSSPFtlkZQJdYMBdo2X9D2uoL6qctiv/AQBgaO/ZQy9m6A4OIurdA9fufkP/Mw/NeTgh6vQSt+2Ohvq2IE+LeT54zmfyUIXg2fyap/hvm2UP1lJR0Wo7ptESYt+3XPmR5YqwhI1dc1/jXTbN/32rjnHeQPr2Q/PCjQ0IaVmJn/RKfSs82yCAPjFf9prtRr1ayYJ8hZonBvPW88PC0bcxDCQ4IfDXPZ43LCdrBBoQ4tds/VyP4oN6LkiO+aHtn3USUz/3PCcxAcAj/MpHDB1xl1QILiWOAi2qSI3mQJ7E7I3BzXx3DaFv4166oPLecD6ZAPpJzn1OOEd/hjZBlMylCcb0oDE9aOqHq3tHrDXx5QdLZu4nMftNngNG7wGjz8U05cqySH2Y//E2tCu/5IaS6vPCky2E1JTY/0badkqSTVJsNWrKDjQcy7xBQAYJmUUCJwi6LOOKjtgcHbEp2r7J2CIJTgbqHO9dG5V0AEjBzr+tiyJQG0djyK2eL5BcM/rDSG0OK6weYLJvj35Ojw2xxP9G/aOJYkcInxJiPzFflqUUjQ523Ipoj5r4RPC8H+U+5Ej9mEXq9ey6ufyqWOyp1qyjvfeVaXYA6EHV/GFZ3MJ3lxXLmq3L9KmCLWYj2//jz0yXbOSH6O8iIBf5f7jT81arY1lRcqzdtdQXbKoRejxGnvVsjPRVCxt85bpzS+DsJitvjHw0k9vV7PZ/HYS7PgR3AOwmePtGGJjWygn8k2qEqmpYvWW5LpfcO+31HskfdGZvu/IfKKqcBgAc0zBhyOX/LE3ILsduNfFZ4ZyvpYGNWRhj6UMfmd6L6qIxVwmdtCjiri3cwPCaaLXueu8nFwRW0s1N0QihDpVdfbDkhjDLyWIsHJj9VJggCgBBZHjSft+vhrH6Yoxa++/6Bbnyfn2xjE7cwA1dzw/dxg4Q8DEdY3Fq9ZPOZ/pJJ6mX5sDhmw+W3AAAPFt31pDLaKr5J4hGaEm2s7Qr3KQ/O3D5O+KZAJCG67dan24LjbNjqKGin7A/sIUb2F/a87TzqSYDnV/8ZyxwXb3V2NLR45Ank6rdq8Y3S20FAB7kkXThAm41X3ZOY/IaIJIY9WuvlDfNxpAS23p++MOOR4PIAAAMUR5xLZ4c+EWSrU5vv1rXsNqGYd5AM4EZAFjGxdJuhvayjIehPSzjYWgvQ3tYysPQXp6rdxlrRnoecBMDAFzE7vjU9G77fqbjsIvNnR31b/1UE5XKB1wvjxDbZyO6kR/yrO3OMjoRAEaIW+5xvdZqt24TVGvW+4PTVjS6eWmkXcVsesiwMgU7AUAFKp9J36/EXd9wiUAYABjJliyJ+J46MpNWgXLS9iocU0tF1lBRcdvOjC+LAQA/T96e7A9wR+upiUrlw64XhohtbVUKijFrd70ZEBJa3uy8UeNapi62GgibuE+IMnx8G0zIhZ92wvyvYOOCVs6zGwNhwNCfF/Ow1mUl0LzSa/cXzwIAnq2bOHRax0jtYSiqac3WZbrUZFLMysEdJTJ0ByQmCRBqb1d4eyErFlkxb5YzXlBHrSbJpDkiYgIIb5C/BtElDOVlaD9De2mqU5XLlYaJr9tuqGmk7p2gVN3k/WBS4FfcKMHl9vfYnjdPp0QBAEJqj+QPeya/17jsVEInzY18vJBO0xcHiLsXOhdEgCBwPZso2YuI2872Xc8P28APC0vHUaDe7PngGt+yzvB32ghVNfy69YugGAMA6fHL46N+F6QoSbIH5WhRsotSpCBFSbJdlO0AkBL734HZTwLAdjV5jOc+veb3hfntqUzzg9/OY41hzMKIe8LsdrvqWtCwcJgYEi2zTh4iAAAgAElEQVQrrZm8K3+uohrK+MABo6/Y4Ckz1xUxILWhGGnUqGy/uWfAmhMw9bXtQQavcvhMVTnabBDj2NA79Y3GJsnLTRcsjrhDn99bNe+i+vmDpKZfXJCial3DaxqG1rqG6bpCbQTHNOyP3/KINZRCf9n4xU3cXy1/pFVs4QbeG/lUuDf/TOHvu9xLU5TW/UzqqMiXrLPCIsA6aKJM939zg+cjM2nrjXa9f+ZnUmi6hoFcym57hP+xB1UDAOV0/HfGyf81TqqjHADgdntKSkPJ8KhIR3x8M3ouvUrpS9YZ9NfLRwfzEkODVEzIZf5vZnneba/Ld0CM+849eYgsqSqvqrysWBWNUzVeUUyKalJVXiHGMSPv4eSWMtWtBsJVu+A/f8Bnd8JbayCvEr7cCPMuhmnDYNl6mPMJBN9v5ST/MTVCSbGt3rxCF/vv32NhWhtUlVtFtXPU33tD7jAjcu+JdZxKi+TG6NYa4f7iWYUVlymqab/J8010xS7zUZILAjTMbb+oNn67xf1lbDkBAgCshq6rSB/nOlLgQYShfDH2jdkp73VMRVNC7NemqR9YrqjHjvDKNKXkFs/744N/EY3OK732UOm1uiwLANhMhwZmP9nEUP4vw6jH7XPDFYvL/N/c7V5KE6XV9onVhrEL7feGPzhU3P54w8JmtXW6FmW152490Nq49Aj6Zy1Kjf96vOfeTWoaAJzN7PvW3JpaYocQRIbFttu/N01qsh4Tcr33o2vdX+7Jv6+kOqQ6hrHUO/219LgVGEsyUAfUuB1q0g41eaeStFtJ8h6x2I3B3lF0wZl0/lCtji6/oLTq/OPJJgAg2qstWd/mmH9JUcr0MZCG0BLrrcvMIWe4JLXihbpHUlueHhHkCWTUNgyvdQ2t8wxUVUNbvvW7CcWrHTUAwIP2q+HNgXybyCMngijbN8qTvqRuEhAWWBAYojDKRHnlDPED2wkKuhrgL80Xvmm5zo+PiNZqPj8y6coVAODQGm7zvHteYFWro7QtSupY7xx9FDuV2TXf8EMuVSEj+g/+jG9N521hB4b3qaOmpra6JjTdT0yMd9gjGr9rEtBNK01GEQHArnT512ENcUpNtFYXo9Zd4F/ZX2o31QsA5gfPf044Zxb/x/OGr5rVQHDbpsh0bFR9S0o0rQbCJu4TTh/c9h+odMGtZ8Fba8D5Visn2Y2B0GWbavH9SaknZF23C3sLZ+eXXwUAZkPJhMFXdFXNeevBx8tqJgOAgaueMPjKTk53ugpBQ19CkFHo+hmAN5D++7aPd5j8X8dUHDAeLRRhAiM9kRfVJCSJoUfJTrPrleQCPxX6nSc6Y2ZWptCN6jQItIToNR0OhwLmvjRd9JH58nBDLiIwrqT2zF0G1R+yXcVYzk5+v0fy+7hRI7CG0DuWa96zzNBvfpZID7pfCjeWqdjitYyLcDcjixxGBR33qOORsAiAXXXNb1jUQtm/a0DQX7vedHr6t2VbjOWyPi/N0cYCAIeUTZaF+gC/a7GX7TXf/lC4kpqgVF2iFX5G9dJnD9EefOVfYPaGRgwmvmxIziMR5ubNojVA+Vp0nhqXTVXpRAwJmL8Mo743TcoXh43dyWeXH5U1ronQ/ugrHjoy1TAQIVvOz5bzy6n4MCOxn7T32frHTsQzPBFUjZdkq6xYJMUmKxZZsUqKVQ6tsbp8Of5gEgBImMzL2FPCBwEgUeRfq8Hp9j9jI9e2eiUTQvmDib5gmjeY6guk+oJpvmBqE0/mY4AVjnaztJ6ndUeYD0aY91VHKs9HX3+QydI3QUAuCKy8w/12JR232Hb7TrZP+NO9pYNz3K/2kfa3cEoTvXevVzLhSKb3MJ38rWnyj8ZzG44ljkWrdeFG3vXlWrmPAABGaGwyijIgAHCormitLmvjcK46DQAYrv6MITNtuFNcaw3QPYHL3hZDumvXc+uWGD8/vnFF4HupyGQKNpVNb4y21Agbu08EJOAZwAj2lsGM12H7M62calsD4as/w9xlYGABAGaOgcVXtelTXYWgGLt6y3K9qDA056GEqLa2wrQKSY5Ys/UzPSWVFr+if9airtrz6QiClu1/7QWraa/p6OiEJjDez1zlk9PBy9BehvYxtBchTVFMRcQ21xxbQIceYTkCe295klW06c3sOhBo8VG/9Ux9t2PhMICNy0zTPjNNi6uKGL2bjXUdnTp4InyHB24NWL0skTgiAYCZ+DHR9rM9Nx8pNMaqtYvq5+fIzVP1WoCC6KWW6z62TNejKQLyL9+XszzvdSuh1OXr9feel1jGxTFOnqvlaBfH1fFMPcc08FwtxzTQtG/tzqUuX+8AVu7N3ummVQC4n//5CUNLcb0D0AB/aLnibcs1yhE3ksnB1fe7lpi0gBPb5zkeliqGnruVZ5TQZCIx+pcBPRa2cZhYwKR/a5y8ynhWYxJvUi119k7GKqhrc8VtaRRpUfV3YvCP+Q2LukOczxvIqKwfU1k3dq+S/mjGPgGrADC+Ifrm8qNFRwoLeo2Wob0ICMIyjQUAUDQ+EEwKJyo6A4+RVESqFQ4V28quxS/0V0NlRQJotWHcK7abw86gCMjkwOrbPW83m7T4Wh5wle8GAGCR+mL0bxttY3dwfRvXOChQRwc3XBj4cYS4OTy59BN2gvfe3WoiAMRg71+W55JxAwCUVE/dnjcPAACRUbmzo+2bOvMdZaBu8l/9hdRYcghmsBvfMH1Ktd+zsC2BsLH7xPQlMKYX3H42zP4QUiJDfhQtoK2B8I734aw+cPGQdpy60z7d5vmZUrvAjHt73jw9PxNh3jd2wPVdq50dbkwERM7oe1uUbRsAHFJjMqna1rpuuwt+wyBA2BRoX9W9ZQQJM89521soWzlCBGWRejX79xz+lxYY+QFgb/P/K3w1xyHPJ+Z3c0V0sOTGyrpx5EiVqOPhkKAq5+h9h2/x+rPC6xQK1uaKf+dIWouk+kHizmecC5pMGlTK5rZOcjR83paDb+SHPG6f68R2fbG3dPBJ59ONXYtPPoJi3B/b338zyrMqshoAknDDdutTJtSVIaGKjnk84sHtXD990aQFHnC/PCnwKwDURt1sr/5oR/6D5TWhZKlCwepBgVHRS2d4v2hZ27OMTtzIDfqvcdI+tmeTt/pLe84P/DTR/ydPREBaOZ1wkMnKYzLzmMw8poc+AQ1jpu+zWe53O6+e2jIEKfo11/R5TKjN4M6yzFGudtQaG4OigmZDCWdTWa1SEVlZtbqUGJ8azUgU3fIVDAAACDSzsSTCvN9sLGZoH4UFQiu/WYasMo0OMKzAEIkmDA5cIXwWrdV7kNWNLV5s9mBrA7IsLzH6JAIAUVGR8cfKqCYqlRcEVk4N/NRsBC3RHKM999USCwD0o8p+tbyIJcdv2z7Ra0/pCcv7ZXbKRzNImKv8N+hqPgCQjWvytNDpTWe3vmP8sDEdPWjoo2Kr2d9SZWpbYEKx1LvJytHmr6Ppo/0/sgoRN0LeC5Boh8IamL4EvAKM7w2vzASmmdz8MWhrIJz4DPhE2FMKA1LhnZug17EkIIHrQTDPB/cjpAX5XKSJvJh3OPkVu+trXshj5TKZjlGYWEYqp1WnyKZplIUT893ujAPld+Tm/seqbiKIFfieWPVxUpFC2WU2iVZqGblKYhLcQt8NGx7XO5YGD16caFyBQA0a+iAi8cJBjTKJbAalulipVKGjZSaOkStopV5iU1XKyon5WAsKfC+CaENwT+gomp8TC1UqQmKTaaWOkSs3HHilpnYYAJj4slEj5wFDn1t97sXs9ln2akRkXjigYZPIZVCqm5VKFDpKZuIZuZJW6iQ2RaVsnFiAtYDA9yKIMQR3E8QIfC+sBTixQKVsEpuiH0Vm4hU6ipVKKNUtchkaNvHCAUTkoKHvkaMYRS6TUt0+4zCNspoCm48cJVmlIjixEGv+I0fZQxAl8DlHjmKV2NQjR4lT6GhWKqVU15GjHFwtZd0VnFF8xE6IArjOuH0usyKWwTKbyMhVtFIbOopUiFW/wPckiDUIewnBgiFnqbfXfN+ZuhoIi7RnDcuvM+W5hIFF+edU1o0KN4Eh0GJit2ZmfBtN/6IhXuR7YNXLScUK5ZDZRFquZpQaiUlSaTsrFlGqv8R7eX7hNK/3qEouwer2LGltjuYztDJmnBb8fY5zIUJMk6MAQG3kDXHVz6m0gxWLKM135OLchxAJX5wqNktcOqU0eNXA/Mh5m9mQxoJJE+4NfDnF8zkmQpDPAcAGYS/BnMBlH3NxyjWMUi0xCSodyYrFlOYV2CxCGY7eAo0vTqWBlctCF6dUTqvOxhdnkM8BRB29OFXfppoeU8gFKhAAeMZXc3vGOwodxUqHKdUTOoqwH5FGt0Do4tRvAf3ibHwLHHNx/mycuCjiLh8KJcBzleLH3UtShF36xVnAPVO9OhjmuzdYleVnSLU2FQDOFDY9GPzWplSGbwGPGszD0XsMw/Yy2QepRA9u6nwbqbmnBlZOCq6Pp6hjb4HGF+eBBmTeYz7rEBVfiCKGSzvPVoso1cNKhxU6UmYSjrk4Q7dAT4LY8C2A1CAv5eu3AKXUs3LFMbcAm65RZl44iIgU5HMBNIOwX8MGkcvCqvfWhrGfS0MAwERgUWFWZNABrYHj3CZjiY3PM5jrDVafjdlhofNELrUydm5s3WuG4J4gnwtAaDHvc/NlHxpnaBJvkBAvIYcXJ9RTCU4qyo1xh6L8n/2ktb2PthvV1dVXVtUAAEVRvbIzMUUBAEPUM6St07xf9SPVhLKHLs7mns9rtdypnpslggHgQvbArMPDGup7AYDRUD1y5AKjujd0ceq3wImfzyodeczFGdzvJcwlgXvWS6ECx23mXU+ZVs11jQjnSC9kdr5t/5WizfotUBd1k0xHx1c90+T5rGJT2/0dO+k+0dZp/qB0mNQPhmXCCz/CjW/D2mO1wr3m0QodHSvmA5Fd1im06uTFPJv7B59ppIaMrFwmcple8xibZxUddPqNQ0Qu01L59eb9C4NirHtzz5HZs0y2Wpd1CiuVcFKRzCS4rFPM/r8ZuSrI99l/4FY9CtqjS6n0dFLLgSa4rFMoxcULBxXK4bJOMQj7WKlUYDO8lnFWzy+0Uu83DhG4rCjnh1gLus0TNWw0BPdo2OiyTmHlMk4slJh4l3WKyb+JkSuz+q2p/3OAKrN+IWlf6ezN6dVbVcceIWEQ5+xN1/HCAYWKcFmn8MIBVioRuQyPebzVu4ZW6vyGQQLfM9L5EasFPJYJKrYYgrs1xLusUxipghMLZP0ogS2MXBnkcvymoXb3t5Tq9plGSUxijHSYUmWXdQql+XjhgErZXNYpvJBn9v8dMPRzWadYfb/RSl3AMDDI50Q6P2E1v8c8XqWs+tPZZZ3CyFWcWCDTcS7rFFNwGyNXCnwvn3F4hPt7g+ryGUeU4bTn6keuEI/6zPUU+Od6lA2m3XaXy88O8ljPtvj+MCu1AUP/IJ8b2bCMVf0e0ziVjuCD+wlmXdYpVxtrBsOrM/w31mlGieC7A9O34sLHk9i+lvd61b2+u/KJuqpMIIgArq4eWlM9JDbyXLO5So7I5qnSKHklscYELUMc6FdGqQkY+gf5vkpVfkHhBWFSKABgSo1L39sv8sFhtpSR7BVcoBCC+/x8rtuQwwT3Ibm63jRMoewkuA9rwXhD9ijaT4GqUHaXdQonFXFSscQmu62TTP6tUfXvBw39AoZ+joYvKMnnNY9R6KhY4RCA6rJOoZV6XsxT6CiXdYpR2B3p/vGZ4PIPaX4ZylAQ5cf8k+ard1KJd7te8lnOIYg2CHtVZHJZp3DSYU4qktlEl3WK2b+B8VUHDX0DhgEO13JK9PosY2Q6OlYsAE1yWafQagMvHFSoKJd1ikHYy7rLBC7Tax5r8/5MB5w+4xCRy4pyfoC1oMcyUUO8IbhHxSaXdQojlS2golWFAEAfvzW9eFhRRMCSRdtdX1Oqx2c+Q2biYqVCpAVd1imU6uaFg/qPYBD2s1LpkYvzV1qp9xsGCXx2lPNDrAU8lrOqqcivDOetNEwM/eCgXR1YdQHLWOhobyCjXLqs3jvYWeLQtNAzITlu1fAeb/9ufbEWIgBgLT/ser7vDcKfHql0Fz9yP5NVdwIPI4YoZ4hbzmD4EdLuGPcHAt+zwXq+KbCVkSuDXC+/aViE+zuD6vKZRkpMUoxU4lAbevAZPbVAbN2TMhNf57iGFw+x0mGRSfNYJ1q8v5uV2oBhQJDvHdnwKSvpt4CND+4jSL8FqnlnvkzHuqxTjIFtrFwhcD19phER7v+GjsImR0tltCq5bZORJhmE/Sq2uqxTODF/ifTZZi27ULH6EbzXc82KhAOqsbet9htGqqh1XCtq0dH172jEWGOdSasNds/XtI3zRJ5nDO6weVZ5zaN9plG0Zx8Eid80gtL8WHEDgNt6LhAtTth3RXD1EFPWZ0zMKmNPDXBJjLojU05UKm+VtqR7E0l5kdcVWx8YGfTb2qgnMHo3U21T9dqqqqrVtaFETmxsFKaoZKV8irR9FGdJFH63iFvd1kkBQ3+H60tK9Db7fB7K+58wuB+qsgPAt1IvjTGdyQetCs4Z8KvXcRZXX4q1oMdyNsGsQdirYvOJns8B40B7w1eU6vGZz5SZWCpYfbH3uu1qKAo+bF57Q1KaIPR/SfqSYqKW+nIA4Fu5v9+X9EqykKB8gLWgTEWpyAQATZ7PEpvW9kD44dqQ+0TH0G6yjFeA+NvA15IIQJtQWjN5+8HH9NwaxlL/rGdTYpsphDg9ff/a+Y5+puMGzGxCHexCHK66cMehhwFAopQHe/9VSUwA0Icq/8vyfAck21fJuUPow5GoazrwOgYV8FvC6CeEqR4S8uM2qdS/qlLmxCxJiWmHZnEYZZr9X/4btiih6cIbpk9msiGHAY8/60DJjZUtSoQgpLFMA8c0EEJ7GzlHUlhIS1jRI/Ejju126mYL2MPmPOp4pJKK0xfjlJqHXC+0tyfsRBAYS40lo8aSUWPN0jA9ac9iWm0+27lMHHpD4BoAoAkszO+bJBooKjim/40teB+2iioq9gPLFd8bJ8tHKoIpQt2c4m8jnOYGb58Gbx89IRYGTQX7ZS1KjlkJAAqiX7fc8Knl0ma7axrDTPw5Ut4Zwt+TAqvbS3I5hdiuJo/3zpEIBQB3cr8tMq7o8kPkMZkv2m7bzebO8H1+nffTJiISsmJ2+3q9JYzNllG2iFWNU1SDohk1lVNUo6IaVY0NqA6ksACg0bJv1KcmY+myhswf/JkAkEHX/2Zb4tDcHZPVvT847TVhXJOVViTEYG8k8kUifxT2RSFfNPaOoQ8NpFpp6CrT7Of7btfl1BGQ5w1fzeKPUQUJi/sAwET6wOfmt7qvNbZdaFMgFGXo9xB8Pwey4+GrTfDKz/D7o61/qipmTpTzQ1o5Ie+oxjlya96CMOcqNe7bfpnPN9EnXLfrjTr3IABIjP5lSK82HLXDIGj9nldqXUNXxJR/GXN0GHIP/+vThva1aqxTMqd477TjwMvGzy9kdnbgXDyWiYCQ1dNxHfptSsqdgSvCuo6IwJnuyBlVqRnmHWf0vb3DuxUJfUPgmhXSQACwgLjRtrBxfdHt73Gw5IaWw2FjUFQwPW5FVtLHXRgCFTqqzjEzrmZxBz7rxeZFtrsb93WdSEqxVWgIN5iSqy0ZtdbMGnOGx3BM/SarZsPYvGZauT2EH+Cep2te38H+de6BabrXtIkvGzvoWoZqtxROBR33vuVfPxrOkRGNCPQvYpJq6exagfebTvQ3spkODcl5pLGUOQD8yY9aYL/fe6yNDq+JPZVDOdLBHDmvt3QwWSnv7sJeN+FVcfwDgUv017fzv//b8HUH2Bw1UbMiPD+wUsmJNnBiu0NraPatp4XJTwenWFHwW/MbzQq/SbL1zx3v6/rXZkNJXP+5o3yzddm8r8xvTmY60tWgQ9boCVVLthraFERTsPN8dtcFzM5RdOHxP9EhNeZ83+0lmgMAaKS9YfzkKrYZuo3+ZfXXY+hDy81vgmWIQjlaZnp3N9o6I1y5E+YuA1WD+Ah460bIaMXeEqBtfYQBIX7T/kXhFFmEZf/QnAfDOknhPj+MlAlDLjfxrfeodgZ+IXHFrvfvyswT8NG/MQbyk2XJmXRbx+Nlmv1M7/1hd5vL2K0vGJe3d2rY4T7CIGF+V3p+LQ1YJg0Niy9nkMC/igfl+q0Yy+MHzjAbi9u728bwEW6E90FdkfkMumCV5eUmlCKPP9Pt6ykqdlGMFGWHqEQIYrQkR4iyPdxP9v/YO8/4Jq6sjZ9p6t2Sey+42xSDAUNCC72GNFJJ2UAgpPfd7GY3yaa/6YGEbAJh0zskBELoEHpz771bvUvT3g9jhLFlWTYWNiz/D/yk8Wh0baQ5995zzvNgmCMu7IfEyE18wvutYcBcuA3TbuGk1xQPeHocu4rr94lOHF2tGdsuTdBKYinMlzvPxKr/prbs6XqkgI54zTnzO/doAAhFzKflzyOOsH2nP6VoIQCEqA7mpj/mv05pIxb+qezmbcIZnrrQseXENScFXk/m8/RKaaFKVuBIui7Ddp1XD+FmPPTvymdIBE9zl6WRZanu8jiybmjNPQYLFpDrrPf+Rnb2Lcwiij6TfCqF/ol6N4a9oNZ/1pvWqI+3fty+9ANXpzSSFFw/SNfm4V4qzsy2hP1n/sN9GN5JPHJIgADANKLsF8kFuRdVNNxxrGHFxrBaI+GmJTUmBNcx4p7mJN1Qo9b5RP4iIn8KXsZtmOXTkQutq7j7Hh+hPhN9uoDXa/fXG85rnnUs5B5PwKs3hlcJeEG++wgDTQD7CBlUhLJOYPv46jIM70zlk56mXR5uGpPy92DlYRbQvSc7LWziwr7PSnw1UAPtwi0dz/6IBwNArFMUKyrZw8QAQAyqPyJ7SYb0rafgYIlrrA9xRgEeglHLO6KvF/ZnacgiBACC+F0+3sQotpHpW8mMPVSygz33IRYi5CPE3syCVSypAICkqI1psR/4P4zeOETFz7Q8yAXaF4Q/PyL4w88Xukilm1S6SIVUVDPoIbATBGUQAeq3ordXzKj0/xSrPek0AJht3/mI6f2eDhseWAQpiJh1ImYJg3gpUMMYUm2tC7ZUmwXquqDRAICx1Lz8V+Tm+v1U0q9k5lYyo545V6nxqOLoCnxnBN3Sop12rPRFbvWWHP1xSsz6nhfvRj0euUFy8zbxdLqL0PZYY83MHSks3RmbUYSSSSpUsgKltFApLRQLOrdAGEw83DxPLg42lneX/Y4t7s5K2nSs+TvJhzFoPzYqGFSIMG6kPzMDikVX2m/5wj2u60Ex4v5W/OEUwktAbdFOPVr6UqHY8mJsKQBgwPwpezUT8zeL1hOzLXHv6Q1cN1TXT5eN5elYiY4VaxmpjhXpGEkZE7KFzGpjundMyhDnLKIoF6953jGPE66TIK6vxOunEX3ksN53TnnCcS23356D1/8sXa+EQegvGDDDRWu0tnVxQdWjXKcgAkxyzMciQfPJsucAAMMcMy7M1NRPzlCReZYnOL2+v9WkpOANa2I6OLM3Pz0t77Hdxn2scYSZiRdvJc/1xt7IO/6G6DsfBtz9hQHkJBW9lcz8jUrPpyJ6pnBmECVvCb8xV6+oa10IACJ+67ScGy9Ql84DpxYBAHyE2i99PeMCvo3DloP83JeUD3vsiFWM4QnDO1OdXhS5HIR8b/LdTYrzyrslLn2wuTLYUh1sqQ6y1qMsBQA0ytuc/bReHAUALqfr9X2OVlf3khOxSBgfHwsAYsaeSFVPPKNQVqUCAAJMbvpjIaqDnjNJBDcjMjMmNSNSMyo1Y9Jj/NHbhdO6uiVnuEvutmxCT9zUps8DAJm4KivxVYWkpL82Rpc9DCD/cCx442wGS4NYvpGs99OhYgA4WOI2212eW8QcojCfjmxiFAAgRMivxetnEF766Ivr711K5NYJ7ABwPVO3Mej1AQ+AYYh9pz8x2UYAgEJSOnnk3ajPYggGkMNU/M/u7J/J7K6Ttq4oEPtPkrXj8Fp/BvCxa9JD9huYzlhYt0f6ho92teKm3CZDd1epnLidSrEvJ1qbC5Iegeb3AQCaDXDHOmjQQaQKPrsPwpXnnTmMJNYMlnSujrRzZAjN7aSNiNqQGhsQfaluzLY8sI9KAoAci+zRuhQAKAw9/qK6c0X7leRj36u6d11TnzybaeAMMLeR6avty1qYzrbiENT8ruhrTjGSZvg+7kQ+tkbNrGAXmbKdTO/NXjwO1c4iiucT+dOIMr05c3/+em49kZv2eGjQPj/+DH7hZrGrrY+doSLhAkqKAsHgOtRbEfHb8pVbxLM984zpjr2PGd/rmuxpVGbuG3GXg+j8vwgxV2Y2/a6xVIvc3We4ZXTIdjJ9H2/0lAnJQgIBgJIOeu0RN9fojKGYRCKWSiUyqQTDu7gmsXDzblF0OwYAboI+MvVkq5QwozIzKnUg3rc6ObLcRXebN413Hfd0yiLATM6+RynrVWrcY8P0P8smd+4a+zKudkYA5FrxFzfy+i6YOkVHfYw/OJI+eAeymeeH6JWZFVxvXbGf6uydXc7/813R1/WMao5lDRdjBEB+IfnPbKL7/9QG94RVtpsBQMCg71SmLEhfNeD6wZLaFeUNdwEAirqnjLpDKqr2/7UnqeifyeyfyJEV9LkkWQhq3iL5oF9z4s9c41fblyEI8n5IzW2uN32c+dOJlSdqp3U7eOfkf8UHd+ZHu4luV7wBb2yFt7ZBqxG4GLd8HWREwWPz4I2tUNgAn64471IBDITNoc9qtB8RVB/e8V1xkcoTpc93tejk4aYZY68l8ICXX25xZ91o+wsAEEB/ayt31NzBHV8bU7RPagMANWo9Jn0pBPW+ObabSl5kXcV12i3jH/uP6DPuuJEVPW5f+nmX3Y8biZP3G9m2+lvT49+L6UUx1SSbwwKqMJ/z6ymjQ7ZR6dvJ9INkQldvOQmE7TcAACAASURBVA4C6Il49SyiaA5RmIx1/sFZFtt7agM34wtVHchNf7TffxSflNBheebHuXTCI4I/XhD+PLjXHxgkHtyhXhHe+vwgXvMof8y/lQ97CkoJlspyF050Hs2lzjRHT6oMnsAdR1lqXM136c07ocvE1sQKd5PJO8jUP6jUBqZzFpqiwe7L5aEIAMDuanpvq1gqlUpEIgHivtX6LcbSZbzEMjypFe+8y4icyN2/i6V2BAA6FMzGGXY37qssZaSr4G7LpnGukwBAUtKdJ77mlKnjI77JjPdVRlQX+W5M45qB/I0uIw5QiTdZ7+GsrxBgnxJs/5twq9c6oCZG8ZV77BfucSV052cjCjU8IvjjDv4hAfRaDNnBShdZ7jt9tpDtUcGOfwm3cNevZ1RzrWu4BDwPoTeJPumaabOy/CzT37laqhvaIpd0hIv4rVeNWj6ALIPBkr7/zHpupZEe905i5ADDQDET9pNr5M9ktpkV/iJ9L6H/kmxfu3NcwtT5UrvK6MuGqc9A2E10+/VbgGaAZYG4vTMQRq2Bo89DmAJajJD7d6h/57xLDZetUQ8si5bUraxovJ1bx6THv5MYEfAhulksx/LXSloDAKsFe14T/FDeeGdp7V9YQG0Y/WRSvg4nAWAOUfi95MOeL69lgiaZH+e+OaPx+h2St7rVBG8lM+63LeM+wQCgIHn3NMfmWGSjU56L1GzvbVQOljhAJf1Gpm8n07qamnoIRi2ziaJZRNF0vLRnCrO66caC6kcAAENdU8cs8+SBBpF3nNOeciwBAAyYbdJ3vCb5BwUGkCI6/ACZ+Ccdf4SKi0N1s4nC2URxKtYSoHfshgMRvie753vJQs/SUE6Q04M71LzOPK7IZZxavj7UVAYANKAnqOg/yNQ/qNRjVExPy3gMmLvT3ZnxSgBgAba1Bjc4RBOdRx8zvRtBnfuNTKisjEgs4yWVEYl6S+aMPbEYgwBAZTj13WQHgwDKslLWImUsMsba+S9rmeHYO8Z1znzjdMUzda2LoFNN96beHKCu0JVqWr3UtpJrAwCApbyTH4n+6/lSW1n+z2T2F65xe6kRjLeuklDE/JBg5938Az0lgRoY5QLL/ZzMCgLsi8KfHxKcZ4baxCjmWdZwJxBAfyreeC2v0/Poece8l5yzASACMb9WOhYh5QCglp+ckLnG965mN2iGv+fUZ1xBcpD8TF7Wyv6aRfeEBIwIZOVUn4Gwm+h29tk6DeSWzkDIux1snwKBgZsC6d3gOt/EL4CB0ClI5rtrEWYgqYgW3dUny/5B4NYZOd5r2AYXz66mErUXSv+pRO0A0KbPO1H6T5KW5kvML8eUctXm74m+uot/sOtruwn3HZC+Fol6maBVm3IetN61U3Tus4KxiJDBVKhRhRtkiFOKOGWoUwpOGeIUYvgxMnKfO8YO3SsPEWBH4Q1z8KI5ROFIvKG3XXWnW73z+DcULQaAlJiPkqMv1HfNKwwg8yxr9lJJABCL6o7IX+pvrZ0PXCx+go75k4o/SCUcouLNrBdjgVhUN4somksUTSYquDk4i/JdvFiBMyD9pqf4We/J/lJCpKTKLbkqA3ZW6q/SJj7coUhylAiM1XVW9Jg70sh4Ga0KsU0nSqcTZU55zJfKW64KM0cLHQBAsUh08U9zDH2Uj+dblufHzaOlbvnn8cEhf2QlvtynU4/WNPpgwQdn98YfCw3qw3LILsgKhNT7pYiJFd5qu2sn2anBloPXfSX5uJgO/dI9brM728ae98UUIuQUfsMxd4iWOecwpUata/i7V/D3eSapZXTIAutqzh0XR5j3hF/ezj/c863bGNlc6xpulYkjzHrRpht5x5sYRbbpWe6G8Il44zQ7drjwLU5pJC7826yEfiQLC6sfqmpaBgAY5pg66laxMLDV+H1C4UEswiNIX5PaPgMhnC+67cETCMNXw+mXIFgGrUYY8zdoOr/YdhjlCLthtUfbnFFdSwMChJ4VZ5j+zrmJvib8frVgj+dHNkfUkeLXLPa4DWF1nPajBHEflr4Uj3VW7rCA3G5b/r17NAAQQG+VvttzVWR3hhfXrmrSzgAWOS4z/ie8xoj3u4dUjLinEaVz8KLZvMJQpG9DjxNlzze2zwQAsbBh2uibAzeZqGdU48xPcVFqOf/QB6IvfJysYyVvO6d95h6PACtDnBJwKVG7BJwyxClBXFLEKUOcCsTeyCoPkgnHqZg+y7g9iMA9hSifQxROF2nRsPsGK0fYEzcm3JN4V4OmU/WbZpHDeuXJNp7OYDKaTDTdfVKMIhDBd2YKdLm8xrFYDYawH0nvKCcSAECI0deGN4txGgCCrHUL8l/GGO8fDCchzY+cUxw2hUZ5ACA8ohbvCkuJ/ig5xtf8hmF4u0/+l9NLC1fvHJv6TJ+/3ZUcYVcoFn3UcZ1HGAwFttv6DwU2D6+6mX9kCXHGHP5Xoe6LLywhbzmne8oCAECB2Ffz9y6MstYL4+4rTNEyEgAQALlRvMFHg4GWkcy13l9IRwAABsxa8Rd7yRFchiUHr9srfQMBtrLplqLqB7jzRya9GBO62Z9fSmcadTD/A07JJCvx1bgwXxuSFwd/bJj8CYRdRbc9eALh7WshNxFWXwPv/Q7Hq2HDyvMuNQhK6r0hsp9BmYHXKEpE9R7H6oDyonMOFwWTsPZ7BedNmcXChimjbj9T+eSytrkFEnMz32FleXeYV+1RvsD1k77hnMFFQQB4Q/RdtyjoIpWltSvr2s75sY23EYvcR98TwTfuUeAH0ah+NlE0jyj0rHj8oU0/kYuCgLCjkl4M6JI6GtW/IfruL7bbAGCDa8I8omAeUdDzND0rfts5ba3raivbWSTZBjIA8H83RYY4JuDVE/HqXLymlg7aTqbvpJI9y0Q78LaSGVvJDLBDqsXxLyLT6zAuEIMofEfaAxZB5za11N5WVly9Xzeiyd3dk53gERKxWCqVSMUiFMMaABoAvjv/nGhnTW75N8WpNzIIppPE/Jlw8+SKjd2u48JFhRGzisJnkNi54lLHOC3eKC4tv5fALfERvTabltbfw0VBPmHI9q/7SGL3q11yYNQFjXQSsqS2P9FAWnwMIjjCvC36Jhlre9J+LQ1o1yiYjLXdRBxbxj8WfbbFgnIWSlnDGn7xvbz9n7kn/J9zRh2jAgAjK3qTmSuN44n56A1CZsMpN046vpF8dBVe4eOt1ah1m/TdBZbVp+goGtCVtk67HwTYl4U/cgnFxIjPrfboutbFAJBf+aRY2MgZBviApKTHS5/nomCI6uBwiIIAQJAtF9jvxDE5BVAEbs7z/tOXb4LlH8KGfaASd4+CMAxzhBeZMjpknPlprvykVxNwFilvWP5r+61/TyjhpJAfpCteUr/zO5l2rXUl9/W4i3/wPdFX517BYrWtS0rr/uImz/peImykZnta7FrhWbmAdmfMruK3DZTCiTIuwhodv47la62swMLyTaxQhdhmEiXpWL/X0wxD7Dn1X07DzM91wIVzs+3un9wjASAYtRyX/luNnitu0rPid5zT1jqv9hi3+k84Yswjqibi1Xl4VRrW3G0fmATsEBW/nUzfRqZ7qhU83MQ7/vrg9qsg6OaRz+rEnTUOLY1t7xSIrNR5U8kgggpSSHkyNSLsrkDdFSHrWGHecIP1JwzoovAZh+Nv4o5Prtgwou0A95jEBIXhMwojZrrxc1GWoB0kJgQA1InJP03ETVhu+mMhSi+y/RZ7/J5Tn3EtYoNlZD1grHzVofib64NGAoDEpctu2Dqi7eAAwiGJCQnaEYAB9sHvZNrttjvNrECNWq/nnbiZd2wMVuf7JSRgX7lzXnfOrKCDl2UTE6M7PydGOz2+5OM8h1/mlyZWuNC66hgV6zlyLe/Uf8Xn9C1phn8g/0OjJRUAeIQxKXJTTOjPBN6rAtGZyqdqW5YAAIFZpo65WcgffJPLANFkSNDbQrodjNcUifmdYn4XKLodwEBolk4X245g/Zenupgsta7gFCWuxit+k77j48w2/cQntQ98o+kAAIxF/mnreEUitwABACNp2/umNqAlJCUlKSlJSZxuDedxyKGWn0yPf7unqanVEXPgzIfcmTzCOCnrPq6I2SlIAQCB07sJqi9Y5HTlU9wkEcfs03NuEPAuyFrTT3SsJMf8NNdvu4CX/7V4PQAYGNE77mkfOKZ0DYFpaMtfRVuvwivNrMDICs2swMoKzIzAAgIzKzCxQjMrwBFmDFafh1f639Fcx6i2k+m/ken7qBEeSYFg1PKW8JvFvNO+X+snJ6Pmn4pZDAAkzW46TZ5qPreYlSHOpcTJ2/mHPW1nDkSgw4J0qMKIKrSYyoApDYhchwXpMUUw3fGA6aNg+tz/y66UFTXqsQCAMeSCMy/Jna0lodPyI2c7iXPRVOFoGV33c7ix5OeRz3JLUrxFKN8UT4ArL2tlt48WC+iBM+s4E+Ag2elJWSv9cS5jEbQ48i9pjR8hfbmi+w+DYEXh15yMXkBh502DJC59VuPWEa0HMD/CoZWvrgzOrQoeb+MpJ1Z9ntgewGVrb5TQYTVM0DVESW8lIRbJZKGjCD/f84gB5BvRfOvohUhXj0DGPalyk5+/hZkVXGtdyVnv8hHqpOzFOPS8jmqHK3jv6Q1cVTAAYJgjOnhrfMTX3UTyAKBdP+FQ8Ztcwnh08nOcluxwgPMhETouaAvnk72dotvZ0X2f3JPhmyO8COwik+db7wcAFNiD0lez8T6SxiZHzFWmpyr45311VSTxYlWGgvKezZKIatPj3gtV9VqkYLIlHcxfS1JSABDwtJOyV4gFjQOWWCuqfqCy6Ra92CV1EaOi3k2I9JWxG1y2kelLrSu4osrXhN/rWMkHrqs9et8AkIq1PCPYtoR3KqAuj81Y4gPUA1uN5+471/JOvSn6VoP0W6iTo5wJ3kWmHOKNnJiXiaMIAPxcQv5RSQEAAuwkvOp2/qHFxOkLsQwkMcHmkX81CsMAQOzSMyjmIM4lmWTOjlH1mxM6jiAsAwBaSewv2U/RCA4AwpNB4u3hfJ5+cvY9XauCa1qW5lc+AQAo6p466jZ/RPUojLd7xL31QSNDTRWTKjfIHf3oeuqNNlniwYRbDeLIswdYHuXousAVu/RZjb8lt+73Gg5duKhGnVOlmdAqT4QugSSx4/DEyv8S9OBIQwwWXiXWGAT/cfQ/jMIwhgSLzRIkJSis8xuR1rIrt/prlO07N2BjeddZV+6lknrTPdabs4+WvOxyd2lyR9gQ5aH4iK+C5Ue5ORBJSXed+NLp1gBAWNDecWlPXMDvOsj4kyMMNNhzSwN2adrMd9cj7LAQF+8JDegy2z3trAwAbuMfuYffd1WOgDBdzS/8zDWBQjq/ljwGeaouOdztpUSQTxjS498dlfSi1OdtSMDTq+UnmrTXMCxB0aJW/VXh6t18VMujWnC6f+1BZXV3lzfeaRGQpeGGFoW9Flc3kYk2Vi5BTQI04EXziVhHKys/RUcDwA4q7QCV6DqbgU7FWv5P9N2bom/TsRa/1LgvADHimifW5tCHD1BJVuADQAkdtsmVG4ka0/3utTAwot/IjHddUx+1X/+Kc/bvZPr00WEaMQoADSbm8zNkOGJcJdi7VvzFA4JdWViTPz3UPsBYKtxUVhk8kUFxEhd67pUSl35c7beTKjYG2eo9fWwit5FP2RpUWQBAhTkwPR9ale2GCZGaHRjmBACnW32s5FVOpCk56j/hmt19DsBFSLanP9SsSAMAqyCoLHQyxtDB1uoBi2i7cPHhhJsPJdzs5HVGdKWtcUbp2rG13/Foh14cxS0QSVzYqMqqCMlDWVplb0RZBgBoBG8IGnkidsnBpNvrgkZZBUFwfomKXhxZo84JsVT1lCwIHO3S+OOx10YYS3tbwmKMhU/Wo+c7S5yOmsut9XUb+bztjizdH2SM1MmTAkCHNK5FkRJpKCToPgqteQi9lHeyngl6QbjZq2yFkN8WH/6tWNjkcIa7SG5piNgcUY3tc5q10xGUkopqz1Q+we0Q8AnD+IyHcGwYTSNQ1klQrTjVqz34ReB/N0f4qXviatsyABAj7nzZv8JQf41j1jqnPOronD48bXIsojsIzMwjzDzCTODmzse4mcAt/lepaE2jDxe+RTN8AJAI6ydlreivIUNV802FVQ8DQFWwuUN6Xh4FBSaMqI7nFyTw8+N4RTw/RFMHho3ljTc/VcVoPEdSsdanBb9dG+BVoFeMrOgpx5JNrlxP5998Iv8d8ddea26NrKiADi+iwwvp8DNU5Gk6qmvzX14MflMWAQAsA1VH/pzmPDyNKB2AQYFvqjXjdiffyz0WkqaR9VuTW/f2dtvdnbyiWjMWABA3qvg0EdPzVbKCiZn3Y6jzaMnLLdqpACAV1UwZdRuK9jETtfKDtmc8bBR2T7JqLDWTKzcobf1tP0UqQiYcjb3eeVZqB6ddo+s3pzf/4Vn9UBi/JHRqQeQsjxwPAIjcxvTmPywCTY16rAs/r/gIZakofWFCx6FmRVpp6NWegzm1P2Y2/Q4B/mjZ+KpjsUurNOMAkHBj8ayit/1ZxgGAWRjyw6jnaJRwlOFt6zp/o3Bltfoai2l8HDeXFrlN00rXhpgH7rHVDa1pTFXjsjZ9HtvlA0xgFvKsKfe41KfC1H3Pjf7XCGAg1KqWK0ybu22aDxMswM80/YOTKPubYOszwn5sl7OALLSu2kmmrBbseU04aGVXbYaJR4tf5aobJNLm0ePeU7p39vkqjrrWRacrnwYWoVHmZFw73bt1HIrQUUR5Ai8/W7QvGO/DXWwAHKHiZlgeogFNwVqfFmxbyjt5kUMghSmNisWebZY/qJT7bcs80ogKxP6a6PvriRNlTGghFV7EhBfQ4cV0OKfx6JVYof3BKQocxwAgu2FrTt3g+9V5OBy/rEqTm9W4LbV1V2+GhRwkJvh55N9MwlAAwNr5is8SERINDdoXFbz1WMnLAIAAk5e1Mkjeh9S7Xhy1Pf1BO08BAAjLJuq1Br5NK4nlfoqy1Mj6X7Mbt/p56zeKwg8m3NIqP+e3HKM7Nb76S4nLy02AwvgloVMKImd3DYfd0FiqE9sPx2uPCsjOUoMa9ZgDiXd49lcjDYVXlX8iJPtuKBoAFMbPj5xdED6rq5FIUtufV1V82jP66pU3Sa17uzTDIb9lPNKsSGVIaHtZ4NKf13eoDNbyFggE6QyCAMrSudVfp7XsGsSR25yR1c031rfOp+jzphSRwb+NSX5uEN9oULCLRtGYXGrZM4Rj+J/IEbKA6FmxjhUZGLGeFetZ0Q4y7Rv3GACIQI1n5M+LoH8JniZG8bhj6WeiT3FkMJcFzdqpx0v/zTXJShSt4xIe9L2t2jmYjmtOlP2Le5UttKxArACAMKJ6oXx9lSur0pXVQCbTbPc+GQFqX676ZwzPi7DvBfKB62o1Yr3uoodAjp5ao1aW/6xj4XrXZE/5OwZMT7WXrgiAnIBXTyPKphOlHRkL64NGAYDc0bbk1HO9tfoNCgyC0SjhZ/bLII7cnPUMd48W5Cslv0ZCF4Xe2LAfshNf8X2FFnnKH2mr3ZgQADCWurrsY1ryRHzdTYURs05GL6TRzrS3ytZwVcWGIKv3OkkWQXTi6BZ5arMipVmRwpx1fZK4dBOqvojW9xGJvYZDiUuX2H44sf2Q3NHa8yVWftCelHvbpJ0SzELSdHX5JxGGXgVUBwRSGTzhWMwSO1/Z82ejGraMrusuKNgtR1gZPGHviLsBwLSVZ9ghAAA+7mABcVPnsuaCSLdsNiVMoxAEEtsPTarchDGD2elEUpK6tkU1zdfbnWEAIOB1TBuzzEdN6UWGBcTqUJgcai0xJTKWumxtmNy8KIJsHZIcYT4d+ZJjdgsj14NYz4g48TOvrBdv8uoeOVQ0tM09Vf4st62BABMR/MeIqP/4CIet+knHil9hWBwAlNKiU+HWVioWABbJ144Xdy5z3ayg1p1W5cqqdmc1u+M91gQ8xHl70IsJvIFYBw9bWIQgiVCeu/ti9yCVsMp+c1eN4K5IwZWKtaRjzWlYSwbeNA6r5fS0atQ5u1K4niN2XsHrnILa8KE8ZNL+pOXcY8mvkYL8zru2gKedNuZG3wq91Zqx+0bczRXd8GjHjOL3wkxlLn4831UNAEZh6IERd3qCDcoymY3bRjVs8cwDjMKwZkVKiyK1RZ7sws/7fqEsndH0+6iGLb4XtV2hMF5J6JTS0KtDzRVJ7YdCzOW+K1cZBD0VvehM5Fy2M1vPZjZtz6n90c+Vq2/aZIlH4m7qkMZ6jmgs1bnVX5eGT63UjOeOdG104XAT4TilR1knALhw8fdjXnAQUrINbXlNxNAoACwesy417NjBigWHq2Z3DYe8KFox0yVMp/i0XezSi90mAWkSuU0itwl3OMDE0GaEsYLLKciIOMQn+t09wrJoi+7q6qabRkR/Gqz0ImQTaBgWbTbEm50qkz3I7FCbHSqTI8hkD7I4VDSLAQCGUn+9/gGCCri/kA8utxyhkRX90zHvY9ck31N+jlFYw37Za0OycPFBTcvS/KrHPQbiCDARmh0joj/pGQ61pjGHCt/iyiJk4qqYlNfWG/8JADzE+XTIcq8FMg5GUu3O3GL6i4lWAwCOuG9RvpIi8Kur6VLHwRIvOOe945yKI0wy2pqGtXKRLw1r9tqn4cJF3495nivgTGndm1e56aIPuW/2Jd1ZEZIHACjFyjcmY+188CMPVBQ+40jcjVwUEblNs4reUtm6Tx1YBCkOm348Zomn80HhaElt3t0hi2+Wp3C7qT0JNVVMrNqktF+MfaBmecre5Hs8I9FYaidXfHIhb23lBx2Lva5ak+MpzxG7DGNrv0/oOALAMgi+PeOhZnkKAKAsPbP4nd6WofuT7igPmcyy0PEez14tAIAYdendV/0DQVgAsLukByoWHqma1TUc8iMZQRrJ2FDaDLQFoS0obUFY93k5DpHMumzk67Ga4gH/ghcZFyU8UTvtUOVco03j+8wn590rEVymfoSN4f8O6XjXt4LcIMIAssmd+6xjESdi1BUCaCVqVyE2JWJXIHYVYlciNiVqn08UXIitZeCoo1fXlk82auM8R3qGQ4Ml48+C9zjHarGgcXL2vVvst5ywzwCAsaLt1yre93F9C6P8WPtCOxUFACgw1yreHSPyNx8ZaBqVmUZRWHrzH0hfls5eIYnQNs0Dkc29yghoGYkCsfuzp70/aXl5yCQAELkMS0/+nTcUrdx9QmG8zVl/NYgjAIBnYqQfZ4ZJD+SmPd77K5CjcUsLImZzT+SO1tmFb0lcnZPxmphP4uru6nq2RaA5kHQHd/fvDSFpDjOWhptKw0ylMsdF7dF2EtJ9I+5sUGZ5jojcJo2lOsRcpbFWaSx1fW42Mghq5QeZhSHNipTisGmciB0A4LQrq2l7ZtO2rutaNy76JfNJ7q9N0I75+a96JhDNIX8NMn7Fd1W1ykf8mvk4AGI9Smi/FAIAhtCrZjwRLDtvqmFzyQ6WLzhSfV447BME2LwRv0xP+wrHhmk1PofZEXSocs7xmhlOsrvokgcMoaVCvVykE8vxieOqYtwB0UP2k6HMEbKAsACDsiA7RUc9bLvhKB3rOTKXKHxM8Hs4alKitkFUgr44cH2EeOPJsvq7mnXTPKtDQNhQ5cHkmPXAIgcL3uc0tcWCpknZK4Cw/7t1I8nyAGC15tFIwpeAEwBYGcV/dP9qJWMBAAF2vmz9RMkvAf2l/KFBmbkzbTWN4BpL9eSKDQOY3Q+WH2GzIvW3jEe4lcGMkvdidIPTlR8IjMLQzSOf5TTY5JXkgvq/8XneK9EZBN8/Yrlnf09jqZ5Z/I6nDgV61RpFSkMnH427nhO14eBT9lBTWZipNNxYorS3BLp00ydIUcSMY7FLaaR7IhxlaZWtIdhSFWyuDrZUSVw6G09lFoaYhMFmQYhZGGIShlgEagbp5mvGJnYcyan9Xuzy0r9k46s2Zz/DLUNFLsPC/JfELj2czRHy3NVc4yBtQ1r/LSDtBABclfzjNRlfeh16Zzismu2mveguEUIKl1ColEXkqKOSR1s67wMh8vrrxr4bKu9D3cZDfuTs2qDRGmutxlKjttTInW2DqJnQjRZj3MGK+YUNE2n23F9VKjBEB5XLhDqFqEMm1MtFWoVQKxEauf6c4dBHOJRbo5+7x73mmPV34S9LeKcH3LHUzkifcSz+0j3WUyWfirW8KfrWt5TfJYTenF1af0+H4ZyjIQIMhjm4KMgnDJOyV0iEdYdtc382rQSAcKJqjeZhf67sYCSf6p9rcI8AAATYubJPJ0mGUoirQZm1M22V53aGsVR2/S/Zjb8NSuKnX1AY78dR/zQLNAAQpz02rdSL99awokozbs/Z1otIQ1FvOmRmgUYnieEeRxkKppWuw/tqYvNg46sOxd9Mo3i4sTTMVBJkaxjYkj1A6CQxZyLntskSetuzBQCUZRikj4xJiKUqt/orjcWXMb1OHPVr1pMkJgAApa1pfv7Lnt2C01HzT8QsBgD9FzzzMQEAKMVta655jMB8/Z1tLtmJ2ukMi8qEejHPLBEYpQKjiGf2LPtcuPjHxGdrN0fbCs5+O1BqetrXeSO2oH3tbZyMXngqemHXIzzaobbWaSw1GkuN2lrjNd73F5ZFyltH/Vk5v7o9o+vxYGljXvKWrMgDw3wJG8BASOFBGGVCwHsjlB14WcZnm1kFAIzDal8U/dRfNzuKRT90XfW8c65HeVmGOJ8V/HqvYH9AnbEuAgwmBgCUPqeTqTdnldXd027M7XoagVvysu6TiysA4O2Od7jlXdcymT5xMqIN+ufq3J0bX1dLvp8t6677fHGoV2XtSl3Vc1KvsjVMrtig7qVksScs4DQuv8Dm3KNx1xdEzAIAPmVbeuLZAFXnDy5/JtxaEjbFz5OT2g5OqtyI9ohkJB7SLyftYYiVr26TJbbLEtpkiXpRBNtX5AMArcLChwAAIABJREFUkcsgd7bLHG0RxpI47XF/VreNyvQdaQ9wS8lwY8msorcZVGbjC38c+TcaJVzVeOt7QpZFAOC2vJdGhJ668N/LJAzZkv2M7qRC/4PQY20Xoy5dmvO+Utzrf9mx2KX5kXN8X1nkNqktNeHmshGtBwYg5coCcqpuyoHyhR3miK7HYzXFk5I2jwg9hfQl78egIhYwjBnKctYh2xo9RsUusK72SHChwN7IP/4PwS/RfshLmlnBbir5dcc1J+gYz8H5RP6roh9i0aGUJxgsepNYM9sSyurv5jZLu0bBRjLp/Y43AICHOJ8JXc5H+qEj42YFm/R/rXRlc0+vkvwwR7ZhcH4Nv6lXZe9MvY+rvJc6tROqPj8VvchTtoeyTEbT9tH1m/1pXbjwrVGtJHZz9jPcDXRyxacj2gJuBDYo0CixJespz4LPB9mNv+XU/uD1dn+Z2TCRmKBDGt8mTWiXJbbJ4klMKCRNcnu7zNkmc7TJnO1yR7vM2eZ/dWtXupbsJrYfSrDEndE4W2WxLAVtL/OdOj4AZEfvv27su4P167TKk3/LeJi0ErqvhPbizikjjpLT0r6ZlLy5x6Yacjj+xqLwGdyTcGNJsKVKK4nRSmKdvTRu8ih7Wsuu9OadAtLfmNRsjPvx+KpW07lPHY6SI2P2jk/YFiL31zvoMt8abVffpzJ+42NubmX5bzun/59rhkclmQD6Nv7hZwVbQ9Duc3A3ix2gEndTybvIlDN0ZFdLlDS05U3xN5PxQVNnGHIskskAqNS61+tP9ebM8oY7EyK+1Cg6qz1/MK4+Zp8FADmiP5YqfEmHe4ViiS/0T5a4Ondfc0W/LVKsG/BmdX+pDxq5M2WlJwrOLXhN4tKxCFoYPuNk9GJPL7Pc0Tq5YmOIuY8dbwpT6VU3BXd8MLDBMAj288i/6cVRABBuLJ5T+OaQZr/6h4OQc3UcHmgE66Z2zads4cZem0ebQ58Nb30+UOMbUlgEoVFiYDGvN07GLDoVtYB7rLabtCI5AJj+4Bl+7WwcfHDmQ1LhIGw8eqgIyduXdCewYNrNN2/FabozD5cSdmLR6A89hZcsgvyZcKtHhSfKkD+9ZK1nHmnlB2klsVpJjFYaq5XEdtPxwWl3ctv+zKbtYm8yCB4YBjtYOX9X0Q0U03n35mGuUbG785J+9bFC9YpNPI5CFXLL7/161eAy9O0TTYziJefsja4JnoYHMeJeyd/7uOB3GeKsY1S/uLN+ozKOUHHdXKHh7F7oCv6+wW1sv7RwsaJ/t25wswIAuE/zeDQxkF43msW/NDxe5JzAPR0l2nOd/G30wiQ0/eH8KNgxt+C1riokZmHwgcTbW86WLCIsm9q6O6f2+z7lGQfMmah5x2OWAABOu6499ZzUeTG8O65wyYLsHXFnZfBEz3NKh7a8LKQpDADmj/wkN2HboL/l8Zhrz0TNBQB3M2r/xGXUdfpOoCgdoaiODy6MCy5syB1XFd75XY7VnZxa+pEP0yuzQNOsSCuImGkWnvM5Qlkqsf1IVuNvXjUN2sxRPx5f1WTobDPFEHpS8uaJSb+IeMOlW7+/BDAQ2oXZAlc5yvi16XyUin3GsZhzG+GIQg0q1JZPRbDeBMPS0JZriJKVgr3+O/VcQriJSECQnl3hXjluv+Z74xoACCHqH9LcP+A37RYLc0R/LFa8jwUy21oXNHLX2Sgoc3bMLXjN2yQUKQ2dfCzuevfZkkWJSzu++qtofb7XYg0GFTr5ySLHQIo8W+TJ29Mf4hRVcmu+yWgayinqkGAVj5fYhqDn+tKFQbDt6Q9yeuUAoF1HWMuEABChrLp36l/7rGQZEMiulJU16jEAgJCMfFPxmYIJ3W6SCA78OEqYRCeoz8yzvo0j5+UUaBYz2oJ11lCtJVxnDdNZw7SWMAHPHpbY5Bof7Eg81/OHsGys7mR241aPrhDNYvtLF+8pXUoznXuz4crqJWPW+l/C2hOSCGMQPt9dO+ArXDjDS2JtizvrWceicsa7/IcKsU0jymbgJTN4peHIUHZfBpp+2TB9oH2dq/ycL1+fJ95yIe/LsNi3xodOOzp3VJL4p29RvdyvjKP/1AWN2pWyojMKOtrnFr7uYyvGzlceTLi1XpXtOSIkLbHa4/HaYyHmiq614APOEWolsVszH+NKATWWmgX5Lw2rqsiLw2WWI7w4uDHhL1lPGsSRttN4x0YRAKAIs2La0+EKX6WnFwKN8n7NfLxDGgcAfMqe/fu3+44u7Jqo6wofd8RqiqNU5Xa3jIt5Rltw196GbkilRkmGk82RCuLOiRZHGopSWnfj1Zafj69oMcZyB7n0ZF7SLyh6QdPlyzxHaJTPl1r3YXT/Ku4YQH5yj/yrY3EdowIAAZBTibJ5ROFUoqybI+VljEOYybKIyJnf55ktVNw77W8DAI64nw65U4Re6NYEC8gW072HbPO4p6F43fKgf8qxQf7L1wWN3pWygiu6kzna5xa+5k8Nd7Vm3KH4Zd1S/SKXIV57PF57TGOpAWBpVGqRTlGY+jchMIrCf818gjPCFbv08/Nf9qoTfdmjU94cZLh4HpaXDTa+8vuUf9W9pnJbCACYmPjrnOzAVl87CPnmkc9Y+UEAIHN2LDjzossm2EI82NQc56zEKW3ftbJ9whO7+dkgyqIESRQwiPF3nnkn3zM5jFGXLh6zTi0ZBAkhpyCFRsRix4kLv9SAGfocoVesLP9T98RoVD8VL5chw0jRw86TNyizGlTZbbJE35XZUmdHlKEgSp+vttYErn31J+N9R+xzAGC0cNf1yrcG67LH7DN/Mt3HsBgAiFDLbaoXY3mDJuxUGzR697ko2Dav8HWR351MTkJSFD6jWj22az6DQ+rUxmuPxXUcDeqhFuYbK1+9JetJTl5ZSFrm5b/iNS9yhSv44LuiB86UTgIAmVD3wMxH+HjA71oGceSWrCc5lYNQUwXKkp4d2oSSg7ITddUd6dUdGRZHd91wFGHkQm2QtCVI0qKRNgdJWlTi1g5LREnzuJKWsXZX95pSTMQiApbSd97uED4bN7V2avQ30fpTPTtwLlECGAj1yhvk5t8x+jLYw0S0kugGVXa9KksriYHeTY68IiAtkYaCKENBpKGIR/m1zWgTjgYEFduP+z7NxQr/3bqRK5NZqX5ycK0kyl2jv9A/6WKFAIAj5HWKt7KF+y/8spXBE/YnLeeioNzRNrc/UbArOklMlWZsjXosNynuitRtH1u9KU7rl4Cqg5D/kvWkWRgMADzaMTf/tSCbv2Xflx8d6ns12o+GehTDHScpsroUNpfc6pRZnUqbS2ZxKk/WTmNYBACWjX8jLeLIxRlJozLz97Q13WbkIxt+HVP3o+dphyWipj2j3RIpF2nVkuYgaYtK1NZbezvDorUdacXN40qaxpmdqp4nCJIp9Q0OXMUCgMhtGtF2ILl1v0eib2A4hBk0KpPY/ryQi1wgwytHOKygMF6zIq1emdWgyvIhV+E/KMsEmyujDAVRhnzffqd+5gjPlcngdQ8Fr7nwEXajkUzaqHvWyigAAAF2mvSrGVLvSlH+QCP4kfibPE3fckfr3ILXL9hkHGmTxtdoxtWoc+xnzdA5ogz5Eys/l7h89ZW6cNGvmU8YxJEAgNPuWcVvhpouE0GigXElR+gVlkW25i9v1CdZnEqbU+ZpGOhJctiJWyf24X41uBSHTTuUcLPn6Zi6H0c2/Hrhl2VZpNGQWNyUW9ycq7eGAICAsI3N209dpWxRpnRdDCAsG2EsHtG2L0Y3wAXiZZ4j7FfV6KBjFmjceK96rwBAYQIS5VMY34ULSUxAYQIS45GYyI0JKIzvxkQd0hiPAq8HlKVCTeXR+vwoQwG/97ZTBsHaZEmNqswGZabXICpx6dKbd/ZWl+hn1egglsn0hoEK3mD4RzsZxT0dK9q+WL5uAG0VVr56Z+pKj+OrwtEyp+B1kds0WONkEaRVNqJaM642KMdJdLoCEbRrdP1P6c07vZa9UBj/t4xH26XxAICy1DXF70caCgZrPJcoV6pGvXKgfOH2glv7PI2HudfMfFghutgtN4cSlhWHTQdgc2u+DUSpc6spprItOztqP9cTaRZoykOvKg/JcxCyrqdJXLqMph3Jbfv91+3juMyrRocKFyE5Fru0PHjSWa+yQUBAWiMNBdH6Mz6EHHsB0YmjGlSZDaqsDklc100MnHbfdPwJPunLNM4HLWT8Ox1vAQCBuJ4JXS5AbH2+ZGA4GMl/9U9XuzO5pyP4J29WvdqvUtJ6Vda+EXd7XOvitMcnV2zw0362v5AY/0T04uLw6Z4/tdpaN6nys26+sjSC70h/oEmRBgAIy0wpXx/f8T/hRXWF/lKjTd+w/28Mc67MUkDYpQKDmG+WCfVivkkqMEgFRjHfFCRtVYmHILvMIuiOtPuj9AWpLb68twYXBsHqgkaWhVzVrEjreqflU7a0lt1p/ZGnGQ4EMBC2Bj+q1n+GUxdvfsQiSHnI5GMx17qI7k5MA0Npb47Sn4nWnwm2VF94Mb2TkDQpMhpUWQ2qTK4rbmzt91mNXnRBzdIZgCAy8w4fV9tsWsHVdo4S7blB8X8XODbf0Cz+nfGB044p3NNQona56l/+lJKyCHoievGZqDncXgrKUuNqvk1vDqDlE4Wrtao7cPv3B5Lu0Ik7F7Ioy6Q1/zGm/mdursoi6K6UlbVBo7kxTqrclNy6L3BDuoRoCH85qvmpoR7FMMLiUH6w61WrUw4AEcqqG8e/KeEbCcyLPE27+j6F+Veee2gSzCyCBK4izzcWgbo8ZFJp6NVdy7kxxj2i7WBm0+/+SFJYJXkUpupvpffg0l3jeBBx8yIZpNfN9EFHJ47+M/FWbqeLQ2FvxntXp8RpN864CNrJox047cJpF+/8x1Jnu9Q5mG0DAtKa0HE4oeNwecjk/Ul3AEBJ2NSMpu09N9YpTAE+S1IplnfGcRX3OEfoK14OChhC3aB8U4yaD9oWAkArGfsf3fMr1U/47tZwELLdKfd6dGEkLv200nUaS3VAh8oihJsXFdpeu/D080XhM09GL6QwHoOghREza9WjJ1Z+HmUoPJB4x9koCGNrv78SBT24ePF9n/Q/A0UTXxx+nIuCUoHh1omv+DCPdRMRDNIPZ8HBZaiiIABIndoxdT9lN24tD84rjJhlEagBgEZ5JWFTS0OvjtOeyGza5ls0n8bkFK6+WOP1zpC5Twwibkx4InZxSehUz26Y1KkdX/1ltP5MoN96YNAo76uxr3Jda9NL1sbqujfQ9HSf6MYp+5RvjI8AgBpvfiT4voumC/qnbcGvprsZQAEggZ9/Z9A/epOeaZWP2J28wlPAEmkomFL+nwHvA/tPN/cJi0BzMOHWJmW65wSlrZGrjgGA7IatOXU/BHpIlxCXgfvEILLl1D1Hq2cCAIrSyye/EKf27kfPQWEqjLEg7LA2Gwo0DILWqHMKImfrxNFdj4cbS1Ja90UaCr3mlYaD+wT23NJAXRplHAgEussEqdSM35G+pkWeCggCABhDjmz4dWrZ+gF4ul40UJZ246I2eRIAOHiyEe3d64YRlvT9jdpiWmGkgwHgasn3sYPaNeGbKF65Bm8sck4EQAx0iI2Wpwh69nggBRGz9424240LAQBhmTH1P+dV/Xdw9Y57AwGma30Wn7IndhyWOdrb5Emc/LST15nhT23Zk1vz9UUY0iUExgQq03zJcapuyh9FN3GPZ2Z8nh11wPf5KHsRbnfDHQRYlb0ppXVviKXKzlNYBJ1qbRaBpkadUxA5s00+wo0JhaSZ1yUiIiyJshfj5uCDAAbC+sg3hY6CwMV5oyh8V8rKwoiZFNa5IxGtz7+m+N1Y3amLb+XaE4olfCgNyp2txeEzWASxCtSxulPdHO/0iuscwgyh0/sMtIOK3GZeDoBgCHW98k0eEigFaq+EEPUYUFXubABoIpPEqDmKV+HCxVppXIMqqzxk0smYRZUhE7n8uZC0zCh5P6n9z0ErW+oLkghrCn9Bbj5P7Fhlb0xuP+ggZHpJJJetTOg4Mqly40Ub1aVCZew3KuO3Qz2KoafZGPflocc5QYmMyENzsj7rs/CuMewFHtmI05eDDdyFI3N2JLUfitafceMikzCMW6WwCGoRaBpVmUUR19QHjbLxlQTjFLtNJvlcq2TSwPSBB4sA5ghxSo8EICCxCNoiG1GtGVcRksf1ZcMw2wu1M9JvjQ+5GNFdQX/vJnfrQewyxOhO1KjHAkBR+PTJFRu6/hRjbCz0miM8YpvDaexmCP6UoIPWgeA/kxSbW9GEM6Y8ANhsXpGfugCP9vJBCjVVTC378II7BfsJS3t1/uKT1qsqPknsOHQw4TaFo/Wq8k+GMK0ybLmyLwoATlL89eGHuWbBYGnjkjFr+7SWBQCc1iNDvawZbqitddNKPzQLNBUheQ2qbE/xGgDoxFE6cdTpqPkitzHMoo3VtwxtkvCSaZ9gELRFnlKrzqkNGnV+eRKZ1fhbduM2jBkWn8IWMv4LwxNaKhwAckQ7lip6teVskyX9kvUkAGCM+6ZjTwj8y59ZGOX/tX3gZMUAcHfQs4n8ixr77Tz5iZglFcF5DIM27VE4dQQAoDwmcrqBJ+066WEzm37Pqf1+GCow0SgPgPXH4/cK/4OwLPLFoSdKW8YAAB93rJz+9KDIaV4BAKx8VYMqu141skWRTCPnTZ3nFbwytFoWAa0ajSLI1gvMHjMI1qxIrVGPqVON6tkUEa3Pz63+UjZsTOOO2WduNt1LnfVNPG6/RoW1TZV6F4gJMVcEWet0khga5ZWFXpXdsNXzIwpTAiA47UX3+WfjSi4KhhD1Cfy+VbkHCxrlFUTMzI+cQ2J8AEAwNmySqWGHkrJjjBtt3S9PzytRk/UqW5PC3hxkaxgqJz8WIUgi1IcWwTCZMA1PXPx4viuwZb3DnP3li7goiCDs0rHv+R8F3UQ4TulRNiDdsZcHEpc+tWV3astuEuM3KTLqVVkNqiwnIeVTtiD7ECtxBjAQtgY/MmCJNRITtMqSatQ59UGjXD0EYqTOjviOY3HaY/2VVw4cblbwk2nVKfsU7ikKDFdaucNyixJvHync4/VV6S079yXdBQAloVMyG7d51k9m6XSvEmuFzjzOLxABdon8/QEXizII7sOoswdIlSb3WOy1Nv457UGZs0Npa0xIdO0tnE0yPLcVt+xhrlN9fBG8fH1D4erW4EcHYMN0BQBoCHv5f1lirU6XuqvoRu7x2PjfU8P7obHQrl6l1n8mcJUHZmiXFQTtitWdiNWdYBG0XRqvVUwzyeYPrcRaAAOhyH4GZfyaH9EIbhBHGEURWkmMVhJjFIX3DH4AIHe0xnccjdMeH24VoQ3uEV8YnuDKOAEghldyk/L1Laa/FDvHs4B8Z3hQhJpH8E/2fGFC+5Hj0UvsfKWNr6pR5yR0HOWO88jGntLeVkb+k/E+7nGeePPAJLZZBDkSd1Nx2LQgW324sTjCWBJiKsd6D4oNysyj8TcYhWGeIyHmytyarzSWWu5plPLkRt3fGUArXdk/mO6/TvH2AEY1iCCMU+QYFqniSxGJ/dBQDyEg6G2hXx9+uM0cFSRuDZY3aKSNwbJGlbgtWNbgkZ82O4K+PPQIZ9QXqymel7WhX28hchYObQPApQjCMiHmSiklpTF532cHdiRDlyMsC5msl0TrRZF6SaTHf7wnIrcpTns8ruNoiKUaLlbDnP8ctC3YZl5OsQScVaaeJvkGRWiS5X2sfbGeTAYAPuJYoX46jPCy6XQyZvGpqPkAEGKumJ/vS673a8MjnLZLEN76oGYN0f9iUQrj7Uu6q0ad0/Ugn7SGm0oiDMURxuKuEtUWgfpY7NIadY4nJAtJ05jan0a0H+hWZrLfumSr+U7u8Tz5fyaJf+7vwK5whcBR0jz2xxP3Odxe1KZ4uFMjbdLIGjXSprKWMfW6ZAAQ802rpj8lE16p//wfIoCB0CydLrYdwZhea0C+zXnJfLbRpBsoS8vtLaHmyjjtsVBz+fAs8HMyou+MD3J7lQAgRK3XK95KFRz1nGChlR9oX+NWijJMv0r9WE9ZMjtP8fXYV7jy18Wnn+ckMZ2CFAAQOEs9p5W4xn2m+xsAIMDeE/S3eH6/5aHtfOWO1Pu1Eu821hxyR2uEsTjCWNwmTSyKmOFJaGMMmdG0I7txa28CoT8YVx+zz+KGd7vqhRTBkOl2MpjYKpogs/wxVAO4pDHIFylNl888hqKJ3wtvPVw1m2X97ZRBEeaOSS/EBxf2970skslCR5HXvP4VfOPixzOoWOgYSsn7AG6NGuXzBc4SH4FQZav3BEIhaVHaGoJsjSpbo9LWoLS39CeJNQS0krGfG57UUhHc02iibJnqVQV2XoWIFDPcqfrnOt0rDkZiplWf6p9bqX6ymzq2yG2M0x6v0uQCQFHYtKsqPgUAuyADENQTCJ2s+CfjKu7xaNHOAUTBDmnsH6n3e3ww0lp2BVnrmxRpzYrUriW4JmGoSRhaHDaty0vZ+I7jY2u/8+1ntEixTkeFV7szWUC+Mjx2n+aJENyXqFLgoFGZUT7/SiAcGDrlLZdNIOS2Q5uNcdxTuVC7aPRHANBuieqwhLebozrMEU5S3O1VMzK+HEAUBACTdBZBtl0JhAPAKUgh8ZChDYRDuSKsDxppFIYG2RpU1kYhOQT9cAOmwJH3vfEBzrQWAMaIdi6Sr+ttr7LcOXqj4VmuOTdFcOw21Yvo+QoU7dL4LdnPAADGkDcde0JAWrqtCH8x3cOJfIox08Oa1WLU3P09fFKtGbsv6U7OUgpl6QnVX6a07OF+xCKIXhzdpEhrUqS2yZJo9DxtWI2lJrf6qxBLlT/vYmGU73e8YaLVAKDBm+5TPy5EAy6o1pMrK8KeOBhJKxnbQsa2UjEAyFzZJwLUu3nIZbMizG/I23zyXhfV+Q1NDT+2ZMxaIa/7B9LiULZbIjvMkdy/ClHHtTnv+9M12JMrK8IBYyQy+Dhy2QbCyxU9Hfpm+/tcUpBA3Ivk68aI+rjtHrXP+tG4mns8Xrx1kXxdtxN+yX66TZoAAKPrN4+q39z1R/Vk8ocdr3A1qDcq3xgp3Ov/UFkEPRJ3Y1H4dO6pkDRPL36/t8DGIqhOHNWsSGtSpNr5qrE13/ZXoKCZTFinfZlk+QAwRrRzyAtn/jdhWExLh7eSsS1UHBf/uNmJhyCs5RbVK14z1pcBTlL804kVRU3juacE5lo46uORMf341lzh4sACUuLM3WW5gYe47lU/PbSDCaDEmla1nOeuR9mhMeYNHD+ZVrWQcQAQhLXcHfT3EQIv5aDdiCCqaCBq3WkA0Egm8RBXt5pPnHHVqnMAwCQMTW/eZROPc/OieGQjzeIb9f/gPOJTBMdnyz7zf5xuTLgzdXVVcOcdQWlvnlP4usre1Nv5CLAitynEXJnUfiitZZfc0W+RESlmUOPNBc5JANBGxmYKD/Z38XrhUJhSr1o2tHJNQwID6CHb/J9M9/1qvudP24JCZ16tO01LhbvY7gXYDlZ60jFNihnCe8TC1uCHL2lj3hZj3GcH/1qnTeWehsjrl096ISHkYiw19MqbcFrnYwPsCh4YQPMdk78yPPanbYGFURnp4DAlGsxcpjlCuyhbZvm9F3OCS5V6d0qBIw8AEGBvVL4RStT6+cKZ0k0GKuSMYzIAbDPfocDas4TnZHxjtSfEsQYbX2nnyWvUOUoyEhAUbId2W69vI6MBgI/YF8s/8H+cFoF6R+oag/hsClN3ekr5eqKfztEDIFN4MNlxvMyZwwD6u/nWW1UvBfodu8GiArswO0AXN9Hqzw1PxfMKJoh/9ceO8aLRSsb+YLq/wT3C6095iDMYbwgjaqSY4aB1oYsVkizve+OaGlf6YsXarlv6VtEEgDcv1qgHE5ZFDlfN+b3wForu3N6fkPjbNRmfe/UODAR2QYbIfpKAlovzdpcoNGCn7VP3WK/jtLc4eKhbyyQO4aggoFujg6IsM6xgAVmnfaXenQIAI4V7b1S+0a+XUyzvP7p/cetCHHHfrHw1RXDM0xR/KmrByZhFABBiqZpduA4A0bmk73a8SbM4ACySrxsv3goAdp78dNSCas1YgnYISBuftAooG5+y8Skrn7TxSSufsjEo9mfCrZ7SmJSWPROqv7hoamctZPy7HW+ygCDA3qd+PIp3UVuM+1SWGTAmWr1e928dFQoAKEJnCA7liTdH80r7fGFAoVjeLsuN+6zX0tCpu4sAG4S3hBK1oXhdCF4XxqtRYa2ej1kHFfGF/qlWqrN4OBSvu1n1sgbv3Ce4dJVldhQu21e2hHtMYO652Z/mxAXQ/7knV5RlfEOxvOP2GXut13r6rQFAhFomirfkyvYJMJdXieCLxpUcYT/Id0z60vAEAOCI+9HgVQqsvb9XsDPStdpXPbWmarxprGjHaNEuCWp0ELKvx73KdSwsOv2Cylq/TvsqN8eP5RXfq36axIX5EbOLwmdQGM/Pt0NZJrf667SWi3pHAICvDI9za98E3pl71M9e5HcPBEZas177op4O7XY8ileeJ96cITzYmy9jV1yssJmMF6PmYHxw4nS1O/NH42rP5JpA3NMkX+VJtvjuMSVZ/s+mlSfsnZljPuK4VvFu1/2JS44GfdLHe55nWBQANLKmG3P/L0Q2XDSnruBmBUdts/dZl1gYpeegFDNMFv+UK/6NhwyLqUMAA2Fz6LMa7UeXjZ49xRJvtr/P3QqnSL+bJe1Huq4rOip0re41G31OSQEDOkVwdJxoe3PmyKqQiQAQbaiDfGpX2wQAwBH36pDH26OT8yPnuPDu1d4+4NGOqaXrIg2+3EQDhJYKf6v9fW6NcpGVwUk8uEO9Irz1+UG8poEKXq//t4EKBgACcUcTJdXuLLaL9I8M1Y0Xbx0n3t4tJ0qxvGYqrsmd2OhOaiSTOqhIbqGcLjw0Tfp1GF4z4CE5GMlW850n7DMreLo6AAAgAElEQVQ8w4jjF14rf0+N+yu6dNw+Y7NpJXlWF3ei5Je50k8ao96MaVwz4FENCRRNrN31crs5CgDigwtvmfgKDxtICqCDihSjJtH/t3fe4U1cWR8+0zXqzXLv2Nhg0UzvCYQ0SiAFAiEJ6XWzX8omm2yy6WVTd9ND6qZuCimkAaGGFno3YMA27lVWnZGmfX+MEY5xkYRl2TDvw8OjUZl7Nb5XZ+495/wOGqE6TI3tblPzEipQGtnHz1R8ou7dxiequazgM0asbqL22xHqFTjSsmvt1k3mMIu5+ZsY9REgqj5CHjdLJ8oknQFs8k6XraAWdU7Wfh3xeSx4zc2Wv2/wztzlmygHMgiA7WfH7GfH6Dc68FxSn8mUEhnl9S13T/bEP1aPuM1HnbyZSnAeHl72rdbfyOJahtT5cS1LaP2ElsW1/hPPoBI/6dB7RiY2HgsrXjVcs+IP7wUAsNy9MJvaE7EsatggGI9buvF8DiH+ncan5P0cAvFfY3kym9xdz6ds8MzYwZwrh8i6RMty98LVnrlD6DWD6XVNQoJs+Wq59OCOZRAJkH3M2P3MmDxq67m6L1LII+F2aQ8z/kfXjW6hZUioUN+F+g9GqJeHdZGHq39LIY4Ec2E3eqaXB3LHJiV0JrjQK1lddLlsBVWE97Lhr0ZmBcsCef9tejidLFpofiqyscpjZgkJdavmLKGNFbTilZO13wxRr26zfSKiahHTx6KDJ1G2RkPCJ+qer31HLvtwifHNUepfTv+cAUm1hxm/1TdNdjqeBAGcEnkWBQBazyad7woWBY13FY8o/SbeFfZPZ8/jEi0v1L4tLziuMj8zUBUzEUu3YKoT0mq5tFourZZPr+VS44jKC/UfZJJdr5Ub+YR3G59qFuJAtoLmJ1pX/PCJuq2+aZu8F7fJT+gIBCQjXt/Mx7VeTfZXbTtX97804lAoZ3AK1u+ctx5kRwSfGaDaPMvwlh6LMH3NL9FLmu/cw4yXD9Woe67pxXZ1cXsnlY7sd9Y8KYoYAMwcunhE1ooITnKAHfWF4z55rF6sf3+89rtu7uVZiU/Uvdf4RBWXBQAoIswyvDVcvaJNCnXvIYqGkMctGO9EoFcLxITIUueNG70zAMCGl98V95furbFQy6dv9U7byUz2ibo/vYBKqVOaKRMHAFp/Q2HZ99n1m3un2ly7/OK6dp1nDgDYiPK74u7sgTngE3UuwepGkxpZQy2fXsun1nLpba/qCfKpLRcYPurEXdcoJC5ueEo2cgTiv9b8eLuaPqKE7WPHbvDMlHVl22DC65Lx4lSyOIUoTiaPUoivista5Z4rC7IH35ZD7TxX978M8kCbj3sFQzWfUc1nVgcya7iMOj4tuMTUYY6ZhncKVBu6uipds8l78c+u6+TUWBwJ3GR5sNtDnERAN3hnHmBGL7I82l1uIUHC3lr5bI0zHQCybXuvGf9kBLnwW3znf998q3iiDjaG8DdbHojg6/OYGRPdZ1Js4OnQxgrONb7YiRNaRNUSYLGVLI+iITye8nLEZZh6FQ188it1r8k/QNeaH++v2haNVniJ3MeO2eI7v9RfIM9mU3+fZbBHxbmHlP+UX72ml2vOnYpP1D1ft5gV1QBwmfE/XcoOhEgdl+oQbR7B6BIsHsno5C0e0eQUzB7RJP+Uhw6KCIX0b+fpP9OhjjYvNfBJixuecokWACAR9hrLE1lkF3lO5YHcDd5ZpYH8RKIkhShOIY6kEMUarH3JpBouY5Vn7j5mbGtzmEXtnaD5zi+pqrksOR3eJZhP/SwCUqF65UX697tRu6eCy/nMcb/sB9Vhjtus97bRCzwdariMb5rvrOByAGCgatMC87PdslW+5uClK/fPBQAS898x7R6TOuzgtd/cV650Xyk/RkCS/xYmrPYvtr+2kULskorEJ5UyTDKnWMGXBtG/d/J+p+EiDo+PbRmmKBrCGts91qb/4nxvqZobMR83PXiAHQ0AOdSu6yyPRLu59XHzN/pnMg1Exrhae+2v9srlHUld935WeeaucC0AACNWd4/tVhyJ/H5ZkPA9zPiNvpkVgfBSjrSoM54oiyeOx+Nl8fhxNepa55mzwzcluAggEXa89vuJ2iUU0iL+UM8nv9v4lGyESIS91vx4JhWJ/mSX1HJpqz1X7GEmSKdU3eqIOLxylvGtbLL744+cgvU/Te/4OBwAEvGSW+LuP/2lGy8Rqz1XrHVf1tpXOlG75EL9h6d55jpX6purnpWzBi8Y9PG4nKVhfVyUsO+ct8hK8QCQSh6+xPDG+42Pe0U9ABTQGxeYng2vP9Zbja6fyMDxsD515uETde81Pl7FZUNoVhAAPNpxPGY2OsP7C3Yvio+wHSod2d9uv1VDuTKsRZSBWSreBCigIN4Z99fQM+gjxo+rvy58Orf290EVv1B8+5qQfYWApHq+9h1ZGWe6YfE4TSRj3SMatngv2Oy9qHX4dbuQCKtDHTqsKZ4ol81ePH683TVZLZf2q/ua1s42Leqcovt8hGZZE5+4uOEpuS0SYa+1PBaKN/F0qOeTV7uv2M1OlAVpW4MhvA0/nkiUJhCliXhJIl7a0RKzWygP5C5ufFr2luVTWxZaIowckTkeyPum+c46PlU+DC65AOBS43+Gn8YOgQTI+2sfLW3IB4BEY8kt5zyIomF4KziJ+txxXxE7Uj7MU2270vQvEmEPssP/2/Sw3MmZhrfHaH6KuIdnJ3+ygiBeYXpxcFdWsJcQRUPoower/IdRsS9JrEkSsvHIxSv2zRfEVvG0CEg6NMFcdkHKf1Mthyk86t/Io+pHiv5oZIX3PBu9M5Y6bwQALeq8N/6m4KorFKq5rA3eGbuZia33PCnEl0kd0KDNBrRRgzr1uEOLOrRosx5rIhFWRGmW6h+ixFqJv+AX97WtBVmseKVfUssBmT1jBYM0Comr3ZcXs0PjifIEoiSRKE3ES+KI8lAyFLsLj2b0sQbiC8e9sjGIeOkWkFTLXAs3eacHLV8qeXiO8dXfXPPlsmUYwl9n+WeXu80dseXo+Ut3XQ8AKCrccs6DicYwElF8ou6jpoeDEWrD1b/NNrwe9Pr/7Fr0u2c2AOAId6v1vlNV6DqCoQtIf+nZLLHGiNp3G59oZQVfGkyvC+WDHJEoIlRsM096qY+wyD/yu+bbbHj5ANXmfNXWCFLXI8Dr1y/ZdvvhmqGdvAdFhURDaYb1QEZcUWbc/igZxSbjZYCgZseX0Th5D8NLxEv1b8rOp6m6z6bovujyIyKgReyoDd4ZJf6C1s9b8JoxmqXD1SsppMOFMkckVsffn1bx1xC7JyczLHNd3Sgktn6eRNhFlscyesoK9hKOZHzZr/SK39zzV7rnyc9E4Nwt9g/91nm7/BcHABJhp+k/GaP5EQWRk6h3Gp+RN7fVqPtW632hJz4GcTLWV5e/KFeWmNj/2/MKPg/9s82C7f3GR+v5FPnwXN3/puo+a73qFQB7u+E5+d7IilfdEXd3J4OtNYesz0n1a/KQbogn74swova9xscruX4QphWE3uEjjKLotoQQKn8xKoWX1sNJ5I+uG392XueX1E1CwiH/8A3emQfYUW7RTKGMDnOE6ksJk2N1BR9t+Ef1ieplicbSiXnfl4oDRR5vfUcuSaibNZc39d9bPm5D8YyShoFev15FMBqqW9WlEQznGs8MLQIUEWnUIztZK7nskZplBNKh/KNfUm/0zviy+e4t3gtaSzFlUXunG96daXg7jTzUlaMRQUAKPWYBAYgnykdpf9Gizgo+h5NUAEAhzCLLY6fGcJ7xSAihZvdmUvvq+dRaPg0ADvkLM6l9ptACZ3yi7nvnrT+7rmPFFuWHHGrXIstjudQO2dhgiJBHbd3LjvdLak6ijviHDqHXdjIe2uXLLXfJiYNxusorRv0bRUKNRq7mM99tfMohxAMACuIsw5sTtd+2+T1BQepH7trum8ID6RN1DsFWQG/s/LQCYBs9s76vmHzElzda8zPWrSHlfYI2VvBy08tDQraCAAAIhvEOko+lTGvv8hHW8OlfOO6TZabbxYA15Ku25qv+yCL3nk7kRWtEEVtddNnag3PkbRwEkUZmLbtg0Me/ey9Z7l4IADqu6QLko/KGnLLG/HpXcrsnMarrcxJ25SbszLLtjSyl9wxGBPQ/9f+R/6wTtN9epG/n1s8rGDb4ZmzyXCwna8rgCDeYXjtOu/R0RFhCxy/R69xztjLTFpiebVMe5GyDk8h3Gp+Vl24a1HWr9V4LXtPJ+wOSartvymrPFcE0fzXqvkj//jD1qlO9jNVc1lsNzwYkFQBkU3sWWf4Z+vbvruMTv9l6BwAgIN0w+ZE0S0j5lwBwzG//2PGQHMNMIIErzf/Kp7Z09Ob97JhPmloKA80xvjZCvbyjd5b4C7533lx7Qrv1Av1Hk7SxVEjpeXyi7v3Gx/5sBfte0asoGsJmw3SdZx0mhLRUkgDZ5Ln4F/e1/AnNJzu9IZfaXsSOPOIfIs+Z1lAIk6vaMYxelavafjoJak7G+tWWv5Q1tDgMaNIzu/DN/KStHtH4Qu1bsvLL5aZXhtGr5Dd4/YayhrzShvwjdYPbNYo4xqVbi3ITduYlbjdrOvvt6ASGtksSomb3dP3WPkLwlwVHAvfabmlduqFZiPvdc8lW3zRZpUVGhzlGqX8ZpflFi4YXGyKgOrdu8ulEoImA9tq032jTaJpvcXwmP3YJ5tfrX5QTSGxE+a2W+9ot5+sUrBu907d4z299B2OnN8w0vK1FmztqqMg/8uPGh+RbzxHq5XOMr4XSPQ9reHXFS76ADgBG9/vl4sEhbaaJErbKM3e153I5FkmNuq8xP9GlWvoPzps3eS8GAAIJ3BZ3TwJe1uYNbtH0s/O63czE1hG/NOq5z3ZTt5ekruNTAyKVQBzHw1w9R5tGPuGjpn/W88nQYgVfGUKvCfckrCpPQDQaZnv39y9keoWP0CsYvnbedZAdLh+SCDvD8E4wqIyXyCP+QQf9I4vYkaemVRmx+hHq5cPVKyIQ19h9fMLSnTcEy1jnJOy6dPjrGsoJAN813/qH70IASCKO3RH3f+3Gznn9+pL6gYeqCw/VDGMC2javoog4deDnE/pHUu/7TPIRykiAvNnwvOx6GaFeNsf4OgDU88lrPZfuYibLFTZkLHjNRO03hfRKDIkkbzJcH6FCa2QfYfCwkuv3dsMz8g1KDrXzWvPjraUkKric9Z5Z+5hxrVMj9FjTLMObA1R/dNnWes8lP7mukx9fZHh/gqZrPZdPNt5/qLoQAMyamjvOu48IYeulgU/6svnuYDyUCa9bZH40Dq/o8oO8RLzZ8C859MNGlN9uvSeYTCJK2EbvjN/c84K1HkmExXFczjyZpP3mAv1HXZ4/dDiJernuNYcQjyKCFatKJEpa/uElOqxt/mtPcpzr/9+mf8iyySiIlxlfGapeE8F5eoOPMPZRo8X+oV81/zW4o5JCFM81vdiuC10CpDKQXeQfVcSOaK3iCgAoIuRTW0ZqluVQO0MJ+OZF4tc9C/84eoF8iIA0sv/y3H67HKKtiY9vEhIOsKPk+8cbLQ+1qyfyp7MJxPGmvMPVQ4prhta5U1q/ND536TT7J+HGoAeIFECQMyNqNMhR/6B3G58EABQRrjQ+v5uZsJ/9Uzp5AlE6Wfu1nV5/OguysKJGFdrg0YxuU5h3LzPuc8ff5D/TGM1PMw1vy6FM6z2z5IJiQUxY7VjtjyPUy0MPDP62+fYtvvMBAAFpoeWpTvYqAeBA1cjPN90rP75m/FP94rvOpNziO/8n5/XB/aRscvdc80uniid0RAOf9Fr9y36JBoBh9KrLTa/AKXuhAGCnN1ysf+8oTP2qdj4AEEjg3vib9Wi3FRVa7lq42nN5uy9p0eZEojSROJZIlGpRBwCoUB8CEokwGCIQiB8HDkP4aFR42MeM/bL5bjnThkTYK03/yotUaeQMjxrtEl4ilrsWrvfOanHOgTRJ981U3aehOAyahIStvmnbvFPlHLUgZqxmhHr5cM1v7W7LeAWDRzI6OOsvGxc1NbfEYiCkKPQjRUM7+uP51JarLU+G9aWafXHFNUO2lUytOhF3k5+09bKR/wnLcVjpyGY4bT9bzxVt6Bneb3y82D/k1OfTyaLJ2q/6q7b3nDa3Qsiscs9d4V4gPy5UryzxD2xTjiqDPDBO88MAenO4dzACYB82PnrEPxgASIS9wfSwXmp0MyaPX+8L6N2MyevXe/0GN2P0BvQOr40TKAAYmr5mzvAuilR7RMOS5juDmYI4Ejhf//E4zQ/hDrDdzMQvHC3W9yLD+1WBrN3MpODdWxxeMdPwtlxcpfWex0j1stnG18NqqCPq+ZR/1/9H3jJpnYgZLigijFCvmKr7rJP96tD53XvJL85Fcmd0qONay+NJxNHTP20MiZmyTD2f8oXj3qoTCzsD1nCF8eUu115tEAArYkdv8U474h/SeohgCD9A9YcNL3cJJo9ocgsml2D2ikZ5Dwc9xqG1LbZWNKFiPwLwdoYXBsJdtjuCNUvDghPIb7beub9ylHyYbDq6YOy/dKqub0XdjGn5/vm7j08ECTlnwFeT878+k2xDBZfzRv0Lrf9Suaodk7VfdWOuHo9bG8zXJNSFVzNZQaY86dnUqgfaPCkB8j/HvXKBydZgINjp9eM030dQQCMIK2nebPhXHZeKlfFIVdeb4VpV81/Ou5smO3PCFbEjlzTf6RFbKp0l4iVzzS/Fn+LkC5ElzbcHBWiCkAg7RffFOM0PwQ38OuutjrriD2v+AgAoIvw1LsKfjtZIgLzX+MRR/yAASCMO3WD9Ry2XWsNnVnMZNVxGDZ/RkY5uR5AIO0n7zQTtd51XrOwEEdClzps2ey+SD+OJ49eaHztNNb7eoCwTxTJMATJFRDrUfvSK+mCZ7AJ642zD6xFUAsNAKFBtKFBtaBIStnqnbWemyFusgoTvZca1+xGkQThpBVNxMRmXf5b1aKMZr7HgNWa8xozVWLBqM17Tprxc6BBYYO7ol5bvXbD+8EwAqHRkv7366avGPptg6HA2cgK5sXj6ukOXBPiWnZxVBy6vdGRfOvxVmgxP9rDXkkIUD6Q37WPGIiDZ6Q2TtF+HnrAcIhJCBMjU7j3n2YOfzDr1SQSkS43/bhLig542NeoeqVk2RvPT6W8AqhDv1aYnXi9/kasOSSd2+pD3OrGCAUn1k/P6LSfsFgLSBO2303SfROZvlplhWHw8kNd6L3QQ/ftF+g9aB3wBQIBITqdX5lI7DvuHiRK2wn3VfNNzETcqs5uZJFtBFMRZxjcJxJ9CHml92+EUrNVcRg2fUc1l+kQ9AHASxUs4ALCSVpJAADwgqSQJkUOZApJqhXvBH94LztN/WqheGbbLRlJ97rgvqMeUTe6+yvJsuKKspyJgBh4PqX5L9Ihl9YmV7nnrPHOmG97tJDo5LATAiphRW33Tiv1D291DoFivuAeVBAQAzPG1I4euMGM1ZqzGgtdEKRxrW8nUpbuul8vEUDhzxahXchN2tnmPJCH7K0cv23tVsy/u1DOYtbVXjn6hEwvat6jjUtd7Z03ULokgkzoUJMAF3IDz3eahOavg8PiOslfdoun1+hdJhB2nXTqMXhXxkqJd3lz7XFVDJgAAjuBUIE17SE81aSiXjnZoSJeacunpJg3pUqtcnWTplQdyv2y+u4FPkg+NWN0Vppe7ZbOhjk99vf7FgKSy4eUzDW+3LsUVRK4+UR1Ie63+Jbn88m3We05zrfxS3Rvynf04zdLphsWRfwGAw+ywn12LWpvzBKL0Iv0HOVTbn6OOcIumDxsfkaOHAGAYvWqO8bXTucMIcoZXn+gSEVCnEGfCuj9t3CHE7/JNlADVYQ4t2tyivyUx7695VC7aYtbU3DblforoCfm3I3WDv9h0txybiiLiRYM/GJW9LPhqlSPr5z3XBvM3AMCmLz/f/smxuoKNR6ZLEgIABOafOWzxkLRwclQVFLobr6hXo+5u36vfWz7uyy13AQAgwA8iQY0mEUdvsDwcVhLCOs+cZe6FQbHWYepVM/TvtJvvERk7fZM9omms9ocuIxi+cNwnbyNnk7tvsD4ccYvB/A091nS37bYQBW46QQR0m++839zzg5GJAJBL7bhQ/2GXEsq1fPqHjY/IhTkRkM7VfTFF98WZ5LXpFekTPcOSbbftLJsMAATmv/ncB+P1PReT2eRN+Hj9Aw2elnvVwoxVM4YtdvvMP+6+Tg4Hl9GpHNMKPhucts5huhQQtP7AkW+23ckEWtKzhqStmzlscSgh42czSvrE6dAmfaIHYDnNv5e/4mENAJCbtasofpS8l5NCFF9vfSSUbTdOIpc037mLmSQfqlH3JYY37HQ3lGkMi2AZpkYh8eXaN+RwhOstD8uhNGGfLdDvzYYX5AIpV5qe77KAQ+gEJNVa96W/ey8Jpu3KVb1Gqn8VgOAkkhXVHFCcRLGimpMoTiIZUbOXnSBrEWAIP8f4WjCvulvoDekTUfQR4nwTIvUWtaE95eNlKwgAFwz6uCetIACYNTXXTXrs041/q3RkA8D20nPrXKl1rpRgCiOGCKOyf52c/7XsDsRErwRo/8QdN0x++PON98oWdNfxiU3e+LmjX9arIixHflYgCcq+aMT0vKrf2oOzZSuoVTVfUfDyPm7sN81/kQCp4HLeb3zsOvMjna/qnIL146YHZVkTAOhH7b7c+HIEKcWnDy40IVIAACxY9QjNMjmcZJn7mmzqnnBXTiKg37tuk61gDrWrG60gAJAIe57+05GaZSvcC3b4zpUAkQDZ5pu6zTe1y8+qUN9V5me6vQQYKvrQ0HRXokcUtUZ1nnWY2CuiPBo8SZ9u/JsgEgBgT9k4zR6D7WAKZwenra9zpTa4kwHAxVjk/gBA/8Tt88c+PzhtPYG1iMap/EdU/mIA0FCuoelrGzxJ9e4UAHAy1j3lE1JMR42aKFZ5XH94psNrSzD00spqvoCOwDp06GKiV+dR9pAjxOjqUc3oOnfKt1tvlwAFgJlDFyebjyYRJQas4SA7EgBxCZaSQMEgej3egSOqNDDgvcYnGoWWjZYJmu8uN73SjduhYaH1bsKFlsyEZOLoH74LBcBdgtmGl8cT4U2lzd6LtvqmAQCOcNeYn4ggirBLVKhvgOqPfNWWRiFJFl/tEiNWf4P14VQiVE270KECpTQbY0XDKBrCAJmKigwSa7UqTiD/u/4hJ2MFAIu2+qqxz+FYbEq9Y6hQkLopwNPlTS3RdzZ9+eUjXp2cv0RN/mms85hJRNWoxAAAjvEFyZsJLFBSXyABEuBVu8snUDibaimORicP1wz9dtttB6pGlTXmp5oPq6neVVamuGbIWyufq3OlWvWV2vaEziWE4MjkEIX9FNrgp7JwoefESr7c8tcmbwIApFuKLhz0XwQBAEgijumxpoPsCADEKVhlW3hqUMYW3/mfO/4ma7vgSOAy478n6r6NodcqQCQhEifHBlIoywFVGhgIADV8xmj1rwgSasfcgumTpr/zQALAObqvupT8Ph10mGOYelUKcaSRT8IRTg6bj8MrksljqeThdPJgNrWnP7U9j95WQG+6yPCBGYtQM7JzBMwgYtrYFuw7832E3++4eVvJFADAUe6mcx5KNJbGtj8AsOXYtNVFl52T//XwjJXtFhRtV2LtWL39yz/u8vr18mH/xB3TCj61deser5OxvvHbc7KWIwDgKDcx77sJud/hWPfom58mDe7Et1c/zXIaAEBAyk/eMjnvmzZ/UMVHeDr0pI9wb8XYL//4KwCgqHDruQ+0iYvewZz7teMu2V+YRhy6zvrPYLQIJ5FLmu/YxUyWD01Y7dXmp3qgYnbnBH2E8mHrktRh1fj93PG3Pcx4ALAR5X+x3tUtYZm9nN7gI4ziipDDE2l2v7ysiRV7ysf/tv9K+fH0Ie/3T9wRw84ESTYdHZvzU4r5SEf3iQKmxwQXyf1JEdGkqbOnbDjelOdizADQ6EncVnJekzc+yVCqIrthO0gQ8Y83/L3Rc7IsnyhhJfUD91eOtekqTJqeKAnZCX6O/nD9Iy7GcuIJpN6dsq10apUj26Kt0dMt6xgJIQTcpEisRUaATGkjsRathnjVpxvul33ko7OXDU1f0+YNiUSJEWsoYkcCIE7ReuzEHqlbNH3Y+Oghf4sucTa5+3rrIyY8xoMTAHjCpvIfDhbmxRAeR/jD/kIAqOBzRml+7WiDtzWH2OHL3AsBAAFpgek5c6cVP84YREyLSkxsJdaiaAjVzK7YWsEGT9InG++Xa83bUzdMK/gshp1pQ+dbJSRX0cYKyqgIZkjaOiagq3JkASASIDXOjC3HzvcG9EnGEhI/rYDSX/dcI0vh4Bg3u/AtD2uSrY4voNtdPrHJk5BuPXSaTUSMBMgXf9x9vLE/AJCYPzdxZ6M7CQABQBo8SdtKplY4+pk09QZ1IyqxihWMmJ6xggDw2/55xbVDAECrcl45+oV2txySiGM06i32D5P3SMu5/ha86oPGR4PJcCPUy+eZXqTQ7hfSjACa3demPH0iUbqTOYeVNJykohAmg+qivKUg4R87HpTz4gtUGyfqvo1id3sTBFcTWysIUTWEHs0YXHAgUmx21fw8/cG6R92sCQBsuoqrxj2HtbcJ2Tvxk5kCbm7XW4OiYv/EHQWpm7x+Q707BQCRJLSiKWfz0YucjCXFdCQyW7WrbNLyffPlxzOGvjssY3Vh5iqbvqK0YQAnqACQGmf6lqPno4iYaikO3eHRXSzbs1AO+kVAmjfmpXPyvx6SsY4TyBpXuiShANDkSdxReu7RukFqOqCypVHcGaVX3mO4dFOpQDdr/ZxKjTP92223y9ues4a9nWzqsMVU8jCFMsX+YQDgEOK3+c6TFVIwEGYYFk/Tfxp6Vd5o41WPwERv6zrkKCLQqO8AOwoAqvjskerOSlIDwFrPpXvZCQBAIcy11idC1y7v69gd14MAAB9ZSURBVATIVI5IjG2wdxQNYU38PWrf9h7TC+AEMsCreIGU//26d+HR2kEAgKPc1ROeNtB9KaTepZvKkck026EohoZyF6Rszorb1+hJcDJxACBJaFVz1s6ycxAEEo0lYVn9BnfiZ5vuC0bVnlfwufy8TV8xJO13N2uudaUBgCDhR+sGHauzp5iPtBuoEiX2VoxdtvdqAAQAJuctGZm1AgBowpuXuL0geTPDaevdKfKvqpOx7j0++ljjsGTNLh0dywo1fZTypGfNzV9Fu5Wvtt7V5I0HgDTLoWCMTEekkYcMWKMcOyM/o0MdiyyPFtCbot3PsKiz3qbyH8WFP/3OJBIlRewot2jiJVIALLdjGZd6PvmL5vtEwADgYsP7kWUf9lE82vGsKj+2GzlRDJZx6aZovH+02S44TTiBLGvMP1ZbcLRuUHVzRiha7LOGvTM887du7EMPwKryAEDFdlE7VOZwzdDf9s+rPlHsAgD0qqZzBnxdmBmSliAnUG+vfqrWmQYAVm3VLVP+TuFtb0WP1g76YecNcoAfAGCIMCl/yeS8r3tgaVjdnLl4zeNy2YH8pK1Xjnnh1C/V4ElaWzRnT8U4WcoOAFBUmJD7w+S8r3tJmE9fwWGYZXJGUkEzdE7GyCDiLec+EGLw2lrPpb+6rgGAROLYQtPTvcEp2Aa3dgLN7MeFtimMB9hRHzc9BAAEErjW8hiFMLJiDo5wBPgBgEIYFBE+anpELsiaiJfcEXc32rGS3JmHn8oSUQ3NhFdxoXuJpcRaiIgSWt2cebRu0NE6+/GG/rwYkjivzKDU9ZeP/E/0+tZLkNVKVx6Y1+A+GeqSajk8e9ibcfouJPD/JLhzzkPxHaQP8iKxtmjO74dnyT5XABieuXLG0MVR3Zvy+g1vrXpalmC16ctvOucfpxrpIE3ehDVFc3aXTwiaQ5uuYvbwN1PMUckzUYiAAK/697JXXKwZAEZl/zp9yPuhf3a1+/JqPusy47+jUV0vqrzV8K+yQF7X7wNAQLrZen86GdIdsEI3EsWt0QbztWTgeMTxMo2exH0VY38/dMnSXTduPnLhsTq7w2sLagmeCoJINOkjMC74L05XNX/MCxja9+KPPZrRATK13XiZdkEQsOkrRmauMKobq52Zfk4NAC7Gsr10CopKqeYOvXrbS89dU3SZ/PiSwnc6KXaKImKWbf/AlM21rjTZMlU1ZzV6EvOStqHRWRcKEvbJhgdkbVia9Fw38QmdqrNSajTpyU/ampd2sNw1xONVAYA3oN9Zdk6AV6VbD/YhD3EMqbH9X1TjZYIxMhrKOX/Mi2Gt1zOpA3Z6Q69NJ2gyzcOFxnY3wCx41fYQdFsAYIR6xRjNz93dtd6OTz2UVeXFNl4mihJrPvVgvXt5CEV22yIBEixg1AYEkeL1x7Nte7NsezPiDoRV7bYPESBSAEHBG54XBEWFwsyVg9PXbTg8Y83BS3mB4EVixb4r91eMnj38jVPrV9Q403/adZ38uDBj1akh7KcSp6tcNOHxH3beuL1kCgDsLR8X4Om5o17qROolYn7adV1pQz4AoKgwd+QrZk1IoeRWY9PF83yVa5au3D+XE0hRQtcfnnmwavjs4W+mWbpfFOMMw6MeA/BylE5e507ZVHyx/Ph8+6cqolfITnUXPlWB2reDgOpTX8ok94/VLK3j0yRAZMXOgEQLEiYC5pdoAPBLtChhGtR1gf6jnu53L4AjEjk8XgdrYtiHKG6Nsqr+VKAUEcOzVQFe9dWWvxysHt76SYO6Mdu2J9u2Nytur1bl7NZu9kY4PB5OT/ix3pX87fbbypty5EMMESbkfTep/5LgPTjLqd9c+azs9kswlN10zkOhGzNJQpbtvWpD8Qz5MCPuwFVjn+tk0zICth4774edN8qPLxz00dicUPORJZTykxkq9lCjJ/G77bfIphQAEJDG5Pw8deAXimp5J/hUg9RsOzWGTh+HN37J9ltL6wcAQKrl8I2THu752OOo4qeyCa4aFWMj8Nan4XGLhJAE1849RI/Ru3yETp/lk40tu2EAkG4pGpS6Mcu2x6qL5TXqo4gSuvnIhb/tnydHmgCATV8+u/DNFPMRSUL+98fdctYghTO3TnnAog37Cq8punTlgbny42TT0avHP91GKC5iyhrzP1j7iCBhADA0be2cEa9Hdh4JkC1Hpy3ftyBY69isqZk9/M0Ma4yFDWMFy6kJLNAzzgJJQurcKWX1A8oa80rr82W/ILTEyPw90VjSA31QUAiRKBrCqoSH4xreCX1ZU9GU8+mm+zysUT4cl7N0mr0X5Qn1JE79hRKgRleoy6BOaPLEf7uj5U4cAFBEHJvzE016VuxrEdyZN/qlgckRuoU2Hbnwlz3XykUTbfrya8c/2XnSgiBhR2sHHa4ZiiISRfhUhFd14n+a8KoIr4r0+Tn126uf9PoNAJBiLr5+0qM4GoYnicNt9dabk2qeCD7T7I37bufNci4NACAgDctcNSprWW8Q2+tJeIH4aMNDFM7MG/VSR865spRX0yvujLgJUcSqmrNKG/LKGvLLGvOYgPbU94zMXjZjyHsRN9FrqbHdbWpeEvPE8L6IWzeZwyzm5m9i2Ico+gh53CwhHca2tGFvxdhvt93GCSQAYCg/Y+i7hRndWfKqbyGgGkDQbjmVWVt73YTHtpact3zvAj9PixK6/vCM4Ktj+v0csRUEgDH9flERzHfbbxEltM6Vunjt44smPmFStw1tlyTkeGP/PeXj91WO8fl1IZ5cRzvmj34hLCsIAIBgPG5p/YRRU3/NuKd2lJ3z656rWU4tAbK9ZMr2kimJxpJh6WsGp/1Ok71LWDwaSIAs2X6bfD/0xR/3zBvVfqCKvCcf2flXHbhi4+HpgRPbD20gcTbVXJxuPTg6+8wMBuExs4SQse5Fn0RE1SKmj20fYr81KknImoOXrS66TF5YqCn3laNfOGs3r6KHk7F+t/3mI7WDg8+kmouvn/TP098o21856qstd8lpFXpV0zUTn7TpWuJda5zpe8rH7zk+Tq7+ETo4yl0/6dHuzXxwseYfdtzYuhIyAOAYl5e4bWj6mn7xu0PZfvCwBopg+5yjcdneq1pHn+Um7OxI2CwCWE7z9dY7D1UPa/O8jnakWw6mWQ6mWw4lGMra1ZdXUOgNRNEQiqgalViQOvtx4UViybbb9paPkw9lLTSTpqerg/Y2JIQAQOQ6n93LzrLJv+y5hglo1KT7tqn3G+iGbjntkdrBn226V3ZGqin3nMI3apzpe8rH1blS27zToG60p2ww0I0sp2Y4LcupmYCWDZx8LAsxzxnx+tC0tZF0BUFFRNVJzEJJw8AdpZP3V4zm/rx20auahqSvHZq+RnZI8wLRzMQ1eeIdXpvDG9/kjW/yxjs88QGBoknPyKzlo7N/1XaaztF72Hzkwp92L2rzZE7Czvlj2i64RUyDCuEFc9a5Uj/bdG9Qq92qrcq07U+zHEq3Hjx1b+AMRkRpRAwgEUTJn/VE7+cudGJZhsnDGj/ddF/FicjGnIRdV4x8RUUoYVftl2HqLtys6ced1xdmrsxN6FDwKQLKGvI+2fgAy6nbfVVNugembB6Uuj7derBzvRsJED+njji2PsQyTH6O3lcxdkfZZFnIuzXxhuMsp3H5zJ3rFuEYNzj197G5PwaXv72TA1Uj/7f5blFCAcCeuiHJWLJs71XySzkJu+aPeb61LQy3DNP+ylFLtt0uxyIhiDQpb8m5A76MYVHAGNKmDJNC6JzhZZgYVYGG2dnRvXmNM/39df+sd7esGMb0+3nO8NejkY7WF+GIJFRiKX9U5I8pnLWnbrRou7nCi1Hd0C9+d1HVqNYrLRLzD0zZfF7B5zOGLc5P3GZUN3SpiYcAnM6WnYSq/GSmtqsUTBzjk0wlhRmr7akbSczv8MYHeFp+yes3+Dk1dGAFUUSUDaQoYdXNmVuPTat09NPRDpO6PuI+R4/yxtzPNv1N3rXOiDtw5aiXMuKKKIKRd8ibPAmVjn4FKZuDe8JedaHBHZIeoSihv+2f9/OeRbJELYUzV4x6ZWTW8q41D89QWFV/2l+ECWd+cle3wxM2ACm29xAx8xEWVY34fNO9EiAYIkwf+l6fkwNVaJd6V/KH6//hZY39EnYNSt2Ql7S1T4geiCJWXDtkR9nkQ9WFstnAEEGvbjBp6k3qOpOmzqSpM6rrTZo6DenaXzVqw+EZlY7s1mdINh0dl7t0YNIfvccT1uBOXLz2STk6yaaruGHywzTZss7eWHzxL3uukR/3s+2eP/b5sO5BmYDmq613FdcMkQ+t2qr5Y57vUsxPQaHXEkVD6KMHq/yHUbHDPOsNxTPWHpx95egXM+M6LLNwdhIgUgBByECfrCXkZkwYxndXTmG4iCjNUv0jVrL3+vX17mQj3aCnmzo3aWWN+RsOTz9YNbz1DqpRUz+230+FmStjbv69fsM7a55s8sQDgE7luOmcfxj/vGbdeOTiX/dcLUeoZcfvWTDmXwQW8GhGdymxVutM+2zzffKZASAvcfulI15VPBoMXUD6S7u3xsBZAkckigh1xhbmrU54QO3b0UkZpjTL4aHpa+INffLnPqo49dMCZFonZZh6MxTBxnCLm8fj6uLuMLh+jezjJO43qhtUpK9L3ROjusGeunFQ2gZRwupcKaKEAwDLaYprh5TU2QtSNuFYzFQxAwL10e//kCOVKJy5dsKTcbq2y7VUc7GK8B2pGwyAOLzxFU05A1M2V6Y833kZpr0VYz/deL/HbwAABJHOyf965rDFhFLiA6A27i+qwLE2ZZgUQsGjm8jQBbEtwxRFQyhgBpo9iEqdScXHquJ5L0dEVLjQ3EmckUKHIJiEqnrsHkJNevon7hiR+RtFsPXuVDlsxMVYShoGFqRswmMh+C5K6P8231NSPxAAUFSYP/qFdGv71QxSzcUqwnukbohsC8sbcwakH9Cx29qczclYq5szj9Xbtxw9f+WBefLWMYUzc0e/PCLrt7PWKdgGAdOp/Ecx8YwSUO0ZJJTCBA8Z02Lasc8jVFA4M+AFYkPx9JUH5sn7jWmWQ1ePf7p7JVhD4YedN249dp78+JLCt7oUpth85MKfT8gDZdn2jcpa1nQiY8ThtTX74oKFt4LE6SqvHPPCqatMBYU+ShRXhM2G6QRfg0rKmi9sGNrO4QmnI7p91iKgOpf+/JhEoKGomGE9qCJ8cqUhJ2Mta8wvSNnUk4XA1h2a/fuhWfLjc/K/HpfzY5cfSTEfUZPu4tqhAIjDa9tXMfZo3eBKR3aTN4EJ6CSprcJRXuK2q8c9o6fbVqA9y3HqpuGiUxHdjgBWlecn0kk+loLSUZRYc+mmqH07MMEVvSbOVBiqPyBolOoAnNmImNalm2J0Lo1VB8b0+1mSEDkms6wh77/r/371hKejHTvDCWRlU7/DNUPXF7fIxwxNW3tOfmfevtaMyl6GAPy4+zp5XdgGDeU0a+TQ2VqbvsKesuEMKxzRLbi1E6lAKc53j0LFWYWfyuLweA2zPYZ9iGXUqEJH9Omo0dhymlGj3cWG4um/7rlafpwRd2DhuGe63RYyAW1ZY//jDXlljXmVjuzWG5jZ8XsWjnsGQ8JL5NhybNqmY7Mt6lKzps6oqTNrak3qOpO2NuYRsH0CJWo0YnpD1KjiI1RQiArrD89Ytneh/DjTun/h+GdPX6HUzZhKGgaWNeSVNeTXuVLa1b5JMJTdMOkRilBuQBUUQiWKhrDOequ5+UucV+KJw8atnQCA6jwRiW2e3fCYuck8z1b/Rqw7AgDw++FZy/cukB9n2fZdNfa5iG1hnTtl3cHZe8vHiac47QAAAcmmr0i3FqVZDuUm7Iy4nkZVwsOtK1gphE6DZZHetZzklACisPFqRvKo0eBeHsM+RNFHyKpyRaT9miwKncPh8d1VhulsQ0IplsqNdS9amJD7PUiwfN8CADhWV/DJhr9dNe65cJMsa5zpa4ouPVA5qs36D0P5ZNPRdMvBdOvBNMvBoGrM6eBT2U//JGcnLJmtRTWx7kWfhMetEdf/6i6iuCLkcQvGOxGIWVpx30XENAAQbh0ABQCQABdwQ6/ah1h3aHawDHJQwyWUD1Y6stcUXXqoprB1DIu85ku3FiWbjna7cAGHxyuxypHBY2ZMdCOSoi0QNiKqlgDrRHqlB1B8hAoKUWftwdm/7W+xhUnGkizb3jhdpU1fHqevbDfRsKwhb83BS1sXjwSAfvG7J+d901F2vIKCQsTEsgyTQkdEtQzTmU2IZZh6njUHL125f+6pzxvV9VZdVby+XDaNAV619tBsWRdGBkGk/gk7JuV9k2I+Eu1OhluGSSGIUoYpYnpDGaYo+ghRkTk7K5OdPqgUODWRWSE0pN6Z1Dw57xtJQlYdaGtmmn1xzb64Nos/GQSkAcl/TMpbkmgs7YkuAmCSEv0fIajIKFV5IwOROESMcYqOsjWqoNBzVDqya11p9a6UOldKvSu52RfXbgoEioj21A0T877t5VV/FRTODKJoCANkKsHVKN7jCOAxEwCCC4qKVdhICMERCX1Fi0AUMSdjrXWl1LtSmrzxda7UBk/S4NT143KXGugYaJT4qawolYM+4wkQSTjf1HmNAYV2ETCDhOCxDXBTfIS9EcVHGDG91kfYJ1B8hBGj+Agj5gz3Eap9u1FRuT+KBJKrgPZ2zBS6BBFZNbM71r3oq2h9m2Ldhb6Kmt0X2wSAvgvBVcfcr6/4CBUUFBQUzmqiGJro0YwRFamFiPCTmX4qK9a96JOIqMajGRvrXvRVXLqpse5CX8WrHiFghlj3ok8SIFNZVf/Y9iGKhrDJdAWvjIyI8KoLverhse5Fn0TA9E0mxcsVIXWWm2Ldhb6KwzAr5jphfRSGtsf85jVUH2GVA655C8obIcUM/70Vkkxdf8To/FEpRhgZanZfrLvQV8FEl9HZdTVahXaxOBRPSYQY3MuUYoSRoWIPkmiMw7xD9RFe+xYUpMK9F8OLP8O+cvjg5ij3S0FBQUFBoUfAHr00pPfd+RG8eg3oVJAZBw9+Cf934Z9e9amHsmQ/kq8CQDyacTweR/LVddZbOSwOEBQXGgNkqk81CAUOEz2MagBL9SfERkTiPOpRATKd5MpFlPaoR4u4geDrONzmo4cCguJCs5/KZlQDMdGDSoyPHsJS/Ui+GkHArRnHEzaSqxIwg1c9QsJonG8MECk+OthKPkvl4UITKgW8mpEBKoMMlIuIyqMZLWBGgq/l8TgvPexEK1mMaiAmeVGR8dGDWSqH5GsQEN2a8TwRT3JVAqb3qkdImBrnGwJEso8ejACPiW5WlcdQebjgkFvxk5kUd1xCKY96jICbCL6Wx61eehggGC40+8kMRlWAST5U9LW0ItQikuDRjuOIRJKrFFCdVz1SwtQs1c+nHsLhNgSEk62Izajk96pH+MksiiuXENKjCbZi8dKFgOK44DjRCoOKPp9qEEvlEHwdArxHM5Yj5Va0XvVIEdMQfANHJProIQiImOhiVf0ZKh8Xnajk99KFfiqb4iskBPdoxgq4meBreMzsVRcCSuCCI0Cm+1R2VGIx0cvQBSyVSwj1iMR7NGMCRDLJVYqoxqMeJWJagq/niAQfPQRBJExwsVQuo8rHRRcqsV56mJ/KJrlKAMyjGSsQFoKr4TGTVz1cQkhcaAqQaT6VHZX8mOhlVANZqj8hNCAS59GMDpApJFchomqPepSI6Qi+nsPjffRQATM4DRejgodRDcBENyqxLYOTCw5OK8lXC5jRqx4uoRQuNJ0YnIGTg1MIDs40kqs4MTj1wcGJIAgmONsbnFUtgxOPI/nqlsGJqnChncEpTwGvZmTLFEBUHk3LFGhncLa0Ig/OagQkt2b8iSmgbzUFkn30YLmVE4PzT1OgZXC2TAHryVbITEZV0Gi5Suf5vdUUEE5OgRODE+cbAkSSjx78p8EpT4FQB6ev7eA8OQW0wVbaG5zyFBjuJ7NaDU4Twde2HpytpwBD21sNzpYpIGKtB2diB4OzsGVwIq0Hp9mrLjwxONNPDk66oN56E8lV4ILDoxlzYnBqTg7OlikAmOBkqZzg4DwxBaoAUI9mrDw4W6ZAy+BM86nsJwbnwJODUzM6QKaenAItgzM+ODhZsh+jGtAybNr7fT4xBVQx/31uNC/waCdofFvb/D4H8KQey6UO1UdY6wSrDgDAooVaZ9tXWSqHoe2AYIAgDG1nVbkA4KOHMPSgAJECABwWx9B2HjMBQIDKYGi7iKgAgKUHMPRAAJAQkqHtfjITAATMyNB2ecM9QCQxtF3A9ADAUv0Y2i4huCQh8vgGABFVM7Q9QKQCAI9bGdrO4xYACJDpDG2XUBoAGCrfRxUAgIQQDG2X41B41MDQdo5IBACOSGRou4DqAcDf0goBAAxtl724civ+P7USBwB+Io2h7SKqBgCG7M/QdgCQEJyh7X4qGwAErHUr8ncxAICfzGJouwgEAPhUdoZs3UpagEhhqVyGtvO4FQACZCpD2+XII1aVy9B2QJAT36UfAAionqHtATwJADgigaHtPGYEAD+VydB2CSUBgKELGCofACSUZmh7gEwHAB63MLSdJ+IAIECkMLRdaGmlP0PbJQmVvwsrt4LpGdoeIORW4hnaLuAmAPCTmQxtlxAKABjVQJYeAAAiqmJoe4DKAAAeMzO0ncNsABAgkhnaLqBaAPC3fBcUEJSh7SyVAwAipmNoO0cmAwCHt21FHjaMagCjGgAAIqI6OWxwk/xBHz2Yo1IY2i5iWgCQr2SwFb8qFwAEVMvQ9hOD0xYcnCdaoQCApQcyKnlwUm1bIeKD30XEdMEpIAEuSWhw2AiohqHtATIVAHhCngJmAAiQ8hSQB+cAhi4AAAklGdrOklkAwMtTgEgAgACefMoUIE5MNHnYyK2kBQcnh8UBgJ9MPzk4qTy5xJIIxCmDMyk4BTzq0QDgp7IZ2i6hLVOAofJOmQJxwcHpJ1IZ2i7XS5GHDQBI6KmtnJxoPCoPzqzgRPNRBX9qpWVwWk9OAaLVFKByGdouSS1T4E+DU54CeHybP6iEyFNgIEPJw6bVFGgZnKdOgRMTDXCGtrNkv1aD89QpkOGlC+U/bqvBKQ8beQqYGNrO4TYA4Mjk4OD0q3L+PDjlKaBtNQVsDG0X5OncanC220rrwdm6lXZ/n1sGZ2/4faYHe+lhp/4+c1QK9BShbo0m3Q67ngGbHmqaofAfUPla1x9hVf2pQGnMReT6IvIgUwriRICEUn4yQ8UeinVH+iQ+1SA1uyfWveiT+Kns3pAP1xfhcYuEkARXHcM+hLoinFoAX/0BAPD1FjivIKSPqNhDihWMDIKvVaxgZCCiX7GCEaNYwYih/EcVKxgZON8YWysIoRvCZ+fB99thxMOwdAc8My+kj1QlPKzEE0eGU39hs/7iWPeiT8LhtqqEh2Pdi75KWcqrse5CX6XGdre8P6kQLm7d5CZjaLEqUSPU9IkkEyx/ILxT87hZQrCwe6QAIKAaQJQyTBGBYLITQiEClDvXiOExs+yJVAgXEVWLmD62fVAk1hQUFBQUzmqiuOwQUbWyrIkMCSGUu8sIQVA5TlIhAuTgT4UIEFFaAmUDLBJ6w89dNCXWjFfIcdIK4eJVF3rVhbHuRZ+ERw1Nprmx7kVfRZFYi5hmwyyesMW6F30Shi7waGMssaZsjSooKCgonNUoW5cKCgoKCmc1iiFUUFBQUDirUQyhgoKCgsJZjWIIFRQUFBTOahRDqKCgoKBwVqMYQgUFBQWFs5qoGMIqB5z3DOTdC1OfhipHNFo4M/H6Ien2lsfKNQyR/RUw9lHodzcM+TtsPgKgXLpwqHTAuU9B7j2Qczd8tw1AuXphsqkY1ItaHiuXLkReWw6aRWC9Gaw3wz2fAvSCSxcVQ/jg/+D8QXDwBbhwCDz0ZTRaOAN5bin0uxuqm1sOlWsYIte9Aw/MhCMvwYOz4Jq3AJRLFw7P/gAXDobDL8JHt8DN7wEoVy8cDlXDk98BE2g5VC5diBysgk9uh4a3oeFteHEBQC+4dFExhCv3w4JxAADzx8LK/dFo4Qzk3ouh/D8nD5VrGCILx8OFgwEAhqSDKAIoly4cbjoXbjwXfAFo9kGcHkC5eiFT0wx3fAgf3HzyGeXShcjBKnhuKWivg/GPwcEqgF5w6UKtPhEWnZezV2gX7M/3JMo1DJE7poEkwfK98Pcv4N9XAyiXLhzsqQAA/e6Go7Xw6/0AytULDQ8LV78FbywCW6uqCcqlC5FhmXDBIBiZDS/9DDcshvX/jP2li8qK0KoDhxcAoMnT8vUUwkW5hiFS74KZL8J32+D7e+CiIQDKpQsHrx8kCYqehy/uhFvfB1CuXmgcqYUVeyH3HkAWAAAgC6C0Xrl0ofKvK+HcgaBVwf9dBLvKAHrBqIuKIYygnL1CG5RrGCLzXoM7psEbiyDF3PKMculC59JX4ItNQGCQagY/D6BcvdAYkg7Spy3/AED6FDLilEsXEn4O+t8Lh6sBAJbvgeFZAL1g1EVFdLvKAde+DQ4vmDXw4S2QqJSgCBlkQcvUUq5hKDh9YLwRLNqTzzS8rVy6MNhfAdcvhgY3EBi8shDOH6RcvbBR5my4/LIb7v8cBBESjfDODZBli/2lU6pPKCgoKCic1SgJ9QoKCgoKZzWKIVRQUFBQOKtRDKGCgoKCwlmNYggVFBQUFM5qFEOooKCgoHBWoxhCBQUFBYWzmv8HJhjbOKH7WWQAAAAASUVORK5CYII=",
"image/svg+xml": [],
"text/plain": [
"Plot{Plots.GadflyPackage() n=10}"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plot(Plots.fakedata(50,10)/3 .+ reverse(1:10)', l=(3, new_pick_colors(orangebg_colorgradient,20)'), bg=:orange)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFA500\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-5\">\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y10</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-6\">\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#00258B\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#4E3000\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#0098D7\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#80C0AE\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#D659B0\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#005540\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#B9C5CC\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#2156BB\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#5A820C\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#4A042E\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-7\">\n",
" <text x=\"150.37\" y=\"32.24\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-18e23ad70e2442fcaa209ecba9178218-element-9)\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,74.39 L 149.37 74.39\"/>\n",
" <path fill=\"none\" d=\"M6.13,50.59 L 149.37 50.59\"/>\n",
" <path fill=\"none\" d=\"M6.13,26.8 L 149.37 26.8\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00258B\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,26.8 L 13.7 26.48 16.49 26.42 19.27 25.98 22.06 23.36 24.84 21.84 27.63 25.4 30.41 24.84 33.2 25.35 35.98 23.77 38.76 23.8 41.55 22.18 44.33 25.96 47.12 24.32 49.9 23.5 52.69 23.76 55.47 24.53 58.26 24.1 61.04 25.2 63.83 25.35 66.61 25.94 69.4 26.57 72.18 25.97 74.97 25.28 77.75 27.11 80.53 29.25 83.32 30.79 86.1 30.26 88.89 31.35 91.67 31.85 94.46 31.36 97.24 29.08 100.03 29.14 102.81 30.3 105.6 30.79 108.38 30.12 111.17 29.36 113.95 31.56 116.74 28.61 119.52 26.46 122.3 26.97 125.09 25.85 127.87 23.75 130.66 22.04 133.44 22.77 136.23 23.08 139.01 23.21 141.8 23.8 144.58 27.01 147.37 22.1\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4E3000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,31.56 L 13.7 30.05 16.49 31.28 19.27 31.79 22.06 30.36 24.84 29.69 27.63 31.19 30.41 32.11 33.2 31.87 35.98 30.99 38.76 29.25 41.55 30.7 44.33 29.92 47.12 29.94 49.9 29.36 52.69 30.48 55.47 30.19 58.26 31.28 61.04 32.38 63.83 28.28 66.61 30.58 69.4 32.53 72.18 32.6 74.97 34.93 77.75 35.04 80.53 33.86 83.32 34.41 86.1 34.31 88.89 33 91.67 32.23 94.46 33.32 97.24 32.17 100.03 33.55 102.81 37.25 105.6 40.06 108.38 38.56 111.17 39.44 113.95 36.39 116.74 37.31 119.52 33.25 122.3 35.5 125.09 37.01 127.87 34.82 130.66 35.11 133.44 35.16 136.23 38.33 139.01 37.98 141.8 40.36 144.58 40.31 147.37 43\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#0098D7\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,36.32 L 13.7 38.4 16.49 37.84 19.27 39.38 22.06 39.96 24.84 39.67 27.63 37.23 30.41 35.19 33.2 34.97 35.98 34.01 38.76 34.91 41.55 33.1 44.33 33.65 47.12 33.07 49.9 30.34 52.69 29.38 55.47 30.04 58.26 29.57 61.04 32.02 63.83 32.56 66.61 32.44 69.4 33.49 72.18 34.44 74.97 34.96 77.75 34.7 80.53 36.46 83.32 38.77 86.1 36.98 88.89 35.62 91.67 35.45 94.46 34.92 97.24 35.13 100.03 33.43 102.81 32.96 105.6 33.87 108.38 34.52 111.17 35.71 113.95 35.45 116.74 35.87 119.52 34.68 122.3 32.77 125.09 32.8 127.87 31.55 130.66 31.47 133.44 31.3 136.23 31.72 139.01 33.13 141.8 33.11 144.58 38.23 147.37 39.12\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#80C0AE\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 43.43 16.49 42.71 19.27 42.71 22.06 44.68 24.84 40.83 27.63 37.76 30.41 38.45 33.2 35.38 35.98 36.99 38.76 38.83 41.55 39.74 44.33 41.99 47.12 39.33 49.9 37.88 52.69 37.17 55.47 35.46 58.26 37.22 61.04 39.76 63.83 39.59 66.61 40.37 69.4 40.64 72.18 40.83 74.97 43.96 77.75 46.39 80.53 46.95 83.32 45.13 86.1 44.86 88.89 44.58 91.67 44.9 94.46 45.37 97.24 44.97 100.03 42.75 102.81 45.26 105.6 45.15 108.38 49.66 111.17 50 113.95 50.67 116.74 48.7 119.52 46.8 122.3 47.09 125.09 47.53 127.87 45.6 130.66 45.82 133.44 41.25 136.23 39.31 139.01 39.64 141.8 39.12 144.58 39.34 147.37 39.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D559AF\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,45.83 L 13.7 44.31 16.49 45.81 19.27 45.37 22.06 47.48 24.84 48.9 27.63 48.39 30.41 47.38 33.2 48.12 35.98 46.61 38.76 45.92 41.55 45 44.33 43.88 47.12 43.92 49.9 42.31 52.69 41.46 55.47 44.38 58.26 44.41 61.04 43.56 63.83 43.21 66.61 45.96 69.4 47.4 72.18 47.85 74.97 47.6 77.75 46.74 80.53 47.27 83.32 46.21 86.1 46.05 88.89 47.48 91.67 46.69 94.46 49.86 97.24 49.55 100.03 51.67 102.81 51.44 105.6 52.18 108.38 52.91 111.17 52.34 113.95 50.64 116.74 47.81 119.52 51.14 122.3 48.4 125.09 48.23 127.87 48.82 130.66 45.41 133.44 44.78 136.23 43.74 139.01 45.61 141.8 46.38 144.58 46.09 147.37 44.95\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#005540\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,50.59 L 13.7 51.69 16.49 53.15 19.27 50.37 22.06 51.01 24.84 47.66 27.63 49.44 30.41 48.19 33.2 48.41 35.98 49.11 38.76 50.68 41.55 50.92 44.33 50.46 47.12 53.67 49.9 55.18 52.69 56.64 55.47 58.29 58.26 60.13 61.04 57.8 63.83 57.94 66.61 56.73 69.4 56.6 72.18 56.39 74.97 56.4 77.75 51.89 80.53 54.67 83.32 53.41 86.1 51.55 88.89 52.88 91.67 54.61 94.46 55.68 97.24 55.7 100.03 54.13 102.81 50.09 105.6 47.75 108.38 49.14 111.17 48.58 113.95 48.4 116.74 48.29 119.52 48.17 122.3 45.77 125.09 45.25 127.87 46.18 130.66 43.7 133.44 45.12 136.23 45.69 139.01 43.66 141.8 47.87 144.58 46.67 147.37 44.79\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B9C4CC\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,55.35 L 13.7 55.61 16.49 55.56 19.27 52.95 22.06 53.61 24.84 55.65 27.63 54.47 30.41 55.27 33.2 55.2 35.98 55.28 38.76 56.75 41.55 59.85 44.33 59.47 47.12 59.87 49.9 61.32 52.69 61.42 55.47 61.35 58.26 59.96 61.04 58.44 63.83 61.35 66.61 61.8 69.4 60.25 72.18 61.76 74.97 62.81 77.75 63.24 80.53 63.32 83.32 63.78 86.1 64.21 88.89 63.95 91.67 62.46 94.46 61.16 97.24 59.61 100.03 56.68 102.81 56.5 105.6 56.4 108.38 57.33 111.17 54.59 113.95 54.5 116.74 51.85 119.52 49.99 122.3 48.97 125.09 45.87 127.87 45.74 130.66 47.23 133.44 49.34 136.23 49.35 139.01 48.61 141.8 47.95 144.58 46.8 147.37 47.8\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#2156BB\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 58.46 16.49 61.09 19.27 57.2 22.06 58.73 24.84 58.59 27.63 59.86 30.41 61.36 33.2 63.18 35.98 62.45 38.76 61.76 41.55 61.54 44.33 62.04 47.12 63.54 49.9 65.81 52.69 66.25 55.47 67.72 58.26 67.49 61.04 67.01 63.83 65.94 66.61 67.06 69.4 64.2 72.18 63.15 74.97 62.39 77.75 60.98 80.53 60.08 83.32 62.52 86.1 61.12 88.89 61.56 91.67 63.53 94.46 62.88 97.24 63.57 100.03 65.29 102.81 65.44 105.6 63.29 108.38 63 111.17 61.08 113.95 60.72 116.74 60.37 119.52 61.48 122.3 63.11 125.09 64.36 127.87 66.19 130.66 67.43 133.44 68.23 136.23 66.7 139.01 66.41 141.8 67.31 144.58 70.42 147.37 69.64\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#5A820C\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,64.87 L 13.7 65.42 16.49 64.06 19.27 65.06 22.06 64.09 24.84 66 27.63 63.98 30.41 66.77 33.2 68.45 35.98 69.22 38.76 68.5 41.55 67.38 44.33 70.41 47.12 70.56 49.9 71.19 52.69 71.5 55.47 71.83 58.26 71.9 61.04 73.07 63.83 73.14 66.61 71.93 69.4 73.25 72.18 73.54 74.97 75.78 77.75 76.61 80.53 75.67 83.32 74.78 86.1 74.58 88.89 73.36 91.67 73.28 94.46 72.45 97.24 72.99 100.03 71.32 102.81 70.11 105.6 69.15 108.38 68.78 111.17 66.66 113.95 68.41 116.74 72.23 119.52 73.58 122.3 73.3 125.09 76.47 127.87 72.11 130.66 71.72 133.44 72.93 136.23 71.5 139.01 71.47 141.8 69.34 144.58 70.01 147.37 70.35\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4A042E\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,69.63 L 13.7 72.31 16.49 73.05 19.27 73.62 22.06 75.45 24.84 76.25 27.63 75.42 30.41 76.29 33.2 75.49 35.98 76.32 38.76 77.44 41.55 73.87 44.33 72.71 47.12 71.61 49.9 71.89 52.69 72.45 55.47 71.23 58.26 71.72 61.04 72.59 63.83 71 66.61 71.37 69.4 69.97 72.18 67.3 74.97 68.88 77.75 70.44 80.53 70.05 83.32 71.39 86.1 71.29 88.89 72.12 91.67 74.26 94.46 74.96 97.24 74.64 100.03 73.77 102.81 73.22 105.6 73.21 108.38 73.5 111.17 74.89 113.95 72 116.74 71.46 119.52 69.46 122.3 67.27 125.09 67.52 127.87 68.19 130.66 66.53 133.44 66.95 136.23 67.19 139.01 64.59 141.8 65.35 144.58 64.2 147.37 65.1\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-24\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-5</text>\n",
" <text x=\"5.13\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/html": [
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\"\n",
" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n",
" xmlns:gadfly=\"http://www.gadflyjl.org/ns\"\n",
" version=\"1.2\"\n",
" width=\"158.73mm\" height=\"105.82mm\" viewBox=\"0 0 158.73 105.82\"\n",
" stroke=\"none\"\n",
" fill=\"#000000\"\n",
" stroke-width=\"0.3\"\n",
" font-size=\"3.88\"\n",
">\n",
"<g stroke=\"#000000\" stroke-opacity=\"0.000\" fill=\"#FFA500\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-1\">\n",
" <rect x=\"0\" y=\"0\" width=\"158.73\" height=\"105.82\"/>\n",
"</g>\n",
"<g class=\"plotroot xscalable yscalable\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-2\">\n",
" <g class=\"guide xlabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-3\">\n",
" <text x=\"8.13\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">0</text>\n",
" <text x=\"35.98\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">10</text>\n",
" <text x=\"63.83\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">20</text>\n",
" <text x=\"91.67\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">30</text>\n",
" <text x=\"119.52\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">40</text>\n",
" <text x=\"147.37\" y=\"101.19\" text-anchor=\"middle\" dy=\"0.6em\">50</text>\n",
" </g>\n",
" <g class=\"guide colorkey\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-4\">\n",
" <g fill=\"#000000\" font-size=\"2.82\" font-family=\"Helvetica\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-5\">\n",
" <text x=\"153.18\" y=\"36.06\" dy=\"0.35em\">y1</text>\n",
" <text x=\"153.18\" y=\"39.69\" dy=\"0.35em\">y2</text>\n",
" <text x=\"153.18\" y=\"43.33\" dy=\"0.35em\">y3</text>\n",
" <text x=\"153.18\" y=\"46.96\" dy=\"0.35em\">y4</text>\n",
" <text x=\"153.18\" y=\"50.59\" dy=\"0.35em\">y5</text>\n",
" <text x=\"153.18\" y=\"54.23\" dy=\"0.35em\">y6</text>\n",
" <text x=\"153.18\" y=\"57.86\" dy=\"0.35em\">y7</text>\n",
" <text x=\"153.18\" y=\"61.49\" dy=\"0.35em\">y8</text>\n",
" <text x=\"153.18\" y=\"65.13\" dy=\"0.35em\">y9</text>\n",
" <text x=\"153.18\" y=\"68.76\" dy=\"0.35em\">y10</text>\n",
" </g>\n",
" <g stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-6\">\n",
" <rect x=\"150.37\" y=\"35.15\" width=\"1.82\" height=\"1.82\" fill=\"#00258B\"/>\n",
" <rect x=\"150.37\" y=\"38.79\" width=\"1.82\" height=\"1.82\" fill=\"#4E3000\"/>\n",
" <rect x=\"150.37\" y=\"42.42\" width=\"1.82\" height=\"1.82\" fill=\"#0098D7\"/>\n",
" <rect x=\"150.37\" y=\"46.05\" width=\"1.82\" height=\"1.82\" fill=\"#80C0AE\"/>\n",
" <rect x=\"150.37\" y=\"49.69\" width=\"1.82\" height=\"1.82\" fill=\"#D659B0\"/>\n",
" <rect x=\"150.37\" y=\"53.32\" width=\"1.82\" height=\"1.82\" fill=\"#005540\"/>\n",
" <rect x=\"150.37\" y=\"56.95\" width=\"1.82\" height=\"1.82\" fill=\"#B9C5CC\"/>\n",
" <rect x=\"150.37\" y=\"60.59\" width=\"1.82\" height=\"1.82\" fill=\"#2156BB\"/>\n",
" <rect x=\"150.37\" y=\"64.22\" width=\"1.82\" height=\"1.82\" fill=\"#5A820C\"/>\n",
" <rect x=\"150.37\" y=\"67.85\" width=\"1.82\" height=\"1.82\" fill=\"#4A042E\"/>\n",
" </g>\n",
" <g fill=\"#000000\" font-size=\"3.88\" font-family=\"Helvetica\" stroke=\"#000000\" stroke-opacity=\"0.000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-7\">\n",
" <text x=\"150.37\" y=\"32.24\"></text>\n",
" </g>\n",
" </g>\n",
" <g clip-path=\"url(#fig-18e23ad70e2442fcaa209ecba9178218-element-9)\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-8\">\n",
" <g pointer-events=\"visible\" opacity=\"1\" fill=\"#000000\" fill-opacity=\"0.000\" stroke=\"#000000\" stroke-opacity=\"0.000\" class=\"guide background\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-10\">\n",
" <rect x=\"6.13\" y=\"1\" width=\"143.23\" height=\"99.19\"/>\n",
" </g>\n",
" <g class=\"guide ygridlines xfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-11\">\n",
" <path fill=\"none\" d=\"M6.13,98.19 L 149.37 98.19\"/>\n",
" <path fill=\"none\" d=\"M6.13,74.39 L 149.37 74.39\"/>\n",
" <path fill=\"none\" d=\"M6.13,50.59 L 149.37 50.59\"/>\n",
" <path fill=\"none\" d=\"M6.13,26.8 L 149.37 26.8\"/>\n",
" <path fill=\"none\" d=\"M6.13,3 L 149.37 3\"/>\n",
" </g>\n",
" <g class=\"guide xgridlines yfixed\" stroke-dasharray=\"0.5,0.5\" stroke-width=\"0.2\" stroke=\"#D0D0E0\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-12\">\n",
" <path fill=\"none\" d=\"M8.13,1 L 8.13 100.19\"/>\n",
" <path fill=\"none\" d=\"M35.98,1 L 35.98 100.19\"/>\n",
" <path fill=\"none\" d=\"M63.83,1 L 63.83 100.19\"/>\n",
" <path fill=\"none\" d=\"M91.67,1 L 91.67 100.19\"/>\n",
" <path fill=\"none\" d=\"M119.52,1 L 119.52 100.19\"/>\n",
" <path fill=\"none\" d=\"M147.37,1 L 147.37 100.19\"/>\n",
" </g>\n",
" <g class=\"plotpanel\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-13\">\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#00258B\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-14\">\n",
" <path fill=\"none\" d=\"M10.92,26.8 L 13.7 26.48 16.49 26.42 19.27 25.98 22.06 23.36 24.84 21.84 27.63 25.4 30.41 24.84 33.2 25.35 35.98 23.77 38.76 23.8 41.55 22.18 44.33 25.96 47.12 24.32 49.9 23.5 52.69 23.76 55.47 24.53 58.26 24.1 61.04 25.2 63.83 25.35 66.61 25.94 69.4 26.57 72.18 25.97 74.97 25.28 77.75 27.11 80.53 29.25 83.32 30.79 86.1 30.26 88.89 31.35 91.67 31.85 94.46 31.36 97.24 29.08 100.03 29.14 102.81 30.3 105.6 30.79 108.38 30.12 111.17 29.36 113.95 31.56 116.74 28.61 119.52 26.46 122.3 26.97 125.09 25.85 127.87 23.75 130.66 22.04 133.44 22.77 136.23 23.08 139.01 23.21 141.8 23.8 144.58 27.01 147.37 22.1\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4E3000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-15\">\n",
" <path fill=\"none\" d=\"M10.92,31.56 L 13.7 30.05 16.49 31.28 19.27 31.79 22.06 30.36 24.84 29.69 27.63 31.19 30.41 32.11 33.2 31.87 35.98 30.99 38.76 29.25 41.55 30.7 44.33 29.92 47.12 29.94 49.9 29.36 52.69 30.48 55.47 30.19 58.26 31.28 61.04 32.38 63.83 28.28 66.61 30.58 69.4 32.53 72.18 32.6 74.97 34.93 77.75 35.04 80.53 33.86 83.32 34.41 86.1 34.31 88.89 33 91.67 32.23 94.46 33.32 97.24 32.17 100.03 33.55 102.81 37.25 105.6 40.06 108.38 38.56 111.17 39.44 113.95 36.39 116.74 37.31 119.52 33.25 122.3 35.5 125.09 37.01 127.87 34.82 130.66 35.11 133.44 35.16 136.23 38.33 139.01 37.98 141.8 40.36 144.58 40.31 147.37 43\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#0098D7\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-16\">\n",
" <path fill=\"none\" d=\"M10.92,36.32 L 13.7 38.4 16.49 37.84 19.27 39.38 22.06 39.96 24.84 39.67 27.63 37.23 30.41 35.19 33.2 34.97 35.98 34.01 38.76 34.91 41.55 33.1 44.33 33.65 47.12 33.07 49.9 30.34 52.69 29.38 55.47 30.04 58.26 29.57 61.04 32.02 63.83 32.56 66.61 32.44 69.4 33.49 72.18 34.44 74.97 34.96 77.75 34.7 80.53 36.46 83.32 38.77 86.1 36.98 88.89 35.62 91.67 35.45 94.46 34.92 97.24 35.13 100.03 33.43 102.81 32.96 105.6 33.87 108.38 34.52 111.17 35.71 113.95 35.45 116.74 35.87 119.52 34.68 122.3 32.77 125.09 32.8 127.87 31.55 130.66 31.47 133.44 31.3 136.23 31.72 139.01 33.13 141.8 33.11 144.58 38.23 147.37 39.12\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#80C0AE\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-17\">\n",
" <path fill=\"none\" d=\"M10.92,41.07 L 13.7 43.43 16.49 42.71 19.27 42.71 22.06 44.68 24.84 40.83 27.63 37.76 30.41 38.45 33.2 35.38 35.98 36.99 38.76 38.83 41.55 39.74 44.33 41.99 47.12 39.33 49.9 37.88 52.69 37.17 55.47 35.46 58.26 37.22 61.04 39.76 63.83 39.59 66.61 40.37 69.4 40.64 72.18 40.83 74.97 43.96 77.75 46.39 80.53 46.95 83.32 45.13 86.1 44.86 88.89 44.58 91.67 44.9 94.46 45.37 97.24 44.97 100.03 42.75 102.81 45.26 105.6 45.15 108.38 49.66 111.17 50 113.95 50.67 116.74 48.7 119.52 46.8 122.3 47.09 125.09 47.53 127.87 45.6 130.66 45.82 133.44 41.25 136.23 39.31 139.01 39.64 141.8 39.12 144.58 39.34 147.37 39.81\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#D559AF\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-18\">\n",
" <path fill=\"none\" d=\"M10.92,45.83 L 13.7 44.31 16.49 45.81 19.27 45.37 22.06 47.48 24.84 48.9 27.63 48.39 30.41 47.38 33.2 48.12 35.98 46.61 38.76 45.92 41.55 45 44.33 43.88 47.12 43.92 49.9 42.31 52.69 41.46 55.47 44.38 58.26 44.41 61.04 43.56 63.83 43.21 66.61 45.96 69.4 47.4 72.18 47.85 74.97 47.6 77.75 46.74 80.53 47.27 83.32 46.21 86.1 46.05 88.89 47.48 91.67 46.69 94.46 49.86 97.24 49.55 100.03 51.67 102.81 51.44 105.6 52.18 108.38 52.91 111.17 52.34 113.95 50.64 116.74 47.81 119.52 51.14 122.3 48.4 125.09 48.23 127.87 48.82 130.66 45.41 133.44 44.78 136.23 43.74 139.01 45.61 141.8 46.38 144.58 46.09 147.37 44.95\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#005540\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-19\">\n",
" <path fill=\"none\" d=\"M10.92,50.59 L 13.7 51.69 16.49 53.15 19.27 50.37 22.06 51.01 24.84 47.66 27.63 49.44 30.41 48.19 33.2 48.41 35.98 49.11 38.76 50.68 41.55 50.92 44.33 50.46 47.12 53.67 49.9 55.18 52.69 56.64 55.47 58.29 58.26 60.13 61.04 57.8 63.83 57.94 66.61 56.73 69.4 56.6 72.18 56.39 74.97 56.4 77.75 51.89 80.53 54.67 83.32 53.41 86.1 51.55 88.89 52.88 91.67 54.61 94.46 55.68 97.24 55.7 100.03 54.13 102.81 50.09 105.6 47.75 108.38 49.14 111.17 48.58 113.95 48.4 116.74 48.29 119.52 48.17 122.3 45.77 125.09 45.25 127.87 46.18 130.66 43.7 133.44 45.12 136.23 45.69 139.01 43.66 141.8 47.87 144.58 46.67 147.37 44.79\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#B9C4CC\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-20\">\n",
" <path fill=\"none\" d=\"M10.92,55.35 L 13.7 55.61 16.49 55.56 19.27 52.95 22.06 53.61 24.84 55.65 27.63 54.47 30.41 55.27 33.2 55.2 35.98 55.28 38.76 56.75 41.55 59.85 44.33 59.47 47.12 59.87 49.9 61.32 52.69 61.42 55.47 61.35 58.26 59.96 61.04 58.44 63.83 61.35 66.61 61.8 69.4 60.25 72.18 61.76 74.97 62.81 77.75 63.24 80.53 63.32 83.32 63.78 86.1 64.21 88.89 63.95 91.67 62.46 94.46 61.16 97.24 59.61 100.03 56.68 102.81 56.5 105.6 56.4 108.38 57.33 111.17 54.59 113.95 54.5 116.74 51.85 119.52 49.99 122.3 48.97 125.09 45.87 127.87 45.74 130.66 47.23 133.44 49.34 136.23 49.35 139.01 48.61 141.8 47.95 144.58 46.8 147.37 47.8\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#2156BB\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-21\">\n",
" <path fill=\"none\" d=\"M10.92,60.11 L 13.7 58.46 16.49 61.09 19.27 57.2 22.06 58.73 24.84 58.59 27.63 59.86 30.41 61.36 33.2 63.18 35.98 62.45 38.76 61.76 41.55 61.54 44.33 62.04 47.12 63.54 49.9 65.81 52.69 66.25 55.47 67.72 58.26 67.49 61.04 67.01 63.83 65.94 66.61 67.06 69.4 64.2 72.18 63.15 74.97 62.39 77.75 60.98 80.53 60.08 83.32 62.52 86.1 61.12 88.89 61.56 91.67 63.53 94.46 62.88 97.24 63.57 100.03 65.29 102.81 65.44 105.6 63.29 108.38 63 111.17 61.08 113.95 60.72 116.74 60.37 119.52 61.48 122.3 63.11 125.09 64.36 127.87 66.19 130.66 67.43 133.44 68.23 136.23 66.7 139.01 66.41 141.8 67.31 144.58 70.42 147.37 69.64\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#5A820C\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-22\">\n",
" <path fill=\"none\" d=\"M10.92,64.87 L 13.7 65.42 16.49 64.06 19.27 65.06 22.06 64.09 24.84 66 27.63 63.98 30.41 66.77 33.2 68.45 35.98 69.22 38.76 68.5 41.55 67.38 44.33 70.41 47.12 70.56 49.9 71.19 52.69 71.5 55.47 71.83 58.26 71.9 61.04 73.07 63.83 73.14 66.61 71.93 69.4 73.25 72.18 73.54 74.97 75.78 77.75 76.61 80.53 75.67 83.32 74.78 86.1 74.58 88.89 73.36 91.67 73.28 94.46 72.45 97.24 72.99 100.03 71.32 102.81 70.11 105.6 69.15 108.38 68.78 111.17 66.66 113.95 68.41 116.74 72.23 119.52 73.58 122.3 73.3 125.09 76.47 127.87 72.11 130.66 71.72 133.44 72.93 136.23 71.5 139.01 71.47 141.8 69.34 144.58 70.01 147.37 70.35\"/>\n",
" </g>\n",
" <g stroke-width=\"0.79\" fill=\"#000000\" fill-opacity=\"0.000\" class=\"geometry\" stroke-dasharray=\"none\" stroke=\"#4A042E\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-23\">\n",
" <path fill=\"none\" d=\"M10.92,69.63 L 13.7 72.31 16.49 73.05 19.27 73.62 22.06 75.45 24.84 76.25 27.63 75.42 30.41 76.29 33.2 75.49 35.98 76.32 38.76 77.44 41.55 73.87 44.33 72.71 47.12 71.61 49.9 71.89 52.69 72.45 55.47 71.23 58.26 71.72 61.04 72.59 63.83 71 66.61 71.37 69.4 69.97 72.18 67.3 74.97 68.88 77.75 70.44 80.53 70.05 83.32 71.39 86.1 71.29 88.89 72.12 91.67 74.26 94.46 74.96 97.24 74.64 100.03 73.77 102.81 73.22 105.6 73.21 108.38 73.5 111.17 74.89 113.95 72 116.74 71.46 119.52 69.46 122.3 67.27 125.09 67.52 127.87 68.19 130.66 66.53 133.44 66.95 136.23 67.19 139.01 64.59 141.8 65.35 144.58 64.2 147.37 65.1\"/>\n",
" </g>\n",
" </g>\n",
" </g>\n",
" <g class=\"guide ylabels\" font-size=\"2.82\" font-family=\"Helvetica\" fill=\"#000000\" id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-24\">\n",
" <text x=\"5.13\" y=\"98.19\" text-anchor=\"end\" dy=\"0.35em\">-5</text>\n",
" <text x=\"5.13\" y=\"74.39\" text-anchor=\"end\" dy=\"0.35em\">0</text>\n",
" <text x=\"5.13\" y=\"50.59\" text-anchor=\"end\" dy=\"0.35em\">5</text>\n",
" <text x=\"5.13\" y=\"26.8\" text-anchor=\"end\" dy=\"0.35em\">10</text>\n",
" <text x=\"5.13\" y=\"3\" text-anchor=\"end\" dy=\"0.35em\">15</text>\n",
" </g>\n",
"</g>\n",
"<defs>\n",
"<clipPath id=\"fig-18e23ad70e2442fcaa209ecba9178218-element-9\">\n",
" <path d=\"M6.13,1 L 149.37 1 149.37 100.19 6.13 100.19\" />\n",
"</clipPath\n",
"></defs>\n",
"</svg>\n"
],
"text/plain": [
"Compose.SVG(158.73015873015876,105.82010582010584,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=13356, maxsize=Inf, ptr=13357, mark=-1),nothing,\"fig-18e23ad70e2442fcaa209ecba9178218\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(Compose.Property{Compose.FillPrimitive}=>nothing),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(149.36682539682542,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.133333333333326,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(100.1867724867725,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-18e23ad70e2442fcaa209ecba9178218-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-18e23ad70e2442fcaa209ecba9178218-element-24\",false,24,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-18e23ad70e2442fcaa209ecba9178218-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-18e23ad70e2442fcaa209ecba9178218-element-8\\\")\\n .init_gadfly();\"],false,:none)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydd3xUVdrHn1un92QmM+kkJNRQQu/Sm4IICCoKKiroomJb6+ra13V1V93Xsru6YlmwY0F67zV0SCB9MplJmd5ue/+YEJIQQhgyubnhfj/5Y2Zy55zfzJx7zz3naQj3JYiIiIiIiFy3oHwLEBERERER4RNxIhQRERERua6J4UQYlGZzqCR27XdiKNxE4Sa+VQgSDpUEpdl8qxAqfmkO3xKESkiSwaJyvlUIEho3UISZXw0xnAjtcQ9QmCF27XdiPMqRHtVovlUIEhrT2+OW8K1CqFgTnuNbglBx6BeFiSS+VQgSn2KwSz2ZXw147JqW+/NQNhi79jsxJFUGgPCtQpAgbFAeyONbhVBR+nfzLUGoyIPHMdbDtwpBQlAVKOvnVwMieo2KiIiIiFzPxHBr1K0ax6DK2LXfiQlKuwWl3fhWIUhYTOFWjedbhVCp1czgW4JQ8ShH0piebxWCJCTpEpD15ldDSxOhLwSWB+sev78OFIsg7n6Iux8ea90i0qmZzmDqa1Z4PeKX9vLLRLeFaGBQtVMznW8VQqVadzvfEoSKSzWJxuP4ViFIgtJuPvkAfjVc1kb45s/w7u9gc9Y9PW2FLx6Em69Grb52Fc64rk3edYrCfxAQ0UYYDRjj1teu4luFUDFWf8y3BKGic/1E0JV8qxAkssAxCXqOXw2XtREyLHAcEHdC5IDxr4E3BMdLoW8q/GsxdLM0PhhVAoJhjBsAGEwNHIOxXg5wFlMgHIWyfg6VsIgUZQMIF2ZRBYfgKONFgIksGTHGDQjKoCoEaJTxcQjBonKEDaFckEVlHEKirA/h6Aa9cAymAY7FWE+rekFVgKAY42pNLyym4ADHWA9wbEu9cEGEDbGonEMIlPEhQF+5F0TKoRKU9SMcdeVeEJJFZa3uBWdRBcKFUTbQil4wFlMiHI2yviv10vgHbbGXJj/oFXpp+oO23Mtlh82lvbQ4bC7tpVWDs66X1g7OSC+tHpyYGgBp5eCs6+WKg7NRLzEYnFGcAq0dnJFeWjM463ppzeC80EvrBmddL60cnH6Eo1o5OC/00srBGUbZQGsHZ10vrRycwrg+cwiOsoE2n/OaBXvxlub/gSKAovDS9xA54HgZ3D8W3lkAdje8swbuHtPoYJvxcaf2ZrV3CwCUJr7ll+WovVttpserdfNZVCkP5LlVE+zxSzHaKaFKHIZ7a/Tz5YEjGOsuN7/sVk/QuH+n8Phyy8thMk3p2+NXDLAZHwNAZKEztdrZVYa7yVAJQVdWGpfXamepvNsQji1N+qtf3lft3RKSZFQkPMvgenngiFs51h7/IMa4JeFih/7uGv1t8uAxjHFZzS+51JO17jU0ri+3vBIi05W+PX55f5vpcQBMFjpdq5lZFXcvGS4l6Epb/KO1ultU3h0oFy5Netuv6K/2bA5L0qwJz9O4QRE47FGOscc/hDJeSbiwSn9Xtf4OWfA4zjitCX9yaaZp3b/RmLbc8mpIkqn07QrI+9hMT3AIIQuecmpnOOLuJcLlJF1RGb+sVjdb6d2NcoHSpLd9ikFqz8YwmWI1v0ATRg4hXeqpNfr5KBeQhM5X6RdU6xfIQqdwprbC/LxTM13jXstiqjLLa0FJtsq3MyDrbTM9yaESWfCEUzPdEXcfQdlIyloZ/1Ctbo7Stxdl/aWJb3kVQzWeDRSZbDX/iSISFP4DXuXwSuPDCBuUhs9V626vNtwpDZ3FmeqKhGecmps0nrUsKi9LfCMo7aby7QjKelaYnuJQmSx43KWZ4oi7n6ArSarcHre0RjdX4d+Hsb6yxDe8ihEaz3qKsFjNL1KEWeE/4FUMrTQ+gnCUNFRQrZ1XbbhLGirA6Sqb6Y9O7QyNdwOHkGWJbwakPVW+7UFpt4qEp1lUIQ8ec6knO+IfwOkqkiqzxz1Qo7tVETiIsd4yy2se5RiNZx1NJJSbXwoTSUr/Pp9icKXxURaR+RWDgtKsKsNCSeg8QTtspied2plq72ZA0NLEvwRkOSrv1pA0qyLhGQZVy4NH3aqJ9vglGF0roUoccYtrdPPlgcMY6ym3vOJWjdO419K4sdzy5zCRqvTv9ckHVpqWI8BJQ2drtHOqDIsk4SKCtleaHqvV3qz2bQFgSxP/GjkFQpLMioRnGUwrD+S5lePs8Q9ijFMSLnEY7qnR3yYP5mGMu9z8kks9SeteQ+OGcssrISJN6d/jl+faTI8BoLLQ6VrtrCrDPZHBWWl8tFY7S+XdjnB0adJf/fJ+au/mENmlwvwcgxvkgcMe1Vh7/IMo45WEi6oMi6r1t9cNTvOLLs1Urfs3GtOVW14NkRlK326/rJ/N9DgghCx4qlY7oyruXo9ihMazwRb/SK3uFqV3F8oFS5P+5pMPUHs3hclUq/l5Go9XBA55FKPtxj+grE8SLqzS31mtv0MWOokztdaEF1ya6Vr3GgbTlFleC5JdVb5dAVmOzfQkhxCy4Emn5kZH3GIibCXpisr4P9Tq5tSdAol/jZwCFJkcOQUU/oNe5YhK4zKEDUjD56v1d1TrF0iDp3GmpiLhWafmRo17HYvKyxJfD0qzVb6dAWkvW8JTHCqVBU84NdMccfdFBmdl3IO1urlK3z6U9Zcl/sWrGKbxbKDIJKv5T3WDUzms0vgwwoWloYJq3W3Vhjul4Xycrq4wPe3U3qTxrOcwaZnljYC0h8q3PSjrUWH6Y93g1Ex2xD2A0w6SKrPHLbGZnpCHjhFUZZnlda9ylMazjiLMVvNLFJmo8O/3KYdUGh9BgJaG8mt086oMCy+cAk85tTPUno0cgpcl/iUg66XybgtKsysSnmYxpTxwzK2eZI9bgtPVJFXqiLuvRjcvcgqUW151K2/QeNbShKnc/Ocwmaz07/MpBlUalyPASkNna7RzqwyLJKFCgnY0e30OSbtWJDzDYBrer88lye/X6ubond82uT57lSPlgWOxm/wacgWvUeR2aHKAJwjmpeD9z5WbLkl6J6HyLZKyXpPA65Ia7WxAUHGLLwoowlxheiql7BG+hQiSgrRVmUVz+VYhSMrMr8TVfC4NneVbiPBwaaZSuCmu+lMeNbQqjjBEQc7T8PNjkGWGdUdhQJdWNZ1g/xtBO65J3fWK2rNRjCOMDpyuSrC/zbcKoZJc8Ue+JQgVY9U/cbqGbxWCROndySExjGhvDa3qXkLAuwtg9t+BYcGshf/c16qmyXDpNUm7jsGZWr4lCBWEo8SBFzWS0Hm+JQgVcesrarAO4FMZw4D6MstrJsd7BFURqw46L07NTRygOtePfAsRHhSRUBm/LMn6DN9CBElh6n/Si+/mW4UgsZqeNTj/Jwnx7P0oRNzqCRQWb6j9ikcNMVyQsqiME/f3ooJFSEDEwiDRgYi5j6OGQcQMGFHCojIOML5VCBIOIXgvzyCmWBMRERERua6J4bKDxg1cLFecnRgWU7CYgm8VgoQDnMbFmidRIhb/ihoa03MIwbcKQcKicgZV8ashhhOhNeE5ijDGrv1OjFM1xamexrcKQUIT8daE5/lWIVSKk97jW4JQsRmXh8h0vlUIEo9qTK1uNr8aYrhikwbPolwodu13Ygi6Mqb3KJ0YhA2JsVxRIw+2U/xy50MaPoeyPr5VCBKcrgKW5leDaCMUEREREbmuieGywy/rw6Ky2LXfiQkTSWEymW8VgoRFZX5ZX75VCBWvYgjfEoRKQNZLrDoXHRRhDpFp/GqI4URYZVhIY7rYtd+J8SqGeBVD+VYhSBhMW2VYyLcKoWKLX863BKFSrZ1HEZYrHydyCX55P4/qBn41xNBGqPZsxFhv7NrvxMhCZzhODMGMBpTxqj0b+VYhVMQcDlGj8m7DGTHFWjRIQufxMM8VrEQboYiIiIjIdU0Mt0ZrdHMZTBu79jsxPll/3ks2CxQG09TobuVbhVBxxLUuj7DIJdRqZohRmNERkPXyKobxqyGGE6FXMZQRk11FRUjSJSRpXY0PkcawqFw0r0aNSzmebwlCxScfyGAavlUIkjCZEpRm86vhsoV5rx2CspFUOcLxHCAiRDDGTVJlkYrSIlcFAgwZLiNoG99CBAlJlZJUGd8qBAnB2MlwKcqF+RYiPDDWS4ZLccbJowbRRigiIiIicl0Tw61Rm/ExGo+PXfudGLdqvFs9gW8VgoTG42zGx/hWIVRKLW/wLUGo2OOWhMkUvlUIEq9yuFNzI78aYhg+ESaTWDELbVTQmFYswxQdHEKIuQiiJkSKlukoCROJLCLlW4UgYTANjcfxqyGGW6MsKke5IHBsrDrovHAIAYAgor0hChCURaQo6+dbhyBhMQXKiAkzo4FFZQgbRoDhW4jw6AiXuxiuCMWLUdQgHMW3BMHCsSgnDrwoEWfBqEHZAN8ShEpHuNzFcP+tJOmdsJhzKCpqtLNrdHP5ViFIKMJckvQu3yqESkHaKr4lCJUy8ytBSRbfKgSJSzO1yrCIXw0xXBHidA3CiRsF0YCxPk4swxQdHIPT1XyLECoEzXOmK+GCMzWiLSM6UNaP8h0qJoZPiIiIiIhc18Rw2RGUZnOoJHbtd2Io3CSma4oODpXwnqVCuPilOXxLECohSQYrJtKKCho3UISZXw0xnAjtcQ9QmCF27XdiPMqRHtVovlUIEhrT2+OW8K1CqFgTnuNbglBx6BeFiSS+VQgSn2KwSz2ZXw0xtBHK/XkoG4xd+50YkioDEMswRQPCBuWBPL5VCBWlfzffEoSKPHgcYz18qxAkBFXBe4iBaCMUEREREbmuieHWqFs1jkGVsWu/ExOUdgtKu/GtQpCwmMKtEksoREmtZgbfEoSKRzmSxvR8qxAkIUmXgKw3vxpiOBE6NdMZTB279jsxfmkvv0x0W4gGBlU7NdP5ViFUqnW38y1BqLhUk3jPEyZQgtJuvJdfjWEZJoxxS8IlHSFrgOBA2QBJV+BMLd9ChAcCHE5Xk1Qp30IECc7USsLn+VYhSDDWI6FKUC7EtxDhgXJBgrbxG/4r2ghFRERERK5rYrg1WqVfKG6aR4dXMUQssx4dNKbjPV2TcLEZH+VbglCp0c3jPRhOoPjl/TyqMfxqiOFE6Jf3YVGxLkk0hIkksZZQdHCo1C/rw7cKoeKVi7dfUeKX9mJQFd8qBAlFmENkOr8aYrg1GiaTCcom2gijgMZ0AAjO1PAtRHhwCEERCWRYtBFGQ0jSRRISbYTRECYsOF2DcmLk9FXDYBoOwUUboYiIiIiICG/EcGvUmvC8mDAzOlzqKU71NL5VCBIKN1oTnudbhVApTnqPbwlCxWZcHiLT+FYhSDyqMTXamEUvtI4YplijcT2HYLFrvxPDoApAxDJMUYFgNC5muI0S8c41amhMzyEk3yoECYvKWb4jzsWtURERERGR65oYLjto3MDFcsXZiWExBYsp+FYhSDjAxRVh1IgrwqihMT2HEHyrECQsKufd4TamNsLnKMIYu/Y7MU6VaCOMEpqIF22EUSPaCKPGZlzOewyAQPGoxtTqZvOrIYYrNjJchoqxE1GBM05AxDJM0YBwlBg7ETVifrWoIalyMXYiOjDGxQHP3iSijVBERERE5LomlpllZH1YVBa79jsxYmaZqGFRmV/Wl28VQsWrGMK3BKESkPUSq85FB0WYeY88iWWuUcNCGtPFrv1OjJhrNGoYTFtlWMi3CqFii1/OtwShUq2dRxEWvlUIEr+8n0d1A78aYmgjVHs2Yqw3du13YmShMxwn2gijAWW8as9GvlUIFZ3rR74lCBWVd5uYEzE6JKHzeLiSXw2ijVBERERE5LpGrFDfEQnIevulYoX6aGBQlVNzI98qhEq17ja+JQgVl2qiWKE+OoLSbj5ZLr8aYjgRulXjROtxdAQk2UFZN75VCBIWU7pV4/hWIVRqNTP5liBUPMpRYvnV6AhJugTkPN/3Yy/GLNkpQdlIqhzh6Fh10HnBGDdJlWGMm28hwgMBhgyXEbSNbyGChKRKSaqMbxWChGDsZLgU5cJ8CxEeGOslw6U44+RRg2gjFBERERG5ronh1qjN+BiNx8eu/U6MWzXerZ7AtwpBQuNxNuNjfKsQKqWWN/iWIFTscUvCZArfKgSJVzmcd7t+DMMnwmQSK2ahjQoa04plmKKDQwgxF0HUhMgufEsQKmEikUWkfKsQJAym4d3PKIZbozRuwGgXAqKN8KqJlJ5AGR/fQoQHBziDa3C6mm8hgoTCTQTNc0SXQKExPcZ6EDG78tXDonIOMIz18KhBtBGKiIiIiFzXxHD/rSTpnbCYcygqarSza3Rz+VYhSCjCXJL0Lt8qhEpB2iq+JQiVMvMrQUkW3yoEiUsztcqwiF8NMbQR4nQNwjGxa78Tg7E+Lpb3KJ0ZjhH3RaNG3BeNGpypQcTYiahAWT/Kd6iYuDUqIiIiInJdE8NlR5hM5kSv0aigMZ2YpSI6RK/RayEkEb1GoyRMWESv0ehgMA2NG/jVENM4wuWUGEcYFW7VOLd6PN8qBIkYR3gtlJrFOMIoscctFeMIo8OrHO7U3MSvhhjaCOX+PJQNxq79TgxJlQGIZZiiAWGD8kAe3yqEitK/m28JQkUePM5vAIBwIagKlPXzq0G0EYqIiIiIXNeI1Sc6IkFpt6BUrD4RDSymcKvEXeUoqdXM4FuCUPEoR4p2/egISboEZL351SDWI+yI+KW9/DKxHmE0MKjaqZnOtwqhUq27nW8JQsWlmsR7njCBEpR288kH8KshhmWYEI6WhM6LdUmiAAGWoCtxuopvIcIDQTiUDUjC5/kWIkgQLiwLneFbhSBBgJKEi1EuwLcQ4YEAQ9BVBG3nU4NoIxQRERERuZ6J4dZolX6huGkeHV7FEK9iKN8qBAmN6XhP1yRcbMZH+ZYgVGp08yjCzLcKQeKX9/OoxvCrIYYToV/eh0WFGmHqp4hzNbzFeIaJJDEqPDo4VOqX9eFbhVDxysXbryjxS3sxqIpvFYKEIswhMp1fDTHcGg2TyQRlE1xdEoZF/5uX+8KmSQgCB+9/16jwtr8GGtMBIDhTE3ULDItiKNuGkoQChxAUkUCGS/kWIkhCki6SkGhejYYwYcHpGpTjJ3L6dJXRIPPFKwRZuI3BNByC85siWLQRNuK3/G5PrZ923J4QeTo2vWDdgk+ENaO4Q9JXto37Lb/77nvfU5EhvuWIiIjEEGdQ9szGKR8dGMIB5BgrxnUpGNclf1RqoVIg5747JFWSIRTh+JURQ69Ra8Lz0uAZjBXGTcpBa9KC7+e/um283Xcx9rHQqQ/SxISM/HYW41JPCUqypaGr65flkP/mDZi5cuG6gmyHT1nq1s7qfjxGCjssFG6sNC5XebfxLUSQFCe9p3Wv4VuFILEZlxNUBc4427PTL4/2v+nrRVuKMjhAAJBKn2p3WepXx/r/defo9eeySlxaHOXMKg/G9zTTAnd8P/+NvTcmpnTJlh/hUUYMU6zRuJ5DsNi131YUOvXPbZz89fG+HFeX1UxBhIenFK07lwUAb+0aPTipZFb3Y+0piUEVgFyd+XZPWeqy32bst160LH6R139sWsGifvvbWl3HBsF4T+ArXCjcxLcEoUJjeg4h2627M9XxS3+Ztakws/4VAmUotu56S7HY9pL07SXpL26ZqCRDo1ILx6SdS9fVJKldKZraBKWH9xVYhO0l6d+ezAGAmR9oTj8U19XAW8DYdb01WhOQv7pt3Af7h4XouhsCHGXv6b/vT2PWmxSe6V/evaagGwCoJcF99/0j2+DgVexlsXrUT2+YuuJo//qJXILTkU+kIML77/t793g+A3RERETakABFvL5j7F92jqm/anXRVb8/7cdRqed3FKdvKszcXJhxyJbIsJe9kyZQJlHtTlY7U7S1yRpXktqZonYmqDxyPCwjaK00IMUpORFz3w6WQwZ/suyANQkA7uhzaMXNX8e6xxaI4URI4waMdiFAx6qDayBI4+/tHfH6jrG1AVn9izO7HX99/JpucXXTRk1APuCjhwudegDoEV+5d/F77bbtzmIKAECZK+wqh2j8nd0jX90+zhuWRF6REdTjw7b+YdCOMZ8tOekwAUBvY8Xexe/JYj+sOwgc4AyuEWvzRgeFm8TavNFBY3qM9cTaN/D3/OyH1txc79BOYswTw7c8O3JjkxPcGZRtLeqyqTBzU2HmCYep/hb5qtBIgzKCkuNhjTQoxem+CdaBltKBiaXd4+xt4jbxeV7uXT/MAwA5SZ1c9kGqsvza24yaGE6EJUnvJFS+RVLWWHUQLWVuzaQViyPzRIRhKUV/mfDr8OSiJkceqkgc/u+HgjQOAHN75a2c/UX7KKzRzgYE1deuauGY1Wd6PrZ2ekHNxaxOs3scfWviL2naWgA4bk8Y9MmyAEUAwP0D9nw4/bs2EVbq0v6a3317cbqSDJlVngSlx6JymxSeRLXLqPCSGNMmvVwLFGGuMD2VUvYI30IESUHaqsyiuXyrECRl5lfiaj6Xhs7GqH2rR/3I7zO+OXEx8+IN6ef+Oe37+hv3y2H3KTcXZRwoTy5xa0uc2mKnzuZTRTc1RlCSoVxL+UBL6aDEkkGJpana2iga8VFk9j+eLPdoAOCpSUWPT/fHVX8ataRrJ4Y2QjJchna82ImCmrgJn99X5NRFnmYbHK+NX3M5E2B/c/k/p31/909zAWDV8T5DEkseHRpzL4yagPzNnXF2r4QMX3Rk0kqDSINt/YPWpA3nu9Y/7W2s+PuUn25IP1f/Si+j7e9Tfrpv9WwA+OjAkLFpBXN7RVmciOWQ/eXJP5/t8evZ7kdslhaONCq8JoXHonanamrHpReMy8g3yNq7ugrCUWLsRNSIqemihqTKYxQ7wXHIPw8MfWbDFHeoLizbpPT8dcIvt+ccRlph6jMqvLf2zLu158XTP0TjpW5tiUtb4tIWO3UlLl2pW1MTkPvCZJAmXCGpnyLq910vxRuWbC3qsrWoS337AxNLhyUXPTl8C97qleJfd46OzIIWlXv56GM4rWnlG2PE9WUjPGY3T1yx2OZRAQCBMm9P+nnJwN1X/PHu//mWjw8OAQAcZTfe9dGo1FhdLCgW+3D/kBe3TKwJyFv5Fr3M/+exa+/P3dPsp5j3zR0rT/QBAI00eOj+d7vormLD0BOWrCvI+jW/+69nuzf0pG09GMrmmssnZpyZmHl2aFLxFb9nmkULa/VnquN9FDk965SCELPUilzvOIOyu3+c+8PpXpGnKMLdP2DPa+PWaKWxTWrKcogrKPXTZIAiXEGp1aPeV56835q8vzz5clene/vv/eSmb1vTeLlHk/2PJ30UCQCfzly5sO+BtpQeFTGcCP2yPtLQWZTtKFlo95alTP3ynsivKCOob+asmJZ1qjVvDNH4qE+X7itPBoAElefgfe9aVO42l7emoNtja2885TC28ngcZe8bsOfPN6xtYdXlDkn7f/RIxKIw0FK6454Prrh7SbPop0cGfnMiZ2tRRphp6vSLo+zwlKJJmWdIjKlwqxx+pd2vrHvgU9KXt8+rJcGx6QUTM85OzDiboa8GgCq/4kx1/Jmq+DNVxrPVcaerjOdrDfU9qiXB23ofXpy7t7/56iwHLCoLSrLlAT5dsYWLVzFE6dvDtwpBEpD1IkNFGNuW+Tf2W5NvXXVHxE0BAPqby/9v+neDEnne8CioidtfnrzfmrSvLOWwLdFPEfX/em38mqdHbLpiC3f9MO/zvFwA6G8u33/f3xkygUUkknBR7DRfkevFRripMHPG1wsjTiVqSXD1/E9Hp13Fwq7Epc396JEqvwIAhicXbV70IYG2mT3spMP02Lobf8/Prn8lIz5470i7nroY+RCgiGDjzYqpWad7Gyuu2PgBa9Lwfz8UmWCWD9329qSfWzh4U2Hmw2tm1OcTqMeo8E7JPD0t69SEjPwWbkUdPoXDr3T4FIdtiesKsrYWZzQ8SepJ1dR6w5Lq1q16B1jKFufund/7cCuTA4g2wmtBtBFGTZvbCP+xd8QT66ZHzlwE4ZYP2fb6hDVteNlpE2gWPeFIeGnzhMiaFUG4r275al6vlm5DD1iTBn+yjOUQANiy8P9Gp513aaZSuIlfG2EMJ8Ia3VyNex3WvhGmzfLT6Z7zvr0jMpEYZP41C/410HLVd1Ubzned/MW9EafkPwze+Y8pPzZ72Lkaw4GKpIPWJAzl+pisfUzWLEPV5ZysqgPyFzdP/PDA0Pq1lE4WeH7UhkVj/AQGCn/b7Bi8u2fko7/fBAAIwv08/9Nm18HFTt3j66ZHYnoioAiXay6bmnV6WtapXHNZFIFHQRrfUZK+tiB73bmso5VXzkeMoWyqpjbb4Ch26Rq6MgGAkgzN73Vk8YC9V/zhGEzjUk/W1668WrUiAOCIuy++6mO+VQiSWs0MpW9Pm/jcuoLSu3+a+/2pulq1Olngs5krb8o+ce0tx4ggjY/7/P5dJWkAIMXp9Xd+PCKl8HIHj/rP0u0l6QAwq/ux7279HAACsl4Mqlb6drWX3mbo/DbCL/L6L/rp1shMY1G51y34uKcxysH6+o6xz2yYEnn85S1f3db7MACUuLQHrMkHypMOVCQdsCY3jMeIICOoXvG2vgnWPmZrH1NFjqlCLQlSLPbBvmF/3jqh/vjWbHVGB8chM/638OczPQAgTu47suSdRJWr/r8BivjLzjF/2XlD/epNLQk+N2rjnX0OmpSettJQ4VWvLchady5r/bmsyMJaIw1mGxzZcfZucfZsgyM7ztFVXyXB64JtdpamfXJg8Dcn+zRZU/ZNsN6Xu2dQYqlGGlSQYQURVkv4ye54OcIM1hG8Z0UEygFr0q3f3HG+ti5AYlBi6co5K9Ki8sxsT6r8iqH/eijixG6Q+Xfd+35Wc4HX357MmbNqAQCQGHPiwb9m6jtKydUYToROzXSVdxvGtL05rfV8sH/Yst9mRpbhXXTV6+/85KocRprAccjNK+/66XRPAFAQ4VGp5w9UJDt8iqtqBEG4dG0Nx2LcMgoAACAASURBVCH1W/8AMCnzzN8m/dwjvm6GDsh6cxwiDx6NWmoTqgPyvv+3vMytAYBRqec33fVRZJH63cnej6+7sd6HFkG4u/ocfH3cbwmqNpsCm8ByyCmH0SDzt6YLZ1D25bF+Hx8Y0vKCUi0JKsmwggyrJUGVlFbIlUONBwYllg5KLNFI22OarAnItxenby7K2FKYcdJhemz4tj+NXifFO2IEbctU624z1H7FtwpB4lJNVAQOXWMx7ff2Dn9i/fR6j81lg3e8NfEXodxX5VfHDfv3Q5Hb3Ex91e5734+TN4qEDtF4jw8ej8zxjw3d+tdJv0ReD0q7MYhCETjY/prr6cw2wte2j312Y90Crqexct2Cj6/dycUVlA785OH86rjLHWCQ+Qcklg6wlHEcHLEl5tnMES/hy9Etzv72pJ+ndj3d8MXWxBFeLdtL0sd+9kBkZfzCmPVze+Q9vGbGxsKLMRgDLaXvTf1xcFJJG3baVuwtS/nk0OCVx/vUpw5oDQjCZRscgxJLByeWDEoq6ZNQ0YYmltqAbHtJl82FGVuKMo5WmtnGgVk94is/nbmSd7+Gq0W0EUbNNdoIXUHpPavnfneybjtUIw3++6ZVt/Ro18yO187O0rTx/70/YoQallK08c6PGt4OvrVzzJPrpwFAnNyXv+zNem+DTm4j5MtrlOOQYpf2/b3D3949OvLKAEvZ7ws+aastx+P2hCGf/CHi+wsAGmkw11w2wFI2wFI6ILEsXdu0dlKVX3HEZon85dksp6uMkdlIL/O/OGbdAwP3XHp1DhNJgCBtHg/3yrbxz2+aBAAYyiIA9YZJk9Lz2rg1C/se6CAZCC+HOyT9+ljfr4/3cwaknrDEFZT5KDJ4+YCnJkhxup+5fFBiyeDE0uEphSmaq7ZeO3yKPWWpm4sythRl5NksbItRyRjKPjZ020s3rBXQ0lD0Go2aqL1G/RSx8njfV7aNq98O7W8uXzVnRcS5WnCsOt5n3ne3RwL25/Q8+r/ZX0SuKnafMuu9p1xBKQC8P+2HBwdetAhShLkze422DyEaP1sTf9oRf7rKeKrKeLrKeKbK2NCwNDrt/Or5n7atJemH0722F6cPsJQNsJR11Ve1Jqy1niCNn7AnnHIYp2ad1rdvvDnLIRM/X9xwFUigzIODdr04Zl37bCHGAoZF3SGJOyT1hkkfRbqCsvzquP3W5P3W5FMOYwtzVaLKNTy1aFhS8bCUon4J5c2GOYZo/LAtcW9Zyr7y5L3lKZer1YwgXI94++i0c6NTzlf5FX/cMNVzYeXaPd7+nxmrhiQVt8mHFelMnHSYPjow5PO8XGfwomPBkoG735m0WiKcm6dLeXPHDX/cMDXy+MnhW96c8CsALPll1ocHhgJA93j70SVvtz70vn1oaSL0haDrcrB+AABgrYW7PoTSakjSw+dLwKK7ctP2uCV656qrzfroDUuKndpil67EpYvcPgCAJyyJLF9oBq2/xFR41accxkKnvoX0stOyTn0zZ4XgMm16lCMBUJV3a5u3XOFV9/vwkUqvCgDGd8n/+5Sf6g2TnQMa09fo5xkd/wQAT1hy0Jq0vzx5X3ny/vLkYtdlR62coAYmlg5PLhyWXJymrTliS9xbnrKvPPlwReKlwZQRUITrZbSNTjs/OvXcqNTzDWuiFjt1i3+evf5cVuQphrLLh277sxCWhtaE5y22l/lWITx8FPnG0WXpkiP9DKd6xFe2PI2FaPy7U70/3D804jxZj4oMfTLjm4YpYITLA7/c8tGBIZHHH07/bnhKUb8PH41cw3+7499TMhtZgnyKQTSq1XjW8SD0ApedCN/8Gd79HWxOiByw8EPolQyPT4O3f4PjpfDp/Vdu+oo2wgPWpMJafYlbV+LUFjl1JS5diUvb+qQqLaAiQ9lxjpGp59+c8FtHi7xpDbGwEdaz7lzWkl9mvTXx13auLdU+tBBHaPcp95cn7y1P2VWSurc85arMjRGkON3fUjbIUjo67fzI1PMtbLZzHPKvw4MeXzu9Pi1Wtzj7f2asGprcoZeGoo0wCs5Ux89eeWd99C2OslkGR2+jrY/Z2ttY0dtoq8/GmV8d9/HBIZ8dGRDxKKmni656cf+9i/odaEM/bX6hWfSmrxZFqvdEvpBIQNSkzDO/3/GvJgd3aBshwwLHAXFn3USY/AfY9zKYtVDhhMEvQMk/Gh1MEWYOIUiqDDguTCYjHEVQFWHCwiFSjHHiTA2DqRlMi9E1GOul8XgWlRFURc4Hyy6N3Y6CJI0nO666m97azeTqagp10xWmKq00HseicoKyIVw4TCQCgpLhUg5wirQgbIigK1lUQeMGjHFjjJPGdCymwukqlPVTRAKHkES4HAEmTKYAR5OUlUMlFG5CWR9OVzOoisF1GF2LsZ7GvVgAwclwSeNe5DQehzIenKlt1Atu4lAJEbYiQF/sBSEpIgFl/SgXYBAlh0owxokxbho3sKiCoCsRNnShl1IOUIpMRLgwQdku9OLFmRoG0zKYGqerUdZX1wtlRTg6TCYDx5JUOYeQQcxCgA+nHQyqZHB9w15wyo5ywboftGkvMhqPb64XI4dKL+mFoAgzygYa9OLCGBeN6VlM2agXqgwAwkRSZNg07kXDYBqcqUaZ+l4qEI4KE0kAQFJlkV4QNkjQdhZT0JgBZXyAAHAciylx2oGygWZ7oTj5kZpue4r0e4vjd5ZkFDmbd2hCEC5LXzUouXRAintgYumA+BMYIaWx+mGjb9ILES5HgK0/BYpcpsW/zN2QnxJpDUPZh4fseeWGXwiZlkVlTQcnglNEs4Mz0kuTwcmGyeRmBmfdiXbp4EwEBLtkcCpo3NBwcHKASsJFF3ppPDjrevHjdFUzp0CjwXmhl0aD04Mztc0MzrpeLg7OyCmA01WXDs5IL1c5OJs/BSgiofHgvOIp0Pzg/Omo6Z7vZ3havKnSSgO9TQ4ExbYXWRpmuyZQZnr38/cOOjk5dTeKcBdPAURKE8ZLT4H6K2fjUyAybC6eAo1OtCanQIPrc+Nemrk+Ixx1yeAMErS9ucEZ6aXR4PQGkXEfz2qYnRhH2X0P/S8nLh9jvQ0HZ1CSySG4LHi6yeBkEQnONHW5iBGXrVCPIoCi8NL3EDngj/+DV+cChoIEh2dXwfM3Nzq4Mn6ZSzNF7dkCAOWWlwOSbLV3K0VaKo2PsqhCHsjzqG6oMtyN09USqqRKf1etdpbcf/j300n5NU3dL2UE1SXO1z1VPiK9cmr6vgFZsv7ddFPSDk3tcmhwTuKI3orbM1ffmHVi2JA+Nw/w/3ngB6/edGrBnBtuyy2enfR1dnamsuscPW6ThIurdAtqdbfIA0cxxlWR8IxbeYPWvYbBddaE58NkotK3xy/rY49/CDhOFjrt1Eyv1t8hCRcRdKU9bqlLM03l245y4TLLa0FZL7Vnc5hMtZmeYDC1InDYqxzpiFuMMS5JuLBad1utbrYscAxnnBWmP7rV47Xu3xhMYzW/EJakKH27ArJelfHLAEAWPOXSTKvWLyDDpSRd4Yh7wKm5UenbhXKBMsurAVkftWdjmEy2mZ5kcJ3St8cnH+SIuw9jvZLQ+Wrd/FrdHFnwBM7U2hKedKsmaNy/s5jSav5TiExX+XYGpD0qjQ8DgsmCJ1zqydWGO0mqnKSsjrj7nJqblL49KOsvM7/il/fXeDZQZGJlwpM0blD4D/gUQxxx96OMTxo+V6O9tUY3VxY8jTPVNtPjbvVEjWcti8qs5hdDZBeVb0dQ2r3S+AgghCx43K2eUGVYSNJWkiqvMtzr1M5Q+PZhrK/c/JJPPlDjWU8R5oqEp2k8TuE/4JMPcsQ/gLIBaaigRju7Rj9PFjqL01WVxuUu9SSNZwOHkOXml4Jkpsq3PSjJqjQ+yiESefCYWzWhyrCQoCpJqqzKcLdTO1PhP4Cx3nLzn7yKoRrPOpowVSQ8Q+EmpX+fTz7QHr8EZYPyQF6tblaNbr40lE/QjkrjIy71ZLVnMyBIufnloCRb5d1KyTIg44H+Sa470r9cNFFx88Qeo0y70xTnKMLEcMTI1KIFvffdPSPjpfn4yzkvTO/lSBxwb7xerQ7s9sn62+MfRDhKGjpbq51Zo79NGj5H0Ha78Q8u9VS1bzMAW255JSDppvZulWoSx06cnqYo3p1PhBic45DdpcnfnszpndODSJkhDxzBGLc14VmPcozWvYbB9daE58KERenf45f1tcc/BBwrC512am+s1t9eNzjjH3Rppql82xCOLre8GpT2VHs3h4h0m+lxFlPLA4e9qlEOw70Y45SEi6r1d9Rqb6kbnAlPu1Vjte7fGExrNT8fJpOVvt1+aY7d+AcEQBY85dRMq9YvkIVOEZTNHrfEpZmu9O1EuWCZ5bWANEft3RQmUmymJxlMqwgc8ipGOOIWY6xbEi68MDiP40xthekpt3q81r2GxdRW8wshIlXl2xWQ9qw0LgNAZMGTLvWUasOdF06B+y+eAuZXA/I+as9GikyqMD3F4HqF/6BPMdQRdz/KeKXh8zW6eTW6udLASZypsZmecKsnatxrWVRuNb9YdwpIIqcALguecKknVRvuigxOh2GxU3uT0rcXZf3l5pd98lyNZwNFWipMf6wbnIrBjrj6wTm3RnerLHQGp6ttxsfc6kkaz3oOk5SbXwqSGSrf9qC0W6XxkcjgrFZMWr5x/rOru4UYHACkJEzOKmBYzhlsuqcVpIkSl6bYqQaomwWTDOhjo/avmPnp1CnjDOlDNZ4NHGDllj8HJV1V3m1BaddK43IOlcoDxzzqcVWGRQRlJ6nSKsOiWu3NkVPAan7Bqxim8aylCWNFwjMUkaD07/PJc+3xSxEuLA2drdXeXKOfLw0VELSj2etzSJphMz7WwvUZY93WhOe9ylEa9+80HleR8CwVuXLK+9njHwSOkYXOOLUzqvW3SUKFBF1pj3/IpZmq8m5FOKbc8gqrzL4t8Z8rT+Z6QnV+hQuHlk2eMhFnaptcn22mJ7yKEZden33KIfJAO+1aXcFZBrm9bkVoeRCOvA5GNdickPsclL9/5aavuDX6t92jDlUk1leGTNY4k9SuJqEn1ycx3Rrt3HTMFGulLu3in2evLajLoicjqA+m/rCo3/6W39X+iFujrcTqUd/6zR07Lhj5MvVV7y9Vj1b8Vxo66wlLjtnMR+3mPJs5r9JyvDKhfr2Io+z0rJP35+6ZmHm2g3totxVHK80j/7PUHZJqpMGzf3jTqGjGq7YjbI221vV8fC/4Zi88OAG+3QcTerXqLSgbQKClH3t57EsaCRSUC3PcZT2ARFqEQ9n2rv10RZI1zjW3//s/hwc++vtNnrAkQBF3/zR3e0n6B1N/6FCeXBjXljmjOyubCzPmf3d7xOMMAG7udvzTmSt9iY8hTgYAVGRoWErRsJSiyH85Djlfqz9is9h8qpu7HY9Fvv6OTI6p4pu5K6Z/efczIzc2OwsCAMJRCNtONc8vR2tXhNZaWPgR1PpAr4DPHgCztn3kiYhcHUEKEAQkMayzeU2cqY6fs3LBMXtdopwcU8W3cz/vaugoiaZEWobjkDd3jHlu8+SIpzqOsm9M+G35kG1XFUB1HfL9qd7Tup7qyDEhMYwjDJPJBGVDOl5t3o4PjekAkHYzFHcm3luLnrVhz82kTDxX+rwsIRp/cv20f+wdEXkqI6j3pvx4T/99/KqKEJJ0kYTE2rzNU+lVzf/u9s2FGZGn6dqab2/9vL5MWJiw4HRNjGrzdm4YTMMh+NUG2rUtMdx/sxmXU3h87NrvxLhV49zq8XyrEB6HC2HjMbbETj31JZzuEOW/mkGC03+f8tMXs76OVB4OUMS9q+fc+cO8ZktWtTOl5jf4ltBB2V2aOuDjh+tnwaldT++//+8Ni2Xa45aGyRSe1Akbr3K4U3MTvxou6zV67VC4WRY8gXIdpTCvgGAwNca4Ix7/Iq3EF4IXvwV/CAAgSMHWUxCvhvTW1jlub3JMFZO7ntlwvmttUA4ARystm4syJ2ac5TfFT5hMElOsXcqukrSJK+6rDigAAEG4Z0dt+vjG7xRkuOExNGGUhs62bWHe6wQWU6JcQEyxJnLVBMMgJfkW0cF49zfYfEnJtpsHwp2jAW0pJyifOIOyhT/eGqlnAgBxct8Xs76elHmGX1XRcdJhipQdBwAMYdWSOvcHEmPq5wyTwjM167SwclwcsVlu+OyBSBY0vcy/YtbXTVLki3QCYjgRehVD5YGjKCuGQ1w1ITIdEKRZa40/DF9uh9/zYFQ3mDcc2tkSVuuDggo474AsM/RNBeSSCSYMxDp6eAUXPxw71B0937LbcBuyJx9ev1Ap+c6p6TsPFp67kDkutws8fiPIO+p9A8chb+0a/ezGKZEEVCjCPTho1wuj1/MSR+RWjVd7NkTxxp/P9Lj9u9tajiuPYFa6Fw/Ye1/u3oZFMWNNoVO/tiD7pMP0pzHrrir5/pnq+FH/WWr3KQHAonJvXfR/lyuh55MPlIbOYkz7fahOQ5hMZlG5NMjn/V9nLsMUNQwL+TZQSiFJf+WDY8Hl4gh3nYV/bYTqC7svOAYTc2DOENArY6XEF4L8Csi3QYEN8m1Q3SADVIIWJubAuF6gVQAD2CZ68Ep66vf0hFpOHTkgDqkdjh0aiR8cgR7MRU/gSEvrgBLOfILteozpeoLtWsaZ3pO80gM910qRLj8s+wycPgCAET1lt973uqnokX+sgR0XbtyTDfDsrA7t6rytuMu8b26v8NZ9dRpp8OkRm5YN3tHOwRVRxBFyHPLa9rEvbJ7Uci2OJuAoe1P2iaWDdo9NK4iRy6WPIrcUZvxekL32XHZ93bR0bc338/7bN6FVF6Vip27kp0tLXVoAiJP7tiz8vxZqel9jGabrmY4QRxjDidCtGqfw7Y1605xhAWvHULowDWcr4EQpnCiDM1YIUoAiMLYX3DYcDKr2kxEhKO0GANLgxR0Yuxs+3gD7m5saSBym9YNZg0Eta+a/l2J3wYlyCLd4gQ1QcM4GBTaocAJ3+csUh6AuSz+q/9Qzlkk1SPOVGSIoIDAYzxuJHhyJHxiC5fk52TEm6wSbeZztepzteoLNdHGNvmUd4v5B9tBorFUh52/+BLvOAgDolfD3e+RgGKb2bOA4WLUHvt5Zp18pg6duhJzU1rTHDzaP6vbvb9tUmFn/SorG+fLY3+/IOdRuwde1mhk610+tP95PEYt+unXV8T6Rp5GcmZF9AmdIFvnmQzQe8QNiOHRtQXakOnQ92QbHkoG77+p7oL463bXAcchRu3ltQdbaguydpWmh5kp0yQjq4+nf3tHnUMtN2TyqUZ8tjcygaklw010f5Vpastl7lCNlgROip3cUhCRdWFQha68kMs3SEW2ENANrjsCq3ZASBzcNgEEZzWzBtQmBMJwqh5NlcKIM8m1ANRflQuIwvT/cMhiU0phouCIMC6sPwP92QfDC1KVTwKxBsDsfTjY4MWUk3DQAZg4AeXO7U4EwHCuFw4VwpAistdGLUUqhawLEqeE3Z87ZxCnWjMkBZdNsscmorR96ch+bY2ObL1+McBzXil9UgoQ/kzw9j/it5cO2nYK3fwEAQBB4fhbkdmn0391n4d3f6r46DIV7x8LUflfsmTc4Dvn2ZO+nN05tWO+pn7n8rYm/jkvPb83bbT6VWdlOIdvFTt3NK+86XJEYeTo2vWDV3BUtbzzSLPrT6Z7/3D9sc1FGw6ybCiI8v/fhpQN392vgh9l6ipy6bcVdNhdmri3Iql9VN0SK00OTi/eVJdeXEV02eMdfJ/1yOWtlTUA+5tMHIuGecoL6fcEnI1MKoxAmIhRiOBFW6RdqXauv6haJ42D7afhyB9ga1Ey16ODGXBjXu82ipEM0/HYIdp6B83ZgLlMVSy0Dd4M7VKUUbhkM0/sD2S6R2l7FEABE6dt92gr/tw6KHHWvIwhMyoE7R4NCAgBwqBC+2A7nGuzWKGUwayBMzwUJDiwH52xwuAgOF8EZ62U/actIScgwQqYZuiZAZgKYtfA9PeGJ0BPn2eQmR0oCVZZza1MK10xTHxqayflCcJxKO4jmnpQPKNTmuhVNj29CPFLTGzvbEy3IQErfoBZHJlEEuDclbz9B/vty76r1wUOfgjcAADAhBx6aBDSmc2pnNtxmKXTAa9+D/cLsMLkP3De+XTcbrpYwg/1z/7BXto6vblCJZUrm6b9M/LWX0dbwyBCNH7cnHLYlHqmwHLFZjlaaPWFJb2PFvbn77sg5FEW1S5vx0QT7O605cntJ+uyVd0aMZwDw0KCd70xe3foicycdpn/uG/Z5Xm4Ts2KGvrqPydrLZOtttOWYKjJ01VhzbXIccqrKuL04fXtJ+rbiLpHdyyYgCNcr3jYx4+yEjPxRqedlBHXcnjBr5V3126QjUwpXzVmRoGpa8METlkz4/L69ZSkAQGLM6vmftsZ9qUY3T+XdSlAVrfwGROrxy/sxmEbl2cKjhg5kI8wrgf9uaXRZb4hSBlP6wLT+oFM0f0BrCDOw9gh8u7fOntSEJAP0SISeSdAzBeJVkFcMn2+DggZXHoMK5g+Hcb1i7oVYo53tDzE///TD2qMXdybT4mHJROhmaXQkx8GefPhqJ5Q0MOHrFJBtgeNldTNEE6Qk9E6+glmRxCHdCF0TIMnQ6MN+TU27M/QmzV0s0acDZ2/HeuLQb/Ki/Qh3WStgUGGqNg+oNudWmwd6dBk47VPVnlNXn9W58ocr8+en5g+3XAynLWITpwY/OsXUxWw9SHz1d+lrGDTT+Mvfw4FzAABGDfxjIcjI5nONuvzwxk8XF9C9kmH5NB52vK8KZ1D22vax7+0dEbywv4eh7MK+B+b0OHrCYTpisxypsJyqMtGXKcYpxembux+7p//+qzLCtdJG+NGBIcvWzIxUaiQx5v1pPyzuv7eVXTTEE5asOJL7wf5hkRo9lyIjqJ7xlTmmil5GW05ChVoS3FmStq2oy47SdIev+QtBgsozvkv+xC5nx2fkX7o4dgWld/4wb/WZOjfdRJXrm7krGtbGCtL4tC/viWxQYyi7cvYXt/Ro1ZadaCOMmk5uIwxKsyXhotYkkSt0wH+3wuEGew9KGcweBE4frDtWFxkWAcdgZDeYMRDSrzJSn2Zg/TH4ZvdFTxMAQBFIN0KPJOiZBD2SQHNJJUSOg11n4YsdYG2wrE02wIJRMDiz6cFtBc3A1nzNik2eWl/dvbAEh3nDYcaAy65jOA62noT/7YIKZ/MHIAh0MULfNOiXBt0TAW++1uwV+JyacXfwVQYwANAgnpnYxlvJNeOxXQTQYRp2nIG1R1oKY8cx0CvAoAJMLjt7PhBuPK8lG2BiDozpWWfprOE0MwMfbGfq3PFn4Bu/kj0uh0YxdhuOwXu/1326V26FXskAABwqCZFpl3qg0Qz833rYcOGappTBkvEwols030N7UuTUPbtxytfH+3Ktc0UhMaZJJeEuuuq7++1f1G9/a7Jc+qU58uDRFg6gWOzhNTP+b//QyFOjwvvtrZ9f+7bh5sKMD/YP/+l0z8vN6y1jkPlHpp4fnXb+hvRzOcaKlid+jkNe2TbuxS0TI949JMb8Y8qP9w/YAwAUi92y8s6fz/QAAAThPp256q4+B1qpISTJIKiKDpjntuND4wYOIfldTPNsI7S74avtsOXUxXUPicH0XJg9pG73LxCGDcfgl0ONNksBoE8KTB8APRKvbLpjWNh0Albturg5BgAmDcwdCsOyW+VVz7Cw4Ris3NVoEu2WCJP7wuDMNvPLD4bhYCHsyYcD5xvN/bld4P7xrQqTYFjYeBxW7oaqC59Up4C+qdAvHfqmNTPNXxX/pm65L/hnFlAA6IGe2yhbmIA240de5IC1eWB3g04BBiUYVKBXgEENOjloG9zBe4Ow5SSsP3px1zcCgcPgTJiYAzkpEEIkdwVfX0VNifxrCJa3WrY0Hqm7JbG74eFPwR8GALgxF+4d26pPsfogfLbl4i7xDT3hvvEdN7KingPWpMfX3bi1qEuT11GE66qv6mcu72cu728u72cul2DMyuN9/nVo0J6yRn5BGMpO7Xr6nn77pmWdav0GZhMcPsWcb+6sl9E3wfrjvM/qq85eOwGKOOEwHa0059ksx+zmPJu5hTLdJqVnVGrhqNTzY9LO9YyvvFrX0zUF3e74bn59+3f32//e1B/uXT3n62N1NuT3p/3w4MBdUX+WjoMPZE5OHQbCAnYJEr7yG65LYjgRWhOej6/6mKCb3+v0BuCbPfDrkYsuKggCN/SA20dA3CXWbpaDvfmw+mAj95AIRjWkGiE9HtKNkBYPZu1FzxqWg62nYOXORuukODXMHQzjc67aShSm4ZdD8N1e8DZYlpAY9EuH4dkwKBNkUV1P3QHYVwB78iGvCJosknQKuHfsVa9aKBrWHoUwDf3SIC2+bfyMPqTmLQ2+wAECAL3RsxvkdxuRtkkMmF8B647C9tMQaHyGmjQwoTeM6Y2+iT/+NrUo8mImWrJGtjgTLeE4eOEbOFoMAJCoh3fuumg/pnCjI+5+i+3ly/Zog7/9enGJb9TAo1OhR1KbfJrYsvpMz+c3TUIRrp+5vF9CeX9LeR9ThZJsfsfluD3hk4ODvzjav8lcopMF+iZYexsreplsfUzWHvH2hi0UJ72XWvaH+qd+ijjpMB2tNB+rNB+rTDhYkRSJKweAOT2PfjpzZSRLXOwodWmPVpqP2s15FZajdrMvTI5IKRyVen5U6vnu8fZrbPx8reGWlXfWV46NV/jqt1tfG7/m6RGbrqo1m3G5zvl9jNKjuDnlfrYXBwgFhJeTA0CAkwRBAgAuTsUCwgDm5FROTu3kVLWcxgkqF6eKvEJdKDGEApuKWLuixV3R4iysqCtanIUUpSLlLcc1tQMe1RgKM+id3/GogTcbYbEDHvkvsBdu4/qnw12jIe1KG575Nlh9AHaeuazrh5SEVAOkvizNsQAAIABJREFUmcCkhk3HoazBlqZeCbMHw8QcIK7B4cUbhO/3wS8HIdTYxZTEoH8XGJ4NgzJalfPF7oa9+bAnH06WXfwS6jHqlYNykm/POdWsC2g78174jodDz0RmwX7YqXWye+KQNlsERAiGYftpWHcMzjYeLCgCuRlQO2TBu8o/Rhaj8UjNatnS6ry8jzfWHfDG7ZBtvviW1tQjDFLw6Waot7+iCNwyGOYP79AeNNERpPHvTub869CgrcVdmt1cRREuXVeTY6zonVDR22iT9HqSOvHmscqE4/aEvErL+Vo9c8leJYJwL41Z99yojZ2g5EKAIu7/5ZYVFxLiRPjjyM2vj7uCr/KlxMhGWMQmvkfd8S9qtpuLSbAwAXQXtDQLLRqIHXuI+FKH8FAlqpPbCK/I33+DTScgwwQLR19dgFe1B349DIeLoKQK6FbczWgVcMtgmNynzXw+a32w5QTsONPIlSYCiUNuFxiRDanx4A5ArRecfnD7odYHTh+4A3UPQs2FaqTHw5AsGNL1yjcE7cbfwgsfDz0ZmQUHYMfXye6J6alS7IB1R2HLyUbLbgDwdh+/Y9RbYUQKADII9tj5prZ4l8JTOnsQt2BUlH3tPwfvr73oNpVhguXTeUuhEGvyq+P+dWjwf/Ny66voRYeSDK2Y9b+Z3Y63lbCOwPv7hi///UaKxQBg6aBdH0z9gW9FAAB7mD5/Cy/8gZnQ0DctCtSIVw1eALByRrbFKgsaxPMI8fmj5H81SFNP2k5PDCdCFpWjXBC4yxok7G44XQ4ju0W/fcewUF4DxVVQaIfiKii2g6PxL6iWwc2DYGo/kMYms3+lC3aegR2nL+vsekUQBLLNMCQLhnaFhAtO4BxCACAIx/OG/hvhxU+HlkceD8Hy1sgXa6E9zpAwA7tOw7qjcLL8ovG41tR375R/hqW6+sNIyjNUcioXP9kfPdkfPZmFFWHAAIKyiLSVPgsuP7y3FvYX1D2V4LDoBpjcJ1Zxq7zDcUiRS3es0nzcbjpqsxyzJ5ytjqdZFIDToBXx2FkdVuxgupbT/SlOCgAIwqVra3qbbD3jbb1Ntp7Gym5x9mZj78pqYM1h2H4aBmfC7CHtnfnv2tlZmjZn5YLxGfmfzVwZXfoCFpUhbBhpzrf5qmAA+56e8E74rt1M34avd0WLUxErAGgRNwIciVAKCACAEvETQCPApaNlavBqUK8avJHJT414G962hjiygEs5y6YVsKn5bGo+m3qWTbNyTdPS6xD3Y8SnyyQrVNBOSf46wuWuA4VPtAm+EBQ5oNgBRQ6IV8P0/lGa7q4WmxN2noGdZ1o7I2Io9E6BIV1hSNdmAkIul2KtPXk5vOSF0LLI4xHYwV9lD6iR9s6sX14D64/CphPg8gMAeLVpe6d+5FM3X+xGAYG+2Km+RLFK3VPpXOMBhZeTB0Hi5hR+kAU5iRNUAU4aBLIrWnwX/uPNxAYphABgbR78Z/PFfAW56dAzGQBAIQUEAEXqchTgWN3tlElz8ZZF0Dh9cKAQ3XZaeqacCjZINYSgWJJJN7Y3OqmHs2UrIMPC3gJYcwSOlVy8ZcFQuKEnzBkisG/J4VPoZIGoPYmufWvUzSn/Td3yD2pBEZvY8PUbsL3Lyc+m4ttQiFJbC/hAls+mHmR6/jV892n2ojdWHFL7BPnvB8mvItNtTOnkW6M242NxNZ/jtOPKh3YibE7YcQb2nIUgBWoZaOSgVYBGDmpZ3QONDNTyK6RDc6vGA4Ko3evbS3VTng8teyW8JPJ4DLbvZ9kSJcKbXzjNwN4CWHcU8oohKDWc773AFdedsnSvvbZql1rw3Er+thD/YQiWZ62Fv/0K+a3z35YS8MhUGJp1LZ3zBkXDqXI4UgyHi6DQ3lL+PABIMsCkBjEtDan2wto8WH8Uai5zd4ShMLo7zBkKFl3zB3Qy7HFLtO5fyXBJs//9jLq5yQqvCQGQ/kSPbWgIJICeg//+mOTT/ujJNtbaHAxg/6OmvhxecoZNr3/RiFQ/Rf5rCfE/GRLD6mBe5XAa02tdP8euiyvSEVOsiVwjW5mBfpDloieu1rczxJGH2e4r6Bn/DM+PvDIe2/2TfGmTAD6+sDlhw3HYeAwMKnjzNrAj8UfY7oeZ7oeZ7ofYHoVsUsSWebV0Q88vJH64DV29fa/92z2tSsGDIHD7CJg9WEibqCfKYPUBOFJ0ce3bEJ0C+qZBog62nW6UnAEACByGZMKEPpCTDABwtATWHIF9BY2+KASB3C4wpCtsOQHHSy++jiJ102Fic8bXSs5wgul6ks04wWaeZDPPcml90NO34Otm4hvr42SEwsky6J7YzHiwsXH3hl75lR7d+qY0iGcx8c0yYkUyeokPQoxhAPuKmvZyeGk+e9Frw4w4lpOfpaIt7e2hHHszsSEWa9b2IYYToV/WRxo6i7JiYd6rJkwkAYKQ4dIrH9qYGk6zPPjH/9IzI0+TEFsudqI/ejIXO9EfO2lGmlmd57Ope5k++9jee5mcI0z3MFy0pk7Gt38vXRbTm8EoYFgIhEB5yRrFxamOsN0OcTllSJacLlcifhX4pEhYhfiUiF8KITV4FUiAAvw7auJn9M3FbKMkPRgwE7GdE30/JhRtItiQLwQAEAgDw0KIBooGioYQDTYnVF6otDO6Bzw0GchrcmWIORwHB87Bt/vg9CVZPHEMuidCvzTon14XaeNVDFH69pypgPV5sP0MBBtviyZoAUUbJZcAAK0CxveCSX3AeMEueKIM/rerLrglAorAiG4weai6UtPjFNflONP1JJt5gs2s5prfPMWAGYUdmIWvv5nYkIhEa35vR06VwzNfI0OzsWWT6YbuCKuoKUtDL1zuY15KKmpdRqy4l/i2/c0QDaE57EvmxpdDS86xzZshmuWL/2fvvMOjqrY+vPYp0/uk9wYECCUBgoCggBQBQTqCWK+9XfFaUETF3r32hhUUFFBEkCKISJUSCAmkkALpmd7LKfv7Y4ZJSJn0gt99nzw8OWf2nLOHzMzae5XfEj22hG7Pro6hI3kk/Mc25r182zD1OO2LEf7ITn3AvaIGN9sFIhLpfBYxFRUX4IQj7OC/+cHNfUpnUHs3iB667CpwW1M+AQA8EH9wmV8yczaxk1z4ElEGNbIupLYtpH8bRx5rvMJ1euGNLXD8YqfI1ChYfv0lWgG9B46Hv87Cpr/h/KU7vEgVpCdCRgIMimtY6lNfYs3lhf1N1bQESIuFa4fCFX2aFio6WwHrD0JWKQAARmTx4KX5w+5nBW37nyKAv4I8NZfaOYfalUC0R4+7G3Az8NBXfsWPxFB4cjaEKcGIlfd7nv6eme4bQwB/D71uMFkneMQA5asIDJBElM8md/V4VV8AFpPfsrNe8N7dWFi4SRKIijzJtHZ8Y/zDY4RG9QKldSfJNaP69T+axyHOAERIna2Vd6rkw+71rNzMTvQdIsCDifxCPsEJbW6ZkUSUjSSzryBP3U2vE0C3NsPrFDhSaVFM1ZjWt3K8BcvXMdO+ZOcc4QY3eCgS6eZT2xfSv40iT9bvMMxj+HIv/HLxjxMqh6fmtlnzr0lyyiC3DOJDITkCQjtQ5uBlYVc2/HwMauu1iSUJGJcKszMhvvmp6kLuDNV/2uDkeT3syoa9uWBzAwBIhTB+IFw7FGKC9d3yk18Fb5xJ/yF5pVXbhDCEHBwDyKJBRMEA4lwaURhHVO1lMzewU/bymY1rBoaRufOoHZPIg0OIvN5jLQDgo52w/VTdoUIMo+eOe0H+fCAhM4Go+Eq0vJU9xXobDFDfMLN2sFcGGbOLHWMGOQC8JXzlYcHXbb2FS5zGEQqZoyd1fP4XI+xd5PB91rHT1jHTMKB51M651M4R5Okgfd4xoM+ZeY+5H/W9EQEgEZV/Jn56InmYxWQeTjrBDTjODTzBDzjJ92+wAvWhQZZMMjuTPJ1JZGeSpy+72ExncYZP/pKZs4ad2bh7VDxRuYD6bSH12zAyN3ByZzZ8vMsfJxMJYNn09svPur2w9yxsO3HJ1k0pgeRwSI6AlHBICW9CbqlJ7G74LQu2nPDn2foQUjBpMMwaAWGtu0iTMCwcPgceBsb2b20fGANWPeF5ZDUzNxC7ldgqNFXHxyoKlyQWDiTOxROVTb63DVj1MztxIzN5Nzeqvq/ehww5RxLZY6gTY8gTVxCnetaLeKIEVm305xyRBHhISe6ox8/3nx+IFt5Gb3xb+ErPTrKrect7yyOexwFAi8znZJO7p8iqc+lCQ2hWzpDb95FcD0gVXHYU8XHrmGnr2Gk5fJ8GD8UTlXOoXfOoHVeQpxp46s7xcXe6V/3BjfQdEsDfT699SfR2kxnPPBAFfILPKObxScnEhUzidCaZ3Zco7ZrX1DNwhNwmv7rdGWgckH+yI9az125iJ+lxw3zHFOLCImrrtdRfg4l8GXLmlMErP/v3SQjB0rEwd2TbbldhhG1ZsCf3EnXZJlFKICUcksJBLACWBw8DHgYYDpwe4HhweIDlwM1ApekSsTqZGKYPhekZrVWaNagXa03fte01NAUG9BUz+zHPfwL/hxJwz6z52P7LFwTHEAiem98qDQ0TVmxhx29gp+zkxnhwE4VQJHBpROFY6vgo8uRY4lg3Z5fYXfDAV/682YzUsJTR/e/xPmWT+R2Jcq/ha9nK2cK2SbVdjniwINW5zVf18bjg81eEb7bp6W5RKoekUtfxrpldq/hfjLAnKccRPzBT1zHTjvKDWhwcjWrm0LvmUjuvJE9gDG8ztzzjvT8Q30olileLVowms7p4yr2dVsYIW4TF5G5u1A/s1J/YSSbccCdFAN+HOD+UyEvxnjm1P48pOSt0GQBgwkC4d3ITGn4ckLVYU4VDq/jQKFQ7hDh7rBi2nYCT5y8pYBALYHgSGOxQUttQfLWtaGUwazhMGdIqwb8ArWzDFJzTfN973Sv3c3W6ZddRf7wrfDEeVTzzI5w6DwCglsLbN7ehpZoVy7ayV/3OjdrPDSvgE5obNoTIe1CwZjH9q69CtKt5Ywv8lQcAIFHKxP/6+mtHakC6JbJ415C/nk1TG5fPaqHl2T+Dtcx1N7pfAwAxcudLrm3TiuQfHiP8X9ZoY/RYrcdqA1Zl8/3WMdP2cxkNRI8k4L6O+mO+6LAIMT+7M35mJzbel4QjgxaZz/D+dn0U4h6lV68Uftg9H/5eDk+I3cJ+EtfJzrqgF+hd7Ogf2Gs3sxMsuNnAnchRqzTkKfVn+kFxTLzSIdDoqQgrpdUTYQYixIA0gT80Aj61cH3CX2/T3joPUrQGpqXDhDR/KwyMocoERbVQXAPFtVBU7d93toZoDczJhKsHtKfZli9rtPF5FxZl832z+AE2LNUis/8HzBrCrAVzIGJnx5LnvPf913tTQOg5nqh8V/jiTMq/KzI74N9fg8kBADAoDlYtaE9rz2o+ZD8/7C922D5uxGm+j68vWH1CkfEO+sd7Bd93acbp/jx4fQs4lPHFg26sGTjbifxWXYlss869aN612XeolsIT1zdsI9omPCx8tBNOlvp7uYQqQSMDrRxCZKCRQYii0zqWdwQeiOHODVlcfwC4hf7pS9GTrX/uPzxr9P8tHJBfMrNLcbSO1+iwxoBVeqzWY5UeqwPfhjTBM/XkjGlgJ1MHbqC2zqJ21y9d54Dcy43YyEz+iZvUOHYFAEOIvC/ET3VPye3/czxYsJ0b+xNzzTE+LR8ndlABUuTUpe1/Mbpkx/AkmJ4OQxNaKEnU2aC4Bkp14GGAIkBIg4ACAQUiGigSJAIgCJCJgECd03LEDPIsbkAW1z+L75/FDcjjExvbmwBKZAtFJi0yl/PhFdjfYlcAzCOCL1cIP2pQhJpTBk+v9wvNLxwNi8d0aJ5WLNvPZeznhv3FDTvGpfkaMviggZ1L73yQ/nYU2WmrogBGB5q/fUxu6tLa2CsxqvsgTyQPfyF+Mg5V7TgJn+7xKyHTFNx1DUxq2enTBNVmeGUzlATttCETgVYGKgn4QrEBCSQA/9vDx6TB0CeiPXNoJbvY0ZNdqwGABC5LOmcQcTn1KO5CQ1gbco/G/APFdk6/nsuFMj7iRvfr+7jhQcaMVBvHhRj26EJPWuRXEiduoLbOo3doUV16rU02FoCQ2/8MnOGB2M9lbGCnbGIm+b5rhMi7QvDx44LPaGhKwLu34kGSA/LZqe4jUd5zLY9uOyypMWoWhek+7IqLB3Bh0Wm+bxbXPwv3P8n1z+b7NqjBaADBs0KnXuSsAYxM4XXpqZPw3s/lq+JQd7ck5YC0YJkZK0xYYcHyQNeeCtn0UmtVFte/lRnzzTGePPKhaFUqUdzkoz8egjX7AQAQgmfnwdCEjtyqDguWf8nO/sC75Nyl1W8jiNMPCtYsoH9rkAXNYlIHmhqsreTDarG2FmvUyNqXKO2HSprstenDjiVfM7OeNd6ol17SHjKJNj0i+Ooe4rNA+s+Zcnj1lzpV9+kZcPv4tnU4OV4Cb20Feyf51JQSeG1J1+reTXF+vpMbAwDTqH1bxXe18lkOaSZLqJS2nUHGGF0Su7ehlz9cahdSnfPt978YYWeymZ14m/tFI25WclgOjmFK/VURTt+aXcuUzbR8EudpuJ8LUkfIA3GYG7KNG7eY+nUAUdSp0+9yTkvG7lTeaidUCPhM+7YJtu8Fne0576wYYZvggMznE7K4Ab+bU8+4oqSMQeYxiB3VIrdBbK8m7Qahy+DwgJcFLwuW1MmHhz9loPy59TLkXCV490HBGrLDes3B2caOe9V7RwmOMfNyG7S5ns8XE40jKg1YZcQqA1YZsdKIlQasqp/YGUHo3xC8FrywGmN4biNklQAAKCXwzs2dGUXjgfiNHfuud+kubnR9paEIQj+H2mXD0hpeW4VDfZavOSkiBbL3JUr7otJ+RElfotTXvU/Ha95nlnzBzKnvIUeAJ1MHHqS/TYudEmb8uoHWqMEGL/1c16MmVgtLx7Uquxhj+PEwfHegLh91yZXQPxr0NjDZQW8Dgx2MdtBbweholRaSjygNvLYE5G0uqmotJ/nUYY6NPr/XHskt48kjrXlWa2KE//pl/uoTmQ1O7r75kwmJwdbTDg/0WQaVH7Q8hy40hCylJVkLuqz2K+3GDcL/uB/7kLnB99GiEHc/tTaNLNAgSyCgoiXM5cL+a0NWcJdkhOOBzoOTbF8r2bpFKE9KAYDgukn9vRswUNFbVXeWCC9xDyk4/TTLZ/1cnVlfhYHiKGUv90NYsPwJz7JPmQUBV/kwMvdT0cqucHFjQFvY8c977znGpbX+WWLkHkQUDCXy0smzQ4i8wWR+EPFlO5b47SIohxO5rWniY3HCw1+DwQ4AkBYLzy9sT7AwOHl80nvMjd8ws5qsGmoHBPD1I/qU1zHO/POHiWv7ESUAwJIakrch3LD01svBh9vhj3p/2P7RcPNV0D8amsPpgbe3wt8XV7lKCTw2E9Ka2aJjDGYnGO11ncvcjN8lizH4BJI8LKzZ52/9lhoNzy/otIZ0jbnJ/eq3zEwAGEGcPiJdGKT0KwBPSDCQJB/sbdOiIbz9U5g2FOZmgskBGU9B4Zvw5jZ4ZztUm6E1Nu5/McJO4CyXfIP7jVO8v2Q4DlV9L36kcQJnNZ34VcjzHkICAEpO5yLkvgZ7AEDznjGOn8fYfqJ6uvVSp8MiwT75vIOy6znk//CJeLubqNsC9Hcfuta8Ws79v6tfPMBl3OleFUh6IoF7ULBmleDdztI354H4ibnmBe89J/kmitllyKkCqwrZVKjev2DtTxYPJc72I0q7eod6phxWrPfvZuaPghuDVWy3HwuWf8HM+YBZ3FgtjEJcKBjDkCEK1YYhowoba4nwfC6xACcEt51Sy/nEnO9G1W56f4m9lQJ7v52EtX9dkvGUmQxLx0Fco7j/BT28vLlOx65fJDw+C7QdaiIJAHDkHLzysz80O7ovPDazq2Ryz/NRqY5tvmDtOvGyhdRvnXLZFg3hjmz48k9Y9wB8ugcKquCNJcDxgDHQN/W0IWzRNXqa7/u29+b/il7qtsZXXcFqZu5D7qcc4Ne+nE39vlr0VOPutXoq+ovQl1yEHABUXO1tuicp7P1TvvBv2bX44jJTxpmutq3PcO4yKef2eBumTuGU5OrdihttpF9xWYDdE6zfjXD8ViwcslV1p5n0uwdp3nOV/YdRtl+IDn/59ohrtN14gX7V+68XvXcHiuTiUNWXoicnUE2kbrYeHogf2SkveO6pX5YqAOYW+idfLqUKrE2Ks3RK+UTr2XwUvtgLAIAQPDELrmhYQ9tp8EBsY8cV8AlhyBhB6CKQPhQZw5AxsF/ZnQPvbYcYDYzpB2NTATQRBVxCPk7M5xPy+cQCPqGUj8aABtsPiPZ9G1a2X0jwb950iRlrsQ2Tm4GtJ2DDYXBeXOsiBKP7wtJxEHkxbrfrNHy6C7yc/9E5mbDkyraFFYOw6zS8v93/++TBcN+UzrlsY/7jfuxN5lYASCYunJHOaFGgqlNcowwHfR+BM6/B1Ffh3ZthyMVlD1rSKkPYhYm3BO8Ksi92gHih+62zXPIBLuMH8cNDiLyum0kXYcHyu9zPrWev9R2KwPOm8NV7Bd83HmklQ74NedZnBaW8ean+Od8GaKpl9XDHju2q24qEQwHATqp/Vd19XDppLJsfwTUbrr8s0FPR2y71hfZxn5hm+UzF1gBAivvEvbUP/SlbcFA+CwPBEMLfFUtPi8deZ/4o2lvYsTvjVnbl7Q0IgHla8NECavtd7uf+5EYAwAUcOcX9+X8FLzb5RmoRDsjvmekvMXee5ZIDJ8XI/S96w6P06haru0jcrQIoM4fDqfNwvAQwhg93Qp9I0HZNyR0B/Axqb3OPZp+Hj3YBxlBmgHUHYf0hSAmvHtW3ena/w4HUEg8W5BjkL68zMCwAwLxRDTdzBO8K3pVXRMPckXD1AFh7AP7IAR4DxnAgH44WwfQMmD0CNh2Bzcf9QUEBCXdPholtcGa3zKRBUGGAn44CAOzMhlgtzAyW0td+nhR+8gU714QVRXzcx8yiB+lvg49HmEF8R0u/aBImD4JP9oDFWWcFWw/57NwOTqBZFLbdJN/s5+o75rrPmfkAYMCqr5jZIYR5OJnTVVPpAo5wgyc5v9jP+6uGU4ni7ZI7r2vqw+YlxGu0Kw10NABQ2LvE8GIEUxp4VMJbBzn3adjqCkFfLyEGADupOUMnc0xNnDePahRy6P3wiDwkm7lJ87CB8odBpLx5humTidY14nrvBxJzSZ7sJE92uaCvk1QCgINUnZRM4JAg1pvf7q0hydsVtt0dfxXdSQgy30z/HENU7+eGu0HIA7GNu0oH2ink/jZ1S/+RnTrH9d7nzDw99m/BpeB6kF6zXrRsPr1D2QqVL7VlcztfQ7tACNITYd9ZcHnBw0BhNYwf2PnBwuAU1cCqDeC59HNmtMOp8/DrCThyDqwuUEpAIeTe2Ogy2AAA+kbBg1MbzlPu+IviTC3eTiKEkSkwqi/UWqHKBADA8ZBXAZuPwdmLvrMwJTw7H4YlBblMOxkSD2UGKDMAAJw8D3EhENsKwdi2IkYeAvAubjQAHOcG3kX/EFyJW+gplrhPB7/mL/kDs6oahlVvHno8UV0XUpEK4bZP4aGpMKZer9DnNkFrbFwXuka9gliaqW4cPQ7wPTP9LvdzgQS2hdRvn4pWXhaifG8yty53LwtUDd9Kb3pP9EKT2QQcor7TrigWDgYAAriFhtf6upvODWGQaL989kHZLBb5vWRyzjjd8knn5pJ0HWYyrFSYViIcVCwcbCf9IgAI42HOHROt34maXxJxiDogm71PMS+QQ6Rhq+Ya34pi2pMTixHN0BHt6GDVG6jA4bOd7wVkhq4hD/0g/ndjN3tjynHEve6VW9jxgTMKZL+P/u5hwddtEo/1CJOEnqZrHrqOsxXw1Dp/sHDuSLhpXPfdutIET3zn12UNlcP8UXC0GE6WAtMow08l9RdCCCl4++Ym2it66SiKNRK4DT3LTl+Ar/+Ewkt36emJ8MiMLkzs9HLwzA9wphwAQEDCqoXB0nbajRuE/ey/XcCRAPCk4JMXhe8EGcyRSoyo4Alurx+4emth/wYn357yS3pkXU8ShgPVv6DgLYiup0HSStdoD5dPFPAJC11vB4L5KcSFH0T/TifPdtWcOgwH5P3uFR8zi3yHcnB8JHquuWRxjNAm9cM5Yl8aAJ5p/jDd0cJmxUyG7VLedEY8OnBmkPOvqZbVEr43SrbaSE2JYFCpMK1EmGamwhs8GsGUzDB9Es20qq7WQEVvUd99XjDQdyjA7oWGV5M8p4I/qzGXV4ywMS4sutX9UsDf3o8o2SK+pw9xvrnxPBAfexcu9y4LNDdXI+uD9LcPCb5pjQVtQDfHCANs+hu+/hMAACH41wSYkdEdNzU54PG1/u6SCjG8vBhiNAAATi8cK4ID+XCiBLyNLOKdE2F6U9NrMUbYJD7v6Ld/QbUZEIL5V8DiMV3e7dnugse+gwojAIBcBK8uabptcgf5hpl1s/sVAJCAu1A6JYpoVhSgUyTWWA62ZMFHv8POJ9rz9C50jXoESRJ3dnCJNS0y3yL42YiVx/hBAGDEyq+Z6zXIMqJ5NykPRD6fuIO98ldufB90vrNS7FqDA8TzXP/9jp0xPkR3bVjtQGH1K+K3J6G9dDOpnjuUt2dJr/H9PtH63Uj71hZvIcKOga6DKlJcTsUwSAAAtXT8Kcl4JacPY3vFLodF9FnxqKOyaTuVt+xR3JgnvqJakFQ/CxQARLzjGuuamaYPFXxrI50S3jbEuVfBGc6LBnKI5hCVK75Sw1aFsRfaND2MBIwgUuq8PLbRjaERO5feSQD/J5cJgAxYvZa9bjiZk0SUNx58lkue437vY2aRBwQAQCHuEcGXP0kemEIdEKP2BF3colS5fV9HX0PbSY2Colp/qmRWKSjE0Ceya+/o8MDT6/3GQETDs/Mg0Z+5BTRyfBuMAAAgAElEQVQJ8aEwNhVmDofEUEAIdFZgeQCAoQlwx8SmDZVXGC9y5wWvAWgMQhAXAtcOBaUEpg6Fa4d2uRUEAAENw5PhrzxwM+Bl4XgJjE1tmyZtaxhEFm5mJ9bgEAYoK8hnUn80N5Kj1IhnRN4OVUV/9Rc8/j18dTdENFvFHYzeUj6xhR1/i/vlQCn6DGrvV6LlPrEVNwiPcWnHuYHH+YHHuYGFfHzAJylG7gfpNcsFn7amdKmDlPER01yf5vB9RqhN08Pr3BkI43C2NMGTm+DJifeeCfgA98vn7lYs8f0+0v7rVMsXbbqdi5BtV96eLbkqcCbVdWS6+RMZ32P9HXlEZkkm7pPPt5JNBBZo7I7z5CV4chK8OVHeonYH+WrpuDXalb5EU4TxVMvqTMe2Ds378mQ7O3aR+01f7TYJ3IvCdx4XfB541AHiJ90Pf8guDii9jSSzPxetSCM6mGrUY3hYeH4jnL4AAIAQ3DkRpqV31b28LDz7I+SWAwCQBDw9B9ITWxh/vBiOnIOlYzuhkqGXcK4anloHbgYAoE8EvLAIRDRgDCYH1Fqg1go1Fqi1gM4KNVbQWeHaoXDb1W2z03u5zPHOrwGAAP6YZF5vdvV1oSG0S0dJXNkE39rSiHN83ELX2yf4Ab7DZOLCdPLPII30AsSg6hdE/11K/dK4n3hnkc8nTnN9UszHDpBb50dVomZSGC4axRwhdv0pn+/T/ktz/TXH9A7Cbch68AgSASGhp7hQOGyL+p5A+YGYt0+xfDHEubfDL6htYIROi8btVS40kZeIFVKYifHmJ3pOJ3hyoplCEneOeIKFDP02ZGUg12asbcN46/etqcwFAJ6QOsVDerbJZ2dxnBs4y/VBQL3zAcGatwSvUIg7xA29w/18Lu9XKBGB52nhR48KVndcbM8qv0Zh+72DF2k3bgZWbfDbJ4Tg7kkwdUjn34XH8MrPcOSc/y7LpsO4hrGn9uCQjBB5CkjO0vLQXsPRInjpJ39xYZQGAEBnbSI+GmBkCiybUSdk2hqucX65m7sCANKIwrsF666ndjdWQvcKYnlCInLnt3X+nUjvkljzYMEjnsc/YBYHH6ZF5mFEbimOrt+QJZ08+4bgtQ4WYDXJAS5jlusDA1YlShxLYssohAEgxluQ4M0pFaRVCpL55vWIkzynFhtebKuFqC+x5iakOxW3ZEknwEU5qD7uEzPMHyu6pb4CA8oXZ/4hv6GWrktJlnPGdOfuRM/pGG9+F+W1OgnFWu2KSoH/uz7D+fsM08eoFQudyz1G2IBKPmy2+72/Ob886WTyQD+y5APv4oDEyZXk8c9EK5tT9WwrPRUjDOD2wnMb/akcCME918CUoS0/C2PYnw+bj0FyGIzqC4Pimq29wxg+2AG7LqYo/msCXDes6ZFtpX0xwh5n+yn4KJjGZ0NSImDFnDb0zzrBDxjh+LFe6xU8gjw9m/p9NvW7T5EH/vFtmKzyiVLHkSAVFM2xkZl8u+eF+oJ+KrANI3OHkbnDyZzhZE4iKgcABqhPvAtXee/V4bpQ7wxq72uCN/qTnSbCuYGdstT1qhuEEULPrXElQhIDQChTdqv+KV8xgBeJLggHlAoGlgrTqgRJ9Y1iFFN0s+5pQVsSyXy4RakAIHLX1VYWCYduUd1rofy1S0LeOdq+eaDrgJbtQinXItHQPfLFAWsEAGLedqXtp0zHtm5QwPEi0Q+ax4pE/i/CVPeRuca3WrS7PCm1S0b14Lam03Fh0W2eF9cx0xqcl4PjZdFb99DrOtERYlLO6uYKisa4vPDsBsirAABACO6dDJMHBxt/6gJ8vReK6m0zpEIYkQJXpEBGUsMWRd/ugw0X9S/njYSlnZehapONFbtyqctQIOmbfbCxniaokIJwFYQr/T9hSghXwe7TsOVi39xQOTw9F+JDW3v9+zwrP/YubNBvDgAGEEWz6V2zyd8HStyYkIhdLVRQdCm9JUbYgGI+drn34Vio9hm/FOJCc54xC5a/4r3jv8zSgPw/hbg7qB+eE77fpsTxJnnbe/N/PI/xQKgF3jviSiUUBwAKznCbfnl9adAAXkJ8nh5QKhpYKkjzEqJbdSs6MdvTQ0h2KW46Lp0E9ZSCw5gL/d2H+7sOh9erTew4ZYLU3colgRxOABBg9xX2LaNtm4W4+7KTOERtVj1wWjLWdxjvObPI+LKo1c72fwwY0Aveu5/xPBAQiZ5G7ftY+Ew3N2TvNpxeePYHyK8CAEAI7psMk5qyhSW18PU+v3h3kwgoyEiEK/rAiCSQieGX47D6Yrv4SYPgvindkZnS+8EYdmaDWADhKghXgKqZ3d62LPhst9+PKhHAYzNhSBKpo2Kr6YQaKoElBBLeKuGsEt4m5S0S3iLhbRLORgIDANV8yGZ24iZ20h/cSKaRikscqvpUtHIKtT/IJM+UQ0WjKs3hSW3YmwanCw2hUb1Aad1Jct2R3HEBR67w/HstMyOw7vDVUY0hTwwnc8JRmyWYeSCWeR7/r/cmAJBS7N3x5+Q0BgARb79VvyKMaVsqY1txiDMAEVLnscYPlQgH/6K6p3Gtgpqr7u863N91ONpb2MpwWpO4CdlP6gcKRCMCZ0hghtt3jLVvlPZE/AMjtENx6xHZDN9hOHP+RsMqWfOVyxyptCimakzru2uC3cdGZvJN7lclyPWO8OXg7R3ajS7kzlD9p11x5bbi9MDKH6Hwoi28fwpcU0+wvdYKa/fDn2cgEHkXUjA9AzwsHC4EQ6PMOZKAvpGQV+kfPzIFnri+kyv3TcpZMsdhmu3CVsBdxHnhgC2qewCQktMr2Volp1dxvn91Ck5P4Lqst8MXpJ+eSiTDE8TRCZLoRElkLCZa0CYT8C4ptkg5q4arCvWWSVjDKXfsVlfmb+xYJ9QVSx4NWTHcszHIdd7fXufQDvD8Ahgc3/T43HK443OotYJMCB/fDle01PGjd8UIO8gJfsCjnkf3sFc0OB9LVA8jcocTOcPJnGFkbghq+mvUiJVVOLQCh1fh0I3MZF95spDg743PUwoRAFDYu9SwqnHXpE4nSBsmAGCQ6Iz4irPiK4qE6SxqGLmWc8ZU15GBroPx3ty23tdJKL4Neaaa9qfQEcANcey9yr6+ye1vd7JfPne3YrFvK6xia2aYP+GBdBEyNyF1kXIXkroJmcv/o2SokBTHHynurCTPqXb4pXszOXyfcGTouKujOXo8RlgfhwdW/uDvYYQQPDAFJg4Cmxt+PAzbsupyOggEEwfBDWP88mwYQ2EVHCqEQwVQ1dQifGAMPDu/89svXI4xQg5Rf8hvOCi7HjezNUYYy3iTiqsV8U4dHRMQB+4gJDAappJhvMVuzSF3H8zxW0PXhBmC5dW3aAgbdJ/QSOGZuTAzA344DE9vgPw3WphSFxpCt6if0FvacRG5trKVveoxz6MBUf/GJBAVw4mcNLLQhBVVOLSSD6vEYZV8WP321j5IhB+KPaWQCAEAAb/A8Hqqu1UdtjoIQ4UDQIurSy8SFYqGnRVfUSgaFmhkEWCEY/tUy+r6C7rg2EjNt9pndLSv3Qse4Do03vp9CFvRwtO6iyzpxF9VdwfJS2oMidk479kUd1aK50RXb+L/GThFgyXu7J6eRR12N6z8wR//QwgmpsGhAn9rIR8jUuCmsU30cPBxXue3iKU6/5mEUHjpBpA2/KB3Ah5hMs1UXUY6tzoqdpPm34FVb/vwmvRCS8lodakSm1yE3EnIXaTcieROQuEk5E5C4ZONbJFbTa/FOYPlObZoCBt0n0gIhbsmAk1CQRVMfx0K32phAr00RthBWEz+wk04xA09yg06wQ1oaxtSHwjhJ6IPCWV+uZ4Z5o+HOdqSX9WNsEhQJBx6RjyqQDTcTdS92Hhv7gLD662JU5rJsG9Cn/VVRyDgrzN/1KIITveTLx6xQf1IQIKuTSg4fR/3iRRPVpInu9O7Af+PrsPughU/QEkjWZK+UXDLVTAwplUXqTbDoQLIrYD7JndaVOnyBQP6Wzb9d8XSgD8p0ZM92fK1B0nMVKiZCjeToWYyzEKGWsgQHtUtPQnMhbEXwr2lIZ7SvftKsv4uZZ12AOgTAU9dmkrq5cDLAABwiHKTchupsUni9YLYGjpeR8VYyQYrF7y8cklw502LhrBx9wmMYVcOLF8Hz8+HaS3lHnehIayMeDpU/2mPO815IPL4xGNc2lF+0FFu0CmuX+Odnw8lskWj2ghCF41qI5EuKkRpVvizRa62rb/K2n1hJ4viWgyEytqyEk0DOESVCAb9LZ9WKPRnhau42oWGVyOY5jMKAAxU1Dchz/renQTm5pjfGeg80L6ZdzUXhAN2Km6mwCvinELsFGGHkHeKeKcQO8W8XYidFBJWq+aZnWcLRemBSsT6EJjTcNVSziLnDVLOIudNMs4k48xy3iTlLBLe0pEI6+XO+Zj34ssf6OlZNMTmhhXr6nZ1UWq4cSyM7tu7Ul2qw5apzZuE3tKenkgL2EjNz+oHioX+Ck0KMxOt3460b23ybY+BsJEaMxnqIFRqrjqMvRDwMPEYVu+BX0+09r7Dk+HxWeBr3+gmpDoqtpaOq6XjdFSskwpf4N6lMXc0RnjXaugfDV/9CSdfBp0VbvsUYrXw5Cy/cl5wurANE0tpMGqDI6uLIIAfQBQNIIpugs0AwAB1mu97lB1UiqPDCX04GGKI6gikjyZqJFC3JNkvm7NbcaPv92GOnd1pBQGAI6SA2tOFjMRsiicr2XPyL/m8vfJFGCEzGfZF6IvXm94f4Gq6xryWjvs25Fk7oQIACjPzjW80JwveG4jznPmX7vEgAxg6EpH0SMsXUyxgJsPOidLPidJLhIMDrmMekXoqWt+UjQQAAjgpZxHzNjG2SzibGNvFnE2M7RLeJuZtYs4uxnYZZ+qd0q8dh2mUhNUbkItg1QJ4+gcwO2DRaJgypNNa9HUiLKnB7fJVdCe54jFbVXe5LgoiRjAlc4zvhDav3YiAV3D6JkuWCQR3TIRINaze408lDc6xInhhAzw5B0Q0iHhHrDcv1usvD/PVEbbn9VzKwitg+uuwah4AwKL34bEZMCVo4U19unBHyBMSArsBd5XaS9eRKxmzQb3Ml5qR6jqywPh6a0q5OxGMaACEOlarVyAasUn9kIfwifLgsbaN423fNxC4qaST14Ss9DVKpLF7keGVJE8vChG1B0TwSNQgVMMhqkyQek6Yfk6UXkMndPAOYt5+m+7JELYJ8c/LHZ6UElwvrU6xuYEiQNxbbQ1PiBHvDd6SsAfxIMk21R0ByUYE/Bj7z1db13VcDepoEbzxK7gbfVcRCCQXXW/2i1uM/tGwcm7deR+t+bo7XgzFjXyLVw2EMEXdYaD7hEwIqjsu6W2p/6SFV9GThlBPxRyUzZpm+awbqrNbj5kK/zjsTQ+SAECc58xSw3Pd3xSwUwwhAOipmHXaJwxUlO+wr/voHNN/hReNRJkgdW3ICt8rFWLnEv0LgTXaZUxThrA+TkJhJbU2Uu0gVL5/7YTKRqqdpNJKaFoZ21dyutt1y+WXYfV0cHqzIezl9GZDeF444Cf1QxbSXwOvYmtmm96N83aa8qebAfbi65YIm6hL2XAEvr2o5Z4SAc/NA1m9z1mnfN11sPtEj5VPuAjZ56GvGqnIaG/hIsPLPaglXR8eyC9DXywX9AUANVd9Z+2jPVK+Hbx8ok24Cekm9cOFIn/nmFCmbJHxFQ1bVSwcvE77BINEACDhrTfqn49sV/+/+vCsyKFLt9Vkui3JMcNfEUi7r3ImQAcl1lgkcJAKF5L7ijHchMyJ5BeLNGQuQlZJJ/uMZThTeqtuRXfKC3QDvap84vKi15ZPWEntB+HvBUIDQ517rrWs7v58sR2n4KNd/jrOaA08v7Bux9YpEmtf/AnPbIBfH21Pe3ro0jZMLlGa1JXV3Nr8uHRyjmQcANhI7RnxmERvtozveb3aPxQ35EjGAgCBuSWGFzVszyh3MHQUgd2d0iKVwkya+y8O0RcEqQDISSqzJVdxiN6muotFQgCQcaab9c+Es6Xtn61ba624Sl+wuDrnbmvFOI81kfMq7TUj5ZGHSLq77QQmRB5BosxxqH1PJ4AT8U4Zb1ZztaFseSRTHOc9m+TJ7uc+OtB1YKjzjzgmL0c8lkekg1RVCPqkufZ3ndR79+OQDFP+g9TpuhO3qJ/Yc7YXim5v1txfQycCgIS3zjG9c6Xtp84Sx28TKREQpYa/zwHGYHPBoULITAaZCACApcMAcAfXEOkJsGxaO3swQc+WTxySz9wlv9lXyyngXfNMb/ZxtzoJqQsoFaZ9o33ON5+JljVX2jf14GQ6nVzJmM2q+5hLyw2VnO4m/bMatqodF3Rbkuw1I2w1mW5rEuAmEvgE0ur4UU9Son+a/zBXPGajepnvfZLm+muO8Z3/z4mm/6M3c06YvjbkaQBAGN+mXx7j7eEN6/48eGsrcDwAQKgcVi2EKHVLz+kWunBH6Bb1I3k7ar6gO9abH8GWFIhGcIjiEJ0juVKEHTHenmmo5iJka0Ke8aWWJHqyZ1g+7sHcbIYK5wkZ2ale2TCmrI/7RJEoPVBoqGGrbjE8rWab7RzdJF57jK5gUfXpuw1Fc5yGQaxHU6d9irBIWayI3u+2JAImOUbm0A1TRO4nqO4TVcCE0CNModg2i+q1njC2TIhdRaJ0AKil471InOw52XW3606cosE9Xu90meIRJhPYg7o9nyAILKK/1z7pS4XLcP4+wrGjp2cEcSGQHA6HC4DD4PTCgXzISACZUsuRqna0Z+hEutAQVkaskDizgrdsDmEr+7hPFIqGewgJADonynASimTPqdYssT1IwhJCFgma+0EYt95ttUn9cIWgDwBIeOtSwyphj9ZcWxTXeoWJYnebNdKCI+PNg537KgUpZiosjLlws36loi3pHhwr1Z29qerUgy5zP56tq55FJCMLPaVJ2hwx6GNt8s+y0CyRosRWPRowwXkVDv1QRdQBguymfCiWCqsJ+7fSur1L7xLjLfAQknJBPwAoF/YTYUePr7U7hfMx72nMP3bRxVkksJEa0T8rqhqgOuwRobeE4rpwBdZW9snn54mvAAAJb11kfJXuHTmJURpIiYBDBcDx4Gbgr3xISc0Qho+UuHpyNdkrRLftpPp77ZOVtF8ULcWTNc/4prCp4KKV1JYK00qEg0qFaS0K38k54/Wm95I8p1qcwDHplK2quwAAAN9geLmvuwm16+4kiOh2x+GBPCSfmeH4XRx0jVIfzNHG0usMhXO5evaPEhkUkYdk4UclmrOIaPgZc+jSy449iTkaAESK0rgrVpCC7ljxdZvoNkZoo3pZrngMACCM55reGujqpSoErafrRLctZOh6zeMWKmSJ4YUo77muuEXP0ttEt41U5Edh7/i0Y2aaP+htQlG55fD8RnB5AQAkIvKxGwekq4O1YfqMmb+HaygivULw0UCi6fdShQmWfgjlRsAYXl8M1w9vYT69RWKNIYQ/qx48Ix7lOwxjLtxgeEnF1QKAg1CVCNN89s9IRbbxwniUfctEy1pfN5Am0dGxn4a+7hPuynRsu9b8ebtfxT8Sh35wzZnbPNaEwBlpSHZI3/US9VlAwTbclvKrK08+5HOcSjS5sSNXEWSX+0g5Rs661UJ5dyiLckB/G7rS16yKBOZG/fMJnpxuuO9lR6kw7UfNf5yEAgAE2D3f8HqKJ6unJ/UPZ03IyiLhUACI9ebdqnuqF4axc8rg+U3+AsS4EHj3lmBSQf9yv7Caaei93C2+NdCJvYHo9tTBkBQGj86AgwUw+22o+aiFyXSha9SsnEGz1QRu1XcfibkBrkMcoi4IBwCAg1TmSK40UeG/K276XXnTWfGoKkGyz9kdgMJeAXZR2NvkDwDiEQmAygX98sWZ8Z4z0qbUQFhEr9WutJFaAAhnSucb3+gNSYAu8SCGiujx1aXHFleZ9Yi+YBHnUfnOCOUXojPeDO27jhbrALXw0RIpSgWSWlv1SADEuMKchjRF9AFEdELGGuZJ1hXmtqQ49UOslWPMFyYbS67Tn1tQe+ZWw7m5pvPXch61LOw4dHGYlwA+1f13gXiEk1BiIPNFmX09J6S9IPm53RjUiyXuTu6Pelh23U+ah7zIXzjGISpXfKWaqw1nznfujXoWi3wyxVt6iej2GfHo/fI5AEAAd4PhlY4Xp/HQ+R+mMCVkJMKhAhCLqOVLB6jpYMkKv7ATsvgBDU7eTG9OJPy6FiIa1h6AeSPh2/0QroA7JsD4gcBjyKuEg4Vw76QWJtOFEmtW+USJ8wTJtVaMCgGeaF0bwlZsUd/DAe0gVMekUxuMobA3zpuX6M5O9J6O8hYFEXxxEKqf1fefE2UAQA0d/2nYG9dYv8m0b2uwMtqlvLmGjgcAmvfMa0UD9O7BJewHiOjBPgA8J9YXzDeWXufzbQIAQbpC+mzQJP6CyDb8Fylj/uC8ipoztwKAy9S/8sTD0cNfQ6hdRceYcJr626ozHbp0rzMCc8EkRkznpyDSE97/yxatdQcR8Y4b9c9/HvqKjdS4Cela7YrbdcublKS6LDApr9eavuusq7FI8Ivq3tMSfxt4OWckMWOmwnlE/qR+0E6oR9t/7qx79Tg22Tiht5TqoYZl68rD0lX2fjInAHgJ8Q7lrb7zmfZtrWnZzXkUGFPNJXjn2SSLjw94M+3c+JBOrvZODodn54NdNlIe3RcMHfKmTBgId38BLi+sPQDv3gyDYgEAUpZBUQ1sD6bJ6KcLXaN26SiJK5toe+rjBeGA9ZrHfI4UACCAi/YWJnpOJ3pOx3rygzg5G4ABHZVeu0t5U6BfQYona5bxvcD6qEA0/Hvtct9a5zrzRxmOXW2dahfhESQCQp1SR9gAzJN23XBHbTrGdXKNiGAJsk5nFWPSWjmOdQfymrEqdk9o6hpK2Gw73ODoCxfo8hf7fldE/RWd/nZwn2p9Lhbpj7DXDue8ihbHI5IJGG9N4tbwAZ93tS0EgBo6/svQF30aPaFs2W26p0Q9mgLXbqzyaxSdVEdoJsPWax8PdPmJ9eYtML4OAGu1KwInr7D/Otn6ZQPZv8sUh2SEyFPQ/XWEHEb/Pp3yfnE0QjA93LAqtUQXP++QbCYAyDnj/bUPBKmdxzxlrx1mKZtgrx2OSE/4wC9UMbvrf14whneLY57ITXLzRLTIkzPxqIru/BpEryCWJyQid36QMS26RuFS0W2HByQCYHnYdBSWr4Pid1qYQ2+JETbAREbsFN2tIc8neLLjvbkdaa+qo2I3apb5tn0AIOGtM80f9HMdtZPqj8Le9pnb/u5DCwyvd87UeyuMK9R8YZK5bCLr1rb+WWL12YiBq0WqjmY31J69yVA0x/e7Kvb3yMEfBLdPrFtjqxlhr8l06AdhvonNHyK8AmktLa6lxbW0pIaW1NLiWoG4hhTYK089aCm/2jdMHb89Iu2TbrCFJcJBa7VPc4gCgCim6Ab9i71ELKlHKBEO3qBZFljLDnfsmGpZ7avj9iDJOu0TpcI030Nprr+uN73XIyXe/wC8PHHLidTvy+vSBikCD+o3YNzwTLVCOc/0ZnNtZNyWJEv5BEvFuAaLS1nYiYjBH9AiAwBYGOruU33X1bv4/UkV7w3umfK21hjCPbl+0e1HZ8DUV+HmsXDDaDhYAPPfhYr3W7h+FxrC2pB7NOYf2lHRxbMS/bk5xpKZAnFNaP9v5eF/d3AmHNC/K288LJsRcHQPc+w0URHFwsEAoGT1d+uW9aolvE02FoCQ2//shGthwlY73Hxhsr1mWJv8/LRYH5b6tSJqf2dZkeqcO0yl032/i1TnSOqiqwDhut8BAIBxhrmsKY2L9CmRSRZ2TBZ+VKwspERNb09ZUmNU38D+TlrKJ/jOqOJ2Rg7+CLo+WeC0ZOwm9b99/8kqtmaJ4cXLTpi7MuLpqOrnO3iRQ7KZvyuX+look8BMM32W4bxkl8kBvUnz70BmXJIne6Hx1cu9SaRee6vCulPAdF8jawtDzT6S9ode1fghkiDG9g3/Ku6neMklWwjWo7JWXGUum+CxxTd+lg+CdoYP+CJf+vfi4/2LHZdI7xKA/xh7apy2k1d4DmkmS6iUtmDdXltjCAOi29FqyC2H2z8DvQ1oEt5Z2nIbih7TGm0SjEnz+am6woWcp26dIlafDe//tVjTUT3oYuGQn9UP2MhLmlMh4G/Rr4zznOngxTuXTtEaZVwh5rJJ5gvXNNgCkgK7MmaPUHbJdzTHSOubSYJyKmP+6OQkT4yqsu8zl13T1ucJ5efl4Udl4X+L1YUt2rOLWqMPV558oM4Wxu6OHPJ+N9jC49LJ21R3+GyAmLcvNL4S3+1vLQ5RDkJpJUMchNJChjhIpZXUOgiVldTaSSUCkHMGBWtU8joFZ1BwBiWnV3AGOWcgMdtBrVGGEG5R3ntaMtZ3KOeMC4yvNVlhiRH6TXnH0YtJAJHe4iWGF6SX8x66m7VGy13CaYcGn7b6y5ke7VM2O1L3n8JhB6vq3uQCgr8trvrJfuejaeTQpZvLJjr06Zi/pDUeLalRxfyhiP7LUjHWUDgfY5IH/AV//F3+AHvx83JvUkWRXbyjVgMAKVLXqQnHJGRnaou3Rmu0BMfU8g37CvYnihXIv4HpvaLbLKUlWQuC1jo9bNWjavOWeu1RTT4qDz8SmvqtUN6hJbaTUGxR35MnGhk4c5V1/dW2bu012Bp4UgoA7esDgHnSoU83lU616zIAX9K3TaI5q4rbrog61Ljsr5vAREXWw9bKsS0ORIiTaHNk4UflEUdpcRuyZzFQHKWkWAMAqjpVZ3eVMX9EDXmv9bHJdlMoHLZB+4hP45gE5nrje2mu/Z14fYyQAymdpNJGqh2E0kEqbYTGQSrthMpO+M+078IyziznraFMaRh7Icx7IZQtU3K61qTdOwmFgYoyUFFHZNMD8b8479n5hteD+4f3yef/oVjkW4Gp2XLxX3EAACAASURBVJobDavap/bXG2BJDcnbukdZJscmnXZwcJlLCAAE4LcGFT2UXO4iZO+Hv59f69j795GisrryIQEi5qNBdxCZYVBXBExQTkXkQWXsHon6bMDl47Ykncq6c5nl7EHsT+hVU7B6WM7sSH2ZS5i2e4SVpQDgoeTydwZ1TiUoy6MXz6Z6vepVw04Hl15pkQ6KbveKGKHL3K8m9xaXqX/gDCUyhPT50WNNMF+YhPHFJQziVTF7Qvt9T4la4W7FBMZEk8n6J6STtitvZZAoznPmFv3Kbu412EVgTDp0Q2xVo23VIznmkjoTkrYrY/aq4ncIZc124Ow2MCadhoH1d5+YJ3nuUg8M4ZVocolOEOxGVdn3mi/4U6cV0fuih77TDbawik7+LuQpX69jAHyNdc0Y208dv+w5Yfpvqn+ZqHAM3dSXVsC7QtnyMOZ8KFsezpwPZcto7DFSkQYq0kBGGakoAxVppCIDon0Bhju2T7V80ZrI3wnppF9Vd/lekZSzjHT8yiARhygPEjNIyCLaTUg5RHmRiEEiDqjZpv/+E5qF1cPOktkW2SmrNFLknRpuFBEtvD/36lWzj6SZGQoAhCT/TUbeguhaANgqu++885qQGoio9lRVlL/jOXUY133ehUANRZEDUdgwpXtMbO6g+EON/T3bazQ3n0it9fhD8sNQ9Ovk1JSwgsjBH1Iiw2fnI+/M6gcABOA/x568UtuxtCCMTpSl33Y66hRjJxE6Mu7EMHVP1h11oSEsj3opXPcezQRb4nkdEbq8pdbq0YGAEEE7Q5I3qRO3+P5OXkeULn+JtapuACK9msQt2pRN9QNLmKe8jmiPPcZri/HYY732GI8jmhbrYjJeEypKG9/XQEVtU90x0/yBsofSnYNjVs7EQKgtLSeXY452GIZYK0fbazI5RtbgUbE6Xx2/QxG5H3WXwlmPw9ARNaEPxlQ+6T/GqOr0PeYLk31Hiqj9UUPfRkSXN42zkKFrtSt0dKzvcLhjxzTzZ+1ecrkJ2Q7lLSclE1o3HMt4i4wzyXmjnDPJWYOcN8k5k5wzynkjBmQmw6yk1kpqLWSIhQy1klorFXLRbHcUEpjp5k/bpGOSL8rcoFnGtq69ezhz/s7a/xC9r+1fZfhTWvM6oaflXmbVbsFJi+ykRZZlkZ20yM7ZxfzFdaGCYq+LNCyI1k0JNQrJuncLB7SdVEl428YyxS1ZqR6OAAAlzf40Mmd8iNljizl/ajlrjW6wxjuOK97nDx/BTSx/NQJmmMo+XGUbrrINU9kiRd4nzyS+VRTrS+AlEb5PNOAOZjIJCABIyhGetloRvWfKoSG7atUA0FfmPDn+mJhsz/uZ88pM5RPeKkh8y53ruegvnBOp2TiyJ5sc9Jgh5Bi5vmCB6fy1mPfXMiKCVcf/FtLnR1LQsPTQbUmuzVvq0A0NnCEFdnXCr5invfYYjy2WcYU38H37r0l6I9I+UcX2LnmhFmnREGJeYNel26pG2WoyeUbS4FFKZFREHlTF7RLK/1E1y62hoSEEAIyqc+4ynfeHo+SRh6Iz3mhnLWNbcBOy9ZrHAumRfTzH5xnebEf+c754xK/Ku+1knUo/hb0y3iznjFLeImeNUt4i500yzizjTb6TRPNK983BAW0ltYXRrwn0X9VScTWC+Foqrv5Ng0DzHg1XpeGqNEz1ANfBqLY3trwg6P+9drmbaLiSa5JJlq9H2ze39RZdTXBDeNik2FwV4rN/1e4mTH6YXCWihUKKlonEQlKgEhGjw7jhGqaPnLfTkYWiTBcp351/4tudv2KMAUAtEayYnNxfxUjdHu2OawhbQ384JTSL1flidd4xovjlcuJPQzCHuYjg3bzfzRAj9qwdfnasyqErXGQsvj7wvSqQVJnUR8eXF9s5AIBHUsreSGvbH9pl6ms6PzWnYtBy9o8T2J87QgJxrzz10SupWOG7bbpa59JjrlGPLb5439v+IBbCisj9YalraEmwaJBDP6Q2b6nbnNLWe6lid0ekfXK574owT7nMfZyGQU7DQJe5H8+KGgygxTp5xGFF1EGxOq8bEkMuJzCqzr3TVHqt70gWdjwi7RNa0ra2G+2AA3qz+v5A8kgkU7S4LWUVTkKxXXl74OkAMNB5YIr1SzlnBACeE/GMmOfEPCvmGCnPinlWjHmBLOx4q2IHrcBFyGroBB0dW0PF19JxtXQcB5SWrdIEfrhqLVspb4t0e3PU0nF/S6eRwNK8R4DdFGaE2EljD4UZEe8ggSkSDv1LPg8AaOy+r/bB3unLaZIvLkTendWXaapVGQAICP6WYelzRt+IgiiMAQAAxvhgUc6XB39zY3bJdbNUcjnCMHYbiihHAIAR2DQ4UrFXqTwlVucJpJf0Uq31CI6Z5cdM8qNm+TGzvEljDACzIvWr0/O1An+k02XqW5X9oMcWExiwHmc/x+0BABLB7ozqq2Lyg2eV85yQdWmdxoGm81NdlqTvcfab3H7XxVrwfgLBl0NLRkX1TElGfbrQEHoFsTRTHSR6XJV9n/nCJGlIdljqN62tVMPIWjVaV7CkQU4NQhwtqRbKywSyCqGsQiArA4CqUw8F/oRCRWlMxmsCWQ/0TG8HLKkGQBRnxDzlMvd1GtKchjSXqR/PCRsPpsU1iqiD8ohDYlVhNxTM9XIwohk6QuBt5A7CqDr3X4H6DUSwqrhdISk/dnW7RAxoj2Lxfrk/81vF1S7Rv9Casooz4tHblHcEMl9UbvOUnCOi4gTWo+UZSYMs3/ogwquO36lN2dgOAQSPMKkrZBw6BR6Rn4S+UUvHA0A/99+LDK/09IwuwUtHUayRuHTHjzGsOJv4UsEltQoKih2qtA9V2tNV9qFKe0T4sNMRr2FowqHVJBzma1hbFbJ7MTfkMOp3ym8Fj0zg+4Z928podLlLeMwsP2qSHzPLj5nlRi8tIvg3BhXdm1DRwBxjXqDLv8F8frJPcB8Dvo3b5HO3JiHNZuk0TUi2LDSLEutZj4Z1a1i3hvWoWbeG9WgYl4Zn/f6qKrA9xe0MhC1JBMuSKp8fcE5I8hypxIjq0tZpLdKT5ROsW+22JsrC2tyMF2PSfOEal6mfUFYhkFUIZeW0tKqxs4tnRVWn77VW+BWeCNIVOeR9RdRl0CKghr3bWxWNK7DTlNqclphAVimPOKiIPCRSttkT9Q/mYvnEv5t4DKOaM7cbS2YETiDSq0nYpk3e1Ngb37nUL6tAwIcwFVFMUZT3XCRTHMGW0PwlaQsOQrVVfcdZ0SgAAAyh1XhYTo3qgpZnm1gGNQciver437QpmyhBG3IQCsN+TKla3CYVve6kTJD6ReiLvhXAIuPL/VxHe3pGdTQun3DzxK0nUgMF6RlK2/J+F9KV9iSJK2BszMLBx8M/5AgRANCcRcjpCfDQnL2CkxU7JZVGg83p8HKs3eNKjYgbnZwW2DUizEhqzqp+DSHcPADo0ipqMkrmmt5uh1ccAIocYgyQIg2iQUO6zX3sugyHfmihKfR69jsnMABwOzHsEaLlJPBNOPcV7k87+H1yfWXOrzLyRmn8H7rWlE/sUN52SnJVg5OLDK/Eec8GedahQpj4EjiDXdhPbyyo71xM56fU5N4eUCfRJG4N6/9lp0g/dwUeW3zt2ZvstcOafJQW6yTaXIk2R6I5I5BeHrvbboYlNUbNojDdh80NcOjSdXmLXZY+gTME6dIk/6JN3NwZearNUui5Nsd0W/h5iiORKRSbtGAKxVYVIIILZcojmaIo77kopshARW1X3uYi5GIHSiiA5DxOYm1aEBgRXpJyEZSToJ0k7SAoJ0E5Pfa4+rEDgnSrE7Zpk38OZukx4TL3sdcOs+sy3OYURdSB6Iw3eq1rfYv63hOSawBAyenuq3mI7oDmVCdiJ1S/hz0tdRcomTIlp5fyZtZlvvFAzAGjvx76ugjD9yPOSC8tv3PQCX9HrGZIJQBImLLM6tsFnNFBKrco780XjwAAjHFlTaXx7Pa/S4xlLuHyDMnszJkmUV1LIeTlFcdtEVX74jNWddufjGPk7+Sm/6eUAAAS0HfkokEovMmRLPC7iDNHYy0RifFZF84dLs5lWO8DyRUvDSipX4nYmoL6X1T3ZkkbliDfpH8m0ePXiG/QfaLwTSiqhWVrYNtJaI2N6xXlE12N25JcceJRryPCdyhWFUYPe40W63p2Vg1gXKG6/Bss5eMbuLwE0mqJxmf8crshrPX/AoxsNZm6/MX19TVIgV2bvEmdsK2+7GqHb+QXCrdVX8E4m/iy4CiwaMAUAqZQbArBFjUAQNQFlJgHEWWogZ9bIK1Qxe6RhR+hhFaCcja9mMPIVpupy7+hftssgnRpkn7VJG0m6Tr5JNajcujS7bUZDn06570kS0Wb/HNY/6/a/6q7Ehchfz/8PZ9422j7z5Ms3/T0jCBXMmar8s76vXEMZvPaX38xWvzB4KkDIu8ZoVTyxhC2IoSt0LIVFGY8ZOjfkV+4qEgAEHDGkVW3itmKfFHmFtU9AX+4lq2cbXw3minAGHJs0kEKBwAYxKMKlA/aRHUrOSGrT7J8FmPfjLpLqY4HmLh/6F69CgD6iYhfVVdSnJgWGSnfj9BoJk1rrNISxTVjB4yNVPoL4d1et8S2L539ReP6u60Z1C0awh3Z8OWfsO4B+HQPFFTBf6bD0o9g7X0Qfk9PG8J2i253BTwjqTz1gK3ar+pECuxRQ96RhXdN51tOZK/OBIKThmSTdMtVohwjM5ybayyZXieqiXhZ7EmF9k+pNqezEh/+n8ATUqd4iMxxsBVjkbVirK5gkddRF2+mRCZt8iZZ6HFaUtPuKgvMCez6ofbqTFttZn2NpJafSABLAX1pUhdBORVRB1Sxe8TqYF6gS0HWytH6whvqpzkQtFOT+Is0JNuhG2rXZbjNyUEk9yLSPlUnbGv9zLuTk5IJm9X3AwCBubt0/wnruXZOLkK+VXWnrzlzgPOVFet/2+p0uwGAQGjKleNGDh5SfwDCWMMbkulkklQCAIHdg2seUnnPbFfcliWdeHEUHmHfPsn2TQO3OQBgjj5/5AWDNt0yUsGq6rwFUqZ0sO5JeVM6Pl1BkUM8ZM9wB0cCwPK+F14a4A8tn7DI1xrH0ZEzruyTLiCbdmYIOUO4Y2ek4zel5wy0TnS7RUPIcND3ETjzGkx9FV5aCM9tgg9ugT4RgJb0tCFsh8Ra14KRsXRG7Zlb/BX6CKtidof0Xd94a8gDPJydcn2Uvo1tR5BDP9hSfrWtetTFlE4sUhZLQ05JQ0812cYd8wJjyXTDubn1SwBlYceEmdWU2tpBibX/nwSLETYF5klLxf+xd97xUdTpH3+mz/adzSa76T0hBBJ6RxG74tlLLD9PPbH33s52FixnQSwo6lnOdrZTz66goHRCIAmkkF63953++2PCZgkpmx6U9+te99pMZnYm+J155vt9nufzOcpedS4fio/ejqACqW4jdc2UtpnUNlPaZlLTguI9J4uSoBZYRmD1ImcQwiaB07Pe9IBtuiT2rOlFsbAmYYfOsgnB+LAnk/VmhT2ZAttPf4KsjtttTP1Rl9hL73NsfxvqaVlsrzqPCw5gZ40RPk18qTZhR5v7WrleKeSWUmY9PnyZ3xHExeOSjMSRvAzIv8wPN1CTYSxdZ2U05M5RMd1hpoqe/QVzVaT/Ugv8lNCGb2vcKzc0CaIMACRBnHnc8fkZWT2+CQFkMh6vR2gAkEGuFGweOYzJgqLYDgA60Xmq+4XscGmvF9K289ouvSRMJk9a25xyAot1DV1U5iY5n0rxjVFD3vP7Um4oywEAHJV/XbyjOaxbK58+KfvoPEtq9G4C748PruXVk/1Ez38KtdCY6P9Gi4YwBO8/RzhgIIQo94k3r4Tpdx+wZ92zkBEP/TCKgdCrO1oT2IRNJDFrAAi581u23Rp56iGoYEz9IS7nP4Squxr73srMR/amIwhclt72ZGHtgM4jrC/N03yUp+WIfowdEIxTmyo05p0acxlt2AcAnuajbHvP50PmyD4qpiph0r/UceVhehIA0OE/lILG2CBhGr96/mC9hGQJdzceb68+q9/IBITKRmpbEEQQOYMS/3p1xogGo7y6hM26xI0ac9nBb0ICa2S9mWFvZtiTFfZmcIEkkFFC1WFM/dmQ8tOIrIT3FekBkVTGGk38dm38dpWxRhHccWrO8n4zV0mgohibNv9elXH8S9sBYK9ffcrGqe1h8pqslltymmSN9ZX4p5XIcYrrxR6i3qMA0lp6nbd1Ufr8e1VMFYuovzFeGq1vMD3ww0Kx6oXtzQ9WWJWe9CSa/Wz+ntw40ocyPszkw0wuLMFOpDiI5ASiIA5VA4AMUCM67AeumU0J/Xqy+9W+PACcdcs6yv+mfLZMfsOU9bmI0o268+oMlwj79X0SA/+bbH8Mk0ddxFwCWPLr9F8dhhQm/qQpc48rnKujD5CI4n1VU0Pvp4S+QWUOALzUpDbNSe2a41ms53Myz7Mmw9Wfi3wsgTDafSLC+M8IJywir2srvc7XMSeyBcF4Y+p35pxPcNrx72bLhdsKIhZpiTS3sqj6zKReEopCmPG2LvY0HxX2ZkZvl0EupXYG0bA6lMaA2gS0Hg6YH2CkF8MD0e/ppKY1ftK7eutvh/sfxhFJpFz1JwVs01l/ihDuqfA7KEhNu9aySWfdpGb2DMJ8UaT5UDylbR7xwgdZwt2Nx9przgIZ08Tv0MZv1ySU9rpuL7DG+g0rlIwmTnoyFt3ef3fvGPCjjTl7c6GL75owaXHxmsyWedNm7kwoAQBKCl7Tef2I9DL2QZRoLe3wLX7v87hTvbKa43mO42i2s8j9JcV2/NDJROyQigz+L+ftSlX1Mo+viLunWXe68pn2f+kV2t2o1SVncIKeJFwnBl7IYXf0dR0Be1HT5vuVDndDyk9J07o70MOYpSzhMTfVZbKgEtqKbHca2PKR+Qc4CAkhXfQ0NzWtFZ/hJKeoyAOebxwX0Li+mCN8pOlj1dpLFrRqT27TnsCjRgBAQDqi6WRK7K9o42vj30pVR/XYeL7zkWhR+2j3iQjjHwidzDkG73eYOEEV5YPOQtue84POwsgWBOXqLP89o6UpLPXMnZyWaF9VXJ1EsyKnD3szWG9mwF7st03roWotUK4ftN+86m+uDBDR2zEEMcoqBlExQBsRlUlWM4hqKmKZhaQwVNCc+4Ex/bvo9o+AagYgqCY4KinMPzYiZvDoTzC5hiukLvFqNpDM+VNZfzLnT2H9qXywF/UiBONw0oPTLoz0YoQXp9w47dKYyyampo8sYwhI/bxs2czL4+2rOX9S/YYVimItqWnJWHRnLKnuUeKVuqTrynIP7kbXYOLcKYUzZyzWqFXFgZ9Pc6+M8QslABdHODncxRNODnfyhIvHnRzu4oiAiAZFjJVQL48JMuLmcV5GPEEmKJCsLAaAFWN4QTnB4vxwdrkOPyDB7OuYE3QUdmTObS/oqvk0lLebfrNJgjqqOVgmtS0qY7XKWE0bq2l9XXQ9FB+01P36lPIfRWXcm77gvh4LDBJC7jHdFomymBQqcD6W5B+xRK+IqDxUoYua7qaLPVSRgPYUtAKAYKAty/9RAfsZIQ3cjyQi6g7NkjbNiSJmmOx5Oba8fp9MXPeJCZcj7I2AvchWdX7IOQkA2mX/udJ7NjkAAJN14Tvz6m7fnd2+X4JWh2K3E7PPEOciB5UYICjHJfz2IbLltU65g41JMlEBA5huDCwxO5eY3YvNHj3eNe5HxIbpz8lgc4SxI0s4F0zkAkkAMk56cMqNUZ6RLDGdAERsmELOSQ2bHlJ6WFVMZfr8+8fesUSUkVt2Zz9X21Xvk0yzd+Q2rq5P2u3r1vgmcWLW1CkLps+41v94OtfLBKguSG9z67a6dNvcutqAysXjbr73Co4R4cqM1pVF1Th6QLz0NB/VuvO6QL7WebRJeXho9gZNPzj7j6oIxtP6OpWxmjZU0fqGlh03KUXOOO3IXHRbX0IQbZoTK8x3iUhXlErxfTrJ+aSyMjkERJR2U9Md9BwXPcNLTeqr65/l/JKndI7wfiK7aQiLGW7DMgGP7z9HOCAT130iTOdTXD1yUNXTBMTfOaNx7zlnO7ZXQCcAMKD6kDwjW+e1+xKeEDZ9LJXL+//rzkaSH8SOzQAjAAAiq5mKzvifXvW1vdNiDonds0OGEBbFeZwcbuOITpaM5d7DEHmm0bfE7F5ids9NoHSERAjjvCR1KCKjFEtm9F+Bdpi+CNJF6nCZ8tnXPr956+1KZak+cUPyzDFtLvQK+HlbJn/d0bVAPdPo+3ze7mSalQA+aY1/aE9GxIoPAAgCX1SQ9XbKu8lkoD5Ib3Prtrl1W926bW6tkyP6OMNQQAG0QNOAqUg2TuWiMFmDiTpcpDFJTaln6u1Xpdf3OMTddEzbzmvCmSrbiXGAIgBAN7HmL+2I2PWPiWA8iodQLCSyxl6lo6JBUC59wT39J24DRObOhBWRyhQdV1Vsu0PNx+o8IwPqpQqc9FyHao6bLpKg9zd7Wmhn2O1MuNQYLtXydcMZGwIeJyNk//YMo82fMUd4MLIMZ28u/LgtHgBwQNdgZ85GkiO/3SK33C9+Xw9da7wUoDebzDemBkrJiuebtP/riJOjxkC2JnRDVvMl6e3aqLURXkZsLGlnCRtHdLKEjSObQ9QvDsM2t044aBkWAHBUXmjyPFxQt3iYXieHOcwwiC7NMGV9bpk8rHf22KkL0qdsnFq+P9SdkWR7a+ae6G50CeDT1viH9qaXebrLrWkctChvjyHy6XHBRAoMKZgI3kQKJpI3EYKJ5PW4SKOSChO1uOhvOh7aluCAaoDqyEYrFqMESc7ZJGaXdcWqpGnPGlLW9n8iW/uZddJVgXwNH9d1VZpA09Sqx0jUgeIBDA+ieCii4yNLGOtPC7nyQ668sCeP9SfDQQvCsZwUAESUrjTd2artKhrBpUCh4yFLv5YgQTzNoZrroOc4VbMEVNfbLrKWrzOGS5nwDobdQQvtve1zqDKKgbDVel+8ffUhMa35e2Xmw3u7equfyxSWuc9hfV0TbJxyU/p6RLdvpb/h2TaE3x/zDITgOXCeN9/kvSWn6bREOxZzwYtPwH6xG9fajT/bjaUerXjQuD8ryfbElNpM9R9q/W1U4fEEm/mKpPaHx/tCDkkaUlamN18XvaWj4hLnvlOVz5bCV02ZX/V1rMhpBdZEqtuHqW6/3mE4Y/MUG9sVOe7Ma3xk8r5eDRhlGT5ti7+zemq1q89ypCSanWn0zzT6Zhp9+dqggRBNBN9j6fJgOisvdtR2Jdsa8uTNS2QZgUy27HTXSs/GK5Q6OwTj0+fepzJ1lXa3J9zMuD+huHoAkBCqQ3NUI3qxl8mNvqdVQsuctkspMabOYIlXh9x5IXdeyJUX8uSJrH6wQgctur9Umu6QkEEo8x2Mhm8whbeYQptN7DZCHJX3cp9uCY/Fmdwfj8aXx8ifPUcIAO81J1ywbbIyq7s+q/m5ohoAxNcxG0V5SleP093Kxbt9msu35290HdAijSHyaYn2W3KaItJ5Q8PN4784jD/bjGvtxjKPNnJnU5h0Y1bz3fmNkQziYfph9HKEfwYiOcIokJbtt3pbFwIAIFLytGcJTZvAmvigWWBNQjiOD5kF1sSHzEpCkdI1pMx6gtS0DO0C3mq0Lt+Zp/jtUZj0yrSqi1MHmHlIMnpN6ObPtje0220AEKfGCkxosTE82+BZaGzLIQYtINW550JHzVnK54ZcefNRMorwSz3/nh/4LyLLkkA3/PZ42JsBADjlzlh0m9KI3Jz4D7Pz7RCiadUs69AcLRxoVoxLQUvwhyz3GpUwxH8ZPmghVLbB2kr7yNyy+McDRPrAu0ZBCZ1x4S2m8GZTeAstjLqaVSxao6PNKAZCCVWjchjkCe3/vtmlX7J+mpLeOy7B+dW8Xf2/LUoAq2qT76nM8gmYFhcvSW+/Ias5u2+x2qGxL6S9uzzjwxZzZNE1geIeLqi/LL0t9unmnxQElRAalUZRNfQPjIRpULGnFJQskY0bHwg6J8f4JSgWSix+UZ/06+BODXBPRdbjVV0rMWaS/3Tu7hht0FvI3NfiHmux2Qw6nVZ9QDUjBrxBsBtEm0G0m4T2NLYyma/C+7bEse09317d9SrQlCNvXCrHic1nOp+x8nWRffhQfP2GJ4QwAwCUvj5j4V0iQdQb/q9dc1wIP9AVRwZ1myMTW2Vhv8Ok8VnXEVB1Rdy97Zrj+t+NkLym8FZTaIspvLmvtodRQkYIAATpt6KHD5mVitloSHXbwRoXQyPWQPjCd3DHe6AiAQAuPgKevmDgQ8Y3ENYH6RSa7T+qNYeoOetmtoVJAMjXBjceuX3A3nmFphD1eZv5gtQOJrb9B4syMjY66Jt35URPQKfqA/+cWnNM/KDtdf5EHA6Ew6DXQAgAIqdt+P3xaMG2g0EwDmQ04rPNpH9jmbwmdiOLK0rzVtd3RZHJusAX83ZnDeb98ivj8q2aE2LZEwM+ma3O4MrT2YpUbm+0bHdn1QWOqrOVz81Z8u9HS7NC3x7neRM/6Bkdcuc3/PZwl5zC9KbOeTkReRcFwsFr9gbjOnZmFt2DYqPe235IE0sg7NbTiSJt3t815rJe9x9swIo1EF77Jhw9BU6fNfCeEQZcGmVFFEfl0ZjivNlovWx7vgqT5jC+hXGeBSbPfJO3R5ALitgRv07b5tYBAEMIG4/cnqedKE/PSPuELMOHrQl3lmfVB7tbVpdZHU9Nqc0fzNVKAPUBVYVPXeHTVHjVFT7NKYn2+/InYq/bMDm8NDocelsa7UIImxp+f1SWEVLdjtMunHLitAunnaS6HadcGOFDMJ4LJLVsuz28X++b1DanzHyC0jUOeN7P2synb5qifD4+wfnB7ArDIF8xBYSw4yluLMGDx7uwBDee4MHi3VhC+MAlyh6gspjE16SzFelcObbzCLZ6ibK9E+VuggAAIABJREFUIVcuP8J9imdVXrjPXl5f+/yG8rtcRzKhnG45FTLkVe0CVXWQcAnahK0pM1dMWE+riUMsS6MDBsIe7hPHF8HxRYMIWNgDZ8a03z//Bz9XwI1vw/9KYUEemA+cpIapXJ5MxgUngkBINUXEjLjo8GsW4qIHkUVM8vJ4AkdlIbKAyiGWzODJVEzyray1nret2ClbclV2PYmFVZMlVIOLbgFjWDoXEBST/ByRxFEZqBxGZTZM5nSdBeSQaqqIM7jgkDBNmJ4koxQmegU8nqWy36rXX74tUwKEl9H6IP2Lw/hus+XJ6tT/tCSU+fTtkEFTWjPqOH9b8Y82AwDgqPzxotYiq0U5C0tl82QKLjoRkEKqqSJuwgW7hCpnoTHRI+BmlspGQEKlIEemcWQaJvkRmQ/Tk3gikRA6ZYQIqwolTIeLLhEzsHQeIBgm+XkikaMyUZlFZZalsngyBRddB55FrZxFxIwSqkIQBAGpSGu7NB/VEtQ2J8pKKABU+dWv1CV90Gp5vy3jf52Jv9jUm7zxO0NZdSGdIyx6wMKSGe0hWG9XfdSZ93Jj5mN7rLfsyn66JvW9ZssPNmanV9saptY6mHR1eIqJZOkcBGRUCnJkKkemY3IAkfkwnc8TSYRolwELqwpFVI+LThHVsXS+jOCY5ONxC0dlITKPymGWzOTJVFzyILIYogsF3EwIdgmhw6oCCVXjolvATCydAwCYFOCIFI5KR6UgKnNhKo8nlbOgYdUUETNEnYWIOkv3sNl/lskCHk8ItoPPIgLNURkUW8tRGfvPogxOB4IgkcEpolqWzpcRsvfBKXoREEJ0gYBbCMEmo1SYPnBwAoJJga7BKYVQmesenMotED04ERKTuganchaOTOfINEzyIbIQogsEwkoInTJCRm4BETNGboH9wybqFhAPvAXQ6FtAGZwiKkXO0uvg1PY6OEOqqUbvl/tvgQMGJ5CIuqCGyf7elPi5KqUGT/GrjZUqzV5JrxPU8ZjsRWSe1yerMyplH6J0vImc3ttyBK53y2btgbcAh8rhyC1gY/ETN04PCggAnJXifPcImSYoTPQIeBxLHTg4pajBKdhkBI8MThnTEkRCnNieHt6WLrXliS2z/V8s9r43gysr4Kvyg+tSuT1a4AUggqg6ojYuI6gXM3fKBcS2JbrqDGVja7rsWLj9LP+7cQjXfQscMDhxTPI5E6c3zDqaS+haicV5PqXyV83nGqqZxcKSxlyWNOtZTpvd2y2QHDU483gyCRcccMAtoI26BfoanJMFPCFqcKoPGpzJ3YOzt+dz9ODs9fncNTiVWyBqcA7z+Xzg4PQhshDQzBMwoza4qessXYPTKOBxmNSl5ODvmBP29pQqNaT8TO6XPaIJeHcDnDUX3l4PFj1UtPQXsA6m12qsXpiRCY+eA+0vwnFT4W+v9vytR3+SgymRUVIGzMGUuA3LAMDs/JdHf7xfMw8AQnShgylRhoJPe6SDKREx42sNic1B9JHd6szv5i3bOPU999FOzVIA4KgMB1MSVBUDQEA928GUcEQyAHj0JziYEhmj9p/lFADgsQQHU+LXLACAEF3wYscRy7cmSwf1vEuA7PZpXqmzXr5RW/hVkul/iz5u6VLLfXZqzbyMAgdTwhGpAODRH+9gSiRUDYA4mBKX/i8AIOBmB1Pi0ywEgBBV4GBKQtQkAPBpFjmYEgGPAwCX4VQHUwIAEqp2MCUe3XEAwJFpDqYkoJoBAEH1dAdTwpFpAODRHedgSiRUAwAOpsRlOA0ABDzOwZT4NIsM3q8prtHBlIToAgAQdAsuXnha+UktV2W24igCALyMlHvVv3YS/2lSr6pLfqgi8aatmvN/Tzxq/bRp32VmfMoUfFtw+qYpf99lfL+e2u7WBsWenbCyDMt35H/rLnAwJSF6MgD4NfMdTAmPJQCAW7/MwZTIgMoY5WBKPIYTAYAnkx1MSUA9GwCCqiIHU8JRGQDg1R3tYEpEVAcATuYcl/EsABBxxsGU+LRHAgBL5ziYkhA9BQD8mnkOpoTHrQDgNpzsYEpkwGWUdDAlHv1JAMCTSQ6mJKCZCwAh1VQHU8JSWQDg0y11MCUCagAAp/Fsp/FsABAxg4Mp8emWAgBLZTmYEoFMTGp/OKCZ62BKeCIJADzKWVBSBtzBlLiVs+BWB1PiV85CT4kanEscTImIGwHAZTzLyZwDACKqczAlXuUsZKaDKQmqigAgoJ7jYEp4MhkAPIYTHUyJjFIyoA6mxK1fBgA8bnEwJX7NfAAI0ZMdTEmYygUAr+YIB1MiYAwAuAxnOJlzAUBEtQ6mxKs/BgBYMt3BlARV0wAgoJ7lYEo4IgUAvIbjHUyJhNCAdA9OHo93MCV+ZXDSBQ6mJEzlA4BPu8jBlAiYCQBchtOUwamcRRmcLJHuYEqC6ukAEFDNcDAlFvsLUYNTvX9wnhp1CywCgBA1ycGUhKiCqFvArNwCrvgzk6c/k1D0JmASAIiCpnXLda17b/TTyrCZ5mBKWDIdADzaYx1MiYhql5fm2cIoAKSq2FUz3Z64Ep92MQCEqbzILeDXLHAwJTweDwAu/V8cTIkMmITQDqbEoz8BADgi2cGUBNWzACCoKnYwJSyZAQCsbhGqPyqH3zvX/+UsUn06NN3WdsmZnlcLZZdZ8iCSnLUHOfF9NHO/mHZbGqgWfH6e6x+c/kjlLPsHZ/ct4NYs2Rn/+K64+wVKDQAgg7bcb3mzU16bo5gL4Sne1Nn/kGmVgynxaZcAAEtlO5iSkGoqAASUW4BIBAC3/iQHUwIoDijuYEo8hpMBgCcSHUxJQHlydt0C2QDg0x3lYEpEzLB/cJ4NAAJqiBqcWQ6mJKSOHpxJ0Mfzef8t0OfzGQBcxjO7Biem3AJHw/Cezw6mJEzlAYBPuzgyOFkiVcATugen9ljlFlAeAjGytBA21UKIg3c3wEWLBwhYBzPoYhlfGBKvBv/rA+/Zf0N9Q5CevW5mpEhaIYlmL0lvvyy9bWgNA683Jl6+PU+JgvMY73uzK3Z7Nesdhg1Ow1aXLiz1EvWvzGh9adoYGZfEDo9bAKDXzpNKn/rW3dn/6+hT3bsvGEIo0Acm64KTtMF3miylHi0AGAlh/eIdhfoJYZU1IhxuqB8O0Q31w+QgE9C9yTOfOtjp5c1G6yXbJwEAgsB3C3aOZf6b9Wa07r467MyLbLFneacU3sXI/RV2dmiOrjTdwWFdnf600BG3rgOt7Fam1SZsS5m1YuyFeA5dYmmojyVHGHGfKH2se58YA1ZMgZDloegu+OIWyEuEjzfDyu9g7b0DHzVgjpCT0M/b4l5tSPqx0xg9h0NBPibBdXlG26mJdiLmDOKahsTlO7qi4FyT99v5ZdFpBlZEt3p06x2GDQ7DBqde0ZtYGu/6ZkFZ7KcYMwaUWHNyRCdL2DnCxhHtYdLGknae6AwTHSxp4wg7S2CIPEkXnKQLFmqDk3TBybqAle6+M1vC1Lx1M5pDFACkq8Mbj9ge/dtDmgmeIwyIWA+b8hHk+05mVV3y8oy2ExMcSJ9Wg/3RT45wCPQ0ASV8limvYYRf5PQipxc4fUNAvbS5xi+LAHARUXiXfCyla1bHlWnMu9SmXRg5WsY1kkDbqkpc9csi4rGkpj2u8E2dZSvWt7cthzKVcXd0dHsgyCm+T/Ncz0GQqlv/pOI8o7NsTp7x5OG84KAYkRwhRLlPXH/8oANWrDPCr3fCHe+BKEGiEVb/DbISBj4kdtHt+iC9piHxjQZrS/iA3s8UFXtffsMl6W0DxqrX6hOvKO0zCvZAlqHSr/nNoT8jyW4iJ+KQHQPR7Z1e7eJfpvsEDABmMb61i0pH7wE9loyU6PZowMvInLUzb81puiB1hFUmvAJ+2+6sVxuSlH6baQb/XXmNZyV3xpr52I8iuj2SV9bDBDQKCeTLxE82yU0AkIkwH2MX0BCtUKF4eZap43ap4ypGUNPV1z6/o/yyiP0ZgvFx2Z+Ysz/uXwfArlpQHncvi3c9+CjRPtn+aHzoF+XHsCe7/vcV6viy1OmPRitlHyYWQqopIqrvX3TbVX9iwF7cY2N8/r+jS7Gi3ScGG7AmkMSaKCNfd5hea0j8qiMuWngsRxN6YFJ9SWpHX3f1qw2JV/Y9FzxMX3zdYfrLpqnKP/WpifaP55QfblIcVZ6oTrujPAtD5H/N2DOCsfC7TtPlO/IaQz2tgPO0wdtzmy5K7SDRce7l7WECqvAvefsK8RcAwAB9FzunCLH2dTiCiCqmSm3eqTHvUhn3DjnS8CFL++7L/R3dpYSa+FLrlNWkZgDRj2bd6ZWmu2Sk6wmU5P8q3/l0D4OFkDuXNuyL9pA5zFgycd0nhmzM2xYm32y0vlSX3BTqniBO1QceLqj7i9XeY81ndX3SlTvzlBfhOYz3uwV/hCg4Zsa8L9cnXVXalSPZr6pzaDM0Y94xoCFIF/44OyBiADBSsdDD47eWZ69pSIwILyyNd2126f1C9/QrVcXektP0t4y2WGb8LsOpjOfzYV5Vr4i8rn3XFXwoDie9GOmrBecx9a2sDABwZ7r/wbxWjPKgaDjsyQvYigP24pAr7+BJJACgWFgdpxhc76R0DbH4d/IhS8iVG3IVuBuPiaha47TTMvl1fdL6AQ+vNS6vNS5XPqv5pkLHQ0y4F8tAn3axKlSOj6It4h8WlsqSUI0qtGvgXftm4rpPDFNijRXRl+qTHq1Kjy6omcN4H5lcF8mov1KXdFVZVxScbfR9t3BnjB3xE5yxtGG6vTz7yepU5fNzRTXXZzWPwUlHjwmbIzxl49Qv27tLnIYfC7/pMC0vzY+8LFpp7uXiqlMT7Q6OWLkveeW+5GjjhXiKvz6r+dqslv5vkJHNEfYFLyPz181QWnhnGHwbl2w/OPchCXTQOUUJihHh3x7glFttLlOCIqGyR7YLnCHsyg15csLuvJA7R+QO0EQERDJlfBWf/x6KD9yJu89waQ1ztfJZz1XObL+OkHrP9TQn/sPsfItmJ1zl3cTnDy6x5tfMV4fKUGlYFYk+AXumJvXpmhSv0J0/OMrsfmTyvp1e7dU7e4+CMoK2apaphSYDWz5kL65xhCUzAUEodt8YnEsCOHdz4X9a4wEAQ+SP55Sfmmgf8KgJi4RqgqriYZp8jjiftMafubkQADBEnqwLKhZCQ46FHh6/eVf2642JkS0lKZ0ri6rjohLefgF7pT7pnzUprVF5dz0uXJ3VendeQw/b2Ahe3TFjMJm+f0/GQ3syAIBGpa1Ltg1YtCywTMBWFLAXB+zFSk3KwZDaVk3cLpHThtx5PdZgo1EZ91qLXqb1dX3tEE01c02d4RLls5EtndFxI973+lZAPZtmq7DRkaX+Y8ORqRKqHt9K7wmUI+wHO0c8XpW2al9ydAsEgkCvUVBCyJ3xj9vURwAAApKGrzeGS43sTia8XSWMp+XVhCUkokvXT1O03DSYuHZR6Sxm3BzJ/3j4BGzyj3OUGt3rs5ofLKg/bkPxFrcOhhQLv+4wLS/Nb94/EbRQ3IvF1Wck9S4tzYrom43WJ2tSawPd6ifJNPt8UU1fh4w2m136hb9OVzLTT02pvSUnVp88Bc6fErAXBexFQccUkdcOfAAARnlVhmraWK0yVmkTdsTinCcjaKXprojbe0JwbVHn3Sgceq/Uh4mRUQyEnearTO4PcSEmz5FYaA5RD+3JeKPJGl1KM4vxfb/gwCiY8LhNdcTBhyOypOHrGLbUGC6d4H5aPu1iAFTnXzdmZ+xkyfm/TN8XUAGAleY2HrE9/dD0fhIwk9N0XoLtxfG+kG5u3pXzTG0KACTRbOUxW/S44Obx6Fj45ow9F8YQC/cFVA/uTX+rsbuo5JzkzlXF1eaBKp9FGfmgJeHxqrRoM9tTrI6VRdU9/iu3Wu8bVQerkIjOWDtrj08NAEea3T8tKh1sXWs0fNASsBcHbMUB2zRR6P7TMMqrMlTRxhqVoZY21EQbyMSCDGiF+Z4WbZf5VEJwXVHnXQNGQXvcJXrvdyQ/RHOJPzMBzRwBNRp8343jNQzsnD5kwnTeMK2wepCiYldP33trbtPfKzM+bE2QZZhp9H0XFQUFVF2a8IyTnqn8SIl2FjNHDpcR1E9m+8nsJt2ZAECLHVnuNSm+T0bwCkcKHrcAMpxHxKBJoLiv5u1a+Ot0J0e0h8mTN079dkFZMt27GMJERkYpRbpigrDDrV1Z12Xy/MzUWsVLy0gI3y7ceeyG4m1unSgjf90+CQD6iYWbXfqnalI/aTVHHCvjKX5VUdXZyTHN6jBEPj+loyS5470Wyy27s9vDJAB80R73k834QEH9jVnNEW36ID11GH/rwNxRka1EQR0uvjFjzzCHOKHuMKZ9Z0z7ThbJoKsg5JyEqxwqYzWlbRqsXVEEGcF3mR9s1xyv/GgNfDvVfj8CA1cehMlsbb+6pofpCwE3KxIi/fBtp6nM0/Of99wUW5qq9/d1mxeuWAM1HaBTwc0nwplzBriGUZwRcmQqwbcjfTueDIcdbu3q+qRHC/dF/B94zLA9YaWH6jKLyXKvyXG/xGLxLmqamy520dP9ZK58kKScNfj9ZPsj/Sz9jwsCxgAgY1+Bts5uPO63Ik5CAUCNiddnt9yR23ho1R/JCMETVpIb3ILbKCEBzF83Y7NLDwAnWJxfzz9AtMXF40oshD7mhbIMX3XEPVmd+ovDGL39rCTbquLqBGooK3VuHr+7IuuVusSIhEWx3v/y9Kp5jBcAWCpr9DLTP9qYY38rVtIZr03fe1n6hMtTSECWJTzWqT5S+THZ/9lkx6NIbP45HJGEC05UPiTXUcYXETPICN7/2uHfduSvaUjssfHHhTuX7i+c7CG6vTAP5mTD9ceD0w+tbpjSn28KwKGSIxwQFovfZl3lJxRVVjnP9VyG550e+wio2kMVueliFzXdQxaKaFfWRCW0FtnuMrDlY3vJE5S3mywXby+IlOObSP6uvMZrs1ro8e5FOxR5cV/yNWW5AKDCpF1LtxzsW+nkiGM3FG339IyFrIi+02x5uia10neAu97iOM8duY0nW4ebbtjo0l+5I2+ntyvHhoJ8RWbbo5P3jd5Lzyan/qwthUpq8xSr47/zhlUrPxqIKF0a/5RDNU/5Md3z73zXM7EkFA8zBgwYCL8tgzfWwfvXweqfoKoN3v0Nzl8Ab6yDbAu8eQUUjmMgbE561GJb2b+C3IgQxFO2WV9ULDERkAocj6X4Pu3/EAkh95puatJ1eY8hspDrXpXheSeWcS8hRIfmaCc92xTaag793lc59XBwG/4iA8p4Phvxb46FbztNd+zOijwlASBNFX6woP6i1I6J33HPE9aO+OtTWu8e7wuBtjBZ8OMcD48DwEMFdX2ZXjk54pjfine4tQCAIfKqomonjz+/L0VZwFRAQT4jyX5rTtNck7fXLxkCgoQ8ty/lgT0ZkabDRJq7c8nR19MjnCNsDNF3lme935KgvF2ZSX7X0i1jL+knoDoe1YsoLQEpoioJwQVECwjKo3oZUAHV2FRHuOku7RJlPWlQ399quSfO/T7F1o7Ctf/B8eqP5bH4ONe/+9lnwEDIi5B3C1Q8ASesgOcvhtn3wl2nwq0nw/PfwP92wob7B7iGUcwRjg1+MnubZZWSC0Rlfor9fmtg4KQrKnMFjhWm0JYK8708qpcRvIq5wUnPnmJ/gOx7QZLF4pv1ZzRrz2CxOABo0Z6KgKRny+ND683B3/Tcnj/G++PxCc5jlzr/3WS5rzJT8UFsDNGXbJ/0dHXqY4X7lg17OvIn4ebdOUoUzNcGb++7NtJE8t8v2HnMhuJSj1aUkSt3HpDgVGPiX9Pbb85uPng2OUxwVL4lp+nsZNv1ZTmft5kBoC1M3vDNr28ZZ16W3laS0jn82aFPwB6vSnumNjUkdqUkCERePX3v2EfBIJG21fJyGI9BGRLkPNfKDM9bo35NhxlRCAyOmwqv/ASeIBSngVkHVx4NOhouWwKPxiARcWgvjXqowu2WlTyqBwBUZqd13m4ObRjUN4TwxF3xj7ipIuVHSrRPtd1nCm/psZubmtaoP6dDvVRG+nx1oESHObjBHN4QF9o00ZKOQ4MV0Rfrkx7dm26Pas1eHOdZUVg7f+SmJn9Ivus0Hf9bEQAgCPywoPu9tS8cHHH0+uLoWXgCxV2T2Xp1VsuARaHD5/M283VludFCTipMOjPJdll625Fx7iHod4sy8nqj9e+VmdHz2tMS7SsK9429/XWAyNhqfamHg3yvILI0yflkqu+jMbiqwwyKAWeEECW6fdsyuPhlmJ8LVx4Nr6+DN9fBL38f4PtHMRAKeBwmePopuArhiTJglOjA5KG87Trp2TssT4uIGgBwKTC98yYmvH0I3yMDVsNcVa//P0VLEJGlTM8b2e7VCIgSQrVpTmjUn+Mj86MPIUVnQnCtj5zkJSfJB5V3IrLAsDvVfAMASAglIhQACKgGAJMRVDiwtAyXgogsAiLjog8AUOAxKSQjOC12pnvexocnRzAieHj8yZrUZ2tSAlGmhmck2f5RUFegG+uH2oDIgIu4YQSbdoZASESLfppdE1ABwIWpHW/PrIzlKDtHHL2huMyjzdWGbslu+r+0dhU2dnlZv4A9sCfjpfrkoHDAeM7WhC5Ja/9renvsJcQ/2JhbdmeXebqD+kyj7+kptUeaRz6JMCB+Imub9SVlCQeTQhqhHpVZTOIQEDApiOy/73DZj8iyni23BH8a2okEzIRJvlGqDfxjI6FqGbCIB2+vxBIIo0W3W13w11egxQnxelh9GeT1PLQn4ymxtjP+ccXTBJPCpOSkRDshuknJSQl2UnSRkguBrgeBgKiVqZgMmICqAUBE1PWGiySEBABCcs9sv07PxfS46QuHat4u80MRmzEjW2pky1o0p/KYIXo3A1ue6vvA6v9B6SviUMahmm9XLbCr5/GosZfvHQaE5M52r0nxfjwROnnbwuSDezPWNCRGmjgxRL44tf2BgvpU1QTqspgIEmv3VWb+Y286ADCEUHnMZkvM5Z02lvjdZVhmtY9p60wUOxLf2fzb7W80WTc5D5AlwxD5BIvz0rT2U/p1RtvjU99Wnh2tJJeiYh8pqLswrX1c/iIfmbvNskq5qXEpMKPzemN45yid67DE2pCJRWJtnd1YcWDhGAD8JdEReT+buKLbAzbUb7G+6qKnD/MslNA5q+MaDR+TZlL/sFjcbvPDDlUvLScocJbAD2neD/oqLpUB9ZKT7eoFdtVCL1lw8DRxyKiE1mz3y4mBb2Is4x5V9vrV91RkftIWHykrpVHp6qyWu/Iax2AFLxbGvaF+j09d/PMspQXlpWlVV2YMUWt3XIg01Jd7NWsaEt9ptvSwzo4dLS7entt4S06zepzsvXxk/lbLi8qLLC75Z3ZcZ2BHsVT1cEP9kBmRhvqJK7o9ILvND3ipyRzGcCgztG9QC80z269WCSP2rJERtF7/1xrmChm6lgEpoTPV/3GK79N+imh6wKGMUzVbQLUAgMphTOYAAJf8ABIiSz1WOwVMJysLel0zXZWEEDyqb9Sdw0bl9nVcdY5rVXxoYLH8MWCrS3dPZeZ3nd2u3HpcuCWn+eacJm0fIpZ/EmQZlm6YttZuBIC5Ju9vR2wfr7ndiMBJ6Jftca83Wr/pMEV6+QcEQ+S/prU/XFCXOH5uz15y8jbrC0r1ACF5Z3Rca2ArxutiDjPxmRCi2xJCcBjDYmYOi+PQOBY3c5iJwxh5/72HySwqd02BcSmwf8lUTvO+T4kjrxDtpovLzI+ohLZU74eW0M9I36bVowRLZkoo1UHOqTNcHL02y4S357peMLJl/Rw7Zqy1G++pzPzN0X15CRR3T37jlRmt42iANxqi27yM2FnCzhE2lnRw/RVal3m1yqIojsqbj9g23XiI1Uz1JbrdEqb+1Wh9o8FaE6VZ2ivHxLuenlJbZBj6Hy4DJqAaQBAB0QIAj+lARgRULSMYLoX0bHkkY9IXHnLKNutKAdUBACF5Z3ZcrWdH3dHssOj2kPmDi24P04ZpfJEBQ2DcJjcRGyYB1dbrL2wwnK/UBCkkBNfmulaNyGrw8PmiPe7eyszoyogMdfiBgvqLUscnLTRgjjAkogER8/K4V8D8AhYQMS+PeQU8IGIBAVUaHuwcYecIJfh1sqSLH3SX0Y3Zzc9MPfTMHUfVhslH5obxRB7VCaieR3U8qu/6gHVvGVCUkRSdluBPlsAPTHh7rxHRTRdvT3heKUkjJPes9qt13Fjk7Q7nCIfMH9yGyW1YpvP/gomH6+wHTUg1VZYRdbhr5sehTJ3hkibDWRJ0FaMjIGV43s51rRy/a+xGAni/2XJ/ZUb0dGEW43t+avXYd1mIqM6nW2L0fHHwr0o92uf3pbzXlBDtYTIaJNNs5TGb+7I6msg4mPP772seMjbVop0JT0rIEDOOB9NrRHTRM7ZbnlXeGknROavjai03Rq8jHt1xmtB2XDiELczGizA9SUQ0mtC2cbyGQ7uPsC8ECXu84vJz0r7J09eP97WMGGHMUsssb9Uui+Qvc9wvZbnXjO9VReBl5PX6xIf3prfsN8BDELgwpWNFYe045ooAQJSRz9rMz9cm91DsjB0Kk+IIPo4UzCQfR/ID9tVdktZ2ouWwU3k3TnrWdstzMUrwIyDiUgBkGZf9AEBIXgDAJT8iy34y8+B2wEhElBG0NP5pRTqRFJ2z2q/U8mPh6HmYPwCjGAidzDkG73eYOA7NQysq/vZy9bkIIp+Y+Oudha+mqieu41KvBFQzAEE1wa29/IpI32u6xa5aAAAAcqH9H8n+GIQTxoqQiD5dk/pYVVpwf9OhDhfvzW+4Mbt5bBKHImbw6E8wuT4AABePv1afuKouuSFIR+9jJAQDIWhxUYOJelw0EIIWEzWEqMNEIyFoMDGOEuJI3kzySuT781QA2czL4+2rR/Y7PeSUbdYXla4nSnQY2Z2ItD8HAAAgAElEQVS45CVELyF5CMlLiB5C8u3/7MXk/jpTZQR1U8UdmmM61Ev7aZCnRPus9qvGOHfgMpyqDWwkhEHbLB8mpJoiovr+8/oNhvPt9IIeG/Ncz/e17m2+ouuDDOAJgvD2ANcwihJrfs18rX/92AfCrY4pr9acDQCyjPyv9Yi1nbOX53x0ec5HauyQEYZnqay+AqGGb5jeefP2hGcdqnkASIX5blJ0xYd+GfuL7BUVJt2b33BRasetu7MV13ufgN1RnrWmwfrs1JoxmCdJqNqvmd/e+OXK2uS3myzRIgA4Kp+ZaLsxp1lxWjjMwXi0x4xsIPSRedutz++PgvbZ7Zer+aEbgyCyxIR3MOEd+c6n+4qIlNA5u/1KtdA43EsfJAH1bFW48nAgHAIcmcbjlv4DoZ/IjuihR+A9/4p87uE+0f4i4BgAwEebYFsMb0SjOCMM0/kUV49IY9pt7eW1J619uSXY093KQjtumvSvs9K+xYZqVDaWKO5c/dxUEkJtta5yU9MAAJX56R03xoU3jd31xcaPNuaGXTnlUWawy6yOZ6bW5AxDNvOFfck37c4hEFmHCzpcNBKCHhd1uKAjRB0mGghBT8JPDutPHaQc1fZtIvnlGW3XZLakTKTe/wlIkC6KZKaHj4/M22J9RaneHH4U7As/kdWhOaZNc0KQSFMLzbParxwXz22Wyib4NlSacFpLEx8Bj5MRsn97hnLzfRGr5Aiz2q+KyGH2cJ946gIAAIcfTv8nfHsnqEjonz9ajvD6rXd/0XIUAOgJ/92Fq1+tPbvWlxr5bZ6u/u7C1UdaekqJHopwmGmzdU2QSAUAQvLObvvbBMyICBLyQl3yA3syPPsLLylMuim7+Z68hsGuNwoScsPunBf3JQ/qqMm6wPVZLReldYxXW/eflhCetCXx1TBmAQBc8s/quHJUexiUVVNa6BjBruLDTBwGDIQ93CeUtvqLX4bLj4JF+TAg2ANnjvAVR2hPuIVma4b2iuTiDA/turolaJ3GDOLm+aTp2JVVFyqfn5rx5BmpP5yf/qVV5djlyQsKKgBwcMbPmo/e6pwySV8XTw+ggzyOeHXHsHR2/xapmByKD63v0BwnomoJoWyaIyzBHyaCNmk0KALzTN5L0tudHL7To5UBEWVkvcPwTpN1sj4Y+9TQzeOnbZ76QXNCitF84zFnWw1x5a39rXcgCJxoca4qrn56Su0sxkegfwRXkDGgKelxQ299hIOFxcxbrS8rzmiYHJzZcd1o+30iIKuEdqJfvcpRpdN8FSF0Hu4jHAJ+7cKgalr/nSc29ZE+clKPjUn+ryLvPRgKlS3Q4IBNNaAEtdoOeOUnePjsmK5hFHOEHJkyhGppCZD36k9+qvJSN6cDAL+guibvvVgObAgk/b3sWuXzWWnfLUteCwA4Kp6f8eVpqT+8Vn3W6tqzA4IaADbYZpyy9qWTk9cm0M6gSHs4XUikQwIVENVeXhMS6aBA+wV1irrjsuyPz0n/euyTiwJmhBhE2lRCy4yO67dYVwuoJoxZtltemN32N6XKbkJhobg1M/Zekdl2XVmOYtfeFKJO/L3oktS2p6fWDmj3U+1XnbJxaoeUcM1Rx540dR6OYgtzpj6QV0nZPvXxuFfAfALmE3A3j3t4zCMZA7qFV+rfyh9zl4M/ACyZNfwv4VHjNuuLyloFKnPTO26ZIBIQowpHJEsIPfB+hzkIETMIuHn433PuvC73CYV3N8BZvchl9s4oLo1KqBqVwzAYhcwdroL7y67b5c6N3nhl7ge3F6xB+rWEFSTsnPXP7HAVAECGtuWrI69S4z1nGw7W+Nzei96rP0mQBxH+jaTvwoz/Xpz1uZkauxmkjBAACCLH1HXgVM3ZnvCc8s5hZEtntV8TUeGZaEgA/2qw3lmR1cl2rdkn0+wr06r6sVz/2W48f/v0o6YsPWfWUjUZXX8vFzoeTvb9t+cBCCoh9OFUzdCQMA0qDmtRQUC1W60veckCAEBlvrjztgmiCzjaSKgKkbhxVOE4dInlcTfg0igc6D4hy5B/K3xzB2TF4kE5cQKhgzU+UXHZR03HR2TVCFTgpa6IdWHmFw8WrUT7tr19uvKvL1RdAAA4Inx8xI1Fxj7Veur9yU9UXvpN22I5Zu1EAKBQ7oy07y/P/k+mtjn2o4bMoAIhALRrjttl/oei9J0QXFfceduAMlTjiIfHby/PerUhKVLPcnaybVVRVTzVU7Z7RXXGOuTsC+edYNZ2C7nhkk+pv0BAmmq7t6cP8+FAOAyGGQhFlN5meUGp4UJAKrLdbQmMwELrIcHhQDhkYnnccZhJUW+OhhY6Ii/9E9d9IkaJNVFG36075Z97/urhu/5OCuWW5354SdZnN2+7fW1n1+T29NQfnpj2FI72Ms62OKeWrH9KlFEAuL1gzVV57w94bTtcBZvsRSqMVeFhLR7UEQEVFlZhrA4PaPGgCg9jIH3afEyPWhsU5GMTf7s856OZptFNeEQk1mI/pFFfssd0i/I5xffJZMej0b+VETyEJ4bwlCCeEsKTw3gCKbnUfJOKb1YLTSqhFR1zH7VvO02X78iPmMEyhPB44b7l+70aeBl5uO3s5LyLMs3dTmIavi7PtdIYLt1qfUlxiERkYZrt9vhgd/fIRLBhOnQZjsSaBOQOyz+VGndElgodDyX5vxzRq5vQHJZYGzIjIrE2cd0nWq33xdtX999Ys9VZeH/ZdRWe7MiWY62/3Tvl5TRNGwDwEn7T9ju/ajlS+dXxiRuen/kIiR3wyPby2hN/fqU1lAAA882l7yy8vZ+J42CRAPmpfd7q6rO3OKdGb59lKl+e++HR1t9H8FzRePQnyoAavV8N6qhq5ro6w8XK51TvhyqhPUikhPCUIJEcxq0RPZqDQUCihXY136wSmtVCk1po1nK1an7UO7G8An7b7gOmhidbHa9MqxLVuV8Td2QmFkT2JARHrueVZN/nyhs3hzJbE1/xE1kAgAI3vf2mSPcIjyfYzFcoXkKHGSwNKSvTm68bwoEeauoe080eSrlN5ALHilTff0b22iY47Qk3M+5PKK5+vC/k0MOnW8JjcSb3x+N4DePWPmELmx6v+NunzcdEliiztE33T33xiIQDushFGb1n540fNJyo/Lg4ftvLcx+Irl65bus9X7YsAQCG9P5vyZVWlW00rrbUNWl1zdnfti6WoHtBtUC/77bJa46ybB6NMw4JZLf5/lbtspH4KtkS/Dnb9fIYtGR83ma+amdeW5gEgCxz0iXzj5qdVYzsrxXihXCO7+0c79s9NEdYzLzFujpIpAEAJoVmdlxnZEtH+1JHmxpf2tqOOWemfc+Qh0zxYQhPqmaubdccC/tvjTzXcxmegZQ8DnOYicS4NdSXe3JOXbdKWc/U4MEb8t/5a9anBNpLAaEsI49WLH+tpqsYaFbc7tfn3qsjAgDwcdNxt26/Tdn+0pwHT0gc3bR8QyBpTe2Z/2k8PiR2V23Midt1x+TXZphG0u1swIb6vpARfEfCP/cLsHWDyBItdqiEFpXQrOZbKLGDQ81BIiWIp4SIlDBulaGXIlUEpET/V9nu1Sqhv17X4ePkiAcblxozzluQPQXZL+UpSpK95cez4Sla7L2UJoxbt1hfDeGJAIBLgVntV+m5ChmlWDJjaJYuAqquN/zVplqY7XktIfDzkP+cwbLLnftt2+Jv2xbW+NIAIEPb8ua8u9M149APN6iGegHV7TNc2mg4N6IFj0mhHPdL6d5Rke0eLyRAOkLmpqA1IKgWmnf0WJGKcLihfsjE0lA/2oxnjvD+Xde+XfeX01J+vHPyqwn0AOJbz++58Jm9Xet+UwzVby24y8trTl77ktIRUZLx1aPFz47gxfeDizO8ve+UN+rOUBo8FI61/nbb5NdzdQ0jcooh5AgjiIhqV/w/ZEDUQrOKb1YLzSqhpf8soIQQITwpiKeGiJQgkeonsp30zMgLPirzKb6Pszyvx25NPCh8ZO4+4+Ud6qMgara9ua58kvv5s5gBBOmDeMqWxFcVkS1C9MzuuIKSA0PIEcqAtehOrTFeyWFdbsPG8M4813OjV/cvAbLNOeXb1oXftC06WAjJRHlenfP3kX27ioUYc4Qygjdpz6w1Lo+YZSKylBj4Ktf9EiV0jvI1jiJ2lmkKWpuD1qagtSlgbQ5ZmgKJraGESNUeQ3rOSv3+vIz/ZWl7SuQczhEOmT+4DdOAotteXlvjS4v9bn+j9vSHy69SllJzdQ00xu5y5wFAtq7piyOvUmFjreX2cs25b9SeHt4/O8QQ6YzU72+c9FaSarjPgn5Et8cGDzW5xnh1tLgfJgfTve9neN7CpREzm+01BDpspWt++/GZzP9O1cdUvhggMrdYX1ECGCU6ZnTezKunKKLbMWJXLagy3ahkHHtgCf6U41ql4Ufm/QYAeAn/3T7tm7ZF37ctsLNMj98aSR8rksp6A42x/5yx4sSkX0fq1LEQi+h2p3pJlen6IN5dk2AKb8tzPTMG5rcjhY/XNHVFu8TmkKUpoAS/xOiVnn5AEHmuqawk46sTEtdHJoiHRbeHTCyi26PNISax9p/G4+4svUVZUFUgMf6TxdcXGsbHBLU9bH52z//9p+k4UeoqRaFQ7qKs/16d+/4hlObpCxc9o5q51k0VRbYQkjfT82aq70NMGpbIQG8hUI4Prs/yvGpgK0IiqsIG0f7hI/O2Wl/mUT0A0GLH7LbLY9TZ8pF5VaYbHPTcyBaV0GoObWjVnCKiXc3RCIgpvs+y3KupPlZoYyQgqN/Yd/rrtWe4OH2PX8XTzuOsv52Y9OvcuJ0V3pzLNj6sxEgU5LunvHJZdqxFBHX+lJ8756Sq27O1TWmaNhwZQKlgsHiowirmBhc9I7JFLTTmOZ9LCK4b2RONOBIg7+z7y0ZHcVPA2hyyRq/lxIIGD6aoO/yCusfcvZ8J4mFGlrtKb/qg8cQeG99dcPt8c5+VAe//Dnd9AADw2Llw3vwBvn8UA6FXd7QmsAkbuQmEwteti2/YdndkseLuKa9cnj3O9Wk1vrSnKi/9tm1hZIsWD16R88HynI/6yij0T5ieBAB0eEK8YtvUi2uMV/nIvMgWSrQZwzsV3zgEZGWOiEd84/ZX0sqAKbYDEkoraSQe1QEAiyfYVAujQ2BCcF2W57XhTCk8VOE2y4uKLzktOjLdqzV8g5bf19dyLovF1xivatUuk/dX5eCSL8vzeprnAxQ4Fk+oMV7Rqj0lkjrF5GCG550Mzzv9+wT1SlCk39p36uqac3qEwCRV5wmJ609IXj/TtDu6/LgpaL1k46ORvp2Lsz67b8pL/YvF1/lTVlZd8N/mpZF3RBwRUjXt2dqmLF1TlqY5S9ecrWk0UQO8nLkMpzKeXly9HPTcOsPFTlW3UAchebPdr6b6PkLkEQ63I05z0HLrjts32YsG3FOFsSnq9lRNe4qqI0Xdvv9/HQzpBQAJkF87Zr3XcPIPHfMiL76wf4J4+qTaZeZP1HB4RjhoWCpLQjWq0K5+9rmz9OZIyWSEdxfctiC+KxD2cJ+ofhoSr4F19wEAHPkw2F4e4BrGv49wCPzSOevKzQ+ERGpx/LZ/zb+rf9GZMWO7c/Lj5X+LbrTI09WvmP70oORSFQbMEQYFlZPTO1jGyeldnMHJGlyc3sEZnazBxRmcnJ5AhXx9fYG+tkC/b5Jhn4Ue1mxGRtAO9TE1zJXRC2LDB5GlhODPWZ7XdFz18L/NRU/fnrAyMpNTICSvhq/XcPUavl7D12uEOlJ0NugvqNdfpDi4AgAiC6n+j7Pdq4kDhSL9RFY1c51NvTiyhRIdWe7VKb7PYuybDonUO/WnvFJ9roPt9gROVbcvS1l7QuL6qYaqvoaum9Mt3/RgZCwda/3tuVmP9rr4v8+furLqgi+aj4peJukLA+GfYqx6qOiFvmYwPXKEMoJ2qo+qM/xVUYpRQGU+1fdRlvu1CSjmdzAfNp7w8K6r/II6eiOFcsnqjhR1R+r+UKf8f4zqUZ1h00eNx3/QcFJT0Bq93aJy3zn55VOTf5ogT6RDhVhyhAMGwoPdJ4ruhMfOBRng7g+g7PEBrmEUA6FfM18dKkNHRwZ6q7Pwth23fbDw5gGrbMaYnzrmrSi/rMqXofyIIdKl2R/fPOlf9GBSmCyZCQjSQ3TbwRo3OYo22Yt/txfX+NMGpYzDkJ7J+n0FxtpJ+rpJ+n15uvpeC3T7RwasVbus1nh5GLcOvHe/ILJkCf6Q5X5tZNszHPTcHZZnJGQgz5UoEoLr8pzP9WNf56JnVDE3eKjCyBZKtCX6v072/1fD1/d1FCuR/647+aWa82xhU2Rjmqbturx3Tkv5sVddiB5wInHLjtuV1iAAKGb2vDb379FP6oNDIILIRyRsxRGxxpfWHLT2FRrVWPjvU188N/3rg3/l1R2j9/0AABKQrbqT6/UXKQ0qXd8PkiXwQ477pdFwUxpx7CxzV+lNP7R3LYqhIF+a8/EJietT1O0JlHP4sUoCZH3nzPcbTvq+bX60auMsU/n9RaumGEbg3e5PAkemSqi6/0rvAQPhwe4TP1fA0kcAANbdB0f01OvuySGWI4yGl/AhPM3HAFFG/12/bEXFZYH976EZ2pYV056eE9ff3L9XIsFvo72o2p8+qODXDzgiHJv4+20Frw9BMU4C0q6eLyOEiNASQkpAiCgtAyaiGhmQaBmkyKopChwqhQEAk0IoCADAhLf3E0WGg5ec7KRnBYgMP5UVwDMOlmWKoOcq853PMOHtMXwr0q4+psZ0TRBPid5qZMuS/F9YA99Fm35wIvF+44kvVZW0h7t1hFPUHdfmvXtm2veDytvJMrKi4rJXas5VfkzTtL0+955sXdM+f+rKvRd80XJACDzasvGGSW9Hnr+cSNQFUmr9qbW+tBp/Wq0vdZ8/NboY5ITE9Y9N+6eR7GnXIKDqZu1ZDYaSaMNbVGaT/f9N97yrFsZCYnD4fNu28O6dNznZrqLWNE3b09OfmBW3ezTOZQubPmo6/vXaMyLzfhTkc9K/vq3g9QHXog8TIwMGQgC4Yg0UJMOb66D0MQCAybfDivMAAO58H8qfGOD7RzEQdpqvMrk/xIVhLcodurQELXfvvPGXzlnKjyjIF2Z+ccfk1w5WA++BkzX8HDhvW0fGtjZzX8GPxHiG8JpITxztiiM9JspjIj0m0hNHueJID0N6XLx+jyerwptd6cmu8mYExV508TFUPC/t6+vz355os+rhIGAmp+m8BNuLyo8snuAnMgJ4ZoDMChAZfjKLQxla7MhxrUoMfIMMRhFeQohm7Rl1xktZLC56OyaFLcGfkvz/tdmcv3TMfGPf6W2h7hCSpOq8Ju+9s9O+GfJL29t1f3lw1zVKzDOSvgXmHd+2LYoOgUstm27If2uqcYApiCwjZe7823bcWu1LV7ZYVbZ/zngiUm7AYuaKxOddaKIi5apAiJ40/4epng9JaeLalkXj4zUP7rr646bjlB8RRD4//au7C1cPeN8NkzrtFW9uNrxbuzSSPtQT/hvz37oo64sRr1r6gxHQzBFQo8H3XT/7xBIIfyrvcp+4bRkAQMJV8PM9IAMsfQQ6XxrgGg7JHOGhgiwj/2k67h+7r/Tul1FNUXc8VvzMooSe7XEBQb3JUfSbbdpvtul7fJm9Bj8Vxs5gKubElc1P2Fls2BN7GY4ESIM/udKbVenNrnBn7fFmKYp0CmosfGn2x1fkfqjF/wi9wANqjfKYAZNCaMyC5j2QAbOrFrbqltnUiyQgvUG5somvbOArGwV34ICwaqXtV+W9d17a10MrmIrmx/Z512+9p8fbDILIRyVsunHSwCEwmrBIPVq+/J36U5QxhoK8PPfDGwr/02S8oFFXEp1hVQmt6d5/J/s+x+TRDSEjyO/2abftuDVS22ml7SumP91DrGqUUPoIG23cQ7uu3mCfHtmeq/t/9s47vq3q7OPPuVN7y/KeiTNsJ87eIQlk4KRsKKOMMguU/QItowUKdAAd0JbVMsKeDTsDCIGE7B1nOPGKt2Tteed5/5DtyFvedvD3D39kWbrnWjr3Puc84/dU/i7/+faX/CgtxBMj/PPh6z9rDhO08Oy0J2Or72K7TwDAe9vgN+8CxvCXy+CS2dA1A2gIeSaNFurRoKs5DzcaIuaH9t/REqtACF+SvvaBvJdYkt/tnLjVOeVHR+F+z7jYPLQWVFR4mvHwLMv+WZYDkw3H+ssVfNSX/ZfD121sOJUEaGK9t+W+dUXmZ8PT2xw/GNECncjwAxjEikjsDmfB942zv2tcUOYx4XbBJr0anTfF97OxR0xSqUqoUAsVKrGqj7LmBz25123/Q0vEcYlt253j3ygw9LJ8+9v6Wfft+78WV15mArr2bJ3N0LTL1PIlmb7ViYEN0ZwgTmYOunN3OvN3ufJETM0wHZxtOTDZeHSYTJWIxNaFrQ2ceV3tvNVl57WIIJ6X+s0jk/6pp/s5a70zeDqZEl0EjgDA2rr5Txz6VXVMrcWypC0P5r0YlVAepQ0SqceI6qPvcPh2nxgllk+rFz9y8FY33xS0MDK+kKjg5A7SOhQkN918aK5532zr/gJ9STyJFb1jm3Pyn4uv3+c+FUdOU9XfM+HVn6VuHCAx8RFNSFKsrV3wv+ozdzYWdPjFGTXEhHR6QjpVmMMwrVteIpCUYo2GL1MLlQqxFgGmJD9CmJKDABIlhxEWSRwhME9gnpU61sutCiVeu+2JdHXdHePe6KLRWJw4ePMd+/+0tTYz+itLo0vOUJ09tnKs+zlL+Ec3r9vjmrjTmb/blX/Am8tLbTtsK0huqunITPOB2eb9haajLNHLHXb8NETMJ/wZ9RFLbSihPmKuD1tqwwkNEUv7ukwT63180j8GWYugDRGJffHEJS8e/3lLXJYl+J9nfnVt9sdDIp532jN8u09UJz9pczw3tApywwoXp//9wV9/3m6DDwAkIU3Sl8xL2DvXsneq6XDYuAIDYfSuGehTwhitrZv/9JFflgVOdZvK05+4P+8/C6wj0pkj0IkN1ttTax/ox2PucuZ/WLXs85ozgq2z8AFAQXIzzQcXWHcvsO0xJyTWalY5lTMFwtDhceKEkoNqoUIjlKr5CrVQphHKFVJdNJwpymS/LIwcyvnHjb/202M2HeA+2hzim7d287LDqdJ3u115pYG0+DOzGFIoNByN+i2mm4oHwih+XrPoN/vuav/5t2dp4o9PFv59MNtoR6m1PWj2vMtypbFP1oRsTxTf+FXtwpZnSCQvS9pyfc6Hg6+fN2zx6ZYKpNXsHkqJ2tEYYS+RoSOZ6jhYXzfv4QO32yMmAMjVVsy17p1n3TvLfCAqIx6lL1qjvUCUyfdPnv2PY1faY3L9r8z69HcFz4+4OH8/9iOsj1g+rlr64cll5YFWyaII4XHa8gUJuxdad8+wHGx/3xcIQ4DJCtJZQTozQGeF6MwwlRgrI9dTSDkSLYLU8OV99LV62YIS422x6jB2h+e1r1yl7rZ6by0ghHM0VdNMxTPMhwiQtzVO3u6cVBlM7vDFGeraxyY9149hOUGmnii+6fWy8zp7AUMKiYpGG9uYorYvtO46P21oWgF3oTX6o6Pw0YO3tpRURZlmKr5+zIfLkraMel9Oc63RAcUtodIIMUklMb26vQRkdDRMTFFJZK/eviNAveVkbrVxuYreLM+9gmazfdpM80HrcErXDEvsK6UXvHji535BHX1mpvng8zMe/amlgPMSvaF+7ocnl/3gmN6mFG+ivvTi9HUrkzf19IuTkCpIZwTprACTJRB6jAgRaQBAJHQAIBIajJBIqDGQMtAcldDd8QCBrBRrVcJJtVCuFipVwkm1UBnrUxUIHUdaeNLEkVaeNHKklSfNITrZw05uMcmkHM7wvZ3pWy0L/FNHr/1v6YUtu0CGFCbpS6aZDs0wH5pqOhyVVomlPmLZ1jh5h7Nge+OkWHdClJUpmx7Of76PMg4AUBtOuHXnwy3e+3R13TRTcZLCYVM2pijtNqUzUdE4+Ju/XiAD2lg/67+lF25tLIx9PkNde23ORxelr49tLTfK4DOAhlCkzKToRdDPWwqHgD7zMN/7KQGDAuEZGmmuRsxXSfHszzgMu4PUj37qQIiUAHJY+VcJXDLTgxx6HsPqRnajjwIABcL3J/fSFnaNTKoBgJAGRIuga9y87rGDt6ypPjP6a7LS/uKsR0ZQdTAGSqL0vQu8Y4z+XnLV6rJz22hRGhnfOanfXpy+bnAkbUVCHaQzA0xOkM4M0DlBOitMJcWzoaTkkFKsFggdT5q6VhVAWEwNrMn2vBwroLrZPu3NkxcU6g9MNxUXGEvi93DaI6btzsk7nAWf1yxq+eg0VOju8a9dlf1J1+JwXbCpYcZde+5vCaufk7rxj4V/HbYGQyRNpOzvNjew2DvmP6UXfVFzRotIJAAYGd8VWZ9flfnJsFoZ9wuNLnrtJtOOPbq8ccG50715uSGCaLsDlgkVBpKU25a0DiYjyTVaLxCfeujNPqq95dGTeLZGnKsRxyg6uOpEDAdC5NYgtStA8a2/BQbBpWZ+mV6IZ2dYyRH/tLO1/Cmbq0D4vmRuXH/bwkF2jbbn5dKL/lx8Q3Q/pCS5PxU+c07q4PXn6wt9cY0+evCW18rOb/mVRPLChF0Xp68707a17yUQfUFCyuhuMkhnR3eWISoFI6r7d3YATgx9Pcb9vEroQEwnzjZMneHi9E8U3xTbbTtff/zxyc9O7qHKoAzoH8eu+ufRK6IpoDQhPpT3wlXZHYigDh961IapPmJZXX7uOxUrY5dcKip8/4T//iL70+HmLHW66b2HNIV5AYsp3qsAY9hbrP3yG9OOfTpJOnVz1evE2VN9c6Z5CycGaLrp34zHNVrLE26p7U06k5XV7cxq7xjKgnqfhGgEyjj+kxqe+MRDb/VTsVbOTGGn2PajsdHyPK00VyMm0TIGOBoht/ipnbhlLtQAACAASURBVEEy0PpDRAAIoOVoeUrppgTOTHV6JhhgrZd+z8kIzS9RIBzBCAbGFvo1CwAIbWAoRf2/t0+/fdeD3uYKyJvGvHfvxFd6vbofNNoU1MfPk4duerm0qflztqbqorT1F6Rv6Ltzb4DAiApRKUE6K0hnhOiMAJ0VojOi/TeikHKYlZ2M6GRkNys5GMnNSC5WalQJJ7uQtatNfDi5/g99PLetjYUP7b+9xV9KAL486/N7J7yii6+SwcXp79jz2832adFfk5SOf894rBeCvYNMo/mXOt96RqiJ/y0hSfHhyWWvll1QEUhpeXKm+eBfpjw9fDJLK6oVD/8ly+WhAcBkECbmhmYW+mYW+rSaju94Dif9+TeWb7cYXO62mcaxMDQuzPPPmuKbPc1HJ03ttqD+ZQf7na/tyu+B5EiesuPT+OEY3LEavCEwquHl62FKZhfHBhjaGOErDvZbH5XIyJmMnMnKWazc3sJXcsQaN70z2MpGTVZJ5xn5XIVczRNb/NSPAaqxnUXMZGWviNovItIZeZ5WnKMR/RJ63s5WN2/vVAS+ysIv0HbgyPVK6EU7uz9EtrzyOiufycqP1yrcIgIABYHvS+r/feGQUxFIuXHHoy1CJGfYdv5j2pODVpg1mDx1+Np/H78s+nhVynd/n/bH4W/y28OTpghpo2Q/KzmHtgqel+gXjv/838cva6kzsbDuB/NfPC/1m67fuMc18dZdD9U3S/PMT9j97LQ/ngYdzbpABvRN/Zxnj/7ikHds9Bklyd0z4dVrsv835JOwolrx0F+y3Z62Fogi8fgxoSn5/in5gbFZ4ai382ip6stvzD9sN/Ax/jWEYMZk38LZnuPlqh936R3OttaRYeSp+YGfn2PPze5K0KNbQ9im+wQnwJu3wJI8WLsffv8RbH+sm/90AA1hSDlZwZUQcqcX5O+qlaVc29CelcJZCimTkRNpvDlA7Q2SLSYQARSqpPNNfA7ban5ggJIIucVPbW+382vBRstzNNJcjZgSExEUMHzoYr700C1PTVdL11k53akxYX+IfNHOepsPO4aVf50YsVIYAOoFYoBsIU+nAkIDWhUeJwFRddfu37SoAWRqal6a+fux2n5rVNvvyIQywo5ThTvtUtaevx27+tmjv4g+Pjv5h2enPTFwtZvDnIB6tia4rb+OVhFIeejA7VscpzJUC41Hx2hPaqighgppqZCWDurogJYOaqiQhgptbpz6x0M3RAWsCcC3jnvrjnFvDLkxiJOwMp/hKnrddU6UyRdPXPJsyZUtJZtTTYf/Uvh0jnbIbgJHS1W/fzorECQBQMHKBIFD4Q5EPzRqqWB8wN7IlFYqY5/XaqTlZ7iKljht1qZgM8ZwvFy1ZZf+x5362oZWMewnHw1NzuoqAN+tIWzTfeKD7fDw+XDhTHjnR7jnLQi/1s0/O2QxQgzwWI2iNELGc8tBANPU0vlGPpPt6qoQMewPkVsC1J4gFfVhGig8Wy3O6SR2GKUkQr5gZxqEJpOsI/H1Vm6aWhIwvOdk1nqbPNkI4ByjcKGRj000reOJJ+pO2cJ7k7jx/WELhzxGGIsM6G9Hrv7X8cujgR81FfrbtD8vTRzKdtJd0NMY4T+PXf7M0V9GH5+VuPX5mY+NuIqRfqSPMcIO+aR6yeOHfhVtNRwnBsb/16l/Wmzb0b9nMqD0KEbYGcf9Gfft/b+WLFmW4O8cv/r6nA8Hf2W2dbf+z/9OFwQEAAad+Ni95dnp4dJK5b5Dmr3F2kPH1GI7J1wUhGDyxMDZi52zp/kostNgU4OD2bZHt3mH/sgJtclMPvNaodXVVYywW0PYpvuEKwC3vAp1HvjVmfDSt+B6qZv/dwANoUe/Shv4npS6alomYjjJE+UcUc6R5RxRxbX9whHATI14nkFI79IEtiEko91B0kjhicp4s0nfamS/9Z1ywM7XilU8Udm8YTVS+OYErkN/9EDYwrCyAGOkihzo43H6ka9qF/7fnnujcpcI4fNSv5mgLx2jOZmtqU5V1Q+fZbtdSD0krVykeCmejIOXjl/yx8M3RB8vtu14cebvh4ls2FDhNF4+EHXNXkHzl8PXvVuxUo4j97XAUPLvGY+lqkZYh1uvdpk6vIcSG/t4HAkTr5Rd8Ncj10SaJWkmGY49NfXpXG1FX08xbn7cpf/L801W0GQQ/nBfeWZqq2Rdr4/aW6zZc1C755C2xXHK0HjBLM+qs5xdOznbUFPHVvlzCiYr1eGuFDziiRHGdp8I8aCggUBQXA2/+DfsfbKb0xhedYRRu1jRbBeTGPlcg5Dak/KGvnAgRL5kZ9uHFaeqpRutnLbz1U2sLWQR3JsUmdBJCHdEc9SXfeP2R9s0IwUAhhQyVTU52qpsTXWO5mSOtipLXR2rDzAISJjYZJ/5fuWKb+pniZhKV9ddmv7lxRnruigye6Xsgj8cvDn6eIF198uzfzcIOmE/ZYq9Y8oDqX5BHRBVQVEZlJRBUenltSFREZBUIVEZEFULE3Y9nPf80OboDgfKA6n37btnlzM/+itNiLflvnXTmPcG4ZPZ8L3x2VdSZRkBgM3KP3FfWZKt0+sCYyivUu45oEEIli506zrKsegX4jGEsd0nLnkWFo6HW5fC7ash3dzUj6ILBtAQuoyX6H3rSckzUAMMAEEZvd7IbPE3feI0gsviK67oX1sYVE4FRKhDg6Ga3yPcvP7WnQ+1KQpuD02Il2V+cVvuW4NQ7FwRSPng5PKPqpY1RMxt/kQT4rKkLZdnfD7Hsr9NI9bV5ec8cvDXUWfvXOu+/856qEedk09XHJYbrY3deZFG6Qi3/lxNcBst9ttGVga0uuy8pw5f29J1xKpwXZn52RWZn7XXuOB5gqZl1Od2pWvWWv7zTnJURz45SbjhVj7Imhs5o4fXTTcfKjQc7XtD4/aElfkSodMEu4q2/OCnjkXaRihXGoQkOibnI6b7RJkdLnkW/BFYPBGeuxroDoKbrRhJdYSDxo4A9WojoyXxr21cetz70ba2MDkyobc+0mEVI2yDKJO73Pll/rQTgfQTvvSyYGptOKFDXUoVFb4u56Mbx3wwEA2ewhL7Ze0Z71eu2OnKjx0dIayg5TDfauJnaaovy/ziorQN0fzDdyuLHth/Z/RdM80HX53zwLAt0x5kBiJGOEzY4qeOc8QlJkHVT5VnbeiXGGF7TgaTfrv/7h8dp5aeLMGfn/b1tTkfR3PWeAF98HnCh19YJQlZzUKilU9M4NOTIxmpkUQrb7Py3VpHGdCGurmlvrRdaz0Nu5tu1xFzRuW8GyS6Vf5LoqJxWfKW5YmbZ1kO9GM0pF8k1oZv94lus0aHMz4JKQjcU/22NrbwEjO/VCf0QsVt+GSNxkNIUkQboJ8IZJT60w57c2KFKI2M99bcd67M/LRfvDoipva7x31UtfSz6sWB1hLMNoXzwrT1F2V+ZzSYNpXp3q5YtcNZEPsChhTOTvohR1P196NXRYNV00zFq+f8dqBbto4g+jdrdJggYHijkf3GRwGAgcJXmvnZmv734PUxa7QLMEbvn1zxr5LLY6MSCOGFCbvOlD/c8mmwqpbt7L0GvZiWxKUkcimJnMkoGPWiQS/qtaJeK0YN5I+OwieLbzrsybEdWGM6sTn6rpAl++Tc62W608MaGe/SxK3LkzbPt+7p+3Ut0EkyYlm+oi8HGb7dJ36axNpCAEhn5Gus/OCXGEoYeiej2ncwRhvq5z5z5JpYleEUVcNd41efl/p1jxaSMqCqYNJRX9ZxX8Yxf1aJL7MskBpNr2+BQuJi246fZ3x1RsLONsl1pf60dypXflS1rI1kWpRC49E35t7f093q7gPacTkhjfo0jAGfljhE9I96RXnrMq1ClXSNhbPSgyfgEgyRjW5arxH1OrF3DkwJE+vr5r984qK97gkAQIU8SQc+1dbs7935EATWaCBMGz1UgshqKC6gbmjaywYSJ1TPvlomaQ0VSlI6bMpGG+ukCOnbhlmOGFH+KBoqtNi2fUXy5kW2HSParTKAhrA+4R6LazUldtxc7TSmjif+1sDWNJfqI4D5WvEyM6/vPN2mDT7tWYCQzrehp0PLAPtC5NdeuoYnfpcS7kIrZ6CRAX1Sdebfj111MpjU8mSutuLeia+clbi1/evdvM7F6d283snrK4KpJb6M4/7M4/70lty59mRrqi7JWHdB6oZYhUaRsjSark60P9PyDCczX9UseLti5U7XqQ1igeH4m3Pvi1PrpIU16yz/eTtZo5auOL++aImLjPsLHSlUJf8prbZXrqVhyZ4Q+UIDG5SbLI+KwKHmxyyCi8z88l45bDrEbrnZ4PuC4TsQrjternzyuQx7IwMABIH1OkmvEY0G0aAX9FrJqBeMelGnFVMTuS7SUlrYYZ/4jw8LXDtPEFLTVgxTbDB/wdJ5jjxilyJor61nqmvZ6nq2wcFIndRVd0Z2geLiK8VkdWOy0tHGUyID2u3KX1szf23d/NpwW114FRl5fc5vp5sP9Wi4KAHNPJE0Gbyf9eK9/cVojHBAkAC+9ND/czFc861SReCLTMJSvRBPOUcvYoRuEW30Ud/56RbZuWRG/l1ypItk10FAkKl3K4v+WXJFbIOnaabiPMMJN6dr5IxOzuAWdC5eL8ndhbObSVU1zDLv/3nm2unGQ+1D913UER73Z7xTufLjk0tTVA1vzb3XwPRM5Pe9TxNWf3jKN5WWwl13ae2MyUOpFNzvnDYxQgnD+y7mC0/Tpo9GcJWFm6uRPnTR67yn8isyWfk6K5fdk9KszugsRrjuO9MLb6TwcYkZg8ko5OcGJ+YG88cHM1Mj7feOO/drX3ozJbYa3Zs2xV7wM0HZJE1uYr1nJOxcbNuxMGGnmgjW25nqOra6jnU4GZeHcnuZKpfB5wNC6CA1bMUi163X1LQXxW4DxuiQd+xXdQvW1s6P7VCmpwMfLLizF2obp3kbJplQETgCeLhUmA0+ThGtbmR3BU/d4jNY+RoLl9t5dX8UjGgAhHD3y0MMcChMfu2l94ZIqd0EzmHlB5IjioHJDoifsMS+Xnbeiyd+3qGLsmuMjHeCvnystmK8rjxXW5Grq+jGmYkIGSkIudPXRCRWkKmeVnes/jDxvU876I40tcB//eV1GSkj2CkUi0yqh6TnSf/iFtFzDWxLkqGNlm+3cS1aHGUc8V8HW9HsLCUAlumFi01CHy8TmVAimUdwymfOC+iFN1LWfde0BNSoJaVC9vgoIT6jqFZJE3OD+bnBvHHBsVnhRhf90lvJ2/eekpPNSIlcfYV7n2LJa2XntojStUAieaqxeLFtx+LEHeN1ZTKgNVVnPX3kl3VhKwAgSaC4wFTl7gusnxgku8tNqVXSqrOcPXXbHvNlra2b/3rZudEmIUlKx8cL7khU9swLGP/tbuAYjREOOHuD5Gona2+e/QhgoU681MTr+rZX80noez/1rY9qaL3J1JK4UCVtaRYoL1BJ/5cYoYYoXhiLT9C8fOKiV8ouCInK9n/V0kEz6zExXgPtsyrcubqKcbrycdqKIe82hzG8/HbyJ+ss0V8njA1Ny/d/9JU1HGn62EkSr1js+sX5DQNXRDVK/BSHyX81nNJEnK6Wbkrg2mSKShi+8tIfuZiWXjRmCl9j4ab2X+jX3sg8+VzG8fKmqT4+J/TA7ZVmowAAwRDp9lJeP+X1US5P04N6B3OsVBUIduwXYRgZY9RiQVVK6YrzG1YtdUalW0RMbaib80397O/sM52cof3bk5QOLRWMjdmP1Vb+Ju8/S2z9kxh1wDPuss1PR8s8xunK359/d0+DDt3y4y59SXnb+8aKM1yJCV2ZzyAHY++G2n8BANS64eoXoMoJqSZYfTMkt1Y6GnWNDgY8hk/dzOceuqV5hZrAZ+rFSUopVym1n/tduEZ9EjocJneHyJ0BSoi5uhHAeKW0RCfOUIs0gm981CuOpujabI34axs3DEwhAICTM6ypPpMhBDPrMbHeqOUzsb7+Ejbrxw71AIAx/PO11LUbmxb1kycGfndXhYKVXR76jY9sG7434ZYvVCVdeq79nKWN1NDFZfvOiHaNYoBP3PRHrqaCJxLgUjN/tqHT/ZdDRK842AOhU9ffHI14i62d/HF8xLpG9xzSPvV8mq+5HPnsJc6brqilu8vNwRgqqhWHjqqLS9TFx9TRhg9tQAgWzXVf+/N6k6GDXE0Z0CFP7rf1szY2zDzkye1Qx8fCuu8av/qS9K/6V7ZtY8PMG3Y8Fg1wzLIceH3Ob+OXp4jHNfqP/6au39Q2VefJ35RNnthkcduIbh9/Bp75Ev6+Fuo9ELVx17wA+WnwfyvhmS/hUBW8elOrQw2gIaxNfNja+FI/VpiOdOoF4jUHc7C1cK0C4TyVPEklTVKKCS0NunRnYyAMvi+ivwZkdCRMHgkTxWGyhm/rwdEQeIFWXKIT23QYXuOmP3A1xRKW6oRrrD8J2RSBSnBYbup7LyEAECX01PPpm3c0RV/mz/Dee/PJWDtXXce+8VFiywsAwGISrrqofsk8d99Lm4eEytTnMqpvG+qz6AEYwCMhu0DYBbTFT7VcXCYK32aLq2n2Fj/1ppPxNe8gLzAJFxp7c6XUJ9xt9HxMRypf/zDxoy+s0RWSgpXvuK564ezeiIq4PVRxibq4RH24RF1aqcQYxo8J3XJ1TU5GXNU+IUmx1VH4TcPsb+tnR7UmtHTwlrHvXJO9ZoC0Iz6rWXznrt9Gre+SxO0vzvh9nLbWr10kkGaT56MuXtOtIWwjuv30FSDJgDHQVzUZwrTbYMcfIMkAdR6Y9Ts4+WyrQ426RgebbQHqzUamvZAbACTSUYsoTVRJEkZHI0RxiDwcJqvaGb8o4xTSEp04SyPSndx2Vzcy67xN68oLTfwFxp+6clX8iCJ66vn0zTubreBM772/Otnhbm/7Xt0r7yZV153Kbp08MXD95XXZ6aPlif0Jj6GOJ+wi4RCRXUB2gXCIyCEQQrvvpEAp3WLj4g89BGT0uoP5MRDtegEPJPdSFioYIp95Ma0ljGc1Cw/eXjE2qx+mgctNV9QoJk8I9CJRWZTJ3a68ve4J56V9k6joqxRq18RK2F+dveaRgn/115G7NYRtRLdbqgnRFU2GkLkKgq8CTQIvgvY64F5vdajeNbmOi4hiHMtXIHlUuaoVszVioUraFyIPhMiDYdIVI+JeLxD1XmK9lyYBcEzf4FgoBGNYKU8pzdJIKd2p3lxp4QMyiirGfeRitAQs1Z/mthATLMdkKiLH+nIQXkB/fC5jx76mO9qZ8913Xl/dWTbdrCm+aZP8X35jfnuNzR8gAWD/Yc3tD49dusB15UUNHbqwhi0hxaRhJfUOABLAgSC5LUjtCpIRuZuNNgK4wMSfb4wvHaUZDYFvsXFeCRWHSRng33b2j2lhTQ9zZ0rsY596mqytb/LBFE4M3H/ryf4KG5uMgqm3q1iKkGZZDsyyDODXujNIUQjnKuRfj3vbK2r/c+IiAHi97Dwj47tj3Bvdvl2kzBgxtFDXl3OgSVhWAC9+C95QxzX1Fi24g5CgA1cALO2S9shHLuzL6F1Rm/iQKrSXlE+r/PJ+gUKQysjT1FKRQZilkRIZDABu8ZQfAUOr1gkEQBYrz9OK5xuFa63cEp04QSnHs+BFAFPVUhlHRhNq9ofIZAYPmoj5kCBSCQ0Jd+p9a3t9hAhHPPbXrN0Hm66VlWc5b/tlNdFl4IggYFxOaMUilygRJyqUUcHi0krl2o1mWYax2eEu+tEMKypTnzN5PhjqswAAwABHw+RnHuYlO/udnz7JE2JHMn4AoCNxKoPHKaUpKulis7BQ20l/oC5BAAUqabOf4jAKy6hOIGZrenCc77cZHn8m0eNBAIAQXLTScdeN1YruksNPA3gM/21k33MyPwaozz30jiCVpd9LEqGaULokq7Y7J6Wr6iboy7o+SINiuaAp6LqH6Pa9ujb9DgHgzPnuxJiIj5qFa1+CO1bAvNxTr3n0Y4jauP0nwRuGmTnw2vegpOG86a0ONYA7QlVoPyF3lVZeXct+9KX1lqtrug0jn8akMnIqI5+tFwQMR8PkwTB5IERW8QQApDDyRIWUr5ImKGV1b3O7SYA7EyNP1iqPRwgM8LydVRO4QHXaCqMgOaIK91JuAwBCYfKRZzKLS9TRXy9c6fjlJXVxBvw0aumGy2tXLnG+8l7S1t06AAhHiDc+Slz7nfnqi+oXzR0BgUNNqAOtg0GmjCO2Bqitfqp9+CCZkZNpbKVkK42tlJxAYysts/30qRpIfFMC93SdAgPsDpIbvPSyONwn4QjxwhspX/9gBBABQKmQ77yhav6MtqLYpyV1PPGsnT3ZnF2EAap4ooonQPv59HGfc0KCLzjxqYpCnvBckrKrzbfkFTRbHFO/rp+z2TFVw0ifnNMPUu8LxgOB4PJ5Hf/1T5fCNS/Ca9+DSQ2v/artX4csRtjgYO57IqfRRU8t8D98RyVzWm9TeopHQhiDsf/yDwMS+kOtoponAEBB4AeTI/1SRHyase+w5j9vJZdXNYn9/+L8hsvO72Wq14EjmpffSio7eWoNm5sVuv6KurzctlV64QhR72Bq69k6O1PXwLo81IJZ3jNme04/2ZqucQjo+wD9o5+sb6c5YaPlORppjkYcBGfGm43MV14aAGgEj6WEu26DWlKmeur59Jby9tRk7sHbKtNPl6LSrtkRpF6yM+FmZ3UqI9cLhNjJnFUgIokRLRTmBWtjKPu4Z9IJT2GYt0lyU2R901lXpau7co2WlKvq7UybJydNCBh0Tc7n4Su67dOeqQ5u70yFNlano2B84Pd3Vyh/Ap6EOIkoxgOAInK0H4/pltAj1cpGEQGAlsQ3WDkThVkECgKzBPR6xznckEl1QDVH5/+6R+/ad1jz9se2lo0gQnDtpXUXnN0ndUCMYcMPpjc+tMXmwc+f4Z091dfQSNfZ2boGptbOtvQ1jSUxgb94pf3M+e5Bdpa49ecavZ8M5ogAcCRCrvNQu4NUm+vfSOFZanGuVswZxEWbgOGRGmW03D6FkR9PDXeovI8xfPB5wlsf28TmbeuSs5ibLi/XUM5BO9WhQsTwjpNZ25yFxyC4xsKdoRN5DKUR8miEOBYmj3NEtwFdABBEAyckiKL5hgz2POMXfTmr4Su63W0d4WsfJH7wWZNax4SxoUfvKVefvi67HjFAbZjqeOKxWoWvE/nBWKOoIfBYhTxWIY1RyAPUtmaA6GkdYRsTCAAKVr7h8toVi11dvCt+whHigy8S/veVhed7XJ9mNgoXFDnOXuxiB8tfMph1hDyGH/3UOh99snXlnobEM9TSXI04QdlDocx+ol4gHqxWRO/ji3Xi9da26X4OJ/3Mi2kHj2qiv2o10u3XVqf/7N6BaMM03HCK6Nl6xYnmr8xGy3fYuIx2KxUJQyVP/OCxflg/XqUooShf14d9rPBnOf53B+SM42MADWFAPUcVPkDIXSk2vbPG9ubHtujjMZnhx+8r02pGbSFwTBYgxHLdBJl7QRlHPFGjiHSSd9AeBJDCyLkKOVchjWHlpGHvweYkjUMqSGW6j3XtP6x5q7UJZBl55ZnOC1c6Wvwt/YXDSb/2ftKmbQbcblFB0zg5gUtO5JMTuWQbFwiQa9ZbY7eJep143vLGVWc5VX1o9RwnPu1ZPd1M9wKniL720Rt9lD/G0iGAaWppkU4oUEpDLoT0g596wd7ktbvNxsW2bdq8U//cK6ktEjCTJgTuuanKYhKCqhkKroSUTufo4P4Q+e8GNtC81etQtacN25yTr972JEG4WMbBUnajqipZe1TD1srI75Wa5DdphJ6fmKLsW6Z3Hxn6OsKPv7S+8l5S9AaRmRp54v4yg35UqmoAKQ6T3/iokIQiGIVliMgoLENIjqvztI7EYxTyWFZKY2QzhY0U7qmoN8ZwrExl1Im2ASjw37xD/8p7SQ0OhmXkaIfSxAS+6YGVT0zgGBpDRyaQYeSiJa6LV9oHdO4dK1W99T8bSeDkRD7ZxqUkcsk23mpu2zqV54l1m4wffZngcJ7yqapV0jnLGs9d1jiiV4rHIuQ6L7UrSMXq4ioJvEgrLtMLCcMpae55O7vZTwGAisBPpoWtFA5HiJfeSm6pZqNI/IsLGi5aZR/+OVB9Rwb4yMV84m76hkgEl5j4lZ2r9sTyRc0Zr5Wfd0bCroUJu/INJURzRrwE0CgQjSLyS2ggOkT2iAE0hI2mawzeTympexfTF1+bn38jJWoLU5O5J+8vM/+0S78D6tkASBMc1BS+iIwiGMISimBwiERJmDgeISv4TgPgUWgEJko2kthCYwOJTRQ2U7KBxBYKG1on+4QjxNc/GD/dYKmtZwFApZTSU7jMtEhmajgjlctKC/flFn+iQvnSm8mxtq1DTEZBpZSrYxqZMox89mLXxSvtRsPwWn6JIvpms/H9zxNicwSUCrkwzw+AwhGC5xEvEBGOECUUDJGyDMEQiRDkZodmFvpmFPqz08M9vUfXJ9yVaP9bP/8nAABwPEK80ciWtvaC2mh5mV5cpBMVcS3DBpUIRg9UKaJ1R5kiWhUiXn03qaZZNiE5kbv35qrcrFPa7i7jpdrApj4Www0VNTzRocRHFAzwmZsublbtMZD4tkRufP/1WA2ppkikXuv/rr8O2AuGi9bo+u9Nz72SEi3ASkzgn7y/bCB2DCOFAYoRdgvGsPugdsMmk9NDG3SCxSRqtYKslXxK2amUqyk5qOxQv7BjaAQWWjaTWOWn6rbqS7YZuFBXvZZMBiFqETPTItMn+fXx+SddHnr1h7avfzgl+4kQwu1dkO1gaLxisfPiVY7hXPMuSWjTNsP7nydU1XTal7EzzEZhRqF/ZqGvMC8QZ5RxIGKEfgm962I2+Voti/KU0gqDMEU1NFHAbml00aWVyl0nVF+XqMV6Vva2SmhattB14y9q2yT3ddaGaaAJyKhBQA08YaDwxJ4709ZEiQAAIABJREFUz09yxEduZncwXsfOBIX0axtn6FdB3dO8DRPPpNFCPcLx3mU2bTU881JatJOk1Sw8eX9ZcuJPVJVGJI0AKJ7NdH/hcNIbvjet/94U645rD0lipUaktZLCxhNJnJjIR6w86vwmK1WxkW1G4agKYlLIECsjALlLcWNE4LyxodlTfXOneztbEvECWrPW+v5nCS2NICgSr1zqvuhiggzXNjQyDQ6moZFucDDNj5mofj9F42WLnJetcvRarWOQwRi27NS/+4mtpbSjRzA0njQhMHOKb8Zkf4Klq/Ulx2b3Y2QaA3zro953MYFme0chmKcRV+iFrssSBh9BQNv36k5UKksrlKWVSq+v4wJrjVq67ZfV82d2EAjk6WRKdBF4oGonMIBLRHaRaOBRg0DYRdQgEA0CCsVcWamMvEIvzNOKHWa6tqGGJz5209sD8do0BLDKIFxs4vurlXELEqnHiKLEoUy4HfoYYSxbd+v/9K90UUQAYDIIT9xf/hMpyhkqRAnt2Ktb951p90FtHJuoDiAInJTIJWZETKkRRUqEtAleEtsjRM1+bWCrXqxtdeMmLQIz08NMDiBGlj205KAlOyPbGcnOyI0M7kTKIystMme6d/ZUX6zccEs4sOWZmYW+6y6rS03qYPEkA+wOUms91BEHK3ko0iBq9cJyg7BML/ZUSWsIwRgOHtX4/CTDYIaWFQqZIrFaKREEqFUSSWKlQg6FyT0HNTv26XYd0HZ4Nx+TGb7zhqqstAG/rMo44lUHWxaz3ClQSldb+GGYbyVK6MlnM2Jb/bUBMTJp41Upkccvrs8ZdE8VBvhHPbsvRLVXVe0QDYGX6MSlesHUiY2r44n/eegf/a3+PIaVu+7IuNwgTD19s/oH0BBWJz9pczzXU6f5zv3aJ5/NjDZ0pmk8Pic4JS8wOT+QmxXutnXyaYNHfw4GwuhdM3BD1NSx6783fb3Z6Gnt9rGaheULXZPyAl4f5XTRLi/ldNNuD+V00y4vHdXS7AKSxGlJnD9IOt2ndpYIQWJuKHm+C2WHGyXklTqKCMlIdlOSnZEcjFipFCsU0K4OyWblZ0/1TRwb/HS9JTYcmJESuf6Kuqn5fgAQ6MQG6+2ptQ9E/xSS0Xc+ar2XdnRkZRUEXqITiwyC8bSrXscYjpWqtu/V7dyna7OPZBn51mtqzpzfQaPH8oxXsiqvbf+8hOFohNwXIiMyymKlTFZOY+TOpN4DEnrfxXwb4ws1U/hKCz9DPbyisFEkCf3l36fU1aOolFJORiQnMzwmI2xLi/xLIjwyAIAC4bP0YpFB0LebMLW2B82ed1mutN/PcJOPesnRqWNcQ2IbhfUUPhxuVbpHIpihFlfohbExLlyHiD52MVsCrZKVJquki0z8ECps+HRLBdJqdr89VCcAwydGGMu+w5o//C0z0tp1plZJkyYEC/P8hXmBDlf9pxMDFyMURbR5p37tRvOhY+rYLSBJ4umT/Gcvdk2b5O9iwcELyOWm6x3MiXLl8QrViQple7mHWBhGXjLXc87yxtge7gIGHiMAiMggYcCAQnL0ecRjwBiKw+S3dsZ9RCMcVYulStxOaqQFnVb8xfkNKxa7WnRYWuoI6wVivZfa5KNia0VoBDM04okIaY/Jd6MQLNCKqwxCIj3sNiv9gr2R2blPu2Of7sARDd/8j69Y5LrpyhqmdaJmmxhhQEIHwuSeILk/RIZar0tIgFRWzmTkTFbOZKUMVmYRYIDvfNR7LqalLoJGUGQQzjPy8TjrBh+M4ZmX0jZuaWrSesYcz+ypvjEZ4SQbF5tndDBE/rlO0fJJMQgW64SVBsEc25NrYGKEXgndV6WM+pZ1JE6iZRuNbTE/W6Qwomu+DT7a3jqXM5uVV+iFMQr5cw+9yUfF7ukKVNKFRn7sUCuZnOYxwr5QXKL+16splTUdR0SsZmHyxMCUfH9ebtBqHhlhniHH6aa/2mj6aqO5zRYwwcIvW+hedoard5m6gSB5okLZ3i6ajMKqJc6zl7h6J8AvYNgWoNZ76dIAJZaqhCMq4bgah09ZRJLE85e4Vq2yK1WSigAEmELAEgAAFRzxlYfeF2q1aDdQ+EytcJZe1JFYwrAtQH3qoatjitwJgJka8WcGIXOYha/6kdp69olnMyqqmy6rnIzwA7dVtu/xXScQe4Lk3hBZEiGl+LbKBEASI5MIYqvjJ6ukqyz8sF1eYAzPvZq67rumcoiVZzlvvrKmszzbXUHyAxcTO2EoBPO14jkGwTaQ/+BzDey2AAUACTT+c1qo2/UEBtgbItd56OJwV16OCQrpYrMwrv8yP0c6A2gIRcpMil4EvfeHuDz0vmLN3kOafcWaDvs1A4BeJ47NDI/NDo3NCo/NDI+U9IeukUk1ABBSV1oE8XPomPqzDZZtu3ViTI4eSeKZhf7li5zTJ/n7sRAqahdDYXJmoa9ferWXcsQGL70tQPEikioVwlENf1RFJXHKZU4ivjVQJiuv0Auz23VtxAB7guQnbqZNTn++UspmZQOFzZSsJ7GZwnoKd+MRHiF4JNQQIt95M3nnVkP0GYVKOvvK2uwCf0RGEoBLVh8IcO3VPgHATOFClaQjcQVHVHBdZdsDgIXCV1q46eq47rPRFM3jFcrySmWkyxQqAmGDXjSbBLNetJgFo16wmASDXuxdc48X3kz+bL0l+njZQtft11V3fSFExbjXuJlyrtX6abZGPNcoJCoNpOxvkxsYwcgpIJ+MnALySWiBVuxR3e3eIPl0fdOq5TfJkYKeJIXW8MQ6L73ZT3GtBxynkC4yCb3ILx04ZEKFgRzaPkXD0TXaIZU1ir2HNPsOaQ8eVXdxtZiMwtjM8NjM8Jjs0Pic0AitPu4X1yjHExu3GD7/2tImRGQ0iCsWOYsWu0bQosEnoe/81Nde2hl3bxwCYJpaXGEQuy14OhQmP3HTh8OdGjsEoKewgcRGEpsonKOQzuinPnODxokI8ZWX3tlcyc7t0ofXmSH6YSJg57mVi93QziWOALJZeapaLFRJbTbKPglFLWIlT1RwRIPQ9GYawUqDcG6XvlCHkz5RoTxRoSqtUB6vULZxUfQUhMCoF0wG0WwUJk8MnL3YFY+C/6vvJX34hTX6ePFczz03nYx/ObgvRK5xM8cjp+5CCGCiOTefavBFGr0ycgnIKyOnQPCtP9GxCvmB5I7FS9sTwei+k8rohJ+vFW9O6E08KCSjjT5qg5d2iGisQr7QyA/DzjOnuWvUbrnZ5Hm/35NiRREdOaHaW6w9fExVdlIZ7Lw0Ta2Srr20bvkZrhEn/eDXLAAgtIFNvXt7XQPzxbfm9ZtMbT6cvNzgqrOcc6d7+2WvNvjIAHuC5A9+OiIDAIRlFL3hBWUEABKGiAwAiKSU81W+ZXrB2pN/8wRHfOJm9sZXUDVfK15v5TrLFhk+SBh2BqmvPPSJdmtHsVYR+iBBbna0UJlh9YUNSCMBgILA+com+9c+K6RDwjI6yRMneWKSUurQVVh2Url9t+5IqepERafFCf2CySBctNJx9hIn07lOzVv/s739vyZlx/kzvPfdcrIXvT6Kw+T/XPSRSM+cBdPV0p2JkXgmzupGZp2XBgAdif+SFu6phFMsGKCKI4ZbyUoLQfVMkTDo/euH8BziNYS1brj6BahyQqoJVt8MycYBPq/4wBhq69kTFcrjFcoT5arSSkWo3bq+cGLg9uuqfzrl+fuKNQ8/lSXHpDYoWHnRXM+qsxoHIWl+pHOSI45ESK+EXCLyScglIq+EOpQpz2bluxIjnWWoDzlBGW30Uevb7aFTGZlGoCQwAUCEicPvJjUea8q/VerFRVfXLpzon6CU+sXGixI6dEy9bY9u+x6dvbHTpCqjQRyTEc7JDOdkhLvWUxVE5HLTjW660UW73LTDSTs9dIvsZywmo3DxSseKxR2Yww8/t776flL08awpvgdur+xL2+RjEXKNmz7QyXKcRmCgsJGUGQSHmm9Ny/XCVV1WcwLACY54pFoZPa2bE7j5I80DMeKI1xBe8wLkp8H/rYRnvoRDVfDqTd2/JaScrOBKCDnc/Uv7CYyhpp49Xq48UaHasVfX0idMwcrXXFy/amnjSNka8nQqIMTwVT19o8NJ3/67sT5/04o7NYkrWuI8a4H7p9PWQyaUEXZc192ue4qIocU07g5Sm5o/Xj2J70jkhlvGQZ1ArPVQP/jp2OAQjWCeVlyua1vJjjG8vcb2zhpbNIWYJGHxXHfhxMCkiYFeyxyGwuTuA9pte3Q792s7dNhYzUJORnhMRjgnKzwmo69xfY4nHE7a5aHLTirWrLXGKkKYjMIlKx3LY8zhp+stL76ZHH08tcD/uzsr+qXRVRlHrAsmMFLASHEmEhsoHP2pizGxrzcy65tbF11u5ld2rmckYniwWhlNzJmkku5POs3XrwKdJCOW5SuG8BzIaBv7brntdXjuatAqIMsKD7wPd53d6q8RdqzApFCiCyEIK/Ml0kBJztqkh0g5gLBAyj6BSuDZbIRFAoc5JlNg0kjZj7AYVkwQKRstOjBiIsqJMqGmJI9IGjnFWEAEKQd4OplnMwkcITAXYcY0jQI4rCyQKCMlOmVSHVGMxwRLSj6JtrKWjKy04Iw8+5JlGhGzx49jjJEooV0HtPsPaybkCrR1nExqKMktkQZOMRYQScoBgU7i2azoKBybIzCplORCIIeVBRJlosRGmYiOoiAlr0hZODYHgUzIIZ5J55n06L8ZUYwX6CRatGNER5R5MqmlJLdE6jlFbutROAJzHJstMKmU5G49iio6SkA9K6KYiEBsHiWNZzJIORgzigMjKmYUHafI5UXy0T9baxtYALCYpAduq7jyl8qciSYl4UIghZX5zaMoI4oJmFCSklckTZxiDAJ8ahQcHWWcQCfTUiMGMqLMkwgdJbkkQsspxmFEkbJfoGw8m42wQOAIx2QJTBolexGWwoo8kbLQYqOMFBHlBJlQUZInOgoAkHKQp1N5NoOQQwTmI2yuwERHISLKfInUx4xCx4xyato0jzJRpKy06Gg/ikSZGs3XKsMHeTazeZTo5HQihFomp0RoOMU4jJiOJ6fkQ3BqciKSRaoJBkaVRrom63Q61lgcCMsAHEZbArSGZnIY/tTkjF4CsZMTMaTsEykrx+ZER+GZDJ5JP3UJ0Im0aI+9BJonJ9FmcjaNIrlEjB3MRDvW2SO+SkF1RE45EqEPBsXPveo3G8kyjmwxzkYKzjHw16enTzfZLLiheXJqWiZnwYTwxEz7roMGnkcYQ9lJ5Y+79f9ba920zVhRrfDjDJXRpKFOTc72l0AA0u11fPlJamvxmDc/Snz+Nev32w0V1QohJulGq8ULZnouvUi49nrmsp/VLJpVn1toS0i3aulGBHLM5IyOoiQlr0iZObb15JRjJmfzJQC01qRyWBIVWXmpK89y2/Tu8hp1KEQAQDhC7jqg3bDZRpGQlR76cmv+S681Vc3n5+Hf3scrSXf7ydl0CZyanGREmdd6cra9BFSqjMScB+fQxydR9Tb9BIvSbAE7TbaanONMmdWhQD0vA8ChMJnIsmlM0yVAiU6IuQTWeNXbAwgAWAR3p6kpVU5Hk3OiSCXQogMTbEQxsXkUI6cYC4BIOcjTKTybScjhmEug1f05dnIOzv256RIAiZBbXQJu02VB9Wxt4IemUZrvzyJlHrQMmnid9Q1esGgBAMwaaGgnMOTXLBApq407AVjw6IooyaXgSlShPQH1fBmpGKGaY3P8moV63zoq7AqqpnNsjsX5GiGHfdqlmGCUkWKJ0Hh0RQx/kuXLBTrZoyvSBLfRQn1YkR9STTG6PyIlX0AzX6BtNq4M5IhHV0SKHkXkmEiaPLoiZeQww1dFmGy/dpHOt4ESnYJh2qqbx8yf8fa/XlBGs0WKS9S3PZR1zlXjV53DWLkynk7y6IrUwR20UBdW5AVV04zeNaTk86vnCXRSAldO4qBHV0RKPkXkqEgaPLoiReQow5/k2GyfZrHO/y0lNgaVUyOKcWbXG4wc8mmXSIRWGT4oI4VHV0TztSxXKkRHCe2ihbowOyGonmH0fkJK3oB6Lk+nJPCVpCR4dEWkHFBEjkqk3qMrUkRKlNyxEDvRoyvSBTZSYmNIOSWsmGB2vcXIQZ9msUTqlJFiTLAeXREt1LNcqUAlenRFb7/0XUl5GABIirj7HmlyWsCpPodn0hL4KlLiPdqzCRw5NQp3guErOSbTp1uqDWzSiI6QcnJYkWd2v8NIQZ96kUQZFOEjmGA8uiJatCucJwTK5tEVqUJ7GaE2ohgXUM8x+L6gwu6AejbPpFsbayjgvLoVCIvKyBGJ1Hl0RSxXyvIVPJPu1S3XBn6gRXtIOTmszDe53yP5gF97hkiaFJGjGJEeXRElOhTccZG2enRFqvB+RqiJsLkBzVy99ytKcgXVszgm0+qspWTOq1sOAMrIYZnUeHRFLF/O8hU8k+bVrVCF9ur834SVk0LKSSb3+yQf8GsWipTFFjkOIHl0RZToVHAlImXx6IpUkYOMt5pjx/g1C/S+tVTYFVTN4Nhsq/AKIUZ82mUYUcpIsYTUHl0Ry1eyfLnApEzKXJmg2vBy+VGvhESMX2uAqjBbNG4+pm02rhRk3qMroiS3InJMJC0eXZEyUsx4qyNsjl9zht6/ngq5AqrpHDvG4nqdkMM+7VkyUijDhyRC7dEVMXwVy5fz0UsgtJ0W6kOK/JBqqmj/YL8nvI3jXYI/LLC8DACVAAAQzYSK9hCmAU5tTzPVhvkpsxYTWxVCnd241ENolOGDMqH06IoYoYblypomZ3DntEnfPvm05a/PiOUlp67tmjqmps60diMAMGkp4/LzcMaMKVatPVLpq/Wn1flTfbWU2250eDQ+rwTQcTvUBAs/YyY5YdHcwuxyY+igT7M4qJ7Jez9VSp6Aeg5PpybwJ0nJ69EWEXIoZnIeZ/hKjs706c7S+r/TiI6QsjCsmGh2v83w0UtArwgfxih6CTQoXM2Tk9pz9pINs4vy129J/urtQw4HAgCXC158w/b+Z2aPl4yK0E7I5X/1xEqBqABPOc9meLXLtIHvadEeUhaGlXlm97uMFPRrF4mkURE5ggnaoyuimyZngkdXpArvY4TaiCI3oJ5r8H1Jhd1B9WwAhOQIAHh1ywHLyshhmdR6dEUsVxadnD7dimuzvv9Hyb4THIEBXmoAUzJpNi8UKXNi5BgAeHRFlNjoDpR+6kIAGAAuMvFabaFHPb9pcqpnckyWVfgvIUa82mWAiJY7J8tXsHwFT6d5dWdrgj/SgYawsiCknGzyfEBy/g7vzwJp9eiKlOHiIbk/B1XTI+wYi2s1IYc5KlUitAAgEyqProgRqlmujKeTeCaTEWritFB9JF7XaPKtsO+PkKCDeg9Mewhq/jnA59V/iBL64NOEdz9LEJuDJbnZoTtvqM44vcTb1n1nevaV1OjjW6+pKVpy+nfKHlpcIvprvaIlk36cQrojkYsztSR+anhiZ5DcGaQquqwriIUEmKURVxiEnjZ2F0V0+Lj64FH1wSOaY6UqPq4eOx2TlRaZPc07Z1orVbxBRhTR15uN73+WEKvDBwC5WaHH7x+yHuA+CT1S09TUQk3g36dEUmJyXDHA4zWKoxESALJZ+dHUcLzf+ih9I15DeNXzMGsM3LoU/rkedpXBa7/q/i0u4yV633pS8vTxFPuFyhrF319OLSlTRX+lKHzpOfbzVjiUPVdViIpXnahQTp4QSEvpTU6zLKPaeiYliessZhlUTgVEqEO74jzg8XLlfY+Pid65zpzvvvvGHgcXTxskUu/VrTC53xuEsXgM/3GwW5pDhmYK35UYyeqP3LwKjtgZpHYGyZpO+tqTCDQE1pBYQ2ANCRoCa0msIbGWwJNVkrG3KTwOy43WxpcAQBDQsTLVwcOaQ8fUR06ouE5OIwpCYDQIVpNgNgoTx4bmTPO2L9IfKkQJffOD8b1mc5idHv7jb8s08RU49gi3/lxNcBstNnT7ygaBeKRGEc3AslD40dSwoXn99I2PesXBAgCJ4A8p4fad309Lwsp8idBpgj8O4Tn0IGv0mhfBHQSTGl77FSQZun9L/9YR9h1ZRmvWWt742MY3X9UUhSeODU6f5J822Z+Z2s0GMRQm9xzS7NjbSs44NYmbM907d5pvbFao20wcn5/afUC7Y792z0FtIEjqdeKMyf5ZU3xT8v1t7HGP6gh9fur2342N5gjkZISffrg0njqq05UWibVBG/FzD/2es+kTZxBcb+Xm9SrHDwOURoidQWpHkLK3243RCPKV0nS1OF4p60msHBjd3Q7bMIkiKilXHTyiLi5Rh8OE2SSYjaLVzFuMgtkoWEyCySD2ovxgMBEl9O1m45ad+rtvrIqzvVdP6ZHE2gmOeKJGGa0yzGTlh1MiCoTdIrqvShmVsltlEC4zD5fFxEBzmtcRDn7WaDzU1rP/+G/qoWNtO7hazcK0Av+0Sf7CvEBsDnddA7Njn27HPt2hY2qx82pus1GYM803Z5q3YHww9qYQzT7YtU+7Y5+upFwptxOSBgCGxgUTArOm+GYW+qKKcfFnjcoyeviprH3FGgDQaqR/PHr8p1Mo0iEDkTXaLQdC5D8b2GDzlztOIU1VS1NUUkp8K5IyjtgWoLYHqMZ2E0xJ4EKVNF0tFaqlQeheG1DP1gS3DfQopyVhZT7DVZByIM7X7w6Sf69vWv9OVkn3JEWeq2d3BikAsNHyn9Lirbs/DRgOWaPDVGt0QMEY1m40r//eeLxc1b73EEXiCWOD0woC/hC5Y5+uw4aoJqOQlRY5XKIOR9q6jLQaacZk39zpPgDYuV+7c7/W5e5AHI5hZL4jd1NORnjmVN+sQt+YzLjai7/2QeIHnyUAAELwyD3l0ycNpUzRT5l6gfhrPdvGk5lA4ykqcYpKmqCUqHbfZhlHbA9Q2wNU+84YehJPVUsz1OLEfirpG2UYst5Lv95cXjlWIUelahDAb5MjecNJAu2nwAAawvqEeyyu1ZToGKgB+ozXR+05pNm1X7fnkKal9q4zEIKcjPDMKb5ZU3w5GWGEgBfQ3kPabbt12/bqun07AJAknjAmNGOyb8YUf3py5HiFavse3fY9bbvkRDFbyOULapctdHWhKr51t/6JZzOitvwX5zdcdn738YnTHpGyNJquTrQ/M/hDh2X0op3ZFewgQKdAeJJamqKSClWSS0TbAtT2jvyfBhLP0oizNFKuYmhat1cl/ymt9jdDMfKIx2652eD7guFP9uhd7ziZz1urKC/Uijf1Sk1t5BLQzBNJk8H72RCew4jRGh1QMIaSMtXOA9rd+7THK1ptE1lGLswLzJzimznZ31nlryyj4hL11t26rbs7UNDQ68Tpk/zTJ/un5vs7jNLbG5nte7Xb9+oPHm3rfSUIPK0gsHyRc2ahv00YprqOveuRMVElnRmFvt/fVTFS5AIGlMGPEbbBJ6G9QXJfmDwQJGM7QHWBjsQz1eJsrTR+iOxfCx3GCEeJh961YcIA/2zuLwEAOhI/lR4eQc2i+4XTPEbY9+4TQ4LXR+0+qN1zUKtUSDOn+CZPCPYo96S0UvnjLv223TqKwjMKfTMm+3Ozu8+jiRKV5Ni+V7froM7vb+VkMxmFpQvdyxe6oiHAcIS4+9ExJ2sUAJBk4//+yPGBSIQbiWCgJErf7wq3vUDEcDRC7g2Se0NkQ0f9HDQknq6WZqvFPJU0TLLkBcoWT97jKO0RSVP77hPxIGD4U21TycStCdzcn56a2mnefWKUXiNKaOc+3VcbTXsOamO3pwjBlDz/8sWuzTv0P2w3AADLyM/8/sSoiOgwp1FEB0LkoTC5P0SyCGYPqf9zlOFGBKPHahRWCt+VOHohDw2jrtHhSEv5hL2RWf+9cf0mk7OjjBsAuOemqiXz3IN8esOZIXeNdk1YRhTCwzb/ZdQ12mv62KHeISCEwDJcNdwHlOHgGh3AfiiU6EJ41F/XG0g5iIEAgAQL/4sLGi47177rgParjabdB7SxBRirznKOWsG2YGk4+EU7Y4Dq//qLUb9or6EkF8K9r1yy9of29wiFkEOE5Bvacxh1jY4kPF5q0zbDuu9MlTWKgvHBJ+4vG+aFzKOMMsoow58BNIQ8k0YL9b2IHo8ikkYAREmuDv8qy2j3AW1On/vXnJZgRAt0Yi86WI0CABybzXJlQ30WIxKeTqZEF4FHg3w9RiL1GFFD68gZwGy1+oS7Bco6cMc/jfFpz/TpzursrwSBZxT6Rq1gh4iUpT7hnqE+i5FKVdKfhvoURip2yy0803ELjlG6JqCZ59GfM7TnMIAxQlVoPyGPro96AyNUAwzXhIrhDZIjqvD+oT6LkYomtHWoT2GkooocGtoCgJELLdQRcmhoz2E0RjjKKKOMMspPmgF0jfq0Z0qEZuCOfxoTUYyPKMYP9VmMSGRS7dN26lUepWvc+nOH+hRGKn7NApE0DfVZjEg4NjusLBjacxhAQ+jRr5JI3f+3d+9Bchz1HcB/0z2vnt29vffpTnd66yRLNzrJko0ehhjLNpENNilcjoMCSARsbJyqILlCeLjiVPEwSQwmpgiGCpBKKAhJqpxAkcTBlVSSKifAHxhwYhPHhX2nu9P53rs775nOH7P3kKXA3rgmfb37+xR/WDae/l771ze709Pd+V2/iTnmiMMOiE4hpZi0LZTfLDqFrGY7TouOIKvF0psitVt0Cil55t6adURsBvrQ2/K6tMIjw3+RvIa1NS1LgUSLLqrRjOgg8lEUThLXCPDVxywUHjD/edEppKRAaAQvEb6xTp2TggKxFs1o0bTIDDhHiBBCqJXl+Gh0pvMMPjTPplo4Wi0cE51CShHtmOk6KzqFrKZ6PyA6gqzmOu4KtX7RKaTkWIcqpevFZsjxRuhYowm5wkl76BcKtMFAHxKdQkqcmA4bFZ1CVlULP35l5JgjMSmJTiGlUOv39e1HyPdcAAAUe0lEQVRiM+DOMhvRz99ZBv0cuLPMa4E7y2SGO8tkthF2lsE5QoQQQi0tx0ejE5seDNW+/K7fxBbbTi203So6hZRCtXdi04OiU8jqpcHHREeQ1VTvOV/fJjqFlCql6+fac1u90Jgct1iL1E6u0Pyu38RiUgBlgxxaLhuFRmqX6BCywk+umUW0kyu66BRSSoiViF5xjo9GEUIItbQcv3ZEahfP8xtnE0toIaEF0SmkxEHFb4SZ4TfCzCLayRVNdAopJcQS/sJtrnOEHw213vyu38QWSjhHmFGk9eAcYWY4R5jZVO854WsAJFUpXT/fcYfYDDl+Y9ODcYJrJzJR4wVQ8BimLBQe4tqJzHBrusz08AKunciGxoscBL9NgnOECCGEWlqeO8uw0YSw/K7fxHBnmcwSwhx2UHQKWVULR0VHkJXLRvDUuWxCrV/4ypM89xrtOhPRjvyu38Rwr9HMYto+03VGdApZTfWcEx1BVrPtd4XagOgUUnKsQ5XSG8VmyHGOsK3yFE2q+V2/iTH/ec5xjjALElfbKk+JTiGrjsUnREeQVan6L7gnYjaG/6IaXBSbAecIEUIItTQ8oX4jcpntmHhCfRYxKS2U3yI6haxmO94uOoKsFks34wn12Xjm3ho7LDZDjjfCpdJJnD3OxjX2eGyv6BRSSmhxqXRSdApZzZffKjqCrCrFN+Dxq9n4xg7XEvy5nz6U22anWjilhxcUHuXVQPOi8ZIejtN4SXQQ+SgQ68G4Fk2JDiIlPRzTw3HRKaSkxdN6MEZ4IDqIfGhS1YMxNV4QmAHnCBFCCLW0HB+NTvWej9Se/K7fxJZKNy613SQ6hZQitXuq97zoFLIaG3hYdARZTXffG+hbRKeQUrV4Qvi8fo7LJwJ9MMFdaDOJaDsew5QNVzTciyAzX98hOoKsAm1zopiiU0gppmXh7xnl+Gg0UrtotKgAzhGuW3r0BIlrooPIh4Maq2U1mhUdREqh2qdFgld0SSqinTSpKLi78volxOJAaVIRmAHnCBFCCLW0HJ+/vTz4mQD3HMpkrv2OuY47RaeQUqj1vzz4qOgUsnph2zdFR5DVeP/HPGNYdAopLZZvmek6KzZDjnOEajSn8Di/6zcxmtR4np9RmhmP8bloZvhcNDM1nlNw7UQmJHGI6KVi+GgUIYRQS8vxa0egD3F8azSTiHbgLhXZ4Fujr4Vv4FujGQXaAL41mk1My5HaJTZDrusIz4W4jjCTpdLJpbYbRaeQEq4jfC3G+nEdYUbT3ffhOsJsqsUTC+XbxGbIcY7Qcp4hiZff9ZuYHo4D4DFMWSiJZ7nPiE4hq6LztOgIsrK8n4hdACAvLZwkiSM2A84RIoQQamk5PhqtFo4lpJDf9ZuYr2/H2ZpsElKoFo6LTiGrpRI+kM+oZl0T07LoFFIK9CHP3CM2Q443wrmOOyOsjExq1uGadUR0CinFtA2XYGY23XW36Aiymi/fHqp9olNIyWW28A+vOR7DpPDI8F/Ec0kyUCDRootqNCM6iHwUhZPENYIXRQeRksID5j8vOoWUFAiN4CXCXdFB5KNArEUzWjQtMgPOESKEEGplOT4anek8g4vhsqkWjlYLx0SnkFJEO4Rv1ySvqd4PiI4gq7mOu0KtX3QKKTnWoUrperEZcrwROtZoQnCFaRaBNoirwrPhxHTYqOgUsqpa+PErI8cciUlJdAophVq/r28XmyHHR6OeuccIfqYkfl4NNK901h03fsyAE8PXt5keTnRl4ZgHLO9HolNIyTd2boT1cDKK1C6u6Fo4KTADzhEihBBqaTk+Gp3Y9CC+T5zNYtuphbZbRaeQUqj2Tmx6UHQKWb00+JjoCLKa6j3n69tEp5BSpXT9XHtuqxcak+MWa5HayRWa3/WbWEwKoOAxTJkoVPgGvvLCT66ZRbSTK7roFFJKiJXQNrEZ8NEoQgihlpbj146EWPi1JhuuaPjpMiOFJMQSHUJWCcU9ETNKCOOAD8Cy2Ai/7nK8UY0PfDxQN+V3/SY2X759vv2tolNIKVT7xgc+ITqFrF4c+oroCLKa6PuIb+wUnUJKS203zXaeFpshxzlCPRgnPMzv+k1MjRdAwWOYslB4qAdjolPICremy0wPLxCOp85lQeNF4V+mcY4QIYRQS8tzZxk2mhCW3/WbGO4sk1lCmMMOik4hq2rhqOgIsnLZSEyKolNIKdT6ha88yXOv0a4zEe3I7/pNDPcazSym7TNdZ0SnkNVUzznREWQ1235XqA2ITiElxzpUKb1RbIYc5wiLtacpbjiUieG/iC/cZkMSp1h7WnQKWZWr3xUdQVYF5/s0XhSdQkp68DKNFsRmwDlChBBCLS3Hrx0L5TfHovcLkJTLbMc8IDqFlGJSWii/RXQKWc12vF10BFktlm6O1G7RKaTkmXtr7LDYDDneCJdKJ3H2OBvX2OOxvaJTSCmhxaXSSdEpZDVfxtWrGVWKb8DjV7PxjR2uJfhzP30ot81OtXBKDy8oPMqrgeZF4yU9HKfxkugg8lEg1oNxLZoSHURKejimh+OiU0hJi6f1YIzwQHQQ+dCkqgdjaixymhDnCBFCCLW0HB+NTnffi+cAZFMpvr5S/CXRKaQU0c7pnvtEp5AVnmCV2UzX2UDbLDqFlGqFaxdLN4vNkOPyCc8cThQjv+s3sVDtw+UT2XBieMaw6BSyckxbdARZefrOIsEty7OI1G7h53/l+Gg0UrtotKgAzhGuW3oIAIlrooPIh4Maq2U1mhUdREqh2qdFF0WnkFJEO2lSUXB35fVLiMWB0qQiMAPOESKEEGppOT5/e3nwMwHuOZTJXPsdcx13ik4hpVDrf3nwUdEpZPXCtm+KjiCr8f6P4TP5bBbLt8x0nRWbIcc5QpK4CvD8rt/ECA84xznCbDjBjf2yorwqOoKsSOIqEItOISWFh0rii86Aj0YRQgi1sBy/dgT6EFe0/K7fxCLagbtUZMMVDU+wysw3doiOIKtAG0gUU3QKKcW0LHyhXY43wqnec6Hak9/1m9hS6eRS242iU0gpUrunes+LTiGrsf6HRUeQ1XT3fYG+RXQKKVWLJxbKt4nNkOMcoeU8QxIvv+s3MT0cB1BEp5CSkniW+4zoFLIqOniCVUaW9xOxCwDkpYWTwuf1cY4QIYRQS8vx0Wi1cCzBrRYy8fXtOFuTTUIK1cJx0SlktVTCB/IZ1axrYloWnUJKgT7kmXvEZsjxRjjXcWeElZFJzTpcs46ITiGlmLbhEszMprvuFh1BVvPl24XvEyYpl9nCP7w2Okf4uSfhg18HpgMAvOsN8MjpX/yvtC9+Gw8SysbyfiI6gqxostS++G3RKWTVNY8zJRmVK/+gRjOiU0jJ9J7TyZjYDI3OEd7/VTg5Ar+C31IQQgg1l0YP5v30d+Cf/hN+68/gOz+E48PQXbrknzrWIU/fpUcTAEq1cCJSe/Rocrr73pD2gELUeDbQhxzzAIGQJlXX3OcZe7RkVuFh1XpdoG/Vw7GEsKp1NFHLWjQdqr0OOwQKUeMF39jpmvtpUiXcddhBz9ilR5OKApXCiUjr1cOJmJZr1jWcMjWaDbRBh620cpVn7FXjOcKDWuHawNimB2OJYlYLR2ParkUXI7Wnxq5ebmWHa+6nvEYS12GjnrFbj6YUSCqF6yKtTw8nYtpWs67h1FKjmUDb7LBRBSKaVDxzr2vsVeP5tBVf326EL3NiVK1jsdqhRRcjtbvGrgaFqvGCr29zzRHKHZI49VbiiwqPq8UTodavhxdiUqpZ13JqecYuxzoYqr0KxKutJAuE+zXrGl/fYYRjXNGrhZVWumrsMBBVjeeXW3FJ4jjmAc/YrUXTCkTVwvFQT1sp1qxrE1rQoplQ63fYQQUSmix55h7XuEpNFgn3a+ywb+w0onGuqNXC8Vjt1KKpiHbWrMNANDWeD/StjmkT7tGk5rIRzxjW4lcUHlULxwJtsx5eSEihar0uoUUteiXUNjnsoKJwGi95xrBrXqUmS4R7NXa1b+zUwwsAtFo4HmtdWjgV0Y6adYQruhrPBfoWx7QJ92lSc839nrFHi2cUHlYLRwN9UA/HE2JVrdcltKRFr4Rqn8MOxbS8WL6VxFXX3EeTCuFevTjDleLs1qPJmLbXrCOcGGo8t1ycwWpxxivFuUUPx5eLs22lOBVFofHilYpzol6cao8eTdaLk5hqfIXiTIdArXBtfQgoZrVQHwJXKM56K2lxTirAK4XrlodA25ohsNlho2kry8V5yRCoF2d9CHSvtqJvd82R2a5fL1X/dc0QiFeHwHJxqtFMoA04bPSS4kyHQKPF6by6OFeHQHGllSsVZzoEjvj6jjXF2aFFF9cW59oh4DJ7TXHWh0BC1xZn//9RnIfrxamsLc7OmnV4uTi3rhYnG3ml+249HFfj+Wrh2HJxFlaLsz4EgMaLnrF7pTiXh8AEAKkWjqfFWR8C9eLc4pj2cnHuXy3OwtFAH1odAvXi7FspTk/f5Zr76mVzpd/Py0PAFP77ebbzdLX4+oLz/Vf9fg7UATWey+O2d7lG5wiv3g6fuBOmPg832/CeL736n3rGbpfZoFBQFJfZnjkMAA476LIDgTYIACHtcZkd0Q4ACIxtLrPTxace2+ey/QDAFd1ltq9vB4CYtrvMTh+4B9qAy+yYtgGAZ+xymc0VlXMlrW8ASIjlMjvQhgAgUrtdZqdrMwN9q8tsThgAuMZVjjECAFzRXGan76FEpOwyO9T6ASDU+l1mx6QNAPx6KxoAuMxOZ3HTVvxLWukBAF/b4jI7IRYAuPoel9kAwBXVZbZv7ASAmK5tJf1ZygDg6ztcZiegAYBj2q6+tpUtgTboGcMusyO1GwACfchldvrmkWcOu8wGRVn+WXYBQEzaXGYH6gAAhNoml9kRbQcA39juMpsTHQBcNuIaVwEAJ8xldqBvBYBI7XKZHWk9ABBogy6z43ore1xmc07Sn8VLW6FtLrPT/WNDrc9ldqx2AICvb3eZzRUDAFxzv8f2AUBCTJfZgbENACLa6TI7pL0AEGibXWbHpAgAfv1nIaAQl9mesRsAElpymR3qmwEgVF/dSlo2rrnPNfcBQKKYq2WjdqT/osNGQ2PQZXZCiwCQ9uRKK745DAAxKbrMXi7O3pXiXG7FAACP7XfNtDiNV7ei9a38LAktrQwBDirnZKVsYlJwmZ0u8I+0dAh0AkCgp0MgLc59LhsBAE50l9mevgMAonQIaJsAIFA3XzYEtOWBlpZN2sqWleIMaQ8A+PrW1eI09qZHLCWgXVacAytDoGodBQDf2Okym5P6EHCNvZcNgZ6V4vS1IZfZ6XkpadkAACeXt7I60CKSFueOlYHmGCOXtFIvzu7VIaCtGQLGsMtszutD4JLiTIeA2veq/6BcSYfAftdIy2bNEKgX5+VDYHmggeoy29N3rSnOy4fAtho7nP7HXVOcadmkQ6DDZXao9gJAqG9eKU7f3H1pcaZDoLhmCPS6zI7T4bymOK/YytriXNvKFX8/14tzI/x+ZqM1dvXlv59DYxD+v/y8R6N7H4DnJwEA1v5/Kh703wfVL//iS3vmHiP4mfBN5GSUFhkeiJMBJ4avbzO950UHkZJjHrC8H4lOISXf2LkR1sPJKFK7uKJr4aTADA3NEfohHPgQfOs8DPfDX38PHnsS/vmj+UdDCCGE8tfQo1FDg0ffAXd8Fvb/Nvzxd+HLjb1iPbHpQXyfOJvFtlMLbbeKTiGlUO2d2PSg6BSyemnwMdERZDXVey59PonWq1K6fq69sXdVctPo8olTo3BqdH2XjtROrtB1J0IAMSmAgscwZaJQ4Rv4ygs/uWYW0c50JhKtV0KshLaJzYBbrCGEEGppOX7tSIiFX2uy4YqGny4zUkj6niTKIH35E2WQEMYBH4BlsRF+3eW5xVr7nel70mi9atbhmnVYdAopRaQ81/GrolPICrdYy2yhfHuk9YpOISWXjVSLgrdYw0ejCCGEWho+ukQIIdTS8EaIEEKopeGNECGEUEvDGyFCCKGWhjdChBBCLQ1vhAghhFpaLjfCiXm46ZOw9wG48RMwMZ9HC82p5sPA++t/jX3YoGfH4fhDsOscHPwQ/PsLANh163FhHm74OAyfh93n4IkfAGDvrdPT/w3W2fpfY9c16HNPQuEsdN8D3ffA+a8BbICuy+VG+OG/gDcdgOf+EE4dhI98M48WmtCnvgW7zsHkQv2P2IcNevcX4Xdugxc+DR++Hd71BQDsuvV4+G/h1Cj89BH40/fBPX8CgL23Hs9PwseeADeo/xG7rkHPTcCfvx9mHoeZx+GR0wAboOtyuRE+9SycPgEA8Pbj8NSzebTQhB64Fcb+aPWP2IcNesd19e3gD26FJAHArluPu2+A994ATgALDvS0AWDvNWxqAe7/KnzlntW/g13XoOcm4FPfguK74brfg+cmADZA1zV6+sS6XFyE7hIAQFcRLi7m0UITopd+JsE+bND9NwPn8OSP4UPfgM++EwC7bj3sIQCAXefgfy7C338QAHuvMVUP3vkF+PxZ6F1zagJ2XYOu3g6/fACu3Qmf/g6850vwb78rvuty+UbYXYL5GgDAXLX+46H1wj5s0CtLcNsj8MQP4G/Owy0HAbDr1qPmA+fwX38A3/hNuPfLANh7jXnhIvzjj2H4PCinAQCU0/CzV7DrGvX7vwY37IeiCR+4BX74EsAGqLpcboQ3jsBf/gcAwF99D24ayaOF5od92KC7Pgf33wyfPwuDnfW/g13XuLc9Ct94GjQKQ53gRwDYe405uBX41+r/AwD+NdjWg13XED+EPQ/ATycBAJ78ERzZAbABqi6XTbcn5uHM4zBfg84CfPV90I9HUDRMOV0fWtiHjVh0oP290FVc/Tszj2PXrcOz4/AbX4KZCmgUHn0HvOkA9t664Zhdr797Bj74dYgT6G+HL74HdvSK7zo8fQIhhFBLwwX1CCGEWhreCBFCCLU0vBEihBBqaXgjRAgh1NLwRogQQqil4Y0QIYRQS/tfSe2YknkkoUkAAAAASUVORK5CYII=",
"image/svg+xml": [],
"text/plain": [
"Plot{Plots.GadflyPackage() n=10}"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# or just use distinguishable colors when the background isn't a shade of gray\n",
"cols = distinguishable_colors(20,colorant\"orange\")[2:end]\n",
"plot(Plots.fakedata(50,10)/3 .+ reverse(1:10)', l=(3, new_pick_colors(cols,20)'), bg=:orange)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Julia 0.4.0-rc4",
"language": "julia",
"name": "julia-0.4"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "0.4.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}