const _series_recipe_deps = Dict() function series_recipe_dependencies(st::Symbol, deps::Symbol...) _series_recipe_deps[st] = deps end function seriestype_supported(st::Symbol) seriestype_supported(backend(), st) end # returns :no, :native, or :recipe depending on how it's supported function seriestype_supported(pkg::AbstractBackend, st::Symbol) # is it natively supported if is_seriestype_supported(pkg, st) return :native end haskey(_series_recipe_deps, st) || return :no supported = true for dep in _series_recipe_deps[st] if seriestype_supported(pkg, dep) == :no supported = false end end supported ? :recipe : :no end macro deps(st, args...) :(Plots.series_recipe_dependencies($(quot(st)), $(map(quot, args)...))) end # get a list of all seriestypes function all_seriestypes() sts = Set{Symbol}(keys(_series_recipe_deps)) for bsym in backends() btype = _backendType[bsym] sts = union(sts, Set{Symbol}(supported_seriestypes(btype()))) end sort(collect(sts)) end # ---------------------------------------------------------------------------------- num_series(x::AMat) = size(x,2) num_series(x) = 1 RecipesBase.apply_recipe(plotattributes::KW, ::Type{T}, plt::AbstractPlot) where {T} = throw(MethodError(T, "Unmatched plot recipe: $T")) # --------------------------------------------------------------------------- # for seriestype `line`, need to sort by x values const POTENTIAL_VECTOR_ARGUMENTS = [ :seriescolor, :seriesalpha, :linecolor, :linealpha, :linewidth, :linestyle, :line_z, :fillcolor, :fillalpha, :fill_z, :markercolor, :markeralpha, :markershape, :marker_z, :markerstrokecolor, :markerstrokealpha, :yerror, :yerror, :series_annotations, :fillrange ] @recipe function f(::Type{Val{:line}}, x, y, z) indices = sortperm(x) x := x[indices] y := y[indices] # sort vector arguments for arg in POTENTIAL_VECTOR_ARGUMENTS if typeof(plotattributes[arg]) <: AVec plotattributes[arg] = _cycle(plotattributes[arg], indices) end end # a tuple as fillrange has to be handled differently if typeof(plotattributes[:fillrange]) <: Tuple lower, upper = plotattributes[:fillrange] if typeof(lower) <: AVec lower = _cycle(lower, indices) end if typeof(upper) <: AVec upper = _cycle(upper, indices) end plotattributes[:fillrange] = (lower, upper) end if typeof(z) <: AVec z := z[indices] end seriestype := :path () end @deps line path @recipe function f(::Type{Val{:hline}}, x, y, z) n = length(y) newx = repeat(Float64[-1, 1, NaN], n) newy = vec(Float64[yi for i=1:3,yi=y]) x := newx y := newy seriestype := :straightline () end @deps hline straightline @recipe function f(::Type{Val{:vline}}, x, y, z) n = length(y) newx = vec(Float64[yi for i=1:3,yi=y]) newy = repeat(Float64[-1, 1, NaN], n) x := newx y := newy seriestype := :straightline () end @deps vline straightline @recipe function f(::Type{Val{:hspan}}, x, y, z) n = div(length(y), 2) newx = repeat([-Inf, Inf, Inf, -Inf, NaN], outer = n) newy = vcat([[y[2i-1], y[2i-1], y[2i], y[2i], NaN] for i in 1:n]...) linewidth --> 0 x := newx y := newy seriestype := :shape () end @deps hspan shape @recipe function f(::Type{Val{:vspan}}, x, y, z) n = div(length(y), 2) newx = vcat([[y[2i-1], y[2i-1], y[2i], y[2i], NaN] for i in 1:n]...) newy = repeat([-Inf, Inf, Inf, -Inf, NaN], outer = n) linewidth --> 0 x := newx y := newy seriestype := :shape () end @deps vspan shape # --------------------------------------------------------------------------- # path and scatter # create a path from steps @recipe function f(::Type{Val{:scatterpath}}, x, y, z) x := x y := y seriestype := :scatter @series begin seriestype := :path label := "" primary := false () end () end @deps scatterpath path scatter # --------------------------------------------------------------------------- # steps make_steps(x, st) = x function make_steps(x::AbstractArray, st) n = length(x) n == 0 && return zeros(0) newx = zeros(2n - 1) for i in 1:n idx = 2i - 1 newx[idx] = x[i] if i > 1 newx[idx - 1] = x[st == :pre ? i : i - 1] end end return newx end make_steps(t::Tuple, st) = Tuple(make_steps(ti, st) for ti in t) # create a path from steps @recipe function f(::Type{Val{:steppre}}, x, y, z) plotattributes[:x] = make_steps(x, :post) plotattributes[:y] = make_steps(y, :pre) seriestype := :path # handle fillrange plotattributes[:fillrange] = make_steps(plotattributes[:fillrange], :pre) # create a secondary series for the markers if plotattributes[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps steppre path scatter # create a path from steps @recipe function f(::Type{Val{:steppost}}, x, y, z) plotattributes[:x] = make_steps(x, :pre) plotattributes[:y] = make_steps(y, :post) seriestype := :path # handle fillrange plotattributes[:fillrange] = make_steps(plotattributes[:fillrange], :post) # create a secondary series for the markers if plotattributes[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps steppost path scatter # --------------------------------------------------------------------------- # sticks # create vertical line segments from fill @recipe function f(::Type{Val{:sticks}}, x, y, z) n = length(x) fr = plotattributes[:fillrange] if fr === nothing sp = plotattributes[:subplot] yaxis = sp[:yaxis] fr = if yaxis[:scale] == :identity 0.0 else NaNMath.min(axis_limits(sp, :y)[1], ignorenan_minimum(y)) end end newx, newy = zeros(3n), zeros(3n) for i=1:n rng = 3i-2:3i newx[rng] = [x[i], x[i], NaN] newy[rng] = [_cycle(fr,i), y[i], NaN] end x := newx y := newy fillrange := nothing seriestype := :path # create a secondary series for the markers if plotattributes[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps sticks path scatter # --------------------------------------------------------------------------- # bezier curves # get the value of the curve point at position t function bezier_value(pts::AVec, t::Real) val = 0.0 n = length(pts)-1 for (i,p) in enumerate(pts) val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1) end val end # create segmented bezier curves in place of line segments @recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30) args = z !== nothing ? (x,y,z) : (x,y) newx, newy = zeros(0), zeros(0) fr = plotattributes[:fillrange] newfr = fr !== nothing ? zeros(0) : nothing newz = z !== nothing ? zeros(0) : nothing # lz = plotattributes[:line_z] # newlz = lz !== nothing ? zeros(0) : nothing # for each line segment (point series with no NaNs), convert it into a bezier curve # where the points are the control points of the curve for rng in iter_segments(args...) length(rng) < 2 && continue ts = range(0, stop = 1, length = npoints) nanappend!(newx, map(t -> bezier_value(_cycle(x,rng), t), ts)) nanappend!(newy, map(t -> bezier_value(_cycle(y,rng), t), ts)) if z !== nothing nanappend!(newz, map(t -> bezier_value(_cycle(z,rng), t), ts)) end if fr !== nothing nanappend!(newfr, map(t -> bezier_value(_cycle(fr,rng), t), ts)) end # if lz !== nothing # lzrng = _cycle(lz, rng) # the line_z's for this segment # push!(newlz, 0.0) # append!(newlz, map(t -> lzrng[1+floor(Int, t * (length(rng)-1))], ts)) # end end x := newx y := newy if z === nothing seriestype := :path else seriestype := :path3d z := newz end if fr !== nothing fillrange := newfr end # if lz !== nothing # # line_z := newlz # linecolor := (isa(plotattributes[:linecolor], ColorGradient) ? plotattributes[:linecolor] : cgrad()) # end # Plots.DD(plotattributes) () end @deps curves path # --------------------------------------------------------------------------- # create a bar plot as a filled step function @recipe function f(::Type{Val{:bar}}, x, y, z) procx, procy, xscale, yscale, baseline = _preprocess_barlike(plotattributes, x, y) nx, ny = length(procx), length(procy) axis = plotattributes[:subplot][isvertical(plotattributes) ? :xaxis : :yaxis] cv = [discrete_value!(axis, xi)[1] for xi=procx] procx = if nx == ny cv elseif nx == ny + 1 0.5diff(cv) + cv[1:end-1] else error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))") end # compute half-width of bars bw = plotattributes[:bar_width] hw = if bw === nothing if nx > 1 0.5*_bar_width*ignorenan_minimum(filter(x->x>0, diff(procx))) else 0.5 * _bar_width end else Float64[0.5_cycle(bw,i) for i=1:length(procx)] end # make fillto a vector... default fills to 0 fillto = plotattributes[:fillrange] if fillto === nothing fillto = 0 end if (yscale in _logScales) && !all(_is_positive, fillto) fillto = map(x -> _is_positive(x) ? typeof(baseline)(x) : baseline, fillto) end # create the bar shapes by adding x/y segments xseg, yseg = Segments(), Segments() for i=1:ny yi = procy[i] if !isnan(yi) center = procx[i] hwi = _cycle(hw,i) fi = _cycle(fillto,i) push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi) push!(yseg, yi, fi, fi, yi, yi) end end # widen limits out a bit expand_extrema!(axis, widen(ignorenan_extrema(xseg.pts)...)) # switch back if !isvertical(plotattributes) xseg, yseg = yseg, xseg end # reset orientation orientation := default(:orientation) x := xseg.pts y := yseg.pts seriestype := :shape () end @deps bar shape # --------------------------------------------------------------------------- # Plots Heatmap @recipe function f(::Type{Val{:plots_heatmap}}, x, y, z) xe, ye = heatmap_edges(x), heatmap_edges(y) m, n = size(z.surf) x_pts, y_pts = fill(NaN, 6 * m * n), fill(NaN, 6 * m * n) fz = zeros(m * n) for i in 1:m # y for j in 1:n # x k = (j - 1) * m + i inds = (6 * (k - 1) + 1):(6 * k - 1) x_pts[inds] .= [xe[j], xe[j + 1], xe[j + 1], xe[j], xe[j]] y_pts[inds] .= [ye[i], ye[i], ye[i + 1], ye[i + 1], ye[i]] fz[k] = z.surf[i, j] end end ensure_gradient!(plotattributes, :fillcolor, :fillalpha) fill_z := fz line_z := fz x := x_pts y := y_pts z := nothing seriestype := :shape label := "" widen --> false () end @deps plots_heatmap shape # --------------------------------------------------------------------------- # Histograms _bin_centers(v::AVec) = (v[1:end-1] + v[2:end]) / 2 _is_positive(x) = (x > 0) && !(x ≈ 0) _positive_else_nan(::Type{T}, x::Real) where {T} = _is_positive(x) ? T(x) : T(NaN) function _scale_adjusted_values(::Type{T}, V::AbstractVector, scale::Symbol) where T<:AbstractFloat if scale in _logScales [_positive_else_nan(T, x) for x in V] else [T(x) for x in V] end end function _binbarlike_baseline(min_value::T, scale::Symbol) where T<:Real if (scale in _logScales) !isnan(min_value) ? min_value / T(_logScaleBases[scale]^log10(2)) : T(1E-3) else zero(T) end end function _preprocess_binbarlike_weights(::Type{T}, w, wscale::Symbol) where T<:AbstractFloat w_adj = _scale_adjusted_values(T, w, wscale) w_min = ignorenan_minimum(w_adj) w_max = ignorenan_maximum(w_adj) baseline = _binbarlike_baseline(w_min, wscale) w_adj, baseline end function _preprocess_barlike(plotattributes, x, y) xscale = get(plotattributes, :xscale, :identity) yscale = get(plotattributes, :yscale, :identity) weights, baseline = _preprocess_binbarlike_weights(float(eltype(y)), y, yscale) x, weights, xscale, yscale, baseline end function _preprocess_binlike(plotattributes, x, y) xscale = get(plotattributes, :xscale, :identity) yscale = get(plotattributes, :yscale, :identity) T = float(promote_type(eltype(x), eltype(y))) edge = T.(x) weights, baseline = _preprocess_binbarlike_weights(T, y, yscale) edge, weights, xscale, yscale, baseline end @recipe function f(::Type{Val{:barbins}}, x, y, z) edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y) if (plotattributes[:bar_width] === nothing) bar_width := diff(edge) end x := _bin_centers(edge) y := weights seriestype := :bar () end @deps barbins bar @recipe function f(::Type{Val{:scatterbins}}, x, y, z) edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y) xerror := diff(edge)/2 x := _bin_centers(edge) y := weights seriestype := :scatter () end @deps scatterbins scatter function _stepbins_path(edge, weights, baseline::Real, xscale::Symbol, yscale::Symbol) log_scale_x = xscale in _logScales log_scale_y = yscale in _logScales nbins = length(eachindex(weights)) if length(eachindex(edge)) != nbins + 1 error("Edge vector must be 1 longer than weight vector") end x = eltype(edge)[] y = eltype(weights)[] it_tuple_e = iterate(edge) a, it_state_e = it_tuple_e it_tuple_e = iterate(edge, it_state_e) it_tuple_w = iterate(weights) last_w = eltype(weights)(NaN) while it_tuple_e !== nothing && it_tuple_w !== nothing b, it_state_e = it_tuple_e w, it_state_w = it_tuple_w if (log_scale_x && a ≈ 0) a = oftype(a, b/_logScaleBases[xscale]^3) end if isnan(w) if !isnan(last_w) push!(x, a) push!(y, baseline) push!(x, NaN) push!(y, NaN) end else if isnan(last_w) push!(x, a) push!(y, baseline) end push!(x, a) push!(y, w) push!(x, b) push!(y, w) end a = oftype(a, b) last_w = oftype(last_w, w) it_tuple_e = iterate(edge, it_state_e) it_tuple_w = iterate(weights, it_state_w) end if (last_w != baseline) push!(x, a) push!(y, baseline) end (x, y) end @recipe function f(::Type{Val{:stepbins}}, x, y, z) axis = plotattributes[:subplot][Plots.isvertical(plotattributes) ? :xaxis : :yaxis] edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y) xpts, ypts = _stepbins_path(edge, weights, baseline, xscale, yscale) if !isvertical(plotattributes) xpts, ypts = ypts, xpts end # create a secondary series for the markers if plotattributes[:markershape] != :none @series begin seriestype := :scatter x := _bin_centers(edge) y := weights fillrange := nothing label := "" primary := false () end markershape := :none xerror := :none yerror := :none end x := xpts y := ypts seriestype := :path () end Plots.@deps stepbins path wand_edges(x...) = (@warn("Load the StatsPlots package in order to use :wand bins. Defaulting to :auto", once = true); :auto) function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::Symbol = :auto) where N max_bins = 10_000 _cl(x) = min(ceil(Int, max(x, one(x))), max_bins) _iqr(v) = (q = quantile(v, 0.75) - quantile(v, 0.25); q > 0 ? q : oftype(q, 1)) _span(v) = maximum(v) - minimum(v) n_samples = length(LinearIndices(first(vs))) # The nd estimator is the key to most automatic binning methods, and is modified for twodimensional histograms to include correlation nd = n_samples^(1/(2+N)) nd = N == 2 ? min(n_samples^(1/(2+N)), nd / (1-cor(first(vs), last(vs))^2)^(3//8)) : nd # the >2-dimensional case does not have a nice solution to correlations v = vs[dim] if mode == :auto mode = :fd end if mode == :sqrt # Square-root choice _cl(sqrt(n_samples)) elseif mode == :sturges # Sturges' formula _cl(log2(n_samples) + 1) elseif mode == :rice # Rice Rule _cl(2 * nd) elseif mode == :scott # Scott's normal reference rule _cl(_span(v) / (3.5 * std(v) / nd)) elseif mode == :fd # Freedman–Diaconis rule _cl(_span(v) / (2 * _iqr(v) / nd)) elseif mode == :wand _cl(wand_edges(v)) # this makes this function not type stable, but the type instability does not propagate else error("Unknown auto-binning mode $mode") end end _hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) where {N} = StatsBase.histrange(vs[dim], binning, :left) _hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Symbol) where {N} = _hist_edge(vs, dim, _auto_binning_nbins(vs, dim, mode = binning)) _hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::AbstractVector) where {N} = binning _hist_edges(vs::NTuple{N,AbstractVector}, binning::NTuple{N, Any}) where {N} = map(dim -> _hist_edge(vs, dim, binning[dim]), (1:N...,)) _hist_edges(vs::NTuple{N,AbstractVector}, binning::Union{Integer, Symbol, AbstractVector}) where {N} = map(dim -> _hist_edge(vs, dim, binning), (1:N...,)) _hist_norm_mode(mode::Symbol) = mode _hist_norm_mode(mode::Bool) = mode ? :pdf : :none _filternans(vs::NTuple{1,AbstractVector}) = filter!.(isfinite, vs) function _filternans(vs::NTuple{N,AbstractVector}) where N _invertedindex(v, not) = [j for (i,j) in enumerate(v) if !(i ∈ not)] nots = union(Set.(findall.(!isfinite, vs))...) _invertedindex.(vs, Ref(nots)) end function _make_hist(vs::NTuple{N,AbstractVector}, binning; normed = false, weights = nothing) where N localvs = _filternans(vs) edges = _hist_edges(localvs, binning) h = float( weights === nothing ? StatsBase.fit(StatsBase.Histogram, localvs, edges, closed = :left) : StatsBase.fit(StatsBase.Histogram, localvs, StatsBase.Weights(weights), edges, closed = :left) ) normalize!(h, mode = _hist_norm_mode(normed)) end @recipe function f(::Type{Val{:histogram}}, x, y, z) seriestype := length(y) > 1e6 ? :stephist : :barhist () end @deps histogram barhist @recipe function f(::Type{Val{:barhist}}, x, y, z) h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights]) x := h.edges[1] y := h.weights seriestype := :barbins () end @deps barhist barbins @recipe function f(::Type{Val{:stephist}}, x, y, z) h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights]) x := h.edges[1] y := h.weights seriestype := :stepbins () end @deps stephist stepbins @recipe function f(::Type{Val{:scatterhist}}, x, y, z) h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights]) x := h.edges[1] y := h.weights seriestype := :scatterbins () end @deps scatterhist scatterbins @recipe function f(h::StatsBase.Histogram{T, 1, E}) where {T, E} seriestype --> :barbins st_map = Dict( :bar => :barbins, :scatter => :scatterbins, :step => :stepbins, :steppost => :stepbins # :step can be mapped to :steppost in pre-processing ) seriestype := get(st_map, plotattributes[:seriestype], plotattributes[:seriestype]) if plotattributes[:seriestype] == :scatterbins # Workaround, error bars currently not set correctly by scatterbins edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, h.edges[1], h.weights) xerror --> diff(h.edges[1])/2 seriestype := :scatter (Plots._bin_centers(edge), weights) else (h.edges[1], h.weights) end end @recipe function f(hv::AbstractVector{H}) where H <: StatsBase.Histogram for h in hv @series begin h end end end # --------------------------------------------------------------------------- # Histogram 2D @recipe function f(::Type{Val{:bins2d}}, x, y, z) edge_x, edge_y, weights = x, y, z.surf float_weights = float(weights) if !plotattributes[:show_empty_bins] if float_weights === weights float_weights = deepcopy(float_weights) end for (i, c) in enumerate(float_weights) if c == 0 float_weights[i] = NaN end end end x := Plots._bin_centers(edge_x) y := Plots._bin_centers(edge_y) z := Surface(float_weights) match_dimensions := true seriestype := :heatmap () end Plots.@deps bins2d heatmap @recipe function f(::Type{Val{:histogram2d}}, x, y, z) h = _make_hist((x, y), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights]) x := h.edges[1] y := h.edges[2] z := Surface(h.weights) seriestype := :bins2d () end @deps histogram2d bins2d @recipe function f(h::StatsBase.Histogram{T, 2, E}) where {T, E} seriestype --> :bins2d (h.edges[1], h.edges[2], Surface(h.weights)) end # --------------------------------------------------------------------------- # scatter 3d @recipe function f(::Type{Val{:scatter3d}}, x, y, z) seriestype := :path3d if plotattributes[:markershape] == :none markershape := :circle end linewidth := 0 linealpha := 0 () end # note: don't add dependencies because this really isn't a drop-in replacement # --------------------------------------------------------------------------- # contourf - filled contours @recipe function f(::Type{Val{:contourf}}, x, y, z) fillrange := true seriestype := :contour () end # --------------------------------------------------------------------------- # Error Bars function error_style!(plotattributes::KW) plotattributes[:seriestype] = :path plotattributes[:linecolor] = plotattributes[:markerstrokecolor] plotattributes[:linewidth] = plotattributes[:markerstrokewidth] plotattributes[:label] = "" end # if we're passed a tuple of vectors, convert to a vector of tuples function error_zipit(ebar) if istuple(ebar) collect(zip(ebar...)) else ebar end end function error_coords(xorig, yorig, ebar) # init empty x/y, and zip errors if passed Tuple{Vector,Vector} x, y = Array{float_extended_type(xorig)}(undef, 0), Array{Float64}(undef, 0) # for each point, create a line segment from the bottom to the top of the errorbar for i = 1:max(length(xorig), length(yorig)) xi = _cycle(xorig, i) yi = _cycle(yorig, i) ebi = _cycle(ebar, i) nanappend!(x, [xi, xi]) e1, e2 = if istuple(ebi) first(ebi), last(ebi) elseif isscalar(ebi) ebi, ebi else error("unexpected ebi type $(typeof(ebi)) for errorbar: $ebi") end nanappend!(y, [yi - e1, yi + e2]) end x, y end # we will create a series of path segments, where each point represents one # side of an errorbar @recipe function f(::Type{Val{:yerror}}, x, y, z) error_style!(plotattributes) markershape := :hline plotattributes[:x], plotattributes[:y] = error_coords(plotattributes[:x], plotattributes[:y], error_zipit(plotattributes[:yerror])) () end @deps yerror path @recipe function f(::Type{Val{:xerror}}, x, y, z) error_style!(plotattributes) markershape := :vline plotattributes[:y], plotattributes[:x] = error_coords(plotattributes[:y], plotattributes[:x], error_zipit(plotattributes[:xerror])) () end @deps xerror path # TODO: move quiver to PlotRecipes # --------------------------------------------------------------------------- # quiver # function apply_series_recipe(plotattributes::KW, ::Type{Val{:quiver}}) function quiver_using_arrows(plotattributes::KW) plotattributes[:label] = "" plotattributes[:seriestype] = :path if !isa(plotattributes[:arrow], Arrow) plotattributes[:arrow] = arrow() end velocity = error_zipit(plotattributes[:quiver]) xorig, yorig = plotattributes[:x], plotattributes[:y] # for each point, we create an arrow of velocity vi, translated to the x/y coordinates x, y = zeros(0), zeros(0) for i = 1:max(length(xorig), length(yorig)) # get the starting position xi = _cycle(xorig, i) yi = _cycle(yorig, i) # get the velocity vi = _cycle(velocity, i) vx, vy = if istuple(vi) first(vi), last(vi) elseif isscalar(vi) vi, vi elseif isa(vi,Function) vi(xi, yi) else error("unexpected vi type $(typeof(vi)) for quiver: $vi") end # add the points nanappend!(x, [xi, xi+vx, NaN]) nanappend!(y, [yi, yi+vy, NaN]) end plotattributes[:x], plotattributes[:y] = x, y # KW[plotattributes] end # function apply_series_recipe(plotattributes::KW, ::Type{Val{:quiver}}) function quiver_using_hack(plotattributes::KW) plotattributes[:label] = "" plotattributes[:seriestype] = :shape velocity = error_zipit(plotattributes[:quiver]) xorig, yorig = plotattributes[:x], plotattributes[:y] # for each point, we create an arrow of velocity vi, translated to the x/y coordinates pts = P2[] for i = 1:max(length(xorig), length(yorig)) # get the starting position xi = _cycle(xorig, i) yi = _cycle(yorig, i) p = P2(xi, yi) # get the velocity vi = _cycle(velocity, i) vx, vy = if istuple(vi) first(vi), last(vi) elseif isscalar(vi) vi, vi elseif isa(vi,Function) vi(xi, yi) else error("unexpected vi type $(typeof(vi)) for quiver: $vi") end v = P2(vx, vy) dist = norm(v) arrow_h = 0.1dist # height of arrowhead arrow_w = 0.5arrow_h # halfwidth of arrowhead U1 = v ./ dist # vector of arrowhead height U2 = P2(-U1[2], U1[1]) # vector of arrowhead halfwidth U1 *= arrow_h U2 *= arrow_w ppv = p+v nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1]) end plotattributes[:x], plotattributes[:y] = Plots.unzip(pts[2:end]) # KW[plotattributes] end # function apply_series_recipe(plotattributes::KW, ::Type{Val{:quiver}}) @recipe function f(::Type{Val{:quiver}}, x, y, z) if :arrow in supported_attrs() quiver_using_arrows(plotattributes) else quiver_using_hack(plotattributes) end () end @deps quiver shape path # ------------------------------------------------- # TODO: move OHLC to PlotRecipes finance.jl "Represent Open High Low Close data (used in finance)" mutable struct OHLC{T<:Real} open::T high::T low::T close::T end Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...) # Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close) # get one OHLC path function get_xy(o::OHLC, x, xdiff) xl, xm, xr = x-xdiff, x, x+xdiff ox = [xl, xm, NaN, xm, xm, NaN, xm, xr] oy = [o.open, o.open, NaN, o.low, o.high, NaN, o.close, o.close] ox, oy end # get the joined vector function get_xy(v::AVec{OHLC}, x = 1:length(v)) xdiff = 0.3ignorenan_mean(abs.(diff(x))) x_out, y_out = zeros(0), zeros(0) for (i,ohlc) in enumerate(v) ox,oy = get_xy(ohlc, x[i], xdiff) nanappend!(x_out, ox) nanappend!(y_out, oy) end x_out, y_out end # these are for passing in a vector of OHLC objects # TODO: when I allow `@recipe f(::Type{T}, v::T) = ...` definitions to replace convertToAnyVector, # then I should replace these with one definition to convert to a vector of 4-tuples # to squash ambiguity warnings... @recipe f(x::AVec{Function}, v::AVec{OHLC}) = error() @recipe f(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} = error() # this must be OHLC? @recipe f(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} = x, OHLC[OHLC(t...) for t in ohlc] @recipe function f(x::AVec, v::AVec{OHLC}) seriestype := :path get_xy(v, x) end @recipe function f(v::AVec{OHLC}) seriestype := :path get_xy(v) end # the series recipe, when passed vectors of 4-tuples # ------------------------------------------------- # TODO: everything below here should be either changed to a # series recipe or moved to PlotRecipes # "Sparsity plot... heatmap of non-zero values of a matrix" # function spy{T<:Real}(z::AMat{T}; kw...) # mat = reshape(map(zi->float(zi!=0), z),1,:) # xn, yn = size(mat) # heatmap(mat; leg=false, yflip=true, aspect_ratio=:equal, # xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5), # kw...) # end # Only allow matrices through, and make it seriestype :spy so the backend can # optionally handle it natively. @userplot Spy @recipe function f(g::Spy) @assert length(g.args) == 1 && typeof(g.args[1]) <: AbstractMatrix seriestype := :spy mat = g.args[1] n,m = size(mat) Plots.SliceIt, 1:m, 1:n, Surface(mat) end @recipe function f(::Type{Val{:spy}}, x,y,z) yflip := true aspect_ratio := 1 rs, cs, zs = findnz(z.surf) xlim := ignorenan_extrema(cs) ylim := ignorenan_extrema(rs) if plotattributes[:markershape] == :none markershape := :circle end if plotattributes[:markersize] == default(:markersize) markersize := 1 end markerstrokewidth := 0 marker_z := zs label := "" x := cs y := rs z := nothing seriestype := :scatter grid --> false () end # ------------------------------------------------- "Adds ax+b... straight line over the current plot, without changing the axis limits" abline!(plt::Plot, a, b; kw...) = plot!(plt, [0, 1], [b, b+a]; seriestype = :straightline, kw...) abline!(args...; kw...) = abline!(current(), args...; kw...) # ------------------------------------------------- # Dates & Times dateformatter(dt) = string(Date(Dates.UTD(dt))) datetimeformatter(dt) = string(DateTime(Dates.UTM(dt))) timeformatter(t) = string(Dates.Time(Dates.Nanosecond(t))) @recipe f(::Type{Date}, dt::Date) = (dt -> Dates.value(dt), dateformatter) @recipe f(::Type{DateTime}, dt::DateTime) = (dt -> Dates.value(dt), datetimeformatter) @recipe f(::Type{Dates.Time}, t::Dates.Time) = (t -> Dates.value(t), timeformatter) @recipe f(::Type{P}, t::P) where P <: Dates.Period = (t -> Dates.value(t), t -> string(P(t))) # ------------------------------------------------- # Characters @recipe f(::Type{<:AbstractChar}, ::AbstractChar) = (string, string) # ------------------------------------------------- # Complex Numbers @recipe function f(A::Array{Complex{T}}) where T<:Number xguide --> "Re(x)" yguide --> "Im(x)" real.(A), imag.(A) end # Splits a complex matrix to its real and complex parts # Reals defaults solid, imaginary defaults dashed # Label defaults are changed to match the real-imaginary reference / indexing @recipe function f(x::AbstractArray{T},y::Array{Complex{T2}}) where {T<:Real,T2} ylabel --> "Re(y)" zlabel --> "Im(y)" x,real.(y),imag.(y) end # -------------------------------------------------- # Color Gradients @userplot ShowLibrary @recipe function f(cl::ShowLibrary) if !(length(cl.args) == 1 && isa(cl.args[1], Symbol)) error("showlibrary takes the name of a color library as a Symbol") end library = PlotUtils.color_libraries[cl.args[1]] z = sqrt.((1:15)*reshape(1:20,1,:)) seriestype := :heatmap ticks := nothing legend := false layout --> length(library.lib) i = 0 for grad in sort(collect(keys(library.lib))) @series begin seriescolor := cgrad(grad, cl.args[1]) title := string(grad) subplot := i += 1 z end end end @userplot ShowGradient @recipe function f(grad::ShowGradient) if !(length(grad.args) == 1 && isa(grad.args[1], Symbol)) error("showgradient takes the name of a color gradient as a Symbol") end z = sqrt.((1:15)*reshape(1:20,1,:)) seriestype := :heatmap ticks := nothing legend := false seriescolor := grad.args[1] title := string(grad.args[1]) z end # Moved in from PlotRecipes - see: http://stackoverflow.com/a/37732384/5075246 @userplot PortfolioComposition # this shows the shifting composition of a basket of something over a variable # - "returns" are the dependent variable # - "weights" are a matrix where the ith column is the composition for returns[i] # - since each polygon is its own series, you can assign labels easily @recipe function f(pc::PortfolioComposition) weights, returns = pc.args n = length(returns) weights = cumsum(weights, dims = 2) seriestype := :shape # create a filled polygon for each item for c=1:size(weights,2) sx = vcat(weights[:,c], c==1 ? zeros(n) : reverse(weights[:,c-1])) sy = vcat(returns, reverse(returns)) @series Plots.isvertical(plotattributes) ? (sx, sy) : (sy, sx) end end """ areaplot([x,] y) areaplot!([x,] y) Draw a stacked area plot of the matrix y. # Examples ```julia-repl julia> areaplot(1:3, [1 2 3; 7 8 9; 4 5 6], seriescolor = [:red :green :blue], fillalpha = [0.2 0.3 0.4]) ``` """ @userplot AreaPlot @recipe function f(a::AreaPlot) data = cumsum(a.args[end], dims=2) x = length(a.args) == 1 ? (1:size(data, 1)) : a.args[1] seriestype := :line for i in 1:size(data, 2) @series begin fillrange := i > 1 ? data[:,i-1] : 0 x, data[:,i] end end end