{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Plots.jl] Default backend: immerse" ] } ], "source": [ "using Plots\n", "n = 1000\n", "a = rand(n)\n", "y = Float64[i*a[i]+j*a[j] for i in 1:n, j in 1:n]\n", "y = float(y .> mean(y));" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "[Plots.jl] Initializing backend: immerse" ] } ], "source": [ "spy(y, nbins=(20,100))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# get the indices (I,J) and the values (V) of non-zero values in y\n", "I,J,V = findnz(y);\n", "# plot the J's vs the I's in a heatmap to recreate the spy call\n", "heatmap(J,I)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pyplot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "histogram(randn(1000), " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.4.0-rc2", "language": "julia", "name": "julia-0.4" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }