Plots.jl/src/series.jl
2016-10-10 07:02:10 -04:00

494 lines
15 KiB
Julia

# create a new "build_series_args" which converts all inputs into xs = Any[xitems], ys = Any[yitems].
# Special handling for: no args, xmin/xmax, parametric, dataframes
# Then once inputs have been converted, build the series args, map functions, etc.
# This should cut down on boilerplate code and allow more focused dispatch on type
# note: returns meta information... mainly for use with automatic labeling from DataFrames for now
typealias FuncOrFuncs Union{Function, AVec{Function}}
all3D(d::KW) = trueOrAllTrue(st -> st in (:contour, :contourf, :heatmap, :surface, :wireframe, :contour3d, :image), get(d, :seriestype, :none))
# missing
convertToAnyVector(v::Void, d::KW) = Any[nothing], nothing
# fixed number of blank series
convertToAnyVector(n::Integer, d::KW) = Any[zeros(0) for i in 1:n], nothing
# numeric vector
convertToAnyVector{T<:Number}(v::AVec{T}, d::KW) = Any[v], nothing
# string vector
convertToAnyVector{T<:AbstractString}(v::AVec{T}, d::KW) = Any[v], nothing
function convertToAnyVector(v::AMat, d::KW)
if all3D(d)
Any[Surface(v)]
else
Any[v[:,i] for i in 1:size(v,2)]
end, nothing
end
# function
convertToAnyVector(f::Function, d::KW) = Any[f], nothing
# surface
convertToAnyVector(s::Surface, d::KW) = Any[s], nothing
# volume
convertToAnyVector(v::Volume, d::KW) = Any[v], nothing
# # vector of OHLC
# convertToAnyVector(v::AVec{OHLC}, d::KW) = Any[v], nothing
# # dates
# convertToAnyVector{D<:Union{Date,DateTime}}(dts::AVec{D}, d::KW) = Any[dts], nothing
# list of things (maybe other vectors, functions, or something else)
function convertToAnyVector(v::AVec, d::KW)
if all(x -> typeof(x) <: Number, v)
# all real numbers wrap the whole vector as one item
Any[convert(Vector{Float64}, v)], nothing
else
# something else... treat each element as an item
vcat(Any[convertToAnyVector(vi, d)[1] for vi in v]...), nothing
# Any[vi for vi in v], nothing
end
end
convertToAnyVector(t::Tuple, d::KW) = Any[t], nothing
function convertToAnyVector(args...)
error("In convertToAnyVector, could not handle the argument types: $(map(typeof, args[1:end-1]))")
end
# --------------------------------------------------------------------
# TODO: can we avoid the copy here? one error that crops up is that mapping functions over the same array
# result in that array being shared. push!, etc will add too many items to that array
compute_x(x::Void, y::Void, z) = 1:size(z,1)
compute_x(x::Void, y, z) = 1:size(y,1)
compute_x(x::Function, y, z) = map(x, y)
compute_x(x, y, z) = copy(x)
# compute_y(x::Void, y::Function, z) = error()
compute_y(x::Void, y::Void, z) = 1:size(z,2)
compute_y(x, y::Function, z) = map(y, x)
compute_y(x, y, z) = copy(y)
compute_z(x, y, z::Function) = map(z, x, y)
compute_z(x, y, z::AbstractMatrix) = Surface(z)
compute_z(x, y, z::Void) = nothing
compute_z(x, y, z) = copy(z)
nobigs(v::AVec{BigFloat}) = map(Float64, v)
nobigs(v::AVec{BigInt}) = map(Int64, v)
nobigs(v) = v
@noinline function compute_xyz(x, y, z)
x = compute_x(x,y,z)
y = compute_y(x,y,z)
z = compute_z(x,y,z)
nobigs(x), nobigs(y), nobigs(z)
end
# not allowed
compute_xyz(x::Void, y::FuncOrFuncs, z) = error("If you want to plot the function `$y`, you need to define the x values!")
compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the function `$z`, you need to define x and y values!")
compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!")
# --------------------------------------------------------------------
# we are going to build recipes to do the processing and splitting of the args
# ensure we dispatch to the slicer
immutable SliceIt end
# the catch-all recipes
@recipe function f(::Type{SliceIt}, x, y, z)
# handle data with formatting attached
if typeof(x) <: Formatted
xformatter := x.formatter
x = x.data
end
if typeof(y) <: Formatted
yformatter := y.formatter
y = y.data
end
if typeof(z) <: Formatted
zformatter := z.formatter
z = z.data
end
xs, _ = convertToAnyVector(x, d)
ys, _ = convertToAnyVector(y, d)
zs, _ = convertToAnyVector(z, d)
fr = pop!(d, :fillrange, nothing)
fillranges, _ = if typeof(fr) <: Number
([fr],nothing)
else
convertToAnyVector(fr, d)
end
mf = length(fillranges)
# @show zs
mx = length(xs)
my = length(ys)
mz = length(zs)
if mx > 0 && my > 0 && mz > 0
for i in 1:max(mx, my, mz)
# add a new series
di = copy(d)
xi, yi, zi = xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)]
di[:x], di[:y], di[:z] = compute_xyz(xi, yi, zi)
# handle fillrange
fr = fillranges[mod1(i,mf)]
di[:fillrange] = isa(fr, Function) ? map(fr, di[:x]) : fr
push!(series_list, RecipeData(di, ()))
end
end
nothing # don't add a series for the main block
end
# this is the default "type recipe"... just pass the object through
@recipe f{T<:Any}(::Type{T}, v::T) = v
# this should catch unhandled "series recipes" and error with a nice message
@recipe f{V<:Val}(::Type{V}, x, y, z) = error("The backend must not support the series type $V, and there isn't a series recipe defined.")
_apply_type_recipe(d, v) = RecipesBase.apply_recipe(d, typeof(v), v)[1].args[1]
# Handle type recipes when the recipe is defined on the elements.
# This sort of recipe should return a pair of functions... one to convert to number,
# and one to format tick values.
function _apply_type_recipe(d, v::AbstractArray)
args = RecipesBase.apply_recipe(d, typeof(v[1]), v[1])[1].args
if length(args) == 2 && typeof(args[1]) <: Function && typeof(args[2]) <: Function
numfunc, formatter = args
Formatted(map(numfunc, v), formatter)
else
v
end
end
# # special handling for Surface... need to properly unwrap and re-wrap
# function _apply_type_recipe(d, v::Surface)
# T = eltype(v.surf)
# @show T
# if T <: Integer || T <: AbstractFloat
# v
# else
# ret = _apply_type_recipe(d, v.surf)
# if typeof(ret) <: Formatted
# Formatted(Surface(ret.data), ret.formatter)
# else
# v
# end
# end
# end
# don't do anything for ints or floats
_apply_type_recipe{T<:Union{Integer,AbstractFloat}}(d, v::AbstractArray{T}) = v
# handle "type recipes" by converting inputs, and then either re-calling or slicing
@recipe function f(x, y, z)
did_replace = false
newx = _apply_type_recipe(d, x)
x === newx || (did_replace = true)
newy = _apply_type_recipe(d, y)
y === newy || (did_replace = true)
newz = _apply_type_recipe(d, z)
z === newz || (did_replace = true)
if did_replace
newx, newy, newz
else
SliceIt, x, y, z
end
end
@recipe function f(x, y)
did_replace = false
newx = _apply_type_recipe(d, x)
x === newx || (did_replace = true)
newy = _apply_type_recipe(d, y)
y === newy || (did_replace = true)
if did_replace
newx, newy
else
SliceIt, x, y, nothing
end
end
@recipe function f(y)
newy = _apply_type_recipe(d, y)
if y !== newy
newy
else
SliceIt, nothing, y, nothing
end
end
# if there's more than 3 inputs, it can't be passed directly to SliceIt
# so we'll apply_type_recipe to all of them
@recipe function f(v1, v2, v3, v4, vrest...)
did_replace = false
newargs = map(v -> begin
newv = _apply_type_recipe(d, v)
if newv !== v
did_replace = true
end
newv
end, (v1, v2, v3, v4, vrest...))
if !did_replace
error("Couldn't process recipe args: $(map(typeof, (v1, v2, v3, v4, vrest...)))")
end
newargs
end
# # --------------------------------------------------------------------
# # 1 argument
# # --------------------------------------------------------------------
@recipe f(n::Integer) = is3d(get(d,:seriestype,:path)) ? (SliceIt, n, n, n) : (SliceIt, n, n, nothing)
# return a surface if this is a 3d plot, otherwise let it be sliced up
@recipe function f{T<:Union{Integer,AbstractFloat}}(mat::AMat{T})
if all3D(d)
n,m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
SliceIt, nothing, mat, nothing
end
end
# if a matrix is wrapped by Formatted, do similar logic, but wrap data with Surface
@recipe function f{T<:AbstractMatrix}(fmt::Formatted{T})
if all3D(d)
mat = fmt.data
n,m = size(mat)
SliceIt, 1:m, 1:n, Formatted(Surface(mat), fmt.formatter)
else
SliceIt, nothing, fmt, nothing
end
end
# assume this is a Volume, so construct one
@recipe function f{T<:Number}(vol::AbstractArray{T,3}, args...)
seriestype := :volume
SliceIt, nothing, Volume(vol, args...), nothing
end
# # images - grays
@recipe function f{T<:Gray}(mat::AMat{T})
if is_seriestype_supported(:image)
seriestype := :image
n, m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
seriestype := :heatmap
yflip --> true
fillcolor --> ColorGradient([:black, :white])
SliceIt, 1:m, 1:n, Surface(convert(Matrix{Float64}, mat))
end
end
# # images - colors
@recipe function f{T<:Colorant}(mat::AMat{T})
if is_seriestype_supported(:image)
seriestype := :image
n, m = size(mat)
SliceIt, 1:m, 1:n, Surface(mat)
else
seriestype := :heatmap
yflip --> true
z, d[:fillcolor] = replace_image_with_heatmap(mat)
SliceIt, 1:m, 1:n, Surface(z)
end
end
#
# # plotting arbitrary shapes/polygons
@recipe function f(shape::Shape)
seriestype --> :shape
shape_coords(shape)
end
@recipe function f(shapes::AVec{Shape})
seriestype --> :shape
shape_coords(shapes)
end
@recipe function f(shapes::AMat{Shape})
seriestype --> :shape
for j in 1:size(shapes,2)
@series shape_coords(vec(shapes[:,j]))
end
end
# function without range... use the current range of the x-axis
@recipe function f(f::FuncOrFuncs)
plt = d[:plot_object]
xmin,xmax = axis_limits(plt[1][:xaxis])
f, xmin, xmax
end
#
# # --------------------------------------------------------------------
# # 2 arguments
# # --------------------------------------------------------------------
#
#
# # if functions come first, just swap the order (not to be confused with parametric functions...
# # as there would be more than one function passed in)
@recipe function f(f::FuncOrFuncs, x)
@assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
x, f
end
#
# # --------------------------------------------------------------------
# # 3 arguments
# # --------------------------------------------------------------------
#
#
# # 3d line or scatter
@recipe function f(x::AVec, y::AVec, z::AVec)
# st = get(d, :seriestype, :none)
# if st == :scatter
# d[:seriestype] = :scatter3d
# elseif !is3d(st)
# d[:seriestype] = :path3d
# end
SliceIt, x, y, z
end
@recipe function f(x::AMat, y::AMat, z::AMat)
# st = get(d, :seriestype, :none)
# if size(x) == size(y) == size(z)
# if !is3d(st)
# seriestype := :path3d
# end
# end
SliceIt, x, y, z
end
#
# # surface-like... function
@recipe function f(x::AVec, y::AVec, zf::Function)
# x = X <: Number ? sort(x) : x
# y = Y <: Number ? sort(y) : y
SliceIt, x, y, Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
end
#
# # surface-like... matrix grid
@recipe function f(x::AVec, y::AVec, z::AMat)
if !like_surface(get(d, :seriestype, :none))
d[:seriestype] = :contour
end
SliceIt, x, y, Surface(z)
end
#
#
# # --------------------------------------------------------------------
# # Parametric functions
# # --------------------------------------------------------------------
#
# # special handling... xmin/xmax with parametric function(s)
@recipe f(f::FuncOrFuncs, xmin::Number, xmax::Number) = linspace(xmin, xmax, 100), f
@recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec) = mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u)
@recipe f(fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, n = 200) = fx, fy, linspace(umin, umax, n)
#
# # special handling... 3D parametric function(s)
@recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec)
mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u)
end
@recipe function f(fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints = 200)
fx, fy, fz, linspace(umin, umax, numPoints)
end
#
#
# # --------------------------------------------------------------------
# # Lists of tuples and FixedSizeArrays
# # --------------------------------------------------------------------
#
# # if we get an unhandled tuple, just splat it in
@recipe f(tup::Tuple) = tup
#
# # (x,y) tuples
@recipe f{R1<:Number,R2<:Number}(xy::AVec{Tuple{R1,R2}}) = unzip(xy)
@recipe f{R1<:Number,R2<:Number}(xy::Tuple{R1,R2}) = [xy[1]], [xy[2]]
#
# # (x,y,z) tuples
@recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::AVec{Tuple{R1,R2,R3}}) = unzip(xyz)
@recipe f{R1<:Number,R2<:Number,R3<:Number}(xyz::Tuple{R1,R2,R3}) = [xyz[1]], [xyz[2]], [xyz[3]]
# these might be points+velocity, or OHLC or something else
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::AVec{Tuple{R1,R2,R3,R4}}) = get(d,:seriestype,:path)==:ohlc ? OHLC[OHLC(t...) for t in xyuv] : unzip(xyuv)
@recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(xyuv::Tuple{R1,R2,R3,R4}) = [xyuv[1]], [xyuv[2]], [xyuv[3]], [xyuv[4]]
#
# # 2D FixedSizeArrays
@recipe f{T<:Number}(xy::AVec{FixedSizeArrays.Vec{2,T}}) = unzip(xy)
@recipe f{T<:Number}(xy::FixedSizeArrays.Vec{2,T}) = [xy[1]], [xy[2]]
#
# # 3D FixedSizeArrays
@recipe f{T<:Number}(xyz::AVec{FixedSizeArrays.Vec{3,T}}) = unzip(xyz)
@recipe f{T<:Number}(xyz::FixedSizeArrays.Vec{3,T}) = [xyz[1]], [xyz[2]], [xyz[3]]
#
# # --------------------------------------------------------------------
# # handle grouping
# # --------------------------------------------------------------------
# @recipe function f(groupby::GroupBy, args...)
# for (i,glab) in enumerate(groupby.groupLabels)
# # create a new series, with the label of the group, and an idxfilter (to be applied in slice_and_dice)
# # TODO: use @series instead
# @show i, glab, groupby.groupIds[i]
# di = copy(d)
# get!(di, :label, string(glab))
# get!(di, :idxfilter, groupby.groupIds[i])
# push!(series_list, RecipeData(di, args))
# end
# nothing
# end
# split the group into 1 series per group, and set the label and idxfilter for each
@recipe function f(groupby::GroupBy, args...)
for (i,glab) in enumerate(groupby.groupLabels)
@series begin
label --> string(glab)
idxfilter --> groupby.groupIds[i]
args
end
end
end