Plots.jl/src/backends/glvisualize.jl
2016-10-14 00:39:54 +02:00

1401 lines
46 KiB
Julia

#=
TODO
* move all gl_ methods to GLPlot
* integrate GLPlot UI
* clean up corner cases
* find a cleaner way for extracting properties
* polar plots
* labes and axis
* fix units in all visuals (e.g dotted lines, marker scale, surfaces)
* why is there so little unicode supported in the font!??!?
=#
const _glvisualize_attr = merge_with_base_supported([
:annotations,
:background_color_legend, :background_color_inside, :background_color_outside,
:foreground_color_grid, :foreground_color_legend, :foreground_color_title,
:foreground_color_axis, :foreground_color_border, :foreground_color_guide, :foreground_color_text,
:label,
:linecolor, :linestyle, :linewidth, :linealpha,
:markershape, :markercolor, :markersize, :markeralpha,
:markerstrokewidth, :markerstrokecolor, :markerstrokealpha,
:fillrange, :fillcolor, :fillalpha,
:bins, :bar_width, :bar_edges, :bar_position,
:title, :title_location, :titlefont,
:window_title,
:guide, :lims, :ticks, :scale, :flip, :rotation,
:tickfont, :guidefont, :legendfont,
:grid, :legend, :colorbar,
:marker_z,
:line_z,
:levels,
:ribbon, :quiver, :arrow,
:orientation,
:overwrite_figure,
#:polar,
:normalize, :weights,
:contours, :aspect_ratio,
:match_dimensions,
:clims,
:inset_subplots,
:dpi,
:hover
])
const _glvisualize_seriestype = [
:path, :shape,
:scatter, :hexbin,
:bar, :boxplot,
:heatmap, :image, :volume,
:contour, :contour3d, :path3d, :scatter3d, :surface, :wireframe
]
const _glvisualize_style = [:auto, :solid, :dash, :dot, :dashdot]
const _glvisualize_marker = _allMarkers
const _glvisualize_scale = [:identity, :ln, :log2, :log10]
# --------------------------------------------------------------------------------------
function _initialize_backend(::GLVisualizeBackend; kw...)
@eval begin
import GLVisualize, GeometryTypes, Reactive, GLAbstraction, GLWindow, Contour
import GeometryTypes: Point2f0, Point3f0, Vec2f0, Vec3f0, GLNormalMesh, SimpleRectangle
import FileIO, Images
export GLVisualize
import Reactive: Signal
import GLAbstraction: Style
import GLVisualize: visualize
import Plots.GL
Plots.slice_arg(img::Images.AbstractImage, idx::Int) = img
is_marker_supported(::GLVisualizeBackend, shape::GLVisualize.AllPrimitives) = true
is_marker_supported{Img<:Images.AbstractImage}(::GLVisualizeBackend, shape::Union{Vector{Img}, Img}) = true
is_marker_supported{C<:Colorant}(::GLVisualizeBackend, shape::Union{Vector{Matrix{C}}, Matrix{C}}) = true
is_marker_supported(::GLVisualizeBackend, shape::Shape) = true
const GL = Plots
end
end
function add_backend_string(b::GLVisualizeBackend)
"""
if !Plots.is_installed("GLVisualize")
Pkg.add("GLVisualize")
end
if !Plots.is_installed("Contour")
Pkg.add("Contour")
end
if !Plots.is_installed("GLPlot")
Pkg.add("GLPlot")
end
# TODO: remove this section when the tagged versions catch up
for pkg in [
"GLWindow", "GLAbstraction",
"GLVisualize", "GeometryTypes", "FixedSizeArrays",
"FreeType", "GLPlot"
]
warn("Running Pkg.checkout(\"\$pkg\"). To revert, run Pkg.free(\"\$pkg\")")
Pkg.checkout(pkg)
end
warn("Running Pkg.checkout(\"Reactive\", \"sd/betterstop\"). To revert, run Pkg.free(\"Reactive\")")
Pkg.checkout("Reactive", "sd/betterstop")
"""
end
# ---------------------------------------------------------------------------
# initialize the figure/window
# function _create_backend_figure(plt::Plot{GLVisualizeBackend})
# # init a screen
#
# GLPlot.init()
# end
const _glplot_deletes = []
function empty_screen!(screen)
if isempty(_glplot_deletes)
screen.renderlist = ()
for c in screen.children
empty!(c)
end
empty!(screen.children)
else
for del_signal in _glplot_deletes
push!(del_signal, true) # trigger delete
end
empty!(_glplot_deletes)
end
nothing
end
function _create_backend_figure(plt::Plot{GLVisualizeBackend})
# init a screen
if isempty(GLVisualize.get_screens())
s = GLVisualize.glscreen()
Reactive.stop()
@async begin
while isopen(s)
tic()
GLWindow.pollevents()
if Base.n_avail(Reactive._messages) > 0
Reactive.run_till_now()
GLWindow.render_frame(s)
GLWindow.swapbuffers(s)
end
yield()
diff = (1/60) - toq()
while diff >= 0.001
tic()
sleep(0.001) # sleep for the minimal amount of time
diff -= toq()
end
end
GLWindow.destroy!(s)
GLVisualize.cleanup_old_screens()
end
else
s = GLVisualize.current_screen()
empty_screen!(s)
end
s
end
# ---------------------------------------------------------------------------
const _gl_marker_map = KW(
:rect => '■',
:star5 => '★',
:diamond => '◆',
:hexagon => '⬢',
:cross => '✚',
:xcross => '❌',
:utriangle => '▲',
:dtriangle => '▼',
:pentagon => '⬟',
:octagon => '⯄',
:star4 => '✦',
:star6 => '🟋',
:star8 => '✷',
:vline => '┃',
:hline => '━',
:+ => '+',
:x => 'x',
)
function gl_marker(shape)
shape
end
function gl_marker(shape::Shape)
points = Point2f0[Vec{2,Float32}(p)*10f0 for p in zip(shape.x, shape.y)]
GeometryTypes.GLNormalMesh(points)
end
# create a marker/shape type
function gl_marker(shape::Symbol)
if shape == :rect
GeometryTypes.HyperRectangle(Vec2f0(0), Vec2f0(1))
elseif shape == :circle || shape == :none
GeometryTypes.HyperSphere(Point2f0(0), 1f0)
elseif haskey(_gl_marker_map, shape)
_gl_marker_map[shape]
elseif haskey(_shapes, shape)
gl_marker(_shapes[shape])
else
error("Shape $shape not supported by GLVisualize")
end
end
function extract_limits(sp, d, kw_args)
clims = sp[:clims]
if is_2tuple(clims)
if isfinite(clims[1]) && isfinite(clims[2])
kw_args[:limits] = Vec2f0(clims)
end
end
nothing
end
function extract_marker(d, kw_args)
dim = Plots.is3d(d) ? 3 : 2
scaling = dim == 3 ? 0.003 : 2
if haskey(d, :markershape)
shape = d[:markershape]
shape = gl_marker(shape)
if shape != :none
kw_args[:primitive] = shape
end
end
dim = isa(kw_args[:primitive], GLVisualize.Sprites) ? 2 : 3
if haskey(d, :markersize)
msize = d[:markersize]
if isa(msize, AbstractArray)
kw_args[:scale] = map(x->GeometryTypes.Vec{dim, Float32}(x*scaling), msize)
else
kw_args[:scale] = GeometryTypes.Vec{dim, Float32}(msize*scaling)
end
end
# get the color
key = :markercolor
haskey(d, key) || return
c = gl_color(d[key])
if isa(c, AbstractVector) && d[:marker_z] != nothing
extract_colornorm(d, kw_args)
kw_args[:color] = nothing
kw_args[:color_map] = c
kw_args[:intensity] = convert(Vector{Float32}, d[:marker_z])
else
kw_args[:color] = c
end
key = :markerstrokecolor
haskey(d, key) || return
c = gl_color(d[key])
if c != nothing
if !(isa(c, Colorant) || (isa(c, Vector) && eltype(c) <: Colorant))
error("Stroke Color not supported: $c")
end
kw_args[:stroke_color] = c
kw_args[:stroke_width] = Float32(d[:markerstrokewidth])
end
end
function _extract_surface(d::Plots.Surface)
d.surf
end
function _extract_surface(d::AbstractArray)
d
end
# TODO when to transpose??
function extract_surface(d)
map(_extract_surface, (d[:x], d[:y], d[:z]))
end
function topoints{P}(::Type{P}, array)
P[x for x in zip(array...)]
end
function extract_points(d)
dim = is3d(d) ? 3 : 2
array = (d[:x], d[:y], d[:z])[1:dim]
topoints(Point{dim, Float32}, array)
end
function make_gradient{C<:Colorant}(grad::Vector{C})
grad
end
function make_gradient(grad::ColorGradient)
RGBA{Float32}[c for c in grad.colors]
end
make_gradient(c) = make_gradient(cgrad())
function extract_any_color(d, kw_args)
if d[:marker_z] == nothing
c = scalar_color(d, :fill)
extract_c(d, kw_args, :fill)
if isa(c, Colorant)
kw_args[:color] = c
else
kw_args[:color] = nothing
kw_args[:color_map] = make_gradient(c)
clims = d[:subplot][:clims]
if Plots.is_2tuple(clims)
if isfinite(clims[1]) && isfinite(clims[2])
kw_args[:color_norm] = Vec2f0(clims)
end
elseif clims == :auto
kw_args[:color_norm] = Vec2f0(extrema(d[:y]))
end
end
else
kw_args[:color] = nothing
clims = d[:subplot][:clims]
if Plots.is_2tuple(clims)
if isfinite(clims[1]) && isfinite(clims[2])
kw_args[:color_norm] = Vec2f0(clims)
end
elseif clims == :auto
kw_args[:color_norm] = Vec2f0(extrema(d[:y]))
else
error("Unsupported limits: $clims")
end
kw_args[:intensity] = convert(Vector{Float32}, d[:marker_z])
kw_args[:color_map] = gl_color_map(d, :marker)
end
end
function extract_stroke(d, kw_args)
extract_c(d, kw_args, :line)
if haskey(d, :linewidth)
kw_args[:thickness] = d[:linewidth]*3
end
end
function extract_color(d, sym)
d[Symbol("$(sym)color")]
end
gl_color(c::PlotUtils.ColorGradient) = c.colors
gl_color{T<:Colorant}(c::Vector{T}) = c
gl_color(c::RGBA{Float32}) = c
gl_color(c::Colorant) = RGBA{Float32}(c)
function gl_color(tuple::Tuple)
gl_color(tuple...)
end
# convert to RGBA
function gl_color(c, a)
c = convertColor(c, a)
RGBA{Float32}(c)
end
function scalar_color(d, sym)
gl_color(extract_color(d, sym))
end
function gl_color_map(d, sym)
colors = extract_color(d, sym)
_gl_color_map(colors)
end
function _gl_color_map(colors::PlotUtils.ColorGradient)
colors.colors
end
function _gl_color_map(c)
Plots.default_gradient()
end
dist(a, b) = abs(a-b)
mindist(x, a, b) = min(dist(a, x), dist(b, x))
function gappy(x, ps)
n = length(ps)
x <= first(ps) && return first(ps) - x
for j=1:(n-1)
p0 = ps[j]
p1 = ps[min(j+1, n)]
if p0 <= x && p1 >= x
return mindist(x, p0, p1) * (isodd(j) ? 1 : -1)
end
end
return last(ps) - x
end
function ticks(points, resolution)
Float16[gappy(x, points) for x=linspace(first(points),last(points), resolution)]
end
function insert_pattern!(points, kw_args)
tex = GLAbstraction.Texture(ticks(points, 100), x_repeat=:repeat)
kw_args[:pattern] = tex
kw_args[:pattern_length] = Float32(last(points))
end
function extract_linestyle(d, kw_args)
haskey(d, :linestyle) || return
ls = d[:linestyle]
lw = d[:linewidth]
kw_args[:thickness] = lw
if ls == :dash
points = [0.0, lw, 2lw, 3lw, 4lw]
insert_pattern!(points, kw_args)
elseif ls == :dot
tick, gap = lw/2, lw/4
points = [0.0, tick, tick+gap, 2tick+gap, 2tick+2gap]
insert_pattern!(points, kw_args)
elseif ls == :dashdot
dtick, dgap = lw, lw
ptick, pgap = lw/2, lw/4
points = [0.0, dtick, dtick+dgap, dtick+dgap+ptick, dtick+dgap+ptick+pgap]
insert_pattern!(points, kw_args)
elseif ls == :dashdotdot
dtick, dgap = lw, lw
ptick, pgap = lw/2, lw/4
points = [0.0, dtick, dtick+dgap, dtick+dgap+ptick, dtick+dgap+ptick+pgap, dtick+dgap+ptick+pgap+ptick, dtick+dgap+ptick+pgap+ptick+pgap]
insert_pattern!(points, kw_args)
end
extract_c(d, kw_args, :line)
nothing
end
function hover(to_hover::Vector, to_display, window)
hover(to_hover[], to_display, window)
end
function get_cam(x)
if isa(x, GLAbstraction.Context)
return get_cam(x.children)
elseif isa(x, Vector)
return get_cam(first(x))
elseif isa(x, GLAbstraction.RenderObject)
return x[:preferred_camera]
end
end
function hover(to_hover, to_display, window)
if isa(to_hover, GLAbstraction.Context)
return hover(to_hover.children, to_display, window)
end
area = map(window.inputs[:mouseposition]) do mp
SimpleRectangle{Int}(round(Int, mp+10)..., 100, 70)
end
background = visualize((GLVisualize.RECTANGLE, Point2f0[0]),
color=RGBA{Float32}(0,0,0,0), scale=Vec2f0(100, 70), offset=Vec2f0(0),
stroke_color=RGBA{Float32}(0,0,0,0.4),
stroke_width=-1.0f0
)
mh = GLWindow.mouse2id(window)
popup = GLWindow.Screen(window, area=area, hidden=true)
cam = get!(popup.cameras, :perspective) do
GLAbstraction.PerspectiveCamera(
popup.inputs, Vec3f0(3), Vec3f0(0),
keep=Signal(false),
theta= Signal(Vec3f0(0)), trans= Signal(Vec3f0(0))
)
end
Reactive.preserve(map(mh) do mh
popup.hidden = !(mh.id == to_hover.id)
end)
map(enumerate(to_display)) do id
i,d = id
robj = visualize(d)
viewit = Reactive.droprepeats(map(mh->mh.id == to_hover.id && mh.index == i, mh))
camtype = get_cam(robj)
Reactive.preserve(map(viewit) do vi
if vi
empty!(popup)
if camtype == :perspective
cam.projectiontype.value = GLVisualize.PERSPECTIVE
else
cam.projectiontype.value = GLVisualize.ORTHOGRAPHIC
end
GLVisualize._view(robj, popup, camera=cam)
GLVisualize._view(background, popup, camera=:fixed_pixel)
bb = GLAbstraction.boundingbox(robj).value
mini = minimum(bb)
w = GeometryTypes.widths(bb)
wborder = w*0.08f0 #8 percent border
bb = GeometryTypes.AABB{Float32}(mini-wborder, w+2f0*wborder)
GLAbstraction.center!(cam, bb)
end
end)
end
nothing
end
function extract_extrema(d, kw_args)
xmin,xmax = extrema(d[:x]); ymin,ymax = extrema(d[:y])
kw_args[:primitive] = GeometryTypes.SimpleRectangle{Float32}(xmin, ymin, xmax-xmin, ymax-ymin)
nothing
end
function extract_font(font, kw_args)
kw_args[:family] = font.family
kw_args[:relative_scale] = font.pointsize ./ GLVisualize.glyph_scale!('X')
kw_args[:color] = gl_color(font.color)
end
function extract_colornorm(d, kw_args)
clims = d[:subplot][:clims]
if Plots.is_2tuple(clims)
if isfinite(clims[1]) && isfinite(clims[2])
kw_args[:color_norm] = Vec2f0(clims)
end
elseif clims == :auto
z = if haskey(d, :marker_z) && d[:marker_z] != nothing
d[:marker_z]
elseif haskey(d, :line_z) && d[:line_z] != nothing
d[:line_z]
elseif isa(d[:z], Plots.Surface)
d[:z].surf
else
d[:y]
end
kw_args[:color_norm] = Vec2f0(extrema(z))
kw_args[:intensity] = map(Float32, collect(z))
end
end
function extract_gradient(d, kw_args, sym)
key = Symbol("$(sym)color")
haskey(d, key) || return
c = make_gradient(d[key])
kw_args[:color] = nothing
extract_colornorm(d, kw_args)
kw_args[:color_map] = c
return
end
function extract_c(d, kw_args, sym)
key = Symbol("$(sym)color")
haskey(d, key) || return
c = gl_color(d[key])
kw_args[:color] = nothing
kw_args[:color_map] = nothing
kw_args[:color_norm] = nothing
if (
isa(c, AbstractVector) &&
((haskey(d, :marker_z) && d[:marker_z] != nothing) ||
(haskey(d, :line_z) && d[:line_z] != nothing))
)
extract_colornorm(d, kw_args)
kw_args[:color_map] = c
else
kw_args[:color] = c
end
return
end
function extract_stroke(d, kw_args, sym)
key = Symbol("$(sym)strokecolor")
haskey(d, key) || return
c = gl_color(d[key])
if c != nothing
if !isa(c, Colorant)
error("Stroke Color not supported: $c")
end
kw_args[:stroke_color] = c
kw_args[:stroke_width] = Float32(d[Symbol("$(sym)strokewidth")]) * 2
end
return
end
function draw_grid_lines(sp, grid_segs, thickness, style, model, color)
kw_args = Dict{Symbol, Any}(
:model => model
)
d = Dict(
:linestyle => style,
:linewidth => thickness,
:linecolor => color
)
Plots.extract_linestyle(d, kw_args)
GL.gl_lines(map(Point2f0, grid_segs.pts), kw_args)
end
function align_offset(startpos, lastpos, atlas, rscale, font, align)
xscale, yscale = GLVisualize.glyph_scale!('X').*rscale
xmove = (lastpos-startpos)[1]+xscale
if align == :top
return -Vec2f0(xmove/2f0, yscale)
elseif align == :right
return -Vec2f0(xmove, yscale/2f0)
else
error("Align $align not known")
end
end
function align_offset(startpos, lastpos, atlas, rscale, font, align::Vec)
xscale, yscale = GLVisualize.glyph_scale!('X').*rscale
xmove = (lastpos-startpos)[1]+xscale
return -Vec2f0(xmove, yscale) .* align
end
function alignment2num(x::Symbol)
(x in (:hcenter, :vcenter)) && return 0.5
(x in (:left, :bottom)) && return 0.0
(x in (:right, :top)) && return 1.0
0.0 # 0 default, or better to error?
end
function alignment2num(font::Plots.Font)
Vec2f0(map(alignment2num, (font.halign, font.valign)))
end
function draw_ticks(axis, ticks, align, move, isx, lims, model, text = "", positions = Point2f0[], offsets=Vec2f0[])
sz = axis[:tickfont].pointsize
rscale2 = Vec2f0(3/sz)
m = Reactive.value(model)
xs, ys = m[1,1], m[2,2]
rscale = rscale2 ./ Vec2f0(xs, ys)
atlas = GLVisualize.get_texture_atlas()
font = GLVisualize.defaultfont()
if !(ticks in (nothing, false))
# x labels
flip = axis[:flip]
for (cv, dv) in zip(ticks...)
x,y = cv, (flip ? lims[2] : lims[1])
startpos = Point2f0(isx ? (x,y) : (y,x))-move
# @show cv dv ymin xi yi
str = string(dv)
position = GLVisualize.calc_position(str, startpos, rscale, font, atlas)
offset = GLVisualize.calc_offset(str, rscale2, font, atlas)
alignoff = align_offset(startpos, last(position), atlas, rscale, font, align)
map!(position) do pos
pos .+ alignoff
end
append!(positions, position)
append!(offsets, offset)
text *= str
end
end
text, positions, offsets
end
function text(position, text, kw_args)
text_align = alignment2num(text.font)
startpos = Vec2f0(position)
atlas = GLVisualize.get_texture_atlas()
font = GLVisualize.defaultfont()
rscale = kw_args[:relative_scale]
m = Reactive.value(kw_args[:model])
position = GLVisualize.calc_position(text.str, startpos, rscale, font, atlas)
offset = GLVisualize.calc_offset(text.str, rscale, font, atlas)
alignoff = align_offset(startpos, last(position), atlas, rscale, font, text_align)
map!(position) do pos
pos .+ alignoff
end
kw_args[:position] = position
kw_args[:offset] = offset
kw_args[:scale_primitive] = true
visualize(text.str, Style(:default), kw_args)
end
function text_model(font, pivot)
pv = GeometryTypes.Vec3f0(pivot[1], pivot[2], 0)
if font.rotation != 0.0
rot = Float32(deg2rad(font.rotation))
rotm = GLAbstraction.rotationmatrix_z(rot)
return GLAbstraction.translationmatrix(pv)*rotm*GLAbstraction.translationmatrix(-pv)
else
eye(GeometryTypes.Mat4f0)
end
end
function gl_draw_axes_2d(sp::Plots.Subplot{Plots.GLVisualizeBackend}, model, area)
xticks, yticks, spine_segs, grid_segs = Plots.axis_drawing_info(sp)
xaxis = sp[:xaxis]; yaxis = sp[:yaxis]
c = Colors.color(Plots.gl_color(sp[:foreground_color_grid]))
axis_vis = []
if sp[:grid]
grid = draw_grid_lines(sp, grid_segs, 1f0, :dot, model, RGBA(c, 0.3f0))
push!(axis_vis, grid)
end
if alpha(xaxis[:foreground_color_border]) > 0
spine = draw_grid_lines(sp, spine_segs, 1f0, :solid, model, RGBA(c, 1.0f0))
push!(axis_vis, spine)
end
fcolor = Plots.gl_color(xaxis[:foreground_color_axis])
xlim = Plots.axis_limits(xaxis)
ylim = Plots.axis_limits(yaxis)
m = Reactive.value(model)
xs, ys = m[1,1], m[2,2]
# TODO: we should make sure we actually need to draw these...
t, positions, offsets = draw_ticks(xaxis, xticks, :top, Point2f0(0, 7/ys), true, ylim, model)
t, positions, offsets = draw_ticks(yaxis, yticks, :right, Point2f0(7/xs, 0), false, xlim, model, t, positions, offsets)
sz = xaxis[:tickfont].pointsize
kw_args = Dict{Symbol, Any}(
:position => positions,
:offset => offsets,
:color => fcolor,
:relative_scale => Vec2f0(3/sz),
:model => model,
:scale_primitive => false
)
if !(xaxis[:ticks] in (nothing,false,:none))
push!(axis_vis, visualize(t, Style(:default), kw_args))
end
area_w = GeometryTypes.widths(area)
if sp[:title] != ""
tf = sp[:titlefont]; color = gl_color(sp[:foreground_color_title])
font = Plots.Font(tf.family, tf.pointsize, :hcenter, :top, tf.rotation, color)
xy = Point2f0(area.w/2, area_w[2])
kw = Dict(:model => text_model(font, xy), :scale_primitive=>true)
extract_font(font, kw)
t = PlotText(sp[:title], font)
push!(axis_vis, text(xy, t, kw))
end
if xaxis[:guide] != ""
tf = xaxis[:guidefont]; color = gl_color(xaxis[:foreground_color_guide])
xy = Point2f0(area.w/2, 0)
font = Plots.Font(tf.family, tf.pointsize, :hcenter, :bottom, tf.rotation, color)
kw = Dict(:model => text_model(font, xy), :scale_primitive=>true)
t = PlotText(xaxis[:guide], font)
extract_font(font, kw)
push!(axis_vis, text(xy, t, kw))
end
if yaxis[:guide] != ""
tf = yaxis[:guidefont]; color = gl_color(yaxis[:foreground_color_guide])
font = Plots.Font(tf.family, tf.pointsize, :hcenter, :top, 90f0, color)
xy = Point2f0(0, area.h/2)
kw = Dict(:model => text_model(font, xy), :scale_primitive=>true)
t = PlotText(yaxis[:guide], font)
extract_font(font, kw)
push!(axis_vis, text(xy, t, kw))
end
axis_vis
end
function gl_draw_axes_3d(sp, model)
x = Plots.axis_limits(sp[:xaxis])
y = Plots.axis_limits(sp[:yaxis])
z = Plots.axis_limits(sp[:zaxis])
min = Vec3f0(x[1], y[1], z[1])
visualize(
GeometryTypes.AABB{Float32}(min, Vec3f0(x[2], y[2], z[2])-min),
:grid, model=model
)
end
function gl_bar(d, kw_args)
x, y = d[:x], d[:y]
nx, ny = length(x), length(y)
axis = d[:subplot][isvertical(d) ? :xaxis : :yaxis]
cv = [discrete_value!(axis, xi)[1] for xi=x]
x = if nx == ny
cv
elseif nx == ny + 1
0.5diff(cv) + cv[1:end-1]
else
error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))")
end
if haskey(kw_args, :stroke_width) # stroke is inside for bars
#kw_args[:stroke_width] = -kw_args[:stroke_width]
end
# compute half-width of bars
bw = nothing
hw = if bw == nothing
mean(diff(x))
else
Float64[cycle(bw,i)*0.5 for i=1:length(x)]
end
# make fillto a vector... default fills to 0
fillto = d[:fillrange]
if fillto == nothing
fillto = 0
end
# create the bar shapes by adding x/y segments
positions, scales = Array(Point2f0, ny), Array(Vec2f0, ny)
m = Reactive.value(kw_args[:model])
sx, sy = m[1,1], m[2,2]
for i=1:ny
center = x[i]
hwi = abs(cycle(hw,i)); yi = y[i]; fi = cycle(fillto,i)
if Plots.isvertical(d)
sz = (hwi*sx, yi*sy)
else
sz = (yi*sx, hwi*2*sy)
end
positions[i] = (center-hwi*0.5, fi)
scales[i] = sz
end
kw_args[:scale] = scales
kw_args[:offset] = Vec2f0(0)
visualize((GLVisualize.RECTANGLE, positions), Style(:default), kw_args)
#[]
end
const _box_halfwidth = 0.4
notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
function gl_boxplot(d, kw_args)
kwbox = copy(kw_args)
range = 1.5; notch = false
x, y = d[:x], d[:y]
glabels = sort(collect(unique(x)))
warning = false
outliers_x, outliers_y = zeros(0), zeros(0)
box_pos = Point2f0[]
box_scale = Vec2f0[]
outliers = Point2f0[]
t_segments = Point2f0[]
m = Reactive.value(kw_args[:model])
sx, sy = m[1,1], m[2,2]
for (i,glabel) in enumerate(glabels)
# filter y
values = y[filter(i -> cycle(x,i) == glabel, 1:length(y))]
# compute quantiles
q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5))
# notch
n = Plots.notch_width(q2, q4, length(values))
# warn on inverted notches?
if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) )
warn("Boxplot's notch went outside hinges. Set notch to false.")
warning = true # Show the warning only one time
end
# make the shape
center = Plots.discrete_value!(d[:subplot][:xaxis], glabel)[1]
hw = d[:bar_width] == nothing ? Plots._box_halfwidth*2 : cycle(d[:bar_width], i)
l, m, r = center - hw/2, center, center + hw/2
# internal nodes for notches
L, R = center - 0.5 * hw, center + 0.5 * hw
# outliers
if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data
limit = range*(q4-q2)
inside = Float64[]
for value in values
if (value < (q2 - limit)) || (value > (q4 + limit))
push!(outliers, (center, value))
else
push!(inside, value)
end
end
# change q1 and q5 to show outliers
# using maximum and minimum values inside the limits
q1, q5 = extrema(inside)
end
# Box
if notch
push!(t_segments, (m, q1), (l, q1), (r, q1), (m, q1), (m, q2))# lower T
push!(box_pos, (l, q2));push!(box_scale, (hw*sx, n*sy)) # lower box
push!(box_pos, (l, q4));push!(box_scale, (hw*sx, n*sy)) # upper box
push!(t_segments, (m, q5), (l, q5), (r, q5), (m, q5), (m, q4))# upper T
else
push!(t_segments, (m, q2), (m, q1), (l, q1), (r, q1))# lower T
push!(box_pos, (l, q2)); push!(box_scale, (hw*sx, (q3-q2)*sy)) # lower box
push!(box_pos, (l, q4)); push!(box_scale, (hw*sx, (q3-q4)*sy)) # upper box
push!(t_segments, (m, q4), (m, q5), (r, q5), (l, q5))# upper T
end
end
kwbox = Dict{Symbol, Any}(
:scale => box_scale,
:model => kw_args[:model],
:offset => Vec2f0(0),
)
extract_marker(d, kw_args)
outlier_kw = Dict(
:model => kw_args[:model],
:color => scalar_color(d, :fill),
:stroke_width => Float32(d[:markerstrokewidth]),
:stroke_color => scalar_color(d, :markerstroke),
)
lines_kw = Dict(
:model => kw_args[:model],
:stroke_width => d[:linewidth],
:stroke_color => scalar_color(d, :fill),
)
vis1 = GLVisualize.visualize((GLVisualize.RECTANGLE, box_pos), Style(:default), kwbox)
vis2 = GLVisualize.visualize((GLVisualize.CIRCLE, outliers), Style(:default), outlier_kw)
vis3 = GLVisualize.visualize(t_segments, Style(:linesegment), lines_kw)
[vis1, vis2, vis3]
end
# ---------------------------------------------------------------------------
function gl_viewport(bb, rect)
l, b, bw, bh = bb
rw, rh = rect.w, rect.h
GLVisualize.SimpleRectangle(
round(Int, rect.x + rw * l),
round(Int, rect.y + rh * b),
round(Int, rw * bw),
round(Int, rh * bh)
)
end
function to_modelmatrix(rect, subrect, rel_plotarea, sp)
xmin, xmax = Plots.axis_limits(sp[:xaxis])
ymin, ymax = Plots.axis_limits(sp[:yaxis])
mini, maxi = Vec3f0(xmin, ymin, 0), Vec3f0(xmax, ymax, 1)
if Plots.is3d(sp)
zmin, zmax = Plots.axis_limits(sp[:zaxis])
mini, maxi = Vec3f0(xmin, ymin, zmin), Vec3f0(xmax, ymax, zmax)
s = Vec3f0(1) ./ (maxi-mini)
return GLAbstraction.scalematrix(s)*GLAbstraction.translationmatrix(-mini)
end
l, b, bw, bh = rel_plotarea
w, h = rect.w*bw, rect.h*bh
x, y = rect.w*l - subrect.x, rect.h*b - subrect.y
t = -mini
s = Vec3f0(w, h, 1) ./ (maxi-mini)
GLAbstraction.translationmatrix(Vec3f0(x,y,0))*GLAbstraction.scalematrix(s)*GLAbstraction.translationmatrix(t)
end
# ----------------------------------------------------------------
function _display(plt::Plot{GLVisualizeBackend})
screen = plt.o
empty_screen!(screen)
sw, sh = plt[:size]
sw, sh = sw*px, sh*px
resize!(screen, plt[:size]...)
# TODO: use plt.subplots... plt.spmap can't be trusted
for sp in plt.subplots
_3d = Plots.is3d(sp)
# camera = :perspective
# initialize the sub-screen for this subplot
# note: we create a lift function to update the size on resize
rel_bbox = Plots.bbox_to_pcts(bbox(sp), sw, sh)
sub_area = map(screen.area) do rect
Plots.gl_viewport(rel_bbox, rect)
end
c = plt[:background_color_outside]
sp_screen = GLVisualize.Screen(
screen, color = c,
area = sub_area
)
cam = get!(sp_screen.cameras, :perspective) do
inside = sp_screen.inputs[:mouseinside]
theta = _3d ? nothing : Signal(Vec3f0(0)) # surpress rotation for 2D (nothing will get usual rotation controle)
GLAbstraction.PerspectiveCamera(
sp_screen.inputs, Vec3f0(3), Vec3f0(0),
keep=inside, theta=theta
)
end
sp.o = sp_screen
rel_plotarea = Plots.bbox_to_pcts(plotarea(sp), sw, sh)
model_m = map(Plots.to_modelmatrix, screen.area, sub_area, Signal(rel_plotarea), Signal(sp))
for ann in sp[:annotations]
x, y, plot_text = ann
txt_args = Dict{Symbol, Any}(:model => eye(GeometryTypes.Mat4f0))
x, y, _1, _1 = Reactive.value(model_m) * Vec{4,Float32}(x, y, 0, 1)
extract_font(plot_text.font, txt_args)
t = text(Point2f0(x, y), plot_text, txt_args)
GLVisualize._view(t, sp_screen, camera=cam)
end
# loop over the series and add them to the subplot
if !_3d
axis = gl_draw_axes_2d(sp, model_m, Reactive.value(sub_area))
GLVisualize._view(axis, sp_screen, camera=cam)
cam.projectiontype.value = GLVisualize.ORTHOGRAPHIC
Reactive.run_till_now() # make sure Reactive.push! arrives
GLAbstraction.center!(cam,
GeometryTypes.AABB(
Vec3f0(-10), Vec3f0((GeometryTypes.widths(sp_screen)+20f0)..., 1)
)
)
else
axis = gl_draw_axes_3d(sp, model_m)
GLVisualize._view(axis, sp_screen, camera=cam)
push!(cam.projectiontype, GLVisualize.PERSPECTIVE)
end
for series in Plots.series_list(sp)
d = series.d
st = d[:seriestype]; kw_args = KW() # exctract kw
kw_args[:model] = model_m # add transformation
if !_3d # 3D is treated differently, since we need boundingboxes for camera
kw_args[:boundingbox] = nothing # don't calculate bb, we dont need it
end
if st in (:surface, :wireframe)
x, y, z = extract_surface(d)
extract_gradient(d, kw_args, :fill)
z = Plots.transpose_z(d, z, false)
if isa(x, AbstractMatrix) && isa(y, AbstractMatrix)
x, y = Plots.transpose_z(d, x, false), Plots.transpose_z(d, y, false)
end
if st == :wireframe
kw_args[:wireframe] = true
kw_args[:stroke_color] = d[:linecolor]
kw_args[:stroke_width] = Float32(d[:linewidth]/100f0)
end
vis = GL.gl_surface(x, y, z, kw_args)
elseif (st in (:path, :path3d)) && d[:linewidth] > 0
kw = copy(kw_args)
points = Plots.extract_points(d)
extract_linestyle(d, kw)
vis = GL.gl_lines(points, kw)
if d[:markershape] != :none
kw = copy(kw_args)
extract_stroke(d, kw)
extract_marker(d, kw)
vis2 = GL.gl_scatter(copy(points), kw)
vis = [vis; vis2]
end
if d[:fillrange] != nothing
kw = copy(kw_args)
fr = d[:fillrange]
ps = if all(x->x>=0, diff(d[:x])) # if is monotonic
vcat(points, Point2f0[(points[i][1], cycle(fr, i)) for i=length(points):-1:1])
else
points
end
extract_c(d, kw, :fill)
vis = [GL.gl_poly(ps, kw), vis]
end
elseif st in (:scatter, :scatter3d) #|| d[:markershape] != :none
extract_marker(d, kw_args)
points = extract_points(d)
vis = GL.gl_scatter(points, kw_args)
elseif st == :shape
extract_c(d, kw_args, :fill)
vis = GL.gl_shape(d, kw_args)
elseif st == :contour
x,y,z = extract_surface(d)
z = transpose_z(d, z, false)
extract_extrema(d, kw_args)
extract_gradient(d, kw_args, :fill)
kw_args[:fillrange] = d[:fillrange]
kw_args[:levels] = d[:levels]
vis = GL.gl_contour(x,y,z, kw_args)
elseif st == :heatmap
x,y,z = extract_surface(d)
extract_gradient(d, kw_args, :fill)
extract_extrema(d, kw_args)
extract_limits(sp, d, kw_args)
vis = GL.gl_heatmap(x,y,z, kw_args)
elseif st == :bar
extract_c(d, kw_args, :fill)
extract_stroke(d, kw_args, :marker)
vis = gl_bar(d, kw_args)
elseif st == :image
extract_extrema(d, kw_args)
z = transpose_z(series, d[:z].surf, false)
vis = GL.gl_image(z, kw_args)
elseif st == :boxplot
extract_c(d, kw_args, :fill)
vis = gl_boxplot(d, kw_args)
elseif st == :volume
volume = d[:y]
_d = copy(d)
_d[:y] = 0:1
_d[:x] = 0:1
kw_args = KW()
extract_gradient(_d, kw_args, :fill)
vis = visualize(volume.v, Style(:default), kw_args)
else
error("failed to display plot type $st")
end
if isa(vis, Array) && isempty(vis)
continue # nothing to see here
end
GLVisualize._view(vis, sp_screen, camera=cam)
if haskey(d, :hover) && !(d[:hover] in (false, :none, nothing))
hover(vis, d[:hover], sp_screen)
end
if isdefined(:GLPlot) && isdefined(Main.GLPlot, :(register_plot!))
del_signal = Main.GLPlot.register_plot!(vis, sp_screen, create_gizmo=false)
append!(_glplot_deletes, del_signal)
end
end
#@show model_m
generate_legend(sp, sp_screen, model_m)
if _3d
GLAbstraction.center!(sp_screen)
end
end
Reactive.post_empty()
yield()
end
function _show(io::IO, ::MIME"image/png", plt::Plot{GLVisualizeBackend})
_display(plt)
GLWindow.pollevents()
yield()
if Base.n_avail(Reactive._messages) > 0
Reactive.run_till_now()
end
GLWindow.render_frame(plt.o)
GLWindow.swapbuffers(plt.o)
buff = GLWindow.screenbuffer(plt.o)
png = Images.Image(map(RGB{U8}, buff),
colorspace = "sRGB",
spatialorder = ["y", "x"]
)
FileIO.save(FileIO.Stream(FileIO.DataFormat{:PNG}, io), png)
end
function gl_image(img, kw_args)
rect = kw_args[:primitive]
kw_args[:primitive] = GeometryTypes.SimpleRectangle{Float32}(rect.x, rect.y, rect.h, rect.w) # seems to be flipped
visualize(img, Style(:default), kw_args)
end
function handle_segment{P}(lines, line_segments, points::Vector{P}, segment)
(isempty(segment) || length(segment) < 2) && return
if length(segment) == 2
append!(line_segments, view(points, segment))
elseif length(segment) == 3
p = view(points, segment)
push!(line_segments, p[1], p[2], p[2], p[3])
else
append!(lines, view(points, segment))
push!(lines, P(NaN))
end
end
function gl_lines(points, kw_args)
result = []
isempty(points) && return result
P = eltype(points)
lines = P[]
line_segments = P[]
last = 1
for (i,p) in enumerate(points)
if isnan(p) || i==length(points)
_i = isnan(p) ? i-1 : i
handle_segment(lines, line_segments, points, last:_i)
last = i+1
end
end
if !isempty(lines)
pop!(lines) # remove last NaN
push!(result, visualize(lines, Style(:lines), kw_args))
end
if !isempty(line_segments)
push!(result, visualize(line_segments, Style(:linesegment), kw_args))
end
return result
end
function gl_shape(d, kw_args)
points = Plots.extract_points(d)
result = []
for rng in iter_segments(d[:x], d[:y])
ps = points[rng]
meshes = gl_poly(ps, kw_args)
append!(result, meshes)
end
result
end
tovec2(x::FixedSizeArrays.Vec{2, Float32}) = x
tovec2(x::AbstractVector) = map(tovec2, x)
tovec2(x::FixedSizeArrays.Vec) = Vec2f0(x[1], x[2])
tovec3(x) = x
tovec3(x::FixedSizeArrays.Vec{3}) = Vec3f0(x)
tovec3(x::AbstractVector) = map(tovec3, x)
tovec3(x::FixedSizeArrays.Vec{2}) = Vec3f0(x[1], x[2], 1)
function gl_scatter(points, kw_args)
prim = get(kw_args, :primitive, GeometryTypes.Circle)
if isa(prim, GLNormalMesh)
if haskey(kw_args, :model)
kw_args[:scale] = GLAbstraction.const_lift(kw_args[:model], kw_args[:scale]) do m, sc
s = m[1,1], m[2,2], m[3,3]
tovec3(sc).*(1f0./Vec3f0(s))
end
end
else # 2D prim
kw_args[:scale] = tovec2(kw_args[:scale])
end
if haskey(kw_args, :stroke_width)
s = Reactive.value(kw_args[:scale])
sw = kw_args[:stroke_width]
if sw*5 > cycle(Reactive.value(s), 1)[1] # restrict marker stroke to 1/10th of scale (and handle arrays of scales)
kw_args[:stroke_width] = s[1]/5f0
end
end
kw_args[:scale_primitive] = false
visualize((prim, points), Style(:default), kw_args)
end
function gl_poly(points, kw_args)
last(points) == first(points) && pop!(points)
polys = GeometryTypes.split_intersections(points)
result = []
for poly in polys
mesh = GLNormalMesh(poly) # make polygon
if !isempty(GeometryTypes.faces(mesh)) # check if polygonation has any faces
push!(result, GLVisualize.visualize(mesh, Style(:default), kw_args))
else
warn("Couldn't draw the polygon: $points")
end
end
result
end
function gl_surface(x,y,z, kw_args)
if isa(x, Range) && isa(y, Range)
main = z
kw_args[:ranges] = (x, y)
else
if isa(x, AbstractMatrix) && isa(y, AbstractMatrix)
main = map(s->map(Float32, s), (x, y, z))
elseif isa(x, AbstractVector) || isa(y, AbstractVector)
x = Float32[x[i] for i=1:size(z,1), j=1:size(z,2)]
y = Float32[y[j] for i=1:size(z,1), j=1:size(z,2)]
main = (x, y, map(Float32, z))
else
error("surface: combination of types not supported: $(typeof(x)) $(typeof(y)) $(typeof(z))")
end
if get(kw_args, :wireframe, false)
points = map(Point3f0, zip(vec(x), vec(y), vec(z)))
faces = Cuint[]
idx = (i,j) -> sub2ind(size(z), i, j) - 1
for i=1:size(z,1), j=1:size(z,2)
i < size(z,1) && push!(faces, idx(i, j), idx(i+1, j))
j < size(z,2) && push!(faces, idx(i, j), idx(i, j+1))
end
color = get(kw_args, :stroke_color, RGBA{Float32}(0,0,0,1))
kw_args[:color] = color
kw_args[:thickness] = get(kw_args, :stroke_width, 1f0)
kw_args[:indices] = faces
delete!(kw_args, :stroke_color)
delete!(kw_args, :stroke_width)
return visualize(points, Style(:linesegment), kw_args)
end
end
return visualize(main, Style(:surface), kw_args)
end
function gl_contour(x,y,z, kw_args)
if kw_args[:fillrange] != nothing
delete!(kw_args, :intensity)
I = GLVisualize.Intensity{1, Float32}
main = I[z[j,i] for i=1:size(z, 2), j=1:size(z, 1)]
return visualize(main, Style(:default), kw_args)
else
h = kw_args[:levels]
levels = Contour.contours(x, y, z, h)
result = Point2f0[]
zmin, zmax = get(kw_args, :limits, Vec2f0(extrema(z)))
cmap = get(kw_args, :color_map, get(kw_args, :color, RGBA{Float32}(0,0,0,1)))
colors = RGBA{Float32}[]
for c in levels.contours
for elem in c.lines
append!(result, elem.vertices)
push!(result, Point2f0(NaN32))
col = GLVisualize.color_lookup(cmap, c.level, zmin, zmax)
append!(colors, fill(col, length(elem.vertices)+1))
end
end
kw_args[:color] = colors
kw_args[:color_map] = nothing
kw_args[:color_norm] = nothing
kw_args[:intensity] = nothing
return visualize(result, Style(:lines),kw_args)
end
end
function gl_heatmap(x,y,z, kw_args)
get!(kw_args, :color_norm, Vec2f0(extrema(z)))
get!(kw_args, :color_map, Plots.make_gradient(cgrad()))
delete!(kw_args, :intensity)
I = GLVisualize.Intensity{1, Float32}
heatmap = I[z[j,i] for i=1:size(z, 2), j=1:size(z, 1)]
tex = GLAbstraction.Texture(heatmap, minfilter=:nearest)
kw_args[:stroke_width] = 0f0
kw_args[:levels] = 1f0
visualize(tex, Style(:default), kw_args)
end
function text_plot(text, alignment, kw_args)
transmat = kw_args[:model]
obj = visualize(text, Style(:default), kw_args)
bb = value(GLAbstraction.boundingbox(obj))
w,h,_ = widths(bb)
x,y,_ = minimum(bb)
pivot = origin(alignment)
pos = pivot - (Point2f0(x, y) .* widths(alignment))
if kw_args[:rotation] != 0.0
rot = GLAbstraction.rotationmatrix_z(Float32(font.rotation))
transmat *= translationmatrix(pivot)*rot*translationmatrix(-pivot)
end
transmat *= GLAbstraction.translationmatrix(Vec3f0(pos..., 0))
GLAbstraction.transformation(obj, transmat)
view(obj, img.screen, camera=:orthographic_pixel)
end
"""
Ugh, so much special casing (╯°□°)╯︵ ┻━┻
"""
function label_scatter(d, w, ho)
kw = KW()
extract_stroke(d, kw)
extract_marker(d, kw)
kw[:scale] = Vec2f0(w/2)
kw[:offset] = Vec2f0(-w/4)
if haskey(kw, :intensity)
cmap = kw[:color_map]
norm = kw[:color_norm]
kw[:color] = GLVisualize.color_lookup(cmap, kw[:intensity][1], norm)
delete!(kw, :intensity)
delete!(kw, :color_map)
delete!(kw, :color_norm)
else
color = get(kw, :color, nothing)
kw[:color] = isa(color, Array) ? first(color) : color
end
p = get(kw, :primitive, GeometryTypes.Circle)
if isa(p, GLNormalMesh)
bb = GeometryTypes.AABB{Float32}(GeometryTypes.vertices(p))
bbw = GeometryTypes.widths(bb)
mini = minimum(bb)
m = GLAbstraction.translationmatrix(-mini)
m *= GLAbstraction.scalematrix(1f0./bbw)
#m *= GLAbstraction.translationmatrix(-Vec3f0(0.5))
kw[:primitive] = m * p
kw[:scale] = Vec3f0(w/2)
delete!(kw, :offset)
end
GL.gl_scatter(Point2f0[(w/2, ho)], kw)
end
function make_label(sp, series, i)
GL = Plots
w, gap, ho = 20f0, 5f0, 5
result = []
d = series.d
st = d[:seriestype]
kw_args = KW()
if (st in (:path, :path3d)) && d[:linewidth] > 0
points = Point2f0[(0, ho), (w, ho)]
kw = KW()
extract_linestyle(d, kw)
kw[:thickness] = 15f0
append!(result, GL.gl_lines(points, kw))
if d[:markershape] != :none
push!(result, label_scatter(d, w, ho))
end
elseif st in (:scatter, :scatter3d) #|| d[:markershape] != :none
push!(result, label_scatter(d, w, ho))
else
extract_c(d, kw_args, :fill)
if isa(kw_args[:color], AbstractVector)
kw_args[:color] = first(kw_args[:color])
end
push!(result, visualize(
GeometryTypes.SimpleRectangle(-w/2, ho-w/4, w/2, w/2),
Style(:default), kw_args
))
end
labeltext = if isa(series[:label], Array)
i += 1
series[:label][i]
else
series[:label]
end
color = sp[:foreground_color_legend]
ft = sp[:legendfont]
font = Plots.Font(ft.family, ft.pointsize, :left, :bottom, 0.0, color)
xy = Point2f0(w+gap, 0.0)
kw = Dict(:model => text_model(font, xy), :scale_primitive=>false)
extract_font(font, kw)
t = PlotText(labeltext, font)
push!(result, text(xy, t, kw))
GLAbstraction.Context(result...), i
end
function generate_legend(sp, screen, model_m)
legend = GLAbstraction.Context[]
if sp[:legend] != :none
i = 0
for series in series_list(sp)
should_add_to_legend(series) || continue
result, i = make_label(sp, series, i)
push!(legend, result)
end
if isempty(legend)
return
end
list = visualize(legend, gap=Vec3f0(0,5,0))
bb = GLAbstraction._boundingbox(list)
wx,wy,_ = GeometryTypes.widths(bb)
xmin, _ = Plots.axis_limits(sp[:xaxis])
_, ymax = Plots.axis_limits(sp[:yaxis])
area = map(model_m) do m
p = m * GeometryTypes.Vec4f0(xmin, ymax, 0, 1)
h = round(Int, wy)+20
w = round(Int, wx)+20
x,y = round(Int, p[1])+30, round(Int, p[2]-h)-30
GeometryTypes.SimpleRectangle(x, y, w, h)
end
sscren = GLWindow.Screen(
screen, area=area,
color=sp[:background_color_legend]
)
GLAbstraction.translate!(list, Vec3f0(10,10,0))
GLVisualize._view(list, sscren, camera=:fixed_pixel)
end
return
end