Plots.jl/src/utils.jl
2017-06-09 08:43:01 -07:00

880 lines
25 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

calcMidpoints(edges::AbstractVector) = Float64[0.5 * (edges[i] + edges[i+1]) for i in 1:length(edges)-1]
"Make histogram-like bins of data"
function binData(data, nbins)
lo, hi = ignorenan_extrema(data)
edges = collect(linspace(lo, hi, nbins+1))
midpoints = calcMidpoints(edges)
buckets = Int[max(2, min(searchsortedfirst(edges, x), length(edges)))-1 for x in data]
counts = zeros(Int, length(midpoints))
for b in buckets
counts[b] += 1
end
edges, midpoints, buckets, counts
end
"""
A hacky replacement for a histogram when the backend doesn't support histograms directly.
Convert it into a bar chart with the appropriate x/y values.
"""
function histogramHack(; kw...)
d = KW(kw)
# we assume that the y kwarg is set with the data to be binned, and nbins is also defined
edges, midpoints, buckets, counts = binData(d[:y], d[:bins])
d[:x] = midpoints
d[:y] = float(counts)
d[:seriestype] = :bar
d[:fillrange] = d[:fillrange] == nothing ? 0.0 : d[:fillrange]
d
end
"""
A hacky replacement for a bar graph when the backend doesn't support bars directly.
Convert it into a line chart with fillrange set.
"""
function barHack(; kw...)
d = KW(kw)
midpoints = d[:x]
heights = d[:y]
fillrange = d[:fillrange] == nothing ? 0.0 : d[:fillrange]
# estimate the edges
dists = diff(midpoints) * 0.5
edges = zeros(length(midpoints)+1)
for i in 1:length(edges)
if i == 1
edge = midpoints[1] - dists[1]
elseif i == length(edges)
edge = midpoints[i-1] + dists[i-2]
else
edge = midpoints[i-1] + dists[i-1]
end
edges[i] = edge
end
x = Float64[]
y = Float64[]
for i in 1:length(heights)
e1, e2 = edges[i:i+1]
append!(x, [e1, e1, e2, e2])
append!(y, [fillrange, heights[i], heights[i], fillrange])
end
d[:x] = x
d[:y] = y
d[:seriestype] = :path
d[:fillrange] = fillrange
d
end
"""
A hacky replacement for a sticks graph when the backend doesn't support sticks directly.
Convert it into a line chart that traces the sticks, and a scatter that sets markers at the points.
"""
function sticksHack(; kw...)
dLine = KW(kw)
dScatter = copy(dLine)
# these are the line vertices
x = Float64[]
y = Float64[]
fillrange = dLine[:fillrange] == nothing ? 0.0 : dLine[:fillrange]
# calculate the vertices
yScatter = dScatter[:y]
for (i,xi) in enumerate(dScatter[:x])
yi = yScatter[i]
for j in 1:3 push!(x, xi) end
append!(y, [fillrange, yScatter[i], fillrange])
end
# change the line args
dLine[:x] = x
dLine[:y] = y
dLine[:seriestype] = :path
dLine[:markershape] = :none
dLine[:fillrange] = nothing
# change the scatter args
dScatter[:seriestype] = :none
dLine, dScatter
end
function regressionXY(x, y)
# regress
β, α = convert(Matrix{Float64}, [x ones(length(x))]) \ convert(Vector{Float64}, y)
# make a line segment
regx = [ignorenan_minimum(x), ignorenan_maximum(x)]
regy = β * regx + α
regx, regy
end
function replace_image_with_heatmap{T<:Colorant}(z::Array{T})
@show T, size(z)
n, m = size(z)
# idx = 0
colors = ColorGradient(vec(z))
newz = reshape(linspace(0, 1, n*m), n, m)
newz, colors
# newz = zeros(n, m)
# for i=1:n, j=1:m
# push!(colors, T(z[i,j]...))
# newz[i,j] = idx / (n*m-1)
# idx += 1
# end
# newz, ColorGradient(colors)
end
function imageHack(d::KW)
is_seriestype_supported(:heatmap) || error("Neither :image or :heatmap are supported!")
d[:seriestype] = :heatmap
d[:z], d[:fillcolor] = replace_image_with_heatmap(d[:z].surf)
end
# ---------------------------------------------------------------
type Segments{T}
pts::Vector{T}
end
# Segments() = Segments{Float64}(zeros(0))
Segments() = Segments(Float64)
Segments{T}(::Type{T}) = Segments(T[])
Segments(p::Int) = Segments(NTuple{2,Float64}[])
# Segments() = Segments(zeros(0))
to_nan(::Type{Float64}) = NaN
to_nan(::Type{NTuple{2,Float64}}) = (NaN, NaN)
coords(segs::Segments{Float64}) = segs.pts
coords(segs::Segments{NTuple{2,Float64}}) = Float64[p[1] for p in segs.pts], Float64[p[2] for p in segs.pts]
function Base.push!{T}(segments::Segments{T}, vs...)
if !isempty(segments.pts)
push!(segments.pts, to_nan(T))
end
for v in vs
push!(segments.pts, convert(T,v))
end
segments
end
function Base.push!{T}(segments::Segments{T}, vs::AVec)
if !isempty(segments.pts)
push!(segments.pts, to_nan(T))
end
for v in vs
push!(segments.pts, convert(T,v))
end
segments
end
# -----------------------------------------------------
# helper to manage NaN-separated segments
type SegmentsIterator
args::Tuple
n::Int
end
function iter_segments(args...)
tup = Plots.wraptuple(args)
n = maximum(map(length, tup))
SegmentsIterator(tup, n)
end
# helpers to figure out if there are NaN values in a list of array types
anynan(i::Int, args::Tuple) = any(a -> !isfinite(_cycle(a,i)), args)
anynan(istart::Int, iend::Int, args::Tuple) = any(i -> anynan(i, args), istart:iend)
allnan(istart::Int, iend::Int, args::Tuple) = all(i -> anynan(i, args), istart:iend)
function Base.start(itr::SegmentsIterator)
nextidx = 1
if anynan(1, itr.args)
_, nextidx = next(itr, 1)
end
nextidx
end
Base.done(itr::SegmentsIterator, nextidx::Int) = nextidx > itr.n
function Base.next(itr::SegmentsIterator, nextidx::Int)
i = istart = iend = nextidx
# find the next NaN, and iend is the one before
while i <= itr.n + 1
if i > itr.n || anynan(i, itr.args)
# done... array end or found NaN
iend = i-1
break
end
i += 1
end
# find the next non-NaN, and set nextidx
while i <= itr.n
if !anynan(i, itr.args)
break
end
i += 1
end
istart:iend, i
end
# Find minimal type that can contain NaN and x
# To allow use of NaN separated segments with categorical x axis
float_extended_type{T}(x::AbstractArray{T}) = Union{T,Float64}
float_extended_type{T<:Real}(x::AbstractArray{T}) = Float64
# ------------------------------------------------------------------------------------
nop() = nothing
notimpl() = error("This has not been implemented yet")
isnothing(x::Void) = true
isnothing(x) = false
_cycle(wrapper::InputWrapper, idx::Int) = wrapper.obj
_cycle(wrapper::InputWrapper, idx::AVec{Int}) = wrapper.obj
_cycle(v::AVec, idx::Int) = v[mod1(idx, length(v))]
_cycle(v::AMat, idx::Int) = size(v,1) == 1 ? v[1, mod1(idx, size(v,2))] : v[:, mod1(idx, size(v,2))]
_cycle(v, idx::Int) = v
_cycle(v::AVec, indices::AVec{Int}) = map(i -> _cycle(v,i), indices)
_cycle(v::AMat, indices::AVec{Int}) = map(i -> _cycle(v,i), indices)
_cycle(v, indices::AVec{Int}) = fill(v, length(indices))
_cycle(grad::ColorGradient, idx::Int) = _cycle(grad.colors, idx)
_cycle(grad::ColorGradient, indices::AVec{Int}) = _cycle(grad.colors, indices)
makevec(v::AVec) = v
makevec{T}(v::T) = T[v]
"duplicate a single value, or pass the 2-tuple through"
maketuple(x::Real) = (x,x)
maketuple{T,S}(x::Tuple{T,S}) = x
mapFuncOrFuncs(f::Function, u::AVec) = map(f, u)
mapFuncOrFuncs{F<:Function}(fs::AVec{F}, u::AVec) = [map(f, u) for f in fs]
unzip{X,Y}(xy::AVec{Tuple{X,Y}}) = [t[1] for t in xy], [t[2] for t in xy]
unzip{X,Y,Z}(xyz::AVec{Tuple{X,Y,Z}}) = [t[1] for t in xyz], [t[2] for t in xyz], [t[3] for t in xyz]
unzip{X,Y,U,V}(xyuv::AVec{Tuple{X,Y,U,V}}) = [t[1] for t in xyuv], [t[2] for t in xyuv], [t[3] for t in xyuv], [t[4] for t in xyuv]
unzip{T}(xy::AVec{FixedSizeArrays.Vec{2,T}}) = T[t[1] for t in xy], T[t[2] for t in xy]
unzip{T}(xy::FixedSizeArrays.Vec{2,T}) = T[xy[1]], T[xy[2]]
unzip{T}(xyz::AVec{FixedSizeArrays.Vec{3,T}}) = T[t[1] for t in xyz], T[t[2] for t in xyz], T[t[3] for t in xyz]
unzip{T}(xyz::FixedSizeArrays.Vec{3,T}) = T[xyz[1]], T[xyz[2]], T[xyz[3]]
unzip{T}(xyuv::AVec{FixedSizeArrays.Vec{4,T}}) = T[t[1] for t in xyuv], T[t[2] for t in xyuv], T[t[3] for t in xyuv], T[t[4] for t in xyuv]
unzip{T}(xyuv::FixedSizeArrays.Vec{4,T}) = T[xyuv[1]], T[xyuv[2]], T[xyuv[3]], T[xyuv[4]]
# given 2-element lims and a vector of data x, widen lims to account for the extrema of x
function _expand_limits(lims, x)
try
e1, e2 = ignorenan_extrema(x)
lims[1] = NaNMath.min(lims[1], e1)
lims[2] = NaNMath.max(lims[2], e2)
# catch err
# warn(err)
end
nothing
end
expand_data(v, n::Integer) = [_cycle(v, i) for i=1:n]
# if the type exists in a list, replace the first occurence. otherwise add it to the end
function addOrReplace(v::AbstractVector, t::DataType, args...; kw...)
for (i,vi) in enumerate(v)
if isa(vi, t)
v[i] = t(args...; kw...)
return
end
end
push!(v, t(args...; kw...))
return
end
function replaceType(vec, val)
filter!(x -> !isa(x, typeof(val)), vec)
push!(vec, val)
end
function replaceAlias!(d::KW, k::Symbol, aliases::Dict{Symbol,Symbol})
if haskey(aliases, k)
d[aliases[k]] = pop!(d, k)
end
end
function replaceAliases!(d::KW, aliases::Dict{Symbol,Symbol})
ks = collect(keys(d))
for k in ks
replaceAlias!(d, k, aliases)
end
end
createSegments(z) = collect(repmat(z',2,1))[2:end]
Base.first(c::Colorant) = c
Base.first(x::Symbol) = x
sortedkeys(d::Dict) = sort(collect(keys(d)))
"create an (n+1) list of the outsides of heatmap rectangles"
function heatmap_edges(v::AVec)
vmin, vmax = ignorenan_extrema(v)
extra = 0.5 * (vmax-vmin) / (length(v)-1)
vcat(vmin-extra, 0.5 * (v[1:end-1] + v[2:end]), vmax+extra)
end
function calc_r_extrema(x, y)
xmin, xmax = ignorenan_extrema(x)
ymin, ymax = ignorenan_extrema(y)
r = 0.5 * NaNMath.min(xmax - xmin, ymax - ymin)
ignorenan_extrema(r)
end
function convert_to_polar(x, y, r_extrema = calc_r_extrema(x, y))
rmin, rmax = r_extrema
phi, r = x, y
r = (r - rmin) / (rmax - rmin)
n = max(length(phi), length(r))
x = zeros(n)
y = zeros(n)
for i in 1:n
x[i] = _cycle(r,i) * cos.(_cycle(phi,i))
y[i] = _cycle(r,i) * sin.(_cycle(phi,i))
end
x, y
end
function fakedata(sz...)
y = zeros(sz...)
for r in 2:size(y,1)
y[r,:] = 0.95 * vec(y[r-1,:]) + randn(size(y,2))
end
y
end
isijulia() = isdefined(Main, :IJulia) && Main.IJulia.inited
isatom() = isdefined(Main, :Atom) && Main.Atom.isconnected()
function is_installed(pkgstr::AbstractString)
try
Pkg.installed(pkgstr) === nothing ? false: true
catch
false
end
end
istuple(::Tuple) = true
istuple(::Any) = false
isvector(::AVec) = true
isvector(::Any) = false
ismatrix(::AMat) = true
ismatrix(::Any) = false
isscalar(::Real) = true
isscalar(::Any) = false
is_2tuple(v) = typeof(v) <: Tuple && length(v) == 2
isvertical(d::KW) = get(d, :orientation, :vertical) in (:vertical, :v, :vert)
isvertical(series::Series) = isvertical(series.d)
ticksType{T<:Real}(ticks::AVec{T}) = :ticks
ticksType{T<:AbstractString}(ticks::AVec{T}) = :labels
ticksType{T<:AVec,S<:AVec}(ticks::Tuple{T,S}) = :ticks_and_labels
ticksType(ticks) = :invalid
limsType{T<:Real,S<:Real}(lims::Tuple{T,S}) = :limits
limsType(lims::Symbol) = lims == :auto ? :auto : :invalid
limsType(lims) = :invalid
# axis_Symbol(letter, postfix) = Symbol(letter * postfix)
# axis_symbols(letter, postfix...) = map(s -> axis_Symbol(letter, s), postfix)
Base.convert{T<:Real}(::Type{Vector{T}}, rng::Range{T}) = T[x for x in rng]
Base.convert{T<:Real,S<:Real}(::Type{Vector{T}}, rng::Range{S}) = T[x for x in rng]
Base.merge(a::AbstractVector, b::AbstractVector) = sort(unique(vcat(a,b)))
nanpush!(a::AbstractVector, b) = (push!(a, NaN); push!(a, b))
nanappend!(a::AbstractVector, b) = (push!(a, NaN); append!(a, b))
function nansplit(v::AVec)
vs = Vector{eltype(v)}[]
while true
idx = findfirst(isnan, v)
if idx <= 0
# no nans
push!(vs, v)
break
elseif idx > 1
push!(vs, v[1:idx-1])
end
v = v[idx+1:end]
end
vs
end
function nanvcat(vs::AVec)
v_out = zeros(0)
for v in vs
nanappend!(v_out, v)
end
v_out
end
# given an array of discrete values, turn it into an array of indices of the unique values
# returns the array of indices (znew) and a vector of unique values (vals)
function indices_and_unique_values(z::AbstractArray)
vals = sort(unique(z))
vmap = Dict([(v,i) for (i,v) in enumerate(vals)])
newz = map(zi -> vmap[zi], z)
newz, vals
end
# this is a helper function to determine whether we need to transpose a surface matrix.
# it depends on whether the backend matches rows to x (transpose_on_match == true) or vice versa
# for example: PyPlot sends rows to y, so transpose_on_match should be true
function transpose_z(d, z, transpose_on_match::Bool = true)
if d[:match_dimensions] == transpose_on_match
# z'
permutedims(z, [2,1])
else
z
end
end
function ok(x::Number, y::Number, z::Number = 0)
isfinite(x) && isfinite(y) && isfinite(z)
end
ok(tup::Tuple) = ok(tup...)
# compute one side of a fill range from a ribbon
function make_fillrange_side(y, rib)
frs = zeros(length(y))
for (i, (yi, ri)) in enumerate(zip(y, Base.Iterators.cycle(rib)))
frs[i] = yi + ri
end
frs
end
# turn a ribbon into a fillrange
function make_fillrange_from_ribbon(kw::KW)
y, rib = kw[:y], kw[:ribbon]
rib = wraptuple(rib)
rib1, rib2 = -first(rib), last(rib)
kw[:ribbon] = nothing
kw[:fillrange] = make_fillrange_side(y, rib1), make_fillrange_side(y, rib2)
end
function get_sp_lims(sp::Subplot, letter::Symbol)
axis_limits(sp[Symbol(letter, :axis)])
end
xlims(sp::Subplot) = get_sp_lims(sp, :x)
ylims(sp::Subplot) = get_sp_lims(sp, :y)
zlims(sp::Subplot) = get_sp_lims(sp, :z)
xlims(plt::Plot, sp_idx::Int = 1) = xlims(plt[sp_idx])
ylims(plt::Plot, sp_idx::Int = 1) = ylims(plt[sp_idx])
zlims(plt::Plot, sp_idx::Int = 1) = zlims(plt[sp_idx])
xlims(sp_idx::Int = 1) = xlims(current(), sp_idx)
ylims(sp_idx::Int = 1) = ylims(current(), sp_idx)
zlims(sp_idx::Int = 1) = zlims(current(), sp_idx)
# ---------------------------------------------------------------
makekw(; kw...) = KW(kw)
wraptuple(x::Tuple) = x
wraptuple(x) = (x,)
trueOrAllTrue(f::Function, x::AbstractArray) = all(f, x)
trueOrAllTrue(f::Function, x) = f(x)
allLineTypes(arg) = trueOrAllTrue(a -> get(_typeAliases, a, a) in _allTypes, arg)
allStyles(arg) = trueOrAllTrue(a -> get(_styleAliases, a, a) in _allStyles, arg)
allShapes(arg) = trueOrAllTrue(a -> is_marker_supported(get(_markerAliases, a, a)), arg) ||
trueOrAllTrue(a -> isa(a, Shape), arg)
allAlphas(arg) = trueOrAllTrue(a -> (typeof(a) <: Real && a > 0 && a < 1) ||
(typeof(a) <: AbstractFloat && (a == zero(typeof(a)) || a == one(typeof(a)))), arg)
allReals(arg) = trueOrAllTrue(a -> typeof(a) <: Real, arg)
allFunctions(arg) = trueOrAllTrue(a -> isa(a, Function), arg)
# ---------------------------------------------------------------
# ---------------------------------------------------------------
"""
Allows temporary setting of backend and defaults for Plots. Settings apply only for the `do` block. Example:
```
with(:gadfly, size=(400,400), type=:histogram) do
plot(rand(10))
plot(rand(10))
end
```
"""
function with(f::Function, args...; kw...)
newdefs = KW(kw)
if :canvas in args
newdefs[:xticks] = nothing
newdefs[:yticks] = nothing
newdefs[:grid] = false
newdefs[:legend] = false
end
# dict to store old and new keyword args for anything that changes
olddefs = KW()
for k in keys(newdefs)
olddefs[k] = default(k)
end
# save the backend
if CURRENT_BACKEND.sym == :none
pickDefaultBackend()
end
oldbackend = CURRENT_BACKEND.sym
for arg in args
# change backend?
if arg in backends()
backend(arg)
end
# # TODO: generalize this strategy to allow args as much as possible
# # as in: with(:gadfly, :scatter, :legend, :grid) do; ...; end
# # TODO: can we generalize this enough to also do something similar in the plot commands??
# k = :seriestype
# if arg in _allTypes
# olddefs[k] = default(k)
# newdefs[k] = arg
# elseif haskey(_typeAliases, arg)
# olddefs[k] = default(k)
# newdefs[k] = _typeAliases[arg]
# end
k = :legend
if arg in (k, :leg)
olddefs[k] = default(k)
newdefs[k] = true
end
k = :grid
if arg == k
olddefs[k] = default(k)
newdefs[k] = true
end
end
# display(olddefs)
# display(newdefs)
# now set all those defaults
default(; newdefs...)
# call the function
ret = f()
# put the defaults back
default(; olddefs...)
# revert the backend
if CURRENT_BACKEND.sym != oldbackend
backend(oldbackend)
end
# return the result of the function
ret
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
type DebugMode
on::Bool
end
const _debugMode = DebugMode(false)
function debugplots(on = true)
_debugMode.on = on
end
debugshow(x) = show(x)
debugshow(x::AbstractArray) = print(summary(x))
function dumpdict(d::KW, prefix = "", alwaysshow = false)
_debugMode.on || alwaysshow || return
println()
if prefix != ""
println(prefix, ":")
end
for k in sort(collect(keys(d)))
@printf("%14s: ", k)
debugshow(d[k])
println()
end
println()
end
DD(d::KW, prefix = "") = dumpdict(d, prefix, true)
function dumpcallstack()
error() # well... you wanted the stacktrace, didn't you?!?
end
# ---------------------------------------------------------------
# ---------------------------------------------------------------
# used in updating an existing series
extendSeriesByOne(v::UnitRange{Int}, n::Int = 1) = isempty(v) ? (1:n) : (minimum(v):maximum(v)+n)
extendSeriesByOne(v::AVec, n::Integer = 1) = isempty(v) ? (1:n) : vcat(v, (1:n) + ignorenan_maximum(v))
extendSeriesData{T}(v::Range{T}, z::Real) = extendSeriesData(float(collect(v)), z)
extendSeriesData{T}(v::Range{T}, z::AVec) = extendSeriesData(float(collect(v)), z)
extendSeriesData{T}(v::AVec{T}, z::Real) = (push!(v, convert(T, z)); v)
extendSeriesData{T}(v::AVec{T}, z::AVec) = (append!(v, convert(Vector{T}, z)); v)
# -------------------------------------------------------
# NOTE: backends should implement the following methods to get/set the x/y/z data objects
tovec(v::AbstractVector) = v
tovec(v::Void) = zeros(0)
function getxy(plt::Plot, i::Integer)
d = plt.series_list[i].d
tovec(d[:x]), tovec(d[:y])
end
function getxyz(plt::Plot, i::Integer)
d = plt.series_list[i].d
tovec(d[:x]), tovec(d[:y]), tovec(d[:z])
end
function setxy!{X,Y}(plt::Plot, xy::Tuple{X,Y}, i::Integer)
series = plt.series_list[i]
series.d[:x], series.d[:y] = xy
sp = series.d[:subplot]
reset_extrema!(sp)
_series_updated(plt, series)
end
function setxyz!{X,Y,Z}(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer)
series = plt.series_list[i]
series.d[:x], series.d[:y], series.d[:z] = xyz
sp = series.d[:subplot]
reset_extrema!(sp)
_series_updated(plt, series)
end
function setxyz!{X,Y,Z<:AbstractMatrix}(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer)
setxyz!(plt, (xyz[1], xyz[2], Surface(xyz[3])), i)
end
# -------------------------------------------------------
# indexing notation
# Base.getindex(plt::Plot, i::Integer) = getxy(plt, i)
Base.setindex!{X,Y}(plt::Plot, xy::Tuple{X,Y}, i::Integer) = (setxy!(plt, xy, i); plt)
Base.setindex!{X,Y,Z}(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer) = (setxyz!(plt, xyz, i); plt)
# -------------------------------------------------------
# operate on individual series
function push_x!(series::Series, xi)
push!(series[:x], xi)
expand_extrema!(series[:subplot][:xaxis], xi)
return
end
function push_y!(series::Series, yi)
push!(series[:y], yi)
expand_extrema!(series[:subplot][:yaxis], yi)
return
end
function push_z!(series::Series, zi)
push!(series[:z], zi)
expand_extrema!(series[:subplot][:zaxis], zi)
return
end
function Base.push!(series::Series, yi)
x = extendSeriesByOne(series[:x])
expand_extrema!(series[:subplot][:xaxis], x[end])
series[:x] = x
push_y!(series, yi)
end
Base.push!(series::Series, xi, yi) = (push_x!(series,xi); push_y!(series,yi))
Base.push!(series::Series, xi, yi, zi) = (push_x!(series,xi); push_y!(series,yi); push_z!(series,zi))
# -------------------------------------------------------
function attr!(series::Series; kw...)
d = KW(kw)
preprocessArgs!(d)
for (k,v) in d
if haskey(_series_defaults, k)
series[k] = v
else
warn("unused key $k in series attr")
end
end
_series_updated(series[:subplot].plt, series)
series
end
function attr!(sp::Subplot; kw...)
d = KW(kw)
preprocessArgs!(d)
for (k,v) in d
if haskey(_subplot_defaults, k)
sp[k] = v
else
warn("unused key $k in subplot attr")
end
end
sp
end
# -------------------------------------------------------
# push/append for one series
# push value to first series
Base.push!(plt::Plot, y::Real) = push!(plt, 1, y)
Base.push!(plt::Plot, x::Real, y::Real) = push!(plt, 1, x, y)
Base.push!(plt::Plot, x::Real, y::Real, z::Real) = push!(plt, 1, x, y, z)
# y only
function Base.push!(plt::Plot, i::Integer, y::Real)
xdata, ydata = getxy(plt, i)
setxy!(plt, (extendSeriesByOne(xdata), extendSeriesData(ydata, y)), i)
plt
end
function Base.append!(plt::Plot, i::Integer, y::AVec)
xdata, ydata = plt[i]
if !isa(xdata, UnitRange{Int})
error("Expected x is a UnitRange since you're trying to push a y value only")
end
plt[i] = (extendSeriesByOne(xdata, length(y)), extendSeriesData(ydata, y))
plt
end
# x and y
function Base.push!(plt::Plot, i::Integer, x::Real, y::Real)
xdata, ydata = getxy(plt, i)
setxy!(plt, (extendSeriesData(xdata, x), extendSeriesData(ydata, y)), i)
plt
end
function Base.append!(plt::Plot, i::Integer, x::AVec, y::AVec)
@assert length(x) == length(y)
xdata, ydata = getxy(plt, i)
setxy!(plt, (extendSeriesData(xdata, x), extendSeriesData(ydata, y)), i)
plt
end
# x, y, and z
function Base.push!(plt::Plot, i::Integer, x::Real, y::Real, z::Real)
# @show i, x, y, z
xdata, ydata, zdata = getxyz(plt, i)
# @show xdata, ydata, zdata
setxyz!(plt, (extendSeriesData(xdata, x), extendSeriesData(ydata, y), extendSeriesData(zdata, z)), i)
plt
end
function Base.append!(plt::Plot, i::Integer, x::AVec, y::AVec, z::AVec)
@assert length(x) == length(y) == length(z)
xdata, ydata, zdata = getxyz(plt, i)
setxyz!(plt, (extendSeriesData(xdata, x), extendSeriesData(ydata, y), extendSeriesData(zdata, z)), i)
plt
end
# tuples
Base.push!{X,Y}(plt::Plot, xy::Tuple{X,Y}) = push!(plt, 1, xy...)
Base.push!{X,Y,Z}(plt::Plot, xyz::Tuple{X,Y,Z}) = push!(plt, 1, xyz...)
Base.push!{X,Y}(plt::Plot, i::Integer, xy::Tuple{X,Y}) = push!(plt, i, xy...)
Base.push!{X,Y,Z}(plt::Plot, i::Integer, xyz::Tuple{X,Y,Z}) = push!(plt, i, xyz...)
# -------------------------------------------------------
# push/append for all series
# push y[i] to the ith series
function Base.push!(plt::Plot, y::AVec)
ny = length(y)
for i in 1:plt.n
push!(plt, i, y[mod1(i,ny)])
end
plt
end
# push y[i] to the ith series
# same x for each series
function Base.push!(plt::Plot, x::Real, y::AVec)
push!(plt, [x], y)
end
# push (x[i], y[i]) to the ith series
function Base.push!(plt::Plot, x::AVec, y::AVec)
nx = length(x)
ny = length(y)
for i in 1:plt.n
push!(plt, i, x[mod1(i,nx)], y[mod1(i,ny)])
end
plt
end
# push (x[i], y[i], z[i]) to the ith series
function Base.push!(plt::Plot, x::AVec, y::AVec, z::AVec)
nx = length(x)
ny = length(y)
nz = length(z)
for i in 1:plt.n
push!(plt, i, x[mod1(i,nx)], y[mod1(i,ny)], z[mod1(i,nz)])
end
plt
end
# ---------------------------------------------------------------
# Some conversion functions
# note: I borrowed these conversion constants from Compose.jl's Measure
const PX_PER_INCH = 100
const DPI = PX_PER_INCH
const MM_PER_INCH = 25.4
const MM_PER_PX = MM_PER_INCH / PX_PER_INCH
inch2px(inches::Real) = float(inches * PX_PER_INCH)
px2inch(px::Real) = float(px / PX_PER_INCH)
inch2mm(inches::Real) = float(inches * MM_PER_INCH)
mm2inch(mm::Real) = float(mm / MM_PER_INCH)
px2mm(px::Real) = float(px * MM_PER_PX)
mm2px(mm::Real) = float(px / MM_PER_PX)
"Smallest x in plot"
xmin(plt::Plot) = ignorenan_minimum([ignorenan_minimum(series.d[:x]) for series in plt.series_list])
"Largest x in plot"
xmax(plt::Plot) = ignorenan_maximum([ignorenan_maximum(series.d[:x]) for series in plt.series_list])
"Extrema of x-values in plot"
ignorenan_extrema(plt::Plot) = (xmin(plt), xmax(plt))