545 lines
20 KiB
Julia
545 lines
20 KiB
Julia
|
|
# create a new "build_series_args" which converts all inputs into xs = Any[xitems], ys = Any[yitems].
|
|
# Special handling for: no args, xmin/xmax, parametric, dataframes
|
|
# Then once inputs have been converted, build the series args, map functions, etc.
|
|
# This should cut down on boilerplate code and allow more focused dispatch on type
|
|
# note: returns meta information... mainly for use with automatic labeling from DataFrames for now
|
|
|
|
typealias FuncOrFuncs @compat(Union{Function, AVec{Function}})
|
|
|
|
all3D(d::KW) = trueOrAllTrue(st -> st in (:contour, :heatmap, :surface, :wireframe, :contour3d), get(d, :seriestype, :none))
|
|
|
|
# missing
|
|
convertToAnyVector(v::@compat(Void), d::KW) = Any[nothing], nothing
|
|
|
|
# fixed number of blank series
|
|
convertToAnyVector(n::Integer, d::KW) = Any[zeros(0) for i in 1:n], nothing
|
|
|
|
# numeric vector
|
|
convertToAnyVector{T<:Number}(v::AVec{T}, d::KW) = Any[v], nothing
|
|
|
|
# string vector
|
|
convertToAnyVector{T<:@compat(AbstractString)}(v::AVec{T}, d::KW) = Any[v], nothing
|
|
|
|
# numeric matrix
|
|
function convertToAnyVector{T<:Number}(v::AMat{T}, d::KW)
|
|
if all3D(d)
|
|
Any[Surface(v)]
|
|
else
|
|
Any[v[:,i] for i in 1:size(v,2)]
|
|
end, nothing
|
|
end
|
|
|
|
# other matrix... vector of columns
|
|
function convertToAnyVector(m::AMat, d::KW)
|
|
Any[begin
|
|
v = vec(m[:,i])
|
|
length(v) == 1 ? v[1] : v
|
|
end for i=1:size(m,2)], nothing
|
|
end
|
|
|
|
# function
|
|
convertToAnyVector(f::Function, d::KW) = Any[f], nothing
|
|
|
|
# surface
|
|
convertToAnyVector(s::Surface, d::KW) = Any[s], nothing
|
|
|
|
# # vector of OHLC
|
|
# convertToAnyVector(v::AVec{OHLC}, d::KW) = Any[v], nothing
|
|
|
|
# dates
|
|
convertToAnyVector{D<:Union{Date,DateTime}}(dts::AVec{D}, d::KW) = Any[dts], nothing
|
|
|
|
# list of things (maybe other vectors, functions, or something else)
|
|
function convertToAnyVector(v::AVec, d::KW)
|
|
if all(x -> typeof(x) <: Number, v)
|
|
# all real numbers wrap the whole vector as one item
|
|
Any[convert(Vector{Float64}, v)], nothing
|
|
else
|
|
# something else... treat each element as an item
|
|
vcat(Any[convertToAnyVector(vi, d)[1] for vi in v]...), nothing
|
|
# Any[vi for vi in v], nothing
|
|
end
|
|
end
|
|
|
|
|
|
function convertToAnyVector(args...)
|
|
error("No recipes could handle the argument types: $(map(typeof, args[1:end-1]))")
|
|
end
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
# TODO: can we avoid the copy here? one error that crops up is that mapping functions over the same array
|
|
# result in that array being shared. push!, etc will add too many items to that array
|
|
|
|
compute_x(x::Void, y::Void, z) = 1:size(z,1)
|
|
compute_x(x::Void, y, z) = 1:size(y,1)
|
|
compute_x(x::Function, y, z) = map(x, y)
|
|
compute_x(x, y, z) = copy(x)
|
|
|
|
# compute_y(x::Void, y::Function, z) = error()
|
|
compute_y(x::Void, y::Void, z) = 1:size(z,2)
|
|
compute_y(x, y::Function, z) = map(y, x)
|
|
compute_y(x, y, z) = copy(y)
|
|
|
|
compute_z(x, y, z::Function) = map(z, x, y)
|
|
compute_z(x, y, z::AbstractMatrix) = Surface(z)
|
|
compute_z(x, y, z::Void) = nothing
|
|
compute_z(x, y, z) = copy(z)
|
|
|
|
@noinline function compute_xyz(x, y, z)
|
|
x = compute_x(x,y,z)
|
|
y = compute_y(x,y,z)
|
|
z = compute_z(x,y,z)
|
|
x, y, z
|
|
end
|
|
|
|
# not allowed
|
|
compute_xyz(x::Void, y::FuncOrFuncs, z) = error("If you want to plot the function `$y`, you need to define the x values!")
|
|
compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the function `$z`, you need to define x and y values!")
|
|
compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!")
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
# # create n=max(mx,my) series arguments. the shorter list is cycled through
|
|
# # note: everything should flow through this
|
|
# function build_series_args(plt::AbstractPlot, kw::KW) #, idxfilter)
|
|
# x, y, z = map(sym -> pop!(kw, sym, nothing), (:x, :y, :z))
|
|
# if nothing == x == y == z
|
|
# return [], nothing, nothing
|
|
# end
|
|
#
|
|
# xs, xmeta = convertToAnyVector(x, kw)
|
|
# ys, ymeta = convertToAnyVector(y, kw)
|
|
# zs, zmeta = convertToAnyVector(z, kw)
|
|
#
|
|
# fr = pop!(kw, :fillrange, nothing)
|
|
# fillranges, _ = if typeof(fr) <: Number
|
|
# ([fr],nothing)
|
|
# else
|
|
# convertToAnyVector(fr, kw)
|
|
# end
|
|
#
|
|
# mx = length(xs)
|
|
# my = length(ys)
|
|
# mz = length(zs)
|
|
# ret = Any[]
|
|
# for i in 1:max(mx, my, mz)
|
|
#
|
|
# # try to set labels using ymeta
|
|
# d = copy(kw)
|
|
# if !haskey(d, :label) && ymeta != nothing
|
|
# if isa(ymeta, Symbol)
|
|
# d[:label] = string(ymeta)
|
|
# elseif isa(ymeta, AVec{Symbol})
|
|
# d[:label] = string(ymeta[mod1(i,length(ymeta))])
|
|
# end
|
|
# end
|
|
#
|
|
# # build the series arg dict
|
|
# numUncounted = pop!(d, :numUncounted, 0)
|
|
# commandIndex = i + numUncounted
|
|
# n = plt.n + i
|
|
#
|
|
# dumpdict(d, "before getSeriesArgs")
|
|
# d = getSeriesArgs(plt.backend, getattr(plt, n), d, commandIndex, convertSeriesIndex(plt, n), n)
|
|
# dumpdict(d, "after getSeriesArgs")
|
|
#
|
|
# d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
|
|
# st = d[:seriestype]
|
|
#
|
|
# # for seriestype `line`, need to sort by x values
|
|
# if st == :line
|
|
# # order by x
|
|
# indices = sortperm(d[:x])
|
|
# d[:x] = d[:x][indices]
|
|
# d[:y] = d[:y][indices]
|
|
# d[:seriestype] = :path
|
|
# end
|
|
#
|
|
# # special handling for missing x in box plot... all the same category
|
|
# if st == :box && xs[mod1(i,mx)] == nothing
|
|
# d[:x] = ones(Int, length(d[:y]))
|
|
# end
|
|
#
|
|
# # map functions to vectors
|
|
# if isa(d[:marker_z], Function)
|
|
# d[:marker_z] = map(d[:marker_z], d[:x])
|
|
# end
|
|
#
|
|
# # @show fillranges
|
|
# d[:fillrange] = fillranges[mod1(i,length(fillranges))]
|
|
# if isa(d[:fillrange], Function)
|
|
# d[:fillrange] = map(d[:fillrange], d[:x])
|
|
# end
|
|
#
|
|
# # handle error bars
|
|
# for esym in (:xerror, :yerror)
|
|
# if get(d, esym, nothing) != nothing
|
|
# # we make a copy of the KW and apply an errorbar recipe
|
|
# append!(ret, apply_series_recipe(copy(d), Val{esym}))
|
|
# end
|
|
# end
|
|
#
|
|
# # handle ribbons
|
|
# if get(d, :ribbon, nothing) != nothing
|
|
# rib = d[:ribbon]
|
|
# d[:fillrange] = (d[:y] - rib, d[:y] + rib)
|
|
# end
|
|
#
|
|
# # handle quiver plots
|
|
# # either a series of velocity vectors are passed in (`:quiver` keyword),
|
|
# # or we just add arrows to the path
|
|
#
|
|
# # if st == :quiver
|
|
# # d[:seriestype] = st = :path
|
|
# # d[:linewidth] = 0
|
|
# # end
|
|
# if get(d, :quiver, nothing) != nothing
|
|
# append!(ret, apply_series_recipe(copy(d), Val{:quiver}))
|
|
# elseif st == :quiver
|
|
# d[:seriestype] = st = :path
|
|
# d[:arrow] = arrow()
|
|
# end
|
|
#
|
|
# # now that we've processed a given series... optionally split into
|
|
# # multiple dicts through a recipe (for example, a box plot is split into component
|
|
# # parts... polygons, lines, and scatters)
|
|
# # note: we pass in a Val type (i.e. Val{:box}) so that we can dispatch on the seriestype
|
|
# kwlist = apply_series_recipe(d, Val{st})
|
|
# append!(ret, kwlist)
|
|
#
|
|
# # # add it to our series list
|
|
# # push!(ret, d)
|
|
# end
|
|
#
|
|
# ret, xmeta, ymeta
|
|
# end
|
|
#
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # process_inputs
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # These methods take a plot and the keyword arguments, and processes the input
|
|
# # arguments (x/y/z, group, etc), populating the KW dict with appropriate values.
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # 0 arguments
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # don't do anything
|
|
# function process_inputs(plt::AbstractPlot, d::KW)
|
|
# end
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # 1 argument
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# function process_inputs(plt::AbstractPlot, d::KW, n::Integer)
|
|
# # d[:x], d[:y], d[:z] = zeros(0), zeros(0), zeros(0)
|
|
# d[:x] = d[:y] = d[:z] = n
|
|
# end
|
|
#
|
|
# # no special handling... assume x and z are nothing
|
|
# function process_inputs(plt::AbstractPlot, d::KW, y)
|
|
# d[:y] = y
|
|
# end
|
|
#
|
|
# # matrix... is it z or y?
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
|
|
# if all3D(d)
|
|
# n,m = size(mat)
|
|
# d[:x], d[:y], d[:z] = 1:n, 1:m, mat
|
|
# else
|
|
# d[:y] = mat
|
|
# end
|
|
# end
|
|
#
|
|
# # images - grays
|
|
# function process_inputs{T<:Gray}(plt::AbstractPlot, d::KW, mat::AMat{T})
|
|
# d[:seriestype] = :image
|
|
# n,m = size(mat)
|
|
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
|
|
# # handle images... when not supported natively, do a hack to use heatmap machinery
|
|
# if !nativeImagesSupported()
|
|
# d[:seriestype] = :heatmap
|
|
# d[:yflip] = true
|
|
# d[:z] = Surface(convert(Matrix{Float64}, mat.surf))
|
|
# d[:fillcolor] = ColorGradient([:black, :white])
|
|
# end
|
|
# end
|
|
#
|
|
# # images - colors
|
|
# function process_inputs{T<:Colorant}(plt::AbstractPlot, d::KW, mat::AMat{T})
|
|
# d[:seriestype] = :image
|
|
# n,m = size(mat)
|
|
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
|
|
# # handle images... when not supported natively, do a hack to use heatmap machinery
|
|
# if !nativeImagesSupported()
|
|
# d[:yflip] = true
|
|
# imageHack(d)
|
|
# end
|
|
# end
|
|
#
|
|
#
|
|
# # plotting arbitrary shapes/polygons
|
|
# function process_inputs(plt::AbstractPlot, d::KW, shape::Shape)
|
|
# d[:x], d[:y] = shape_coords(shape)
|
|
# d[:seriestype] = :shape
|
|
# end
|
|
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
|
|
# d[:x], d[:y] = shape_coords(shapes)
|
|
# d[:seriestype] = :shape
|
|
# end
|
|
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
|
|
# x, y = [], []
|
|
# for j in 1:size(shapes, 2)
|
|
# tmpx, tmpy = shape_coords(vec(shapes[:,j]))
|
|
# push!(x, tmpx)
|
|
# push!(y, tmpy)
|
|
# end
|
|
# d[:x], d[:y] = x, y
|
|
# d[:seriestype] = :shape
|
|
# end
|
|
#
|
|
#
|
|
# # function without range... use the current range of the x-axis
|
|
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
|
|
# process_inputs(plt, d, f, xmin(plt), xmax(plt))
|
|
# end
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # 2 arguments
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# function process_inputs(plt::AbstractPlot, d::KW, x, y)
|
|
# d[:x], d[:y] = x, y
|
|
# end
|
|
#
|
|
# # if functions come first, just swap the order (not to be confused with parametric functions...
|
|
# # as there would be more than one function passed in)
|
|
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
|
|
# @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
|
|
# process_inputs(plt, d, x, f)
|
|
# end
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # 3 arguments
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # no special handling... just pass them through
|
|
# function process_inputs(plt::AbstractPlot, d::KW, x, y, z)
|
|
# d[:x], d[:y], d[:z] = x, y, z
|
|
# end
|
|
#
|
|
# # 3d line or scatter
|
|
# function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
|
|
# # default to path3d if we haven't set a 3d seriestype
|
|
# st = get(d, :seriestype, :none)
|
|
# if st == :scatter
|
|
# d[:seriestype] = :scatter3d
|
|
# elseif !(st in _3dTypes)
|
|
# d[:seriestype] = :path3d
|
|
# end
|
|
# d[:x], d[:y], d[:z] = x, y, zvec
|
|
# end
|
|
#
|
|
# # surface-like... function
|
|
# function process_inputs{TX,TY}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zf::Function)
|
|
# x = TX <: Number ? sort(x) : x
|
|
# y = TY <: Number ? sort(y) : y
|
|
# # x, y = sort(x), sort(y)
|
|
# d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
|
|
# d[:x], d[:y] = x, y
|
|
# end
|
|
#
|
|
# # surface-like... matrix grid
|
|
# function process_inputs{TX,TY,TZ}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zmat::AMat{TZ})
|
|
# # @assert size(zmat) == (length(x), length(y))
|
|
# # if TX <: Number && !issorted(x)
|
|
# # idx = sortperm(x)
|
|
# # x, zmat = x[idx], zmat[idx, :]
|
|
# # end
|
|
# # if TY <: Number && !issorted(y)
|
|
# # idx = sortperm(y)
|
|
# # y, zmat = y[idx], zmat[:, idx]
|
|
# # end
|
|
# d[:x], d[:y], d[:z] = x, y, Surface{Matrix{TZ}}(zmat)
|
|
# if !like_surface(get(d, :seriestype, :none))
|
|
# d[:seriestype] = :contour
|
|
# end
|
|
# end
|
|
#
|
|
# # surfaces-like... general x, y grid
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
|
|
# @assert size(zmat) == size(x) == size(y)
|
|
# # d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat)
|
|
# d[:x], d[:y], d[:z] = map(Surface{Matrix{Float64}}, (x, y, zmat))
|
|
# if !like_surface(get(d, :seriestype, :none))
|
|
# d[:seriestype] = :contour
|
|
# end
|
|
# end
|
|
#
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # Parametric functions
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # special handling... xmin/xmax with function(s)
|
|
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
|
|
# width = get(plt.attr, :size, (100,))[1]
|
|
# x = linspace(xmin, xmax, width)
|
|
# process_inputs(plt, d, x, f)
|
|
# end
|
|
#
|
|
# # special handling... xmin/xmax with parametric function(s)
|
|
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
|
|
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
|
|
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints))
|
|
#
|
|
# # special handling... 3D parametric function(s)
|
|
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
|
|
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
|
|
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
|
|
#
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # Lists of tuples and FixedSizeArrays
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # if we get an unhandled tuple, just splat it in
|
|
# function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple)
|
|
# process_inputs(plt, d, tup...)
|
|
# end
|
|
#
|
|
# # (x,y) tuples
|
|
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}})
|
|
# process_inputs(plt, d, unzip(xy)...)
|
|
# end
|
|
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2})
|
|
# process_inputs(plt, d, [xy[1]], [xy[2]])
|
|
# end
|
|
#
|
|
# # (x,y,z) tuples
|
|
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}})
|
|
# process_inputs(plt, d, unzip(xyz)...)
|
|
# end
|
|
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3})
|
|
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
|
|
# end
|
|
#
|
|
# # 2D FixedSizeArrays
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}})
|
|
# process_inputs(plt, d, unzip(xy)...)
|
|
# end
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T})
|
|
# process_inputs(plt, d, [xy[1]], [xy[2]])
|
|
# end
|
|
#
|
|
# # 3D FixedSizeArrays
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}})
|
|
# process_inputs(plt, d, unzip(xyz)...)
|
|
# end
|
|
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T})
|
|
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
|
|
# end
|
|
#
|
|
# # --------------------------------------------------------------------
|
|
# # handle grouping
|
|
# # --------------------------------------------------------------------
|
|
#
|
|
# # function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
|
|
# # ret = Any[]
|
|
# # error("unfinished after series reorg")
|
|
# # for (i,glab) in enumerate(groupby.groupLabels)
|
|
# # # TODO: don't automatically overwrite labels
|
|
# # kwlist, xmeta, ymeta = process_inputs(plt, d, args...,
|
|
# # idxfilter = groupby.groupIds[i],
|
|
# # label = string(glab),
|
|
# # numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
|
|
# # append!(ret, kwlist)
|
|
# # end
|
|
# # ret, nothing, nothing # TODO: handle passing meta through
|
|
# # end
|
|
|
|
# --------------------------------------------------------------------
|
|
# For DataFrame support. Imports DataFrames and defines the necessary methods which support them.
|
|
# --------------------------------------------------------------------
|
|
|
|
# function setup_dataframes()
|
|
# @require DataFrames begin
|
|
# # @eval begin
|
|
# # import DataFrames
|
|
#
|
|
# DFS = Union{Symbol, AbstractArray{Symbol}}
|
|
#
|
|
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, dfs::DFS)
|
|
# if isa(dfs, Symbol)
|
|
# get!(d, Symbol(letter * "label"), string(dfs))
|
|
# collect(df[dfs])
|
|
# else
|
|
# get!(d, :label, reshape(dfs, 1, length(dfs)))
|
|
# Any[collect(df[s]) for s in dfs]
|
|
# end
|
|
# end
|
|
#
|
|
# function handle_group(df::DataFrames.AbstractDataFrame, d::KW)
|
|
# if haskey(d, :group)
|
|
# g = d[:group]
|
|
# if isa(g, Symbol)
|
|
# d[:group] = collect(df[g])
|
|
# end
|
|
# end
|
|
# end
|
|
#
|
|
# @recipe function plot(df::DataFrames.AbstractDataFrame, sy::DFS)
|
|
# handle_group(df, d)
|
|
# handle_dfs(df, d, "y", sy)
|
|
# end
|
|
#
|
|
# @recipe function plot(df::DataFrames.AbstractDataFrame, sx::DFS, sy::DFS)
|
|
# handle_group(df, d)
|
|
# x = handle_dfs(df, d, "x", sx)
|
|
# y = handle_dfs(df, d, "y", sy)
|
|
# x, y
|
|
# end
|
|
#
|
|
# @recipe function plot(df::DataFrames.AbstractDataFrame, sx::DFS, sy::DFS, sz::DFS)
|
|
# handle_group(df, d)
|
|
# x = handle_dfs(df, d, "x", sx)
|
|
# y = handle_dfs(df, d, "y", sy)
|
|
# z = handle_dfs(df, d, "z", sz)
|
|
# x, y, z
|
|
# end
|
|
#
|
|
# # get_data(df::DataFrames.AbstractDataFrame, arg::Symbol) = df[arg]
|
|
# # get_data(df::DataFrames.AbstractDataFrame, arg) = arg
|
|
# #
|
|
# # function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
|
|
# # # d[:dataframe] = df
|
|
# # process_inputs(plt, d, map(arg -> get_data(df, arg), args)...)
|
|
# # end
|
|
# #
|
|
# # # expecting the column name of a dataframe that was passed in... anything else should error
|
|
# # function extractGroupArgs(s::Symbol, df::DataFrames.AbstractDataFrame, args...)
|
|
# # if haskey(df, s)
|
|
# # return extractGroupArgs(df[s])
|
|
# # else
|
|
# # error("Got a symbol, and expected that to be a key in d[:dataframe]. s=$s d=$d")
|
|
# # end
|
|
# # end
|
|
#
|
|
# # function getDataFrameFromKW(d::KW)
|
|
# # get(d, :dataframe) do
|
|
# # error("Missing dataframe argument!")
|
|
# # end
|
|
# # end
|
|
#
|
|
# # # the conversion functions for when we pass symbols or vectors of symbols to reference dataframes
|
|
# # convertToAnyVector(s::Symbol, d::KW) = Any[getDataFrameFromKW(d)[s]], s
|
|
# # convertToAnyVector(v::AVec{Symbol}, d::KW) = (df = getDataFrameFromKW(d); Any[df[s] for s in v]), v
|
|
#
|
|
# end
|
|
# end
|