Plots.jl/src/recipes.jl

1040 lines
27 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const _series_recipe_deps = Dict()
function series_recipe_dependencies(st::Symbol, deps::Symbol...)
_series_recipe_deps[st] = deps
end
function seriestype_supported(st::Symbol)
seriestype_supported(backend(), st)
end
# returns :no, :native, or :recipe depending on how it's supported
function seriestype_supported(pkg::AbstractBackend, st::Symbol)
# is it natively supported
if is_seriestype_supported(pkg, st)
return :native
end
haskey(_series_recipe_deps, st) || return :no
supported = true
for dep in _series_recipe_deps[st]
if seriestype_supported(pkg, dep) == :no
supported = false
end
end
supported ? :recipe : :no
end
macro deps(st, args...)
:(Plots.series_recipe_dependencies($(quot(st)), $(map(quot, args)...)))
end
# get a list of all seriestypes
function all_seriestypes()
sts = Set{Symbol}(keys(_series_recipe_deps))
for bsym in backends()
btype = _backendType[bsym]
sts = union(sts, Set{Symbol}(supported_seriestypes(btype())))
end
sort(collect(sts))
end
# ----------------------------------------------------------------------------------
num_series(x::AMat) = size(x,2)
num_series(x) = 1
RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T"))
# ---------------------------------------------------------------------------
# for seriestype `line`, need to sort by x values
@recipe function f(::Type{Val{:line}}, x, y, z)
indices = sortperm(x)
x := x[indices]
y := y[indices]
if typeof(z) <: AVec
z := z[indices]
end
seriestype := :path
()
end
@deps line path
function hvline_limits(axis::Axis)
vmin, vmax = axis_limits(axis)
if vmin >= vmax
if isfinite(vmin)
vmax = vmin + 1
else
vmin, vmax = 0.0, 1.1
end
end
vmin, vmax
end
@recipe function f(::Type{Val{:hline}}, x, y, z)
xmin, xmax = hvline_limits(d[:subplot][:xaxis])
n = length(y)
newx = repmat(Float64[xmin, xmax, NaN], n)
newy = vec(Float64[yi for i=1:3,yi=y])
x := newx
y := newy
seriestype := :path
()
end
@deps hline path
@recipe function f(::Type{Val{:vline}}, x, y, z)
ymin, ymax = hvline_limits(d[:subplot][:yaxis])
n = length(y)
newx = vec(Float64[yi for i=1:3,yi=y])
newy = repmat(Float64[ymin, ymax, NaN], n)
x := newx
y := newy
seriestype := :path
()
end
@deps vline path
# ---------------------------------------------------------------------------
# steps
function make_steps(x, y, st)
n = length(x)
n == 0 && return zeros(0),zeros(0)
newx, newy = zeros(2n-1), zeros(2n-1)
for i=1:n
idx = 2i-1
newx[idx] = x[i]
newy[idx] = y[i]
if i > 1
newx[idx-1] = x[st == :steppre ? i-1 : i]
newy[idx-1] = y[st == :steppre ? i : i-1]
end
end
newx, newy
end
# create a path from steps
@recipe function f(::Type{Val{:steppre}}, x, y, z)
d[:x], d[:y] = make_steps(x, y, :steppre)
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps steppre path scatter
# create a path from steps
@recipe function f(::Type{Val{:steppost}}, x, y, z)
d[:x], d[:y] = make_steps(x, y, :steppost)
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps steppost path scatter
# ---------------------------------------------------------------------------
# sticks
# create vertical line segments from fill
@recipe function f(::Type{Val{:sticks}}, x, y, z)
n = length(x)
fr = d[:fillrange]
if fr == nothing
yaxis = d[:subplot][:yaxis]
fr = if yaxis[:scale] == :identity
0.0
else
NaNMath.min(axis_limits(yaxis)[1], ignorenan_minimum(y))
end
end
newx, newy = zeros(3n), zeros(3n)
for i=1:n
rng = 3i-2:3i
newx[rng] = [x[i], x[i], NaN]
newy[rng] = [cycle(fr,i), y[i], NaN]
end
x := newx
y := newy
fillrange := nothing
seriestype := :path
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := x
y := y
label := ""
primary := false
()
end
markershape := :none
end
()
end
@deps sticks path scatter
# ---------------------------------------------------------------------------
# bezier curves
# get the value of the curve point at position t
function bezier_value(pts::AVec, t::Real)
val = 0.0
n = length(pts)-1
for (i,p) in enumerate(pts)
val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1)
end
val
end
# create segmented bezier curves in place of line segments
@recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30)
args = z != nothing ? (x,y,z) : (x,y)
newx, newy = zeros(0), zeros(0)
fr = d[:fillrange]
newfr = fr != nothing ? zeros(0) : nothing
newz = z != nothing ? zeros(0) : nothing
# lz = d[:line_z]
# newlz = lz != nothing ? zeros(0) : nothing
# for each line segment (point series with no NaNs), convert it into a bezier curve
# where the points are the control points of the curve
for rng in iter_segments(args...)
length(rng) < 2 && continue
ts = linspace(0, 1, npoints)
nanappend!(newx, map(t -> bezier_value(cycle(x,rng), t), ts))
nanappend!(newy, map(t -> bezier_value(cycle(y,rng), t), ts))
if z != nothing
nanappend!(newz, map(t -> bezier_value(cycle(z,rng), t), ts))
end
if fr != nothing
nanappend!(newfr, map(t -> bezier_value(cycle(fr,rng), t), ts))
end
# if lz != nothing
# lzrng = cycle(lz, rng) # the line_z's for this segment
# push!(newlz, 0.0)
# append!(newlz, map(t -> lzrng[1+floor(Int, t * (length(rng)-1))], ts))
# end
end
x := newx
y := newy
if z == nothing
seriestype := :path
else
seriestype := :path3d
z := newz
end
if fr != nothing
fillrange := newfr
end
# if lz != nothing
# # line_z := newlz
# linecolor := (isa(d[:linecolor], ColorGradient) ? d[:linecolor] : cgrad())
# end
# Plots.DD(d)
()
end
@deps curves path
# ---------------------------------------------------------------------------
# create a bar plot as a filled step function
@recipe function f(::Type{Val{:bar}}, x, y, z)
procx, procy, xscale, yscale, baseline = _preprocess_barlike(d, x, y)
nx, ny = length(procx), length(procy)
axis = d[:subplot][isvertical(d) ? :xaxis : :yaxis]
cv = [discrete_value!(axis, xi)[1] for xi=procx]
procx = if nx == ny
cv
elseif nx == ny + 1
0.5diff(cv) + cv[1:end-1]
else
error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))")
end
# compute half-width of bars
bw = d[:bar_width]
hw = if bw == nothing
0.5ignorenan_mean(diff(procx))
else
Float64[0.5cycle(bw,i) for i=1:length(procx)]
end
# make fillto a vector... default fills to 0
fillto = d[:fillrange]
if fillto == nothing
fillto = 0
end
if (yscale in _logScales) && !all(_is_positive, fillto)
fillto = map(x -> _is_positive(x) ? typeof(baseline)(x) : baseline, fillto)
end
# create the bar shapes by adding x/y segments
xseg, yseg = Segments(), Segments()
for i=1:ny
yi = procy[i]
if !isnan(yi)
center = procx[i]
hwi = cycle(hw,i)
fi = cycle(fillto,i)
push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi)
push!(yseg, yi, fi, fi, yi, yi)
end
end
# widen limits out a bit
expand_extrema!(axis, widen(ignorenan_extrema(xseg.pts)...))
# switch back
if !isvertical(d)
xseg, yseg = yseg, xseg
end
# reset orientation
orientation := default(:orientation)
x := xseg.pts
y := yseg.pts
seriestype := :shape
()
end
@deps bar shape
# ---------------------------------------------------------------------------
# Histograms
_bin_centers(v::AVec) = (v[1:end-1] + v[2:end]) / 2
_is_positive(x) = (x > 0) && !(x 0)
_positive_else_nan{T}(::Type{T}, x::Real) = _is_positive(x) ? T(x) : T(NaN)
function _scale_adjusted_values{T<:AbstractFloat}(::Type{T}, V::AbstractVector, scale::Symbol)
if scale in _logScales
[_positive_else_nan(T, x) for x in V]
else
[T(x) for x in V]
end
end
function _binbarlike_baseline{T<:Real}(min_value::T, scale::Symbol)
if (scale in _logScales)
!isnan(min_value) ? min_value / T(_logScaleBases[scale]^log10(2)) : T(1E-3)
else
zero(T)
end
end
function _preprocess_binbarlike_weights{T<:AbstractFloat}(::Type{T}, w, wscale::Symbol)
w_adj = _scale_adjusted_values(T, w, wscale)
w_min = ignorenan_minimum(w_adj)
w_max = ignorenan_maximum(w_adj)
baseline = _binbarlike_baseline(w_min, wscale)
w_adj, baseline
end
function _preprocess_barlike(d, x, y)
xscale = get(d, :xscale, :identity)
yscale = get(d, :yscale, :identity)
weights, baseline = _preprocess_binbarlike_weights(float(eltype(y)), y, yscale)
x, weights, xscale, yscale, baseline
end
function _preprocess_binlike(d, x, y)
xscale = get(d, :xscale, :identity)
yscale = get(d, :yscale, :identity)
T = float(promote_type(eltype(x), eltype(y)))
edge = T.(x)
weights, baseline = _preprocess_binbarlike_weights(T, y, yscale)
edge, weights, xscale, yscale, baseline
end
@recipe function f(::Type{Val{:barbins}}, x, y, z)
edge, weights, xscale, yscale, baseline = _preprocess_binlike(d, x, y)
if (d[:bar_width] == nothing)
bar_width := diff(edge)
end
x := _bin_centers(edge)
y := weights
seriestype := :bar
()
end
@deps barbins bar
@recipe function f(::Type{Val{:scatterbins}}, x, y, z)
edge, weights, xscale, yscale, baseline = _preprocess_binlike(d, x, y)
xerror := diff(edge)/2
x := _bin_centers(edge)
y := weights
seriestype := :scatter
()
end
@deps scatterbins scatter
function _stepbins_path(edge, weights, baseline::Real, xscale::Symbol, yscale::Symbol)
log_scale_x = xscale in _logScales
log_scale_y = yscale in _logScales
nbins = length(linearindices(weights))
if length(linearindices(edge)) != nbins + 1
error("Edge vector must be 1 longer than weight vector")
end
x = eltype(edge)[]
y = eltype(weights)[]
it_e, it_w = start(edge), start(weights)
a, it_e = next(edge, it_e)
last_w = eltype(weights)(NaN)
i = 1
while (!done(edge, it_e) && !done(edge, it_e))
b, it_e = next(edge, it_e)
w, it_w = next(weights, it_w)
if (log_scale_x && a 0)
a = b/_logScaleBases[xscale]^3
end
if isnan(w)
if !isnan(last_w)
push!(x, a)
push!(y, baseline)
end
else
if isnan(last_w)
push!(x, a)
push!(y, baseline)
end
push!(x, a)
push!(y, w)
push!(x, b)
push!(y, w)
end
a = b
last_w = w
end
if (last_w != baseline)
push!(x, a)
push!(y, baseline)
end
(x, y)
end
@recipe function f(::Type{Val{:stepbins}}, x, y, z)
axis = d[:subplot][Plots.isvertical(d) ? :xaxis : :yaxis]
edge, weights, xscale, yscale, baseline = _preprocess_binlike(d, x, y)
xpts, ypts = _stepbins_path(edge, weights, baseline, xscale, yscale)
if !isvertical(d)
xpts, ypts = ypts, xpts
end
# create a secondary series for the markers
if d[:markershape] != :none
@series begin
seriestype := :scatter
x := _bin_centers(edge)
y := weights
fillrange := nothing
label := ""
primary := false
()
end
markershape := :none
xerror := :none
yerror := :none
end
x := xpts
y := ypts
seriestype := :path
()
end
Plots.@deps stepbins path
function _auto_binning_nbins{N}(vs::NTuple{N,AbstractVector}, dim::Integer; mode::Symbol = :auto)
_cl(x) = ceil(Int, NaNMath.max(x, one(x)))
_iqr(v) = quantile(v, 0.75) - quantile(v, 0.25)
_span(v) = ignorenan_maximum(v) - ignorenan_minimum(v)
n_samples = length(linearindices(first(vs)))
# Estimator for number of samples in one row/column of bins along each axis:
n = max(1, n_samples^(1/N))
v = vs[dim]
if mode == :auto
30
elseif mode == :sqrt # Square-root choice
_cl(sqrt(n))
elseif mode == :sturges # Sturges' formula
_cl(log2(n)) + 1
elseif mode == :rice # Rice Rule
_cl(2 * n^(1/3))
elseif mode == :scott # Scott's normal reference rule
_cl(_span(v) / (3.5 * std(v) / n^(1/3)))
elseif mode == :fd # FreedmanDiaconis rule
_cl(_span(v) / (2 * _iqr(v) / n^(1/3)))
else
error("Unknown auto-binning mode $mode")
end::Int
end
_hist_edge{N}(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) = StatsBase.histrange(vs[dim], binning, :left)
_hist_edge{N}(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Symbol) = _hist_edge(vs, dim, _auto_binning_nbins(vs, dim, mode = binning))
_hist_edge{N}(vs::NTuple{N,AbstractVector}, dim::Integer, binning::AbstractVector) = binning
_hist_edges{N}(vs::NTuple{N,AbstractVector}, binning::NTuple{N}) =
map(dim -> _hist_edge(vs, dim, binning[dim]), (1:N...))
_hist_edges{N}(vs::NTuple{N,AbstractVector}, binning::Union{Integer, Symbol, AbstractVector}) =
map(dim -> _hist_edge(vs, dim, binning), (1:N...))
_hist_norm_mode(mode::Symbol) = mode
_hist_norm_mode(mode::Bool) = mode ? :pdf : :none
function _make_hist{N}(vs::NTuple{N,AbstractVector}, binning; normed = false, weights = nothing)
edges = _hist_edges(vs, binning)
h = float( weights == nothing ?
StatsBase.fit(StatsBase.Histogram, vs, edges, closed = :left) :
StatsBase.fit(StatsBase.Histogram, vs, weights, edges, closed = :left)
)
normalize!(h, mode = _hist_norm_mode(normed))
end
@recipe function f(::Type{Val{:histogram}}, x, y, z)
seriestype := :barhist
()
end
@deps histogram barhist
@recipe function f(::Type{Val{:barhist}}, x, y, z)
h = _make_hist((y,), d[:bins], normed = d[:normalize], weights = d[:weights])
x := h.edges[1]
y := h.weights
seriestype := :barbins
()
end
@deps barhist barbins
@recipe function f(::Type{Val{:stephist}}, x, y, z)
h = _make_hist((y,), d[:bins], normed = d[:normalize], weights = d[:weights])
x := h.edges[1]
y := h.weights
seriestype := :stepbins
()
end
@deps stephist stepbins
@recipe function f(::Type{Val{:scatterhist}}, x, y, z)
h = _make_hist((y,), d[:bins], normed = d[:normalize], weights = d[:weights])
x := h.edges[1]
y := h.weights
seriestype := :scatterbins
()
end
@deps scatterhist scatterbins
@recipe function f{T, E}(h::StatsBase.Histogram{T, 1, E})
seriestype --> :barbins
st_map = Dict(
:bar => :barbins, :scatter => :scatterbins, :step => :stepbins,
:steppost => :stepbins # :step can be mapped to :steppost in pre-processing
)
seriestype := get(st_map, d[:seriestype], d[:seriestype])
if d[:seriestype] == :scatterbins
# Workaround, error bars currently not set correctly by scatterbins
edge, weights, xscale, yscale, baseline = _preprocess_binlike(d, h.edges[1], h.weights)
xerror --> diff(h.edges[1])/2
seriestype := :scatter
(Plots._bin_centers(edge), weights)
else
(h.edges[1], h.weights)
end
end
@recipe function f{H <: StatsBase.Histogram}(hv::AbstractVector{H})
for h in hv
@series begin
h
end
end
end
# ---------------------------------------------------------------------------
# Histogram 2D
@recipe function f(::Type{Val{:bins2d}}, x, y, z)
edge_x, edge_y, weights = x, y, z.surf
float_weights = float(weights)
if float_weights === weights
float_weights = deepcopy(float_weights)
end
for (i, c) in enumerate(float_weights)
if c == 0
float_weights[i] = NaN
end
end
x := Plots._bin_centers(edge_x)
y := Plots._bin_centers(edge_y)
z := Surface(float_weights)
match_dimensions := true
seriestype := :heatmap
()
end
Plots.@deps bins2d heatmap
@recipe function f(::Type{Val{:histogram2d}}, x, y, z)
h = _make_hist((x, y), d[:bins], normed = d[:normalize], weights = d[:weights])
x := h.edges[1]
y := h.edges[2]
z := Surface(h.weights)
seriestype := :bins2d
()
end
@deps histogram2d bins2d
@recipe function f{T, E}(h::StatsBase.Histogram{T, 2, E})
seriestype --> :bins2d
(h.edges[1], h.edges[2], Surface(h.weights))
end
# ---------------------------------------------------------------------------
# scatter 3d
@recipe function f(::Type{Val{:scatter3d}}, x, y, z)
seriestype := :path3d
if d[:markershape] == :none
markershape := :circle
end
linewidth := 0
linealpha := 0
()
end
# note: don't add dependencies because this really isn't a drop-in replacement
# ---------------------------------------------------------------------------
# contourf - filled contours
@recipe function f(::Type{Val{:contourf}}, x, y, z)
fillrange := true
seriestype := :contour
()
end
# ---------------------------------------------------------------------------
# Error Bars
function error_style!(d::KW)
d[:seriestype] = :path
d[:linecolor] = d[:markerstrokecolor]
d[:linewidth] = d[:markerstrokewidth]
d[:label] = ""
end
# if we're passed a tuple of vectors, convert to a vector of tuples
function error_zipit(ebar)
if istuple(ebar)
collect(zip(ebar...))
else
ebar
end
end
function error_coords(xorig, yorig, ebar)
# init empty x/y, and zip errors if passed Tuple{Vector,Vector}
x, y = Array(float_extended_type(xorig), 0), Array(Float64, 0)
# for each point, create a line segment from the bottom to the top of the errorbar
for i = 1:max(length(xorig), length(yorig))
xi = cycle(xorig, i)
yi = cycle(yorig, i)
ebi = cycle(ebar, i)
nanappend!(x, [xi, xi])
e1, e2 = if istuple(ebi)
first(ebi), last(ebi)
elseif isscalar(ebi)
ebi, ebi
else
error("unexpected ebi type $(typeof(ebi)) for errorbar: $ebi")
end
nanappend!(y, [yi - e1, yi + e2])
end
x, y
end
# we will create a series of path segments, where each point represents one
# side of an errorbar
@recipe function f(::Type{Val{:yerror}}, x, y, z)
error_style!(d)
markershape := :hline
d[:x], d[:y] = error_coords(d[:x], d[:y], error_zipit(d[:yerror]))
()
end
@deps yerror path
@recipe function f(::Type{Val{:xerror}}, x, y, z)
error_style!(d)
markershape := :vline
d[:y], d[:x] = error_coords(d[:y], d[:x], error_zipit(d[:xerror]))
()
end
@deps xerror path
# TODO: move quiver to PlotRecipes
# ---------------------------------------------------------------------------
# quiver
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
function quiver_using_arrows(d::KW)
d[:label] = ""
d[:seriestype] = :path
if !isa(d[:arrow], Arrow)
d[:arrow] = arrow()
end
velocity = error_zipit(d[:quiver])
xorig, yorig = d[:x], d[:y]
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
x, y = zeros(0), zeros(0)
for i = 1:max(length(xorig), length(yorig))
# get the starting position
xi = cycle(xorig, i)
yi = cycle(yorig, i)
# get the velocity
vi = cycle(velocity, i)
vx, vy = if istuple(vi)
first(vi), last(vi)
elseif isscalar(vi)
vi, vi
elseif isa(vi,Function)
vi(xi, yi)
else
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
end
# add the points
nanappend!(x, [xi, xi+vx, NaN])
nanappend!(y, [yi, yi+vy, NaN])
end
d[:x], d[:y] = x, y
# KW[d]
end
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
function quiver_using_hack(d::KW)
d[:label] = ""
d[:seriestype] = :shape
velocity = error_zipit(d[:quiver])
xorig, yorig = d[:x], d[:y]
# for each point, we create an arrow of velocity vi, translated to the x/y coordinates
pts = P2[]
for i = 1:max(length(xorig), length(yorig))
# get the starting position
xi = cycle(xorig, i)
yi = cycle(yorig, i)
p = P2(xi, yi)
# get the velocity
vi = cycle(velocity, i)
vx, vy = if istuple(vi)
first(vi), last(vi)
elseif isscalar(vi)
vi, vi
elseif isa(vi,Function)
vi(xi, yi)
else
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
end
v = P2(vx, vy)
dist = norm(v)
arrow_h = 0.1dist # height of arrowhead
arrow_w = 0.5arrow_h # halfwidth of arrowhead
U1 = v ./ dist # vector of arrowhead height
U2 = P2(-U1[2], U1[1]) # vector of arrowhead halfwidth
U1 *= arrow_h
U2 *= arrow_w
ppv = p+v
nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1])
end
d[:x], d[:y] = Plots.unzip(pts[2:end])
# KW[d]
end
# function apply_series_recipe(d::KW, ::Type{Val{:quiver}})
@recipe function f(::Type{Val{:quiver}}, x, y, z)
if :arrow in supported_attrs()
quiver_using_arrows(d)
else
quiver_using_hack(d)
end
()
end
@deps quiver shape path
# -------------------------------------------------
# TODO: move OHLC to PlotRecipes finance.jl
type OHLC{T<:Real}
open::T
high::T
low::T
close::T
end
Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...)
# Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close)
# get one OHLC path
function get_xy(o::OHLC, x, xdiff)
xl, xm, xr = x-xdiff, x, x+xdiff
ox = [xl, xm, NaN,
xm, xm, NaN,
xm, xr]
oy = [o.open, o.open, NaN,
o.low, o.high, NaN,
o.close, o.close]
ox, oy
end
# get the joined vector
function get_xy(v::AVec{OHLC}, x = 1:length(v))
xdiff = 0.3ignorenan_mean(abs(diff(x)))
x_out, y_out = zeros(0), zeros(0)
for (i,ohlc) in enumerate(v)
ox,oy = get_xy(ohlc, x[i], xdiff)
nanappend!(x_out, ox)
nanappend!(y_out, oy)
end
x_out, y_out
end
# these are for passing in a vector of OHLC objects
# TODO: when I allow `@recipe f(::Type{T}, v::T) = ...` definitions to replace convertToAnyVector,
# then I should replace these with one definition to convert to a vector of 4-tuples
# to squash ambiguity warnings...
@recipe f(x::AVec{Function}, v::AVec{OHLC}) = error()
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) = error()
# this must be OHLC?
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) = x, OHLC[OHLC(t...) for t in ohlc]
@recipe function f(x::AVec, v::AVec{OHLC})
seriestype := :path
get_xy(v, x)
end
@recipe function f(v::AVec{OHLC})
seriestype := :path
get_xy(v)
end
# the series recipe, when passed vectors of 4-tuples
# -------------------------------------------------
# TODO: everything below here should be either changed to a
# series recipe or moved to PlotRecipes
# "Sparsity plot... heatmap of non-zero values of a matrix"
# function spy{T<:Real}(z::AMat{T}; kw...)
# mat = map(zi->float(zi!=0), z)'
# xn, yn = size(mat)
# heatmap(mat; leg=false, yflip=true, aspect_ratio=:equal,
# xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5),
# kw...)
# end
# Only allow matrices through, and make it seriestype :spy so the backend can
# optionally handle it natively.
@userplot Spy
@recipe function f(g::Spy)
@assert length(g.args) == 1 && typeof(g.args[1]) <: AbstractMatrix
seriestype := :spy
mat = g.args[1]
if length(unique(mat[mat .!= 0])) < 2
legend --> nothing
end
n,m = size(mat)
Plots.SliceIt, 1:m, 1:n, Surface(mat)
end
@recipe function f(::Type{Val{:spy}}, x,y,z)
yflip := true
aspect_ratio := 1
rs, cs, zs = findnz(z.surf)
xlim := ignorenan_extrema(cs)
ylim := ignorenan_extrema(rs)
if d[:markershape] == :none
markershape := :circle
end
if d[:markersize] == default(:markersize)
markersize := 1
end
markerstrokewidth := 0
marker_z := zs
label := ""
x := cs
y := rs
z := nothing
seriestype := :scatter
grid --> false
()
end
# -------------------------------------------------
"Adds a+bx... straight line over the current plot"
function abline!(plt::Plot, a, b; kw...)
plot!(plt, [ignorenan_extrema(plt)...], x -> b + a*x; kw...)
end
abline!(args...; kw...) = abline!(current(), args...; kw...)
# -------------------------------------------------
# Dates
dateformatter(dt) = string(convert(Date, dt))
datetimeformatter(dt) = string(convert(DateTime, dt))
@recipe f(::Type{Date}, dt::Date) = (dt -> convert(Int, dt), dateformatter)
@recipe f(::Type{DateTime}, dt::DateTime) = (dt -> convert(Int, dt), datetimeformatter)
# -------------------------------------------------
# Complex Numbers
@recipe function f{T<:Number}(A::Array{Complex{T}})
xguide --> "Re(x)"
yguide --> "Im(x)"
real.(A), imag.(A)
end
# Splits a complex matrix to its real and complex parts
# Reals defaults solid, imaginary defaults dashed
# Label defaults are changed to match the real-imaginary reference / indexing
@recipe function f{T<:Real,T2}(x::AbstractArray{T},y::Array{Complex{T2}})
ylabel --> "Re(y)"
zlabel --> "Im(y)"
x,real.(y),imag.(y)
end
# --------------------------------------------------
# Color Gradients
@userplot ShowLibrary
@recipe function f(cl::ShowLibrary)
if !(length(cl.args) == 1 && isa(cl.args[1], Symbol))
error("showlibrary takes the name of a color library as a Symbol")
end
library = PlotUtils.color_libraries[cl.args[1]]
z = sqrt.((1:15)*(1:20)')
seriestype := :heatmap
ticks := nothing
legend := false
layout --> length(library.lib)
i = 0
for grad in sort(collect(keys(library.lib)))
@series begin
seriescolor := cgrad(grad, cl.args[1])
title := string(grad)
subplot := i += 1
z
end
end
end
@userplot ShowGradient
@recipe function f(grad::ShowGradient)
if !(length(grad.args) == 1 && isa(grad.args[1], Symbol))
error("showgradient takes the name of a color gradient as a Symbol")
end
z = sqrt.((1:15)*(1:20)')
seriestype := :heatmap
ticks := nothing
legend := false
seriescolor := grad.args[1]
title := string(grad.args[1])
z
end