796 lines
20 KiB
Julia
796 lines
20 KiB
Julia
|
|
|
|
|
|
"""
|
|
You can easily define your own plotting recipes with convenience methods:
|
|
|
|
```
|
|
@userplot type GroupHist
|
|
args
|
|
end
|
|
|
|
@recipe function f(gh::GroupHist)
|
|
# set some attributes, add some series, using gh.args as input
|
|
end
|
|
|
|
# now you can plot like:
|
|
grouphist(rand(1000,4))
|
|
```
|
|
"""
|
|
macro userplot(expr)
|
|
_userplot(expr)
|
|
end
|
|
|
|
function _userplot(expr::Expr)
|
|
if expr.head != :type
|
|
errror("Must call userplot on a type/immutable expression. Got: $expr")
|
|
end
|
|
|
|
typename = expr.args[2]
|
|
funcname = Symbol(lowercase(string(typename)))
|
|
funcname2 = Symbol(funcname, "!")
|
|
|
|
# return a code block with the type definition and convenience plotting methods
|
|
esc(quote
|
|
$expr
|
|
export $funcname, $funcname2
|
|
$funcname(args...; kw...) = plot($typename(args); kw...)
|
|
$funcname2(args...; kw...) = plot!($typename(args); kw...)
|
|
end)
|
|
end
|
|
|
|
function _userplot(sym::Symbol)
|
|
_userplot(:(type $sym
|
|
args
|
|
end))
|
|
end
|
|
|
|
|
|
# ----------------------------------------------------------------------------------
|
|
|
|
const _series_recipe_deps = Dict()
|
|
|
|
function series_recipe_dependencies(st::Symbol, deps::Symbol...)
|
|
_series_recipe_deps[st] = deps
|
|
end
|
|
|
|
function seriestype_supported(st::Symbol)
|
|
seriestype_supported(backend(), st)
|
|
end
|
|
|
|
# returns :no, :native, or :recipe depending on how it's supported
|
|
function seriestype_supported(pkg::AbstractBackend, st::Symbol)
|
|
# is it natively supported
|
|
if is_seriestype_supported(pkg, st)
|
|
return :native
|
|
end
|
|
|
|
haskey(_series_recipe_deps, st) || return :no
|
|
|
|
supported = true
|
|
for dep in _series_recipe_deps[st]
|
|
if seriestype_supported(pkg, dep) == :no
|
|
supported = false
|
|
end
|
|
end
|
|
supported ? :recipe : :no
|
|
end
|
|
|
|
macro deps(st, args...)
|
|
:(Plots.series_recipe_dependencies($(quot(st)), $(map(quot, args)...)))
|
|
end
|
|
|
|
# get a list of all seriestypes
|
|
function all_seriestypes()
|
|
sts = Set{Symbol}(keys(_series_recipe_deps))
|
|
for bsym in backends()
|
|
btype = _backendType[bsym]
|
|
sts = union(sts, Set{Symbol}(supported_seriestypes(btype())))
|
|
end
|
|
sort(collect(sts))
|
|
end
|
|
|
|
|
|
# ----------------------------------------------------------------------------------
|
|
|
|
num_series(x::AMat) = size(x,2)
|
|
num_series(x) = 1
|
|
|
|
RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T"))
|
|
|
|
# ---------------------------------------------------------------------------
|
|
|
|
|
|
# for seriestype `line`, need to sort by x values
|
|
@recipe function f(::Type{Val{:line}}, x, y, z)
|
|
indices = sortperm(x)
|
|
x := x[indices]
|
|
y := y[indices]
|
|
if typeof(z) <: AVec
|
|
z := z[indices]
|
|
end
|
|
seriestype := :path
|
|
()
|
|
end
|
|
@deps line path
|
|
|
|
|
|
function hvline_limits(axis::Axis)
|
|
vmin, vmax = axis_limits(axis)
|
|
if vmin >= vmax
|
|
if isfinite(vmin)
|
|
vmax = vmin + 1
|
|
else
|
|
vmin, vmax = 0.0, 1.1
|
|
end
|
|
end
|
|
vmin, vmax
|
|
end
|
|
|
|
@recipe function f(::Type{Val{:hline}}, x, y, z)
|
|
xmin, xmax = hvline_limits(d[:subplot][:xaxis])
|
|
n = length(y)
|
|
newx = repmat(Float64[xmin, xmax, NaN], n)
|
|
newy = vec(Float64[yi for i=1:3,yi=y])
|
|
x := newx
|
|
y := newy
|
|
seriestype := :path
|
|
()
|
|
end
|
|
@deps hline path
|
|
|
|
@recipe function f(::Type{Val{:vline}}, x, y, z)
|
|
ymin, ymax = hvline_limits(d[:subplot][:yaxis])
|
|
n = length(y)
|
|
newx = vec(Float64[yi for i=1:3,yi=y])
|
|
newy = repmat(Float64[ymin, ymax, NaN], n)
|
|
x := newx
|
|
y := newy
|
|
seriestype := :path
|
|
()
|
|
end
|
|
@deps vline path
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# steps
|
|
|
|
function make_steps(x, y, st)
|
|
n = length(x)
|
|
n == 0 && return zeros(0),zeros(0)
|
|
newx, newy = zeros(2n-1), zeros(2n-1)
|
|
for i=1:n
|
|
idx = 2i-1
|
|
newx[idx] = x[i]
|
|
newy[idx] = y[i]
|
|
if i > 1
|
|
newx[idx-1] = x[st == :steppre ? i-1 : i]
|
|
newy[idx-1] = y[st == :steppre ? i : i-1]
|
|
end
|
|
end
|
|
newx, newy
|
|
end
|
|
|
|
# create a path from steps
|
|
@recipe function f(::Type{Val{:steppre}}, x, y, z)
|
|
d[:x], d[:y] = make_steps(x, y, :steppre)
|
|
seriestype := :path
|
|
|
|
# create a secondary series for the markers
|
|
if d[:markershape] != :none
|
|
@series begin
|
|
seriestype := :scatter
|
|
x := x
|
|
y := y
|
|
label := ""
|
|
primary := false
|
|
()
|
|
end
|
|
markershape := :none
|
|
end
|
|
()
|
|
end
|
|
@deps steppre path scatter
|
|
|
|
# create a path from steps
|
|
@recipe function f(::Type{Val{:steppost}}, x, y, z)
|
|
d[:x], d[:y] = make_steps(x, y, :steppost)
|
|
seriestype := :path
|
|
|
|
# create a secondary series for the markers
|
|
if d[:markershape] != :none
|
|
@series begin
|
|
seriestype := :scatter
|
|
x := x
|
|
y := y
|
|
label := ""
|
|
primary := false
|
|
()
|
|
end
|
|
markershape := :none
|
|
end
|
|
()
|
|
end
|
|
@deps steppost path scatter
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# sticks
|
|
|
|
# create vertical line segments from fill
|
|
@recipe function f(::Type{Val{:sticks}}, x, y, z)
|
|
n = length(x)
|
|
fr = d[:fillrange]
|
|
if fr == nothing
|
|
yaxis = d[:subplot][:yaxis]
|
|
fr = if yaxis[:scale] == :identity
|
|
0.0
|
|
else
|
|
min(axis_limits(yaxis)[1], minimum(y))
|
|
end
|
|
end
|
|
newx, newy = zeros(3n), zeros(3n)
|
|
for i=1:n
|
|
rng = 3i-2:3i
|
|
newx[rng] = [x[i], x[i], NaN]
|
|
newy[rng] = [cycle(fr,i), y[i], NaN]
|
|
end
|
|
x := newx
|
|
y := newy
|
|
fillrange := nothing
|
|
seriestype := :path
|
|
|
|
# create a secondary series for the markers
|
|
if d[:markershape] != :none
|
|
@series begin
|
|
seriestype := :scatter
|
|
x := x
|
|
y := y
|
|
label := ""
|
|
primary := false
|
|
()
|
|
end
|
|
markershape := :none
|
|
end
|
|
()
|
|
end
|
|
@deps sticks path scatter
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# bezier curves
|
|
|
|
# get the value of the curve point at position t
|
|
function bezier_value(pts::AVec, t::Real)
|
|
val = 0.0
|
|
n = length(pts)-1
|
|
for (i,p) in enumerate(pts)
|
|
val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1)
|
|
end
|
|
val
|
|
end
|
|
|
|
# create segmented bezier curves in place of line segments
|
|
@recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30)
|
|
args = z != nothing ? (x,y,z) : (x,y)
|
|
newx, newy = zeros(0), zeros(0)
|
|
fr = d[:fillrange]
|
|
newfr = fr != nothing ? zeros(0) : nothing
|
|
newz = z != nothing ? zeros(0) : nothing
|
|
# lz = d[:line_z]
|
|
# newlz = lz != nothing ? zeros(0) : nothing
|
|
|
|
# for each line segment (point series with no NaNs), convert it into a bezier curve
|
|
# where the points are the control points of the curve
|
|
for rng in iter_segments(args...)
|
|
length(rng) < 2 && continue
|
|
ts = linspace(0, 1, npoints)
|
|
nanappend!(newx, map(t -> bezier_value(cycle(x,rng), t), ts))
|
|
nanappend!(newy, map(t -> bezier_value(cycle(y,rng), t), ts))
|
|
if z != nothing
|
|
nanappend!(newz, map(t -> bezier_value(cycle(z,rng), t), ts))
|
|
end
|
|
if fr != nothing
|
|
nanappend!(newfr, map(t -> bezier_value(cycle(fr,rng), t), ts))
|
|
end
|
|
# if lz != nothing
|
|
# lzrng = cycle(lz, rng) # the line_z's for this segment
|
|
# push!(newlz, 0.0)
|
|
# append!(newlz, map(t -> lzrng[1+floor(Int, t * (length(rng)-1))], ts))
|
|
# end
|
|
end
|
|
|
|
x := newx
|
|
y := newy
|
|
if z == nothing
|
|
seriestype := :path
|
|
else
|
|
seriestype := :path3d
|
|
z := newz
|
|
end
|
|
if fr != nothing
|
|
fillrange := newfr
|
|
end
|
|
# if lz != nothing
|
|
# # line_z := newlz
|
|
# linecolor := (isa(d[:linecolor], ColorGradient) ? d[:linecolor] : cgrad())
|
|
# end
|
|
# Plots.DD(d)
|
|
()
|
|
end
|
|
@deps curves path
|
|
|
|
# ---------------------------------------------------------------------------
|
|
|
|
# create a bar plot as a filled step function
|
|
@recipe function f(::Type{Val{:bar}}, x, y, z)
|
|
nx, ny = length(x), length(y)
|
|
axis = d[:subplot][isvertical(d) ? :xaxis : :yaxis]
|
|
cv = [discrete_value!(axis, xi)[1] for xi=x]
|
|
x = if nx == ny
|
|
cv
|
|
elseif nx == ny + 1
|
|
0.5diff(cv) + cv[1:end-1]
|
|
else
|
|
error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))")
|
|
end
|
|
|
|
# compute half-width of bars
|
|
bw = d[:bar_width]
|
|
hw = if bw == nothing
|
|
0.5mean(diff(x))
|
|
else
|
|
Float64[0.5cycle(bw,i) for i=1:length(x)]
|
|
end
|
|
|
|
# make fillto a vector... default fills to 0
|
|
fillto = d[:fillrange]
|
|
if fillto == nothing
|
|
fillto = 0
|
|
end
|
|
|
|
# create the bar shapes by adding x/y segments
|
|
xseg, yseg = Segments(), Segments()
|
|
for i=1:ny
|
|
center = x[i]
|
|
hwi = cycle(hw,i)
|
|
yi = y[i]
|
|
fi = cycle(fillto,i)
|
|
push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi)
|
|
push!(yseg, yi, fi, fi, yi, yi)
|
|
end
|
|
|
|
# widen limits out a bit
|
|
expand_extrema!(axis, widen(extrema(xseg.pts)...))
|
|
|
|
# switch back
|
|
if !isvertical(d)
|
|
xseg, yseg = yseg, xseg
|
|
end
|
|
|
|
|
|
# reset orientation
|
|
orientation := default(:orientation)
|
|
|
|
x := xseg.pts
|
|
y := yseg.pts
|
|
seriestype := :shape
|
|
()
|
|
end
|
|
@deps bar shape
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# Histograms
|
|
|
|
# edges from number of bins
|
|
function calc_edges(v, bins::Integer)
|
|
vmin, vmax = extrema(v)
|
|
linspace(vmin, vmax, bins+1)
|
|
end
|
|
|
|
# just pass through arrays
|
|
calc_edges(v, bins::AVec) = bins
|
|
|
|
# find the bucket index of this value
|
|
function bucket_index(vi, edges)
|
|
for (i,e) in enumerate(edges)
|
|
if vi <= e
|
|
return max(1,i-1)
|
|
end
|
|
end
|
|
return length(edges)-1
|
|
end
|
|
|
|
function my_hist(v, bins; normed = false, weights = nothing)
|
|
edges = calc_edges(v, bins)
|
|
counts = zeros(length(edges)-1)
|
|
|
|
# add a weighted count
|
|
for (i,vi) in enumerate(v)
|
|
idx = bucket_index(vi, edges)
|
|
counts[idx] += (weights == nothing ? 1.0 : weights[i])
|
|
end
|
|
|
|
# normalize by bar area?
|
|
norm_denom = normed ? sum(diff(edges) .* counts) : 1.0
|
|
if norm_denom == 0
|
|
norm_denom = 1.0
|
|
end
|
|
|
|
edges, counts ./ norm_denom
|
|
end
|
|
|
|
|
|
@recipe function f(::Type{Val{:histogram}}, x, y, z)
|
|
edges, counts = my_hist(y, d[:bins],
|
|
normed = d[:normalize],
|
|
weights = d[:weights])
|
|
x := edges
|
|
y := counts
|
|
seriestype := :bar
|
|
()
|
|
end
|
|
@deps histogram bar
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# Histogram 2D
|
|
|
|
# if tuple, map out bins, otherwise use the same for both
|
|
calc_edges_2d(x, y, bins) = calc_edges(x, bins), calc_edges(y, bins)
|
|
calc_edges_2d{X,Y}(x, y, bins::Tuple{X,Y}) = calc_edges(x, bins[1]), calc_edges(y, bins[2])
|
|
|
|
# the 2D version
|
|
function my_hist_2d(x, y, bins; normed = false, weights = nothing)
|
|
xedges, yedges = calc_edges_2d(x, y, bins)
|
|
counts = zeros(length(yedges)-1, length(xedges)-1)
|
|
|
|
# add a weighted count
|
|
for i=1:length(x)
|
|
r = bucket_index(y[i], yedges)
|
|
c = bucket_index(x[i], xedges)
|
|
counts[r,c] += (weights == nothing ? 1.0 : weights[i])
|
|
end
|
|
|
|
# normalize to cubic area of the imaginary surface towers
|
|
norm_denom = normed ? sum((diff(yedges) * diff(xedges)') .* counts) : 1.0
|
|
if norm_denom == 0
|
|
norm_denom = 1.0
|
|
end
|
|
|
|
xedges, yedges, counts ./ norm_denom
|
|
end
|
|
|
|
centers(v::AVec) = 0.5 * (v[1:end-1] + v[2:end])
|
|
|
|
@recipe function f(::Type{Val{:histogram2d}}, x, y, z)
|
|
xedges, yedges, counts = my_hist_2d(x, y, d[:bins],
|
|
normed = d[:normalize],
|
|
weights = d[:weights])
|
|
for (i,c) in enumerate(counts)
|
|
if c == 0
|
|
counts[i] = NaN
|
|
end
|
|
end
|
|
x := centers(xedges)
|
|
y := centers(yedges)
|
|
z := Surface(counts)
|
|
linewidth := 0
|
|
seriestype := :heatmap
|
|
()
|
|
end
|
|
@deps histogram2d heatmap
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# scatter 3d
|
|
|
|
@recipe function f(::Type{Val{:scatter3d}}, x, y, z)
|
|
seriestype := :path3d
|
|
if d[:markershape] == :none
|
|
markershape := :circle
|
|
end
|
|
linewidth := 0
|
|
linealpha := 0
|
|
()
|
|
end
|
|
|
|
# note: don't add dependencies because this really isn't a drop-in replacement
|
|
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# contourf - filled contours
|
|
|
|
@recipe function f(::Type{Val{:contourf}}, x, y, z)
|
|
fillrange := true
|
|
seriestype := :contour
|
|
()
|
|
end
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# Error Bars
|
|
|
|
function error_style!(d::KW)
|
|
d[:seriestype] = :path
|
|
d[:linecolor] = d[:markerstrokecolor]
|
|
d[:linewidth] = d[:markerstrokewidth]
|
|
d[:label] = ""
|
|
end
|
|
|
|
# if we're passed a tuple of vectors, convert to a vector of tuples
|
|
function error_zipit(ebar)
|
|
if istuple(ebar)
|
|
collect(zip(ebar...))
|
|
else
|
|
ebar
|
|
end
|
|
end
|
|
|
|
function error_coords(xorig, yorig, ebar)
|
|
# init empty x/y, and zip errors if passed Tuple{Vector,Vector}
|
|
x, y = zeros(0), zeros(0)
|
|
|
|
# for each point, create a line segment from the bottom to the top of the errorbar
|
|
for i = 1:max(length(xorig), length(yorig))
|
|
xi = cycle(xorig, i)
|
|
yi = cycle(yorig, i)
|
|
ebi = cycle(ebar, i)
|
|
nanappend!(x, [xi, xi])
|
|
e1, e2 = if istuple(ebi)
|
|
first(ebi), last(ebi)
|
|
elseif isscalar(ebi)
|
|
ebi, ebi
|
|
else
|
|
error("unexpected ebi type $(typeof(ebi)) for errorbar: $ebi")
|
|
end
|
|
nanappend!(y, [yi - e1, yi + e2])
|
|
end
|
|
x, y
|
|
end
|
|
|
|
# we will create a series of path segments, where each point represents one
|
|
# side of an errorbar
|
|
@recipe function f(::Type{Val{:yerror}}, x, y, z)
|
|
error_style!(d)
|
|
markershape := :hline
|
|
d[:x], d[:y] = error_coords(d[:x], d[:y], error_zipit(d[:yerror]))
|
|
()
|
|
end
|
|
@deps yerror path
|
|
|
|
@recipe function f(::Type{Val{:xerror}}, x, y, z)
|
|
error_style!(d)
|
|
markershape := :vline
|
|
d[:y], d[:x] = error_coords(d[:y], d[:x], error_zipit(d[:xerror]))
|
|
()
|
|
end
|
|
@deps xerror path
|
|
|
|
|
|
# TODO: move quiver to PlotRecipes
|
|
|
|
# ---------------------------------------------------------------------------
|
|
# quiver
|
|
|
|
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
|
|
function quiver_using_arrows(d::KW)
|
|
d[:label] = ""
|
|
d[:seriestype] = :path
|
|
if !isa(d[:arrow], Arrow)
|
|
d[:arrow] = arrow()
|
|
end
|
|
|
|
velocity = error_zipit(d[:quiver])
|
|
xorig, yorig = d[:x], d[:y]
|
|
|
|
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
|
|
x, y = zeros(0), zeros(0)
|
|
for i = 1:max(length(xorig), length(yorig))
|
|
# get the starting position
|
|
xi = cycle(xorig, i)
|
|
yi = cycle(yorig, i)
|
|
|
|
# get the velocity
|
|
vi = cycle(velocity, i)
|
|
vx, vy = if istuple(vi)
|
|
first(vi), last(vi)
|
|
elseif isscalar(vi)
|
|
vi, vi
|
|
elseif isa(vi,Function)
|
|
vi(xi, yi)
|
|
else
|
|
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
|
|
end
|
|
|
|
# add the points
|
|
nanappend!(x, [xi, xi+vx, NaN])
|
|
nanappend!(y, [yi, yi+vy, NaN])
|
|
end
|
|
|
|
d[:x], d[:y] = x, y
|
|
# KW[d]
|
|
end
|
|
|
|
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
|
|
function quiver_using_hack(d::KW)
|
|
d[:label] = ""
|
|
d[:seriestype] = :shape
|
|
|
|
velocity = error_zipit(d[:quiver])
|
|
xorig, yorig = d[:x], d[:y]
|
|
|
|
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
|
|
pts = P2[]
|
|
for i = 1:max(length(xorig), length(yorig))
|
|
|
|
# get the starting position
|
|
xi = cycle(xorig, i)
|
|
yi = cycle(yorig, i)
|
|
p = P2(xi, yi)
|
|
|
|
# get the velocity
|
|
vi = cycle(velocity, i)
|
|
vx, vy = if istuple(vi)
|
|
first(vi), last(vi)
|
|
elseif isscalar(vi)
|
|
vi, vi
|
|
elseif isa(vi,Function)
|
|
vi(xi, yi)
|
|
else
|
|
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
|
|
end
|
|
v = P2(vx, vy)
|
|
|
|
dist = norm(v)
|
|
arrow_h = 0.1dist # height of arrowhead
|
|
arrow_w = 0.5arrow_h # halfwidth of arrowhead
|
|
U1 = v ./ dist # vector of arrowhead height
|
|
U2 = P2(-U1[2], U1[1]) # vector of arrowhead halfwidth
|
|
U1 *= arrow_h
|
|
U2 *= arrow_w
|
|
|
|
ppv = p+v
|
|
nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1])
|
|
end
|
|
|
|
d[:x], d[:y] = Plots.unzip(pts[2:end])
|
|
# KW[d]
|
|
end
|
|
|
|
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
|
|
@recipe function f(::Type{Val{:quiver}}, x, y, z)
|
|
if :arrow in supported_attrs()
|
|
quiver_using_arrows(d)
|
|
else
|
|
quiver_using_hack(d)
|
|
end
|
|
()
|
|
end
|
|
@deps quiver shape path
|
|
|
|
|
|
# -------------------------------------------------
|
|
|
|
# TODO: move OHLC to PlotRecipes finance.jl
|
|
|
|
type OHLC{T<:Real}
|
|
open::T
|
|
high::T
|
|
low::T
|
|
close::T
|
|
end
|
|
Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...)
|
|
# Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close)
|
|
|
|
# get one OHLC path
|
|
function get_xy(o::OHLC, x, xdiff)
|
|
xl, xm, xr = x-xdiff, x, x+xdiff
|
|
ox = [xl, xm, NaN,
|
|
xm, xm, NaN,
|
|
xm, xr]
|
|
oy = [o.open, o.open, NaN,
|
|
o.low, o.high, NaN,
|
|
o.close, o.close]
|
|
ox, oy
|
|
end
|
|
|
|
# get the joined vector
|
|
function get_xy(v::AVec{OHLC}, x = 1:length(v))
|
|
xdiff = 0.3mean(abs(diff(x)))
|
|
x_out, y_out = zeros(0), zeros(0)
|
|
for (i,ohlc) in enumerate(v)
|
|
ox,oy = get_xy(ohlc, x[i], xdiff)
|
|
nanappend!(x_out, ox)
|
|
nanappend!(y_out, oy)
|
|
end
|
|
x_out, y_out
|
|
end
|
|
|
|
# these are for passing in a vector of OHLC objects
|
|
# TODO: when I allow `@recipe f(::Type{T}, v::T) = ...` definitions to replace convertToAnyVector,
|
|
# then I should replace these with one definition to convert to a vector of 4-tuples
|
|
|
|
# to squash ambiguity warnings...
|
|
@recipe f(x::AVec{Function}, v::AVec{OHLC}) = error()
|
|
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) = error()
|
|
|
|
# this must be OHLC?
|
|
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) = x, OHLC[OHLC(t...) for t in ohlc]
|
|
|
|
@recipe function f(x::AVec, v::AVec{OHLC})
|
|
seriestype := :path
|
|
get_xy(v, x)
|
|
end
|
|
|
|
@recipe function f(v::AVec{OHLC})
|
|
seriestype := :path
|
|
get_xy(v)
|
|
end
|
|
|
|
# the series recipe, when passed vectors of 4-tuples
|
|
|
|
# -------------------------------------------------
|
|
|
|
# TODO: everything below here should be either changed to a
|
|
# series recipe or moved to PlotRecipes
|
|
|
|
|
|
# "Sparsity plot... heatmap of non-zero values of a matrix"
|
|
# function spy{T<:Real}(z::AMat{T}; kw...)
|
|
# mat = map(zi->float(zi!=0), z)'
|
|
# xn, yn = size(mat)
|
|
# heatmap(mat; leg=false, yflip=true, aspect_ratio=:equal,
|
|
# xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5),
|
|
# kw...)
|
|
# end
|
|
|
|
# Only allow matrices through, and make it seriestype :spy so the backend can
|
|
# optionally handle it natively.
|
|
|
|
@userplot Spy
|
|
|
|
@recipe function f(g::Spy)
|
|
@assert length(g.args) == 1 && typeof(g.args[1]) <: AbstractMatrix
|
|
seriestype := :spy
|
|
mat = g.args[1]
|
|
n,m = size(mat)
|
|
Plots.SliceIt, 1:m, 1:n, Surface(mat)
|
|
end
|
|
|
|
@recipe function f(::Type{Val{:spy}}, x,y,z)
|
|
yflip := true
|
|
aspect_ratio := 1
|
|
rs, cs, zs = findnz(z.surf)
|
|
xlim := extrema(cs)
|
|
ylim := extrema(rs)
|
|
if d[:markershape] == :none
|
|
markershape := :circle
|
|
end
|
|
if d[:markersize] == default(:markersize)
|
|
markersize := 1
|
|
end
|
|
markerstrokewidth := 0
|
|
marker_z := zs
|
|
label := ""
|
|
x := cs
|
|
y := rs
|
|
z := nothing
|
|
seriestype := :scatter
|
|
()
|
|
end
|
|
|
|
# -------------------------------------------------
|
|
|
|
"Adds a+bx... straight line over the current plot"
|
|
function abline!(plt::Plot, a, b; kw...)
|
|
plot!(plt, [extrema(plt)...], x -> b + a*x; kw...)
|
|
end
|
|
|
|
abline!(args...; kw...) = abline!(current(), args...; kw...)
|
|
|
|
|
|
# -------------------------------------------------
|
|
# Dates
|
|
|
|
@recipe function f{T<:Union{Date,DateTime}}(::Type{T}, dt::T)
|
|
dt -> convert(Int,dt), dt -> string(convert(Date, dt))
|
|
end
|