Plots.jl/src/recipes.jl
2016-10-10 07:02:10 -04:00

796 lines
20 KiB
Julia

"""
You can easily define your own plotting recipes with convenience methods:
```
@userplot type GroupHist
args
end
@recipe function f(gh::GroupHist)
# set some attributes, add some series, using gh.args as input
end
# now you can plot like:
grouphist(rand(1000,4))
```
"""
macro userplot(expr)
_userplot(expr)
end
function _userplot(expr::Expr)
if expr.head != :type
errror("Must call userplot on a type/immutable expression. Got: $expr")
end
typename = expr.args[2]
funcname = Symbol(lowercase(string(typename)))
funcname2 = Symbol(funcname, "!")
# return a code block with the type definition and convenience plotting methods
esc(quote
$expr
export $funcname, $funcname2
$funcname(args...; kw...) = plot($typename(args); kw...)
$funcname2(args...; kw...) = plot!($typename(args); kw...)
end)
end
function _userplot(sym::Symbol)
_userplot(:(type $sym
args
end))
end
# ----------------------------------------------------------------------------------
const _series_recipe_deps = Dict()
function series_recipe_dependencies(st::Symbol, deps::Symbol...)
_series_recipe_deps[st] = deps
end
function seriestype_supported(st::Symbol)
seriestype_supported(backend(), st)
end
# returns :no, :native, or :recipe depending on how it's supported
function seriestype_supported(pkg::AbstractBackend, st::Symbol)
# is it natively supported
if is_seriestype_supported(pkg, st)
return :native
end
haskey(_series_recipe_deps, st) || return :no
supported = true
for dep in _series_recipe_deps[st]
if seriestype_supported(pkg, dep) == :no
supported = false
end
end
supported ? :recipe : :no
end
macro deps(st, args...)
:(Plots.series_recipe_dependencies($(quot(st)), $(map(quot, args)...)))
end
# get a list of all seriestypes
function all_seriestypes()
sts = Set{Symbol}(keys(_series_recipe_deps))
for bsym in backends()
btype = _backendType[bsym]
sts = union(sts, Set{Symbol}(supported_seriestypes(btype())))
end
sort(collect(sts))
end
# ----------------------------------------------------------------------------------
num_series(x::AMat) = size(x,2)
num_series(x) = 1
RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T"))
# ---------------------------------------------------------------------------
# for seriestype `line`, need to sort by x values
@recipe function f(::Type{Val{:line}}, x, y, z)
indices = sortperm(x)
x := x[indices]
y := y[indices]
if typeof(z) <: AVec
z := z[indices]
end
seriestype := :path
()
end
@deps line path
function hvline_limits(axis::Axis)
vmin, vmax = axis_limits(axis)
if vmin >= vmax
if isfinite(vmin)
vmax = vmin + 1
else
vmin, vmax = 0.0, 1.1
end
end
vmin, vmax
end
@recipe function f(::Type{Val{:hline}}, x, y, z)
xmin, xmax = hvline_limits(d[:subplot][:xaxis])
n = length(y)
newx = repmat(Float64[xmin, xmax, NaN], n)
newy = vec(Float64[yi for i=1:3,yi=y])
x := newx
y := newy
seriestype := :path
()
end
@deps hline path
@recipe function f(::Type{Val{:vline}}, x, y, z)
ymin, ymax = hvline_limits(d[:subplot][:yaxis])
n = length(y)
newx = vec(Float64[yi for i=1:3,yi=y])
newy = repmat(Float64[ymin, ymax, NaN], n)
x := newx
y := newy
seriestype := :path
()
end
@deps vline path
# ---------------------------------------------------------------------------
# steps
function make_steps(x, y, st)
n = length(x)
n == 0 && return zeros(0),zeros(0)
newx, newy = zeros(2n-1), zeros(2n-1)
for i=1:n
idx = 2i-1
newx[idx] = x[i]
newy[idx] = y[i]
if i > 1
newx[idx-1] = x[st == :steppre ? i-1 : i]
newy[idx-1] = y[st == :steppre ? i : i-1]
end
end
newx, newy
end
# create a path from steps
@recipe function f(::Type{Val{:steppre}}, x, y, z)
d[:x], d[:y] = make_steps(x, y, :steppre)
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps steppre path scatter
# create a path from steps
@recipe function f(::Type{Val{:steppost}}, x, y, z)
d[:x], d[:y] = make_steps(x, y, :steppost)
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps steppost path scatter
# ---------------------------------------------------------------------------
# sticks
# create vertical line segments from fill
@recipe function f(::Type{Val{:sticks}}, x, y, z)
n = length(x)
fr = d[:fillrange]
if fr == nothing
yaxis = d[:subplot][:yaxis]
fr = if yaxis[:scale] == :identity
0.0
else
min(axis_limits(yaxis)[1], minimum(y))
end
end
newx, newy = zeros(3n), zeros(3n)
for i=1:n
rng = 3i-2:3i
newx[rng] = [x[i], x[i], NaN]
newy[rng] = [cycle(fr,i), y[i], NaN]
end
x := newx
y := newy
fillrange := nothing
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps sticks path scatter
# ---------------------------------------------------------------------------
# bezier curves
# get the value of the curve point at position t
function bezier_value(pts::AVec, t::Real)
val = 0.0
n = length(pts)-1
for (i,p) in enumerate(pts)
val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1)
end
val
end
# create segmented bezier curves in place of line segments
@recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30)
args = z != nothing ? (x,y,z) : (x,y)
newx, newy = zeros(0), zeros(0)
fr = d[:fillrange]
newfr = fr != nothing ? zeros(0) : nothing
newz = z != nothing ? zeros(0) : nothing
# lz = d[:line_z]
# newlz = lz != nothing ? zeros(0) : nothing
# for each line segment (point series with no NaNs), convert it into a bezier curve
# where the points are the control points of the curve
for rng in iter_segments(args...)
length(rng) < 2 && continue
ts = linspace(0, 1, npoints)
nanappend!(newx, map(t -> bezier_value(cycle(x,rng), t), ts))
nanappend!(newy, map(t -> bezier_value(cycle(y,rng), t), ts))
if z != nothing
nanappend!(newz, map(t -> bezier_value(cycle(z,rng), t), ts))
end
if fr != nothing
nanappend!(newfr, map(t -> bezier_value(cycle(fr,rng), t), ts))
end
# if lz != nothing
# lzrng = cycle(lz, rng) # the line_z's for this segment
# push!(newlz, 0.0)
# append!(newlz, map(t -> lzrng[1+floor(Int, t * (length(rng)-1))], ts))
# end
end
x := newx
y := newy
if z == nothing
seriestype := :path
else
seriestype := :path3d
z := newz
end
if fr != nothing
fillrange := newfr
end
# if lz != nothing
# # line_z := newlz
# linecolor := (isa(d[:linecolor], ColorGradient) ? d[:linecolor] : cgrad())
# end
# Plots.DD(d)
()
end
@deps curves path
# ---------------------------------------------------------------------------
# create a bar plot as a filled step function
@recipe function f(::Type{Val{:bar}}, x, y, z)
nx, ny = length(x), length(y)
axis = d[:subplot][isvertical(d) ? :xaxis : :yaxis]
cv = [discrete_value!(axis, xi)[1] for xi=x]
x = if nx == ny
cv
elseif nx == ny + 1
0.5diff(cv) + cv[1:end-1]
else
error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))")
end
# compute half-width of bars
bw = d[:bar_width]
hw = if bw == nothing
0.5mean(diff(x))
else
Float64[0.5cycle(bw,i) for i=1:length(x)]
end
# make fillto a vector... default fills to 0
fillto = d[:fillrange]
if fillto == nothing
fillto = 0
end
# create the bar shapes by adding x/y segments
xseg, yseg = Segments(), Segments()
for i=1:ny
center = x[i]
hwi = cycle(hw,i)
yi = y[i]
fi = cycle(fillto,i)
push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi)
push!(yseg, yi, fi, fi, yi, yi)
end
# widen limits out a bit
expand_extrema!(axis, widen(extrema(xseg.pts)...))
# switch back
if !isvertical(d)
xseg, yseg = yseg, xseg
end
# reset orientation
orientation := default(:orientation)
x := xseg.pts
y := yseg.pts
seriestype := :shape
()
end
@deps bar shape
# ---------------------------------------------------------------------------
# Histograms
# edges from number of bins
function calc_edges(v, bins::Integer)
vmin, vmax = extrema(v)
linspace(vmin, vmax, bins+1)
end
# just pass through arrays
calc_edges(v, bins::AVec) = bins
# find the bucket index of this value
function bucket_index(vi, edges)
for (i,e) in enumerate(edges)
if vi <= e
return max(1,i-1)
end
end
return length(edges)-1
end
function my_hist(v, bins; normed = false, weights = nothing)
edges = calc_edges(v, bins)
counts = zeros(length(edges)-1)
# add a weighted count
for (i,vi) in enumerate(v)
idx = bucket_index(vi, edges)
counts[idx] += (weights == nothing ? 1.0 : weights[i])
end
# normalize by bar area?
norm_denom = normed ? sum(diff(edges) .* counts) : 1.0
if norm_denom == 0
norm_denom = 1.0
end
edges, counts ./ norm_denom
end
@recipe function f(::Type{Val{:histogram}}, x, y, z)
edges, counts = my_hist(y, d[:bins],
normed = d[:normalize],
weights = d[:weights])
x := edges
y := counts
seriestype := :bar
()
end
@deps histogram bar
# ---------------------------------------------------------------------------
# Histogram 2D
# if tuple, map out bins, otherwise use the same for both
calc_edges_2d(x, y, bins) = calc_edges(x, bins), calc_edges(y, bins)
calc_edges_2d{X,Y}(x, y, bins::Tuple{X,Y}) = calc_edges(x, bins[1]), calc_edges(y, bins[2])
# the 2D version
function my_hist_2d(x, y, bins; normed = false, weights = nothing)
xedges, yedges = calc_edges_2d(x, y, bins)
counts = zeros(length(yedges)-1, length(xedges)-1)
# add a weighted count
for i=1:length(x)
r = bucket_index(y[i], yedges)
c = bucket_index(x[i], xedges)
counts[r,c] += (weights == nothing ? 1.0 : weights[i])
end
# normalize to cubic area of the imaginary surface towers
norm_denom = normed ? sum((diff(yedges) * diff(xedges)') .* counts) : 1.0
if norm_denom == 0
norm_denom = 1.0
end
xedges, yedges, counts ./ norm_denom
end
centers(v::AVec) = 0.5 * (v[1:end-1] + v[2:end])
@recipe function f(::Type{Val{:histogram2d}}, x, y, z)
xedges, yedges, counts = my_hist_2d(x, y, d[:bins],
normed = d[:normalize],
weights = d[:weights])
for (i,c) in enumerate(counts)
if c == 0
counts[i] = NaN
end
end
x := centers(xedges)
y := centers(yedges)
z := Surface(counts)
linewidth := 0
seriestype := :heatmap
()
end
@deps histogram2d heatmap
# ---------------------------------------------------------------------------
# scatter 3d
@recipe function f(::Type{Val{:scatter3d}}, x, y, z)
seriestype := :path3d
if d[:markershape] == :none
markershape := :circle
end
linewidth := 0
linealpha := 0
()
end
# note: don't add dependencies because this really isn't a drop-in replacement
# ---------------------------------------------------------------------------
# contourf - filled contours
@recipe function f(::Type{Val{:contourf}}, x, y, z)
fillrange := true
seriestype := :contour
()
end
# ---------------------------------------------------------------------------
# Error Bars
function error_style!(d::KW)
d[:seriestype] = :path
d[:linecolor] = d[:markerstrokecolor]
d[:linewidth] = d[:markerstrokewidth]
d[:label] = ""
end
# if we're passed a tuple of vectors, convert to a vector of tuples
function error_zipit(ebar)
if istuple(ebar)
collect(zip(ebar...))
else
ebar
end
end
function error_coords(xorig, yorig, ebar)
# init empty x/y, and zip errors if passed Tuple{Vector,Vector}
x, y = zeros(0), zeros(0)
# for each point, create a line segment from the bottom to the top of the errorbar
for i = 1:max(length(xorig), length(yorig))
xi = cycle(xorig, i)
yi = cycle(yorig, i)
ebi = cycle(ebar, i)
nanappend!(x, [xi, xi])
e1, e2 = if istuple(ebi)
first(ebi), last(ebi)
elseif isscalar(ebi)
ebi, ebi
else
error("unexpected ebi type $(typeof(ebi)) for errorbar: $ebi")
end
nanappend!(y, [yi - e1, yi + e2])
end
x, y
end
# we will create a series of path segments, where each point represents one
# side of an errorbar
@recipe function f(::Type{Val{:yerror}}, x, y, z)
error_style!(d)
markershape := :hline
d[:x], d[:y] = error_coords(d[:x], d[:y], error_zipit(d[:yerror]))
()
end
@deps yerror path
@recipe function f(::Type{Val{:xerror}}, x, y, z)
error_style!(d)
markershape := :vline
d[:y], d[:x] = error_coords(d[:y], d[:x], error_zipit(d[:xerror]))
()
end
@deps xerror path
# TODO: move quiver to PlotRecipes
# ---------------------------------------------------------------------------
# quiver
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
function quiver_using_arrows(d::KW)
d[:label] = ""
d[:seriestype] = :path
if !isa(d[:arrow], Arrow)
d[:arrow] = arrow()
end
velocity = error_zipit(d[:quiver])
xorig, yorig = d[:x], d[:y]
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
x, y = zeros(0), zeros(0)
for i = 1:max(length(xorig), length(yorig))
# get the starting position
xi = cycle(xorig, i)
yi = cycle(yorig, i)
# get the velocity
vi = cycle(velocity, i)
vx, vy = if istuple(vi)
first(vi), last(vi)
elseif isscalar(vi)
vi, vi
elseif isa(vi,Function)
vi(xi, yi)
else
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
end
# add the points
nanappend!(x, [xi, xi+vx, NaN])
nanappend!(y, [yi, yi+vy, NaN])
end
d[:x], d[:y] = x, y
# KW[d]
end
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
function quiver_using_hack(d::KW)
d[:label] = ""
d[:seriestype] = :shape
velocity = error_zipit(d[:quiver])
xorig, yorig = d[:x], d[:y]
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
pts = P2[]
for i = 1:max(length(xorig), length(yorig))
# get the starting position
xi = cycle(xorig, i)
yi = cycle(yorig, i)
p = P2(xi, yi)
# get the velocity
vi = cycle(velocity, i)
vx, vy = if istuple(vi)
first(vi), last(vi)
elseif isscalar(vi)
vi, vi
elseif isa(vi,Function)
vi(xi, yi)
else
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
end
v = P2(vx, vy)
dist = norm(v)
arrow_h = 0.1dist # height of arrowhead
arrow_w = 0.5arrow_h # halfwidth of arrowhead
U1 = v ./ dist # vector of arrowhead height
U2 = P2(-U1[2], U1[1]) # vector of arrowhead halfwidth
U1 *= arrow_h
U2 *= arrow_w
ppv = p+v
nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1])
end
d[:x], d[:y] = Plots.unzip(pts[2:end])
# KW[d]
end
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
@recipe function f(::Type{Val{:quiver}}, x, y, z)
if :arrow in supported_attrs()
quiver_using_arrows(d)
else
quiver_using_hack(d)
end
()
end
@deps quiver shape path
# -------------------------------------------------
# TODO: move OHLC to PlotRecipes finance.jl
type OHLC{T<:Real}
open::T
high::T
low::T
close::T
end
Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...)
# Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close)
# get one OHLC path
function get_xy(o::OHLC, x, xdiff)
xl, xm, xr = x-xdiff, x, x+xdiff
ox = [xl, xm, NaN,
xm, xm, NaN,
xm, xr]
oy = [o.open, o.open, NaN,
o.low, o.high, NaN,
o.close, o.close]
ox, oy
end
# get the joined vector
function get_xy(v::AVec{OHLC}, x = 1:length(v))
xdiff = 0.3mean(abs(diff(x)))
x_out, y_out = zeros(0), zeros(0)
for (i,ohlc) in enumerate(v)
ox,oy = get_xy(ohlc, x[i], xdiff)
nanappend!(x_out, ox)
nanappend!(y_out, oy)
end
x_out, y_out
end
# these are for passing in a vector of OHLC objects
# TODO: when I allow `@recipe f(::Type{T}, v::T) = ...` definitions to replace convertToAnyVector,
# then I should replace these with one definition to convert to a vector of 4-tuples
# to squash ambiguity warnings...
@recipe f(x::AVec{Function}, v::AVec{OHLC}) = error()
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) = error()
# this must be OHLC?
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) = x, OHLC[OHLC(t...) for t in ohlc]
@recipe function f(x::AVec, v::AVec{OHLC})
seriestype := :path
get_xy(v, x)
end
@recipe function f(v::AVec{OHLC})
seriestype := :path
get_xy(v)
end
# the series recipe, when passed vectors of 4-tuples
# -------------------------------------------------
# TODO: everything below here should be either changed to a
# series recipe or moved to PlotRecipes
# "Sparsity plot... heatmap of non-zero values of a matrix"
# function spy{T<:Real}(z::AMat{T}; kw...)
# mat = map(zi->float(zi!=0), z)'
# xn, yn = size(mat)
# heatmap(mat; leg=false, yflip=true, aspect_ratio=:equal,
# xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5),
# kw...)
# end
# Only allow matrices through, and make it seriestype :spy so the backend can
# optionally handle it natively.
@userplot Spy
@recipe function f(g::Spy)
@assert length(g.args) == 1 && typeof(g.args[1]) <: AbstractMatrix
seriestype := :spy
mat = g.args[1]
n,m = size(mat)
Plots.SliceIt, 1:m, 1:n, Surface(mat)
end
@recipe function f(::Type{Val{:spy}}, x,y,z)
yflip := true
aspect_ratio := 1
rs, cs, zs = findnz(z.surf)
xlim := extrema(cs)
ylim := extrema(rs)
if d[:markershape] == :none
markershape := :circle
end
if d[:markersize] == default(:markersize)
markersize := 1
end
markerstrokewidth := 0
marker_z := zs
label := ""
x := cs
y := rs
z := nothing
seriestype := :scatter
()
end
# -------------------------------------------------
"Adds a+bx... straight line over the current plot"
function abline!(plt::Plot, a, b; kw...)
plot!(plt, [extrema(plt)...], x -> b + a*x; kw...)
end
abline!(args...; kw...) = abline!(current(), args...; kw...)
# -------------------------------------------------
# Dates
@recipe function f{T<:Union{Date,DateTime}}(::Type{T}, dt::T)
dt -> convert(Int,dt), dt -> string(convert(Date, dt))
end