{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "using Plots, DataFrames, OnlineStats\n", "gadfly(); default(size=(500,300))\n", "df = readtable(joinpath(Pkg.dir(\"Plots\"), \"examples\", \"meetup\", \"winequality-white.csv\"), separator=';');" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "y = float(df[:quality] .> 6)\n", "x = Array(df[:,1:11]);" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "ProxGrad(η = 1.0)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# logistic regression\n", "reg = OnlineStats.ProxGrad()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.4.0", "language": "julia", "name": "julia-0.4" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }