""" You can easily define your own plotting recipes with convenience methods: ``` @userplot type GroupHist args end @recipe function f(gh::GroupHist) # set some attributes, add some series, using gh.args as input end # now you can plot like: grouphist(rand(1000,4)) ``` """ macro userplot(expr) _userplot(expr) end function _userplot(expr::Expr) if expr.head != :type errror("Must call userplot on a type/immutable expression. Got: $expr") end typename = expr.args[2] funcname = Symbol(lowercase(string(typename))) funcname2 = Symbol(funcname, "!") # return a code block with the type definition and convenience plotting methods esc(quote $expr export $funcname, $funcname2 $funcname(args...; kw...) = plot($typename(args); kw...) $funcname2(args...; kw...) = plot!($typename(args); kw...) end) end function _userplot(sym::Symbol) _userplot(:(type $sym args end)) end # ---------------------------------------------------------------------------------- const _series_recipe_deps = Dict() function series_recipe_dependencies(st::Symbol, deps::Symbol...) _series_recipe_deps[st] = deps end function seriestype_supported(st::Symbol) seriestype_supported(backend(), st) end # returns :no, :native, or :recipe depending on how it's supported function seriestype_supported(pkg::AbstractBackend, st::Symbol) # is it natively supported if st in supported_types(pkg) return :native end haskey(_series_recipe_deps, st) || return :no supported = true for dep in _series_recipe_deps[st] if seriestype_supported(pkg, dep) == :no supported = false end end supported ? :recipe : :no end macro deps(st, args...) :(Plots.series_recipe_dependencies($(quot(st)), $(map(quot, args)...))) end # get a list of all seriestypes function all_seriestypes() sts = Set{Symbol}(keys(_series_recipe_deps)) for bsym in backends() btype = _backendType[bsym] sts = union(sts, Set{Symbol}(supported_types(btype()))) end sort(collect(sts)) end # ---------------------------------------------------------------------------------- num_series(x::AMat) = size(x,2) num_series(x) = 1 RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T")) # # TODO: remove when StatPlots is ready # if is_installed("DataFrames") # @eval begin # import DataFrames # # if it's one symbol, set the guide and return the column # function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, sym::Symbol) # get!(d, Symbol(letter * "guide"), string(sym)) # collect(df[sym]) # end # # if it's an array of symbols, set the labels and return a Vector{Any} of columns # function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, syms::AbstractArray{Symbol}) # get!(d, :label, reshape(syms, 1, length(syms))) # Any[collect(df[s]) for s in syms] # end # # for anything else, no-op # function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, anything) # anything # end # # handle grouping by DataFrame column # function extractGroupArgs(group::Symbol, df::DataFrames.AbstractDataFrame, args...) # extractGroupArgs(collect(df[group])) # end # # if a DataFrame is the first arg, lets swap symbols out for columns # @recipe function f(df::DataFrames.AbstractDataFrame, args...) # # if any of these attributes are symbols, swap out for the df column # for k in (:fillrange, :line_z, :marker_z, :markersize, :ribbon, :weights, :xerror, :yerror) # if haskey(d, k) && isa(d[k], Symbol) # d[k] = collect(df[d[k]]) # end # end # # return a list of new arguments # tuple(Any[handle_dfs(df, d, (i==1 ? "x" : i==2 ? "y" : "z"), arg) for (i,arg) in enumerate(args)]...) # end # end # end # --------------------------------------------------------------------------- # for seriestype `line`, need to sort by x values @recipe function f(::Type{Val{:line}}, x, y, z) indices = sortperm(x) x := x[indices] y := y[indices] if typeof(z) <: AVec z := z[indices] end seriestype := :path () end @deps line path function hvline_limits(axis::Axis) vmin, vmax = axis_limits(axis) if vmin >= vmax if isfinite(vmin) vmax = vmin + 1 else vmin, vmax = 0.0, 1.1 end end vmin, vmax end @recipe function f(::Type{Val{:hline}}, x, y, z) xmin, xmax = hvline_limits(d[:subplot][:xaxis]) n = length(y) newx = repmat(Float64[xmin, xmax, NaN], n) newy = vec(Float64[yi for i=1:3,yi=y]) x := newx y := newy seriestype := :path () end @deps hline path @recipe function f(::Type{Val{:vline}}, x, y, z) ymin, ymax = hvline_limits(d[:subplot][:yaxis]) n = length(y) newx = vec(Float64[yi for i=1:3,yi=y]) newy = repmat(Float64[ymin, ymax, NaN], n) x := newx y := newy seriestype := :path () end @deps vline path # --------------------------------------------------------------------------- # steps function make_steps(x, y, st) n = length(x) n == 0 && return zeros(0),zeros(0) newx, newy = zeros(2n-1), zeros(2n-1) for i=1:n idx = 2i-1 newx[idx] = x[i] newy[idx] = y[i] if i > 1 newx[idx-1] = x[st == :steppre ? i-1 : i] newy[idx-1] = y[st == :steppre ? i : i-1] end end newx, newy end # create a path from steps @recipe function f(::Type{Val{:steppre}}, x, y, z) d[:x], d[:y] = make_steps(x, y, :steppre) seriestype := :path # create a secondary series for the markers if d[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps steppre path scatter # create a path from steps @recipe function f(::Type{Val{:steppost}}, x, y, z) d[:x], d[:y] = make_steps(x, y, :steppost) seriestype := :path # create a secondary series for the markers if d[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps steppost path scatter # --------------------------------------------------------------------------- # sticks # create vertical line segments from fill @recipe function f(::Type{Val{:sticks}}, x, y, z) n = length(x) fr = d[:fillrange] if fr == nothing yaxis = d[:subplot][:yaxis] fr = if yaxis[:scale] == :identity 0.0 else min(axis_limits(yaxis)[1], minimum(y)) end end newx, newy = zeros(3n), zeros(3n) for i=1:n rng = 3i-2:3i newx[rng] = [x[i], x[i], NaN] newy[rng] = [cycle(fr,i), y[i], NaN] end x := newx y := newy fillrange := nothing seriestype := :path # create a secondary series for the markers if d[:markershape] != :none @series begin seriestype := :scatter x := x y := y label := "" primary := false () end markershape := :none end () end @deps sticks path scatter # --------------------------------------------------------------------------- # bezier curves # get the value of the curve point at position t function bezier_value(pts::AVec, t::Real) val = 0.0 n = length(pts)-1 for (i,p) in enumerate(pts) val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1) end val end # create segmented bezier curves in place of line segments @recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30) args = z != nothing ? (x,y,z) : (x,y) newx, newy = zeros(0), zeros(0) fr = d[:fillrange] newfr = fr != nothing ? zeros(0) : nothing newz = z != nothing ? zeros(0) : nothing # lz = d[:line_z] # newlz = lz != nothing ? zeros(0) : nothing # for each line segment (point series with no NaNs), convert it into a bezier curve # where the points are the control points of the curve for rng in iter_segments(args...) length(rng) < 2 && continue ts = linspace(0, 1, npoints) nanappend!(newx, map(t -> bezier_value(cycle(x,rng), t), ts)) nanappend!(newy, map(t -> bezier_value(cycle(y,rng), t), ts)) if z != nothing nanappend!(newz, map(t -> bezier_value(cycle(z,rng), t), ts)) end if fr != nothing nanappend!(newfr, map(t -> bezier_value(cycle(fr,rng), t), ts)) end # if lz != nothing # lzrng = cycle(lz, rng) # the line_z's for this segment # push!(newlz, 0.0) # append!(newlz, map(t -> lzrng[1+floor(Int, t * (length(rng)-1))], ts)) # end end x := newx y := newy if z == nothing seriestype := :path else seriestype := :path3d z := newz end if fr != nothing fillrange := newfr end # if lz != nothing # # line_z := newlz # linecolor := (isa(d[:linecolor], ColorGradient) ? d[:linecolor] : cgrad()) # end # Plots.DD(d) () end @deps curves path # --------------------------------------------------------------------------- # create a bar plot as a filled step function @recipe function f(::Type{Val{:bar}}, x, y, z) nx, ny = length(x), length(y) axis = d[:subplot][isvertical(d) ? :xaxis : :yaxis] cv = [discrete_value!(axis, xi)[1] for xi=x] x = if nx == ny cv elseif nx == ny + 1 0.5diff(cv) + cv[1:end-1] else error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))") end # compute half-width of bars bw = d[:bar_width] hw = if bw == nothing 0.5mean(diff(x)) else Float64[0.5cycle(bw,i) for i=1:length(x)] end # make fillto a vector... default fills to 0 fillto = d[:fillrange] if fillto == nothing fillto = 0 end # create the bar shapes by adding x/y segments xseg, yseg = Segments(), Segments() for i=1:ny center = x[i] hwi = cycle(hw,i) yi = y[i] fi = cycle(fillto,i) push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi) push!(yseg, yi, fi, fi, yi, yi) end # switch back if !isvertical(d) xseg, yseg = yseg, xseg end # reset orientation orientation := default(:orientation) x := xseg.pts y := yseg.pts seriestype := :shape () end @deps bar shape # --------------------------------------------------------------------------- # Histograms # edges from number of bins function calc_edges(v, bins::Integer) vmin, vmax = extrema(v) linspace(vmin, vmax, bins+1) end # just pass through arrays calc_edges(v, bins::AVec) = bins # find the bucket index of this value function bucket_index(vi, edges) for (i,e) in enumerate(edges) if vi <= e return max(1,i-1) end end return length(edges)-1 end function my_hist(v, bins; normed = false, weights = nothing) edges = calc_edges(v, bins) counts = zeros(length(edges)-1) # add a weighted count for (i,vi) in enumerate(v) idx = bucket_index(vi, edges) counts[idx] += (weights == nothing ? 1.0 : weights[i]) end # normalize by bar area? norm_denom = normed ? sum(diff(edges) .* counts) : 1.0 if norm_denom == 0 norm_denom = 1.0 end edges, counts ./ norm_denom end @recipe function f(::Type{Val{:histogram}}, x, y, z) edges, counts = my_hist(y, d[:bins], normed = d[:normalize], weights = d[:weights]) x := edges y := counts seriestype := :bar () end @deps histogram bar # --------------------------------------------------------------------------- # Histogram 2D # if tuple, map out bins, otherwise use the same for both calc_edges_2d(x, y, bins) = calc_edges(x, bins), calc_edges(y, bins) calc_edges_2d{X,Y}(x, y, bins::Tuple{X,Y}) = calc_edges(x, bins[1]), calc_edges(y, bins[2]) # the 2D version function my_hist_2d(x, y, bins; normed = false, weights = nothing) xedges, yedges = calc_edges_2d(x, y, bins) counts = zeros(length(yedges)-1, length(xedges)-1) # add a weighted count for i=1:length(x) r = bucket_index(y[i], yedges) c = bucket_index(x[i], xedges) counts[r,c] += (weights == nothing ? 1.0 : weights[i]) end # normalize to cubic area of the imaginary surface towers norm_denom = normed ? sum((diff(yedges) * diff(xedges)') .* counts) : 1.0 if norm_denom == 0 norm_denom = 1.0 end xedges, yedges, counts ./ norm_denom end centers(v::AVec) = 0.5 * (v[1:end-1] + v[2:end]) @recipe function f(::Type{Val{:histogram2d}}, x, y, z) xedges, yedges, counts = my_hist_2d(x, y, d[:bins], normed = d[:normalize], weights = d[:weights]) x := centers(xedges) y := centers(yedges) z := Surface(counts) linewidth := 0 seriestype := :heatmap () end @deps histogram2d heatmap # --------------------------------------------------------------------------- # scatter 3d @recipe function f(::Type{Val{:scatter3d}}, x, y, z) seriestype := :path3d if d[:markershape] == :none markershape := :circle end linewidth := 0 linealpha := 0 () end # note: don't add dependencies because this really isn't a drop-in replacement # # TODO: move boxplots and violin plots to StatPlots when it's ready # # --------------------------------------------------------------------------- # # Box Plot # const _box_halfwidth = 0.4 # notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N) # @recipe function f(::Type{Val{:boxplot}}, x, y, z; notch=false, range=1.5) # xsegs, ysegs = Segments(), Segments() # glabels = sort(collect(unique(x))) # warning = false # outliers_x, outliers_y = zeros(0), zeros(0) # for (i,glabel) in enumerate(glabels) # # filter y # values = y[filter(i -> cycle(x,i) == glabel, 1:length(y))] # # compute quantiles # q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5)) # # notch # n = notch_width(q2, q4, length(values)) # # warn on inverted notches? # if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) ) # warn("Boxplot's notch went outside hinges. Set notch to false.") # warning = true # Show the warning only one time # end # # make the shape # center = discrete_value!(d[:subplot][:xaxis], glabel)[1] # hw = d[:bar_width] == nothing ? _box_halfwidth : 0.5cycle(d[:bar_width], i) # l, m, r = center - hw, center, center + hw # # internal nodes for notches # L, R = center - 0.5 * hw, center + 0.5 * hw # # outliers # if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data # limit = range*(q4-q2) # inside = Float64[] # for value in values # if (value < (q2 - limit)) || (value > (q4 + limit)) # push!(outliers_y, value) # push!(outliers_x, center) # else # push!(inside, value) # end # end # # change q1 and q5 to show outliers # # using maximum and minimum values inside the limits # q1, q5 = extrema(inside) # end # # Box # if notch # push!(xsegs, m, l, r, m, m) # lower T # push!(xsegs, l, l, L, R, r, r, l) # lower box # push!(xsegs, l, l, L, R, r, r, l) # upper box # push!(xsegs, m, l, r, m, m) # upper T # push!(ysegs, q1, q1, q1, q1, q2) # lower T # push!(ysegs, q2, q3-n, q3, q3, q3-n, q2, q2) # lower box # push!(ysegs, q4, q3+n, q3, q3, q3+n, q4, q4) # upper box # push!(ysegs, q5, q5, q5, q5, q4) # upper T # else # push!(xsegs, m, l, r, m, m) # lower T # push!(xsegs, l, l, r, r, l) # lower box # push!(xsegs, l, l, r, r, l) # upper box # push!(xsegs, m, l, r, m, m) # upper T # push!(ysegs, q1, q1, q1, q1, q2) # lower T # push!(ysegs, q2, q3, q3, q2, q2) # lower box # push!(ysegs, q4, q3, q3, q4, q4) # upper box # push!(ysegs, q5, q5, q5, q5, q4) # upper T # end # end # # Outliers # @series begin # seriestype := :scatter # markershape := :circle # markercolor := d[:fillcolor] # markeralpha := d[:fillalpha] # markerstrokecolor := d[:linecolor] # markerstrokealpha := d[:linealpha] # x := outliers_x # y := outliers_y # primary := false # () # end # seriestype := :shape # x := xsegs.pts # y := ysegs.pts # () # end # @deps boxplot shape scatter # # --------------------------------------------------------------------------- # # Violin Plot # const _violin_warned = [false] # # if the user has KernelDensity installed, use this for violin plots. # # otherwise, just use a histogram # if is_installed("KernelDensity") # @eval import KernelDensity # @eval function violin_coords(y; trim::Bool=false) # kd = KernelDensity.kde(y, npoints = 200) # if trim # xmin, xmax = extrema(y) # inside = Bool[ xmin <= x <= xmax for x in kd.x] # return(kd.density[inside], kd.x[inside]) # end # kd.density, kd.x # end # else # @eval function violin_coords(y; trim::Bool=false) # if !_violin_warned[1] # warn("Install the KernelDensity package for best results.") # _violin_warned[1] = true # end # edges, widths = my_hist(y, 10) # centers = 0.5 * (edges[1:end-1] + edges[2:end]) # ymin, ymax = extrema(y) # vcat(0.0, widths, 0.0), vcat(ymin, centers, ymax) # end # end # @recipe function f(::Type{Val{:violin}}, x, y, z; trim=true) # xsegs, ysegs = Segments(), Segments() # glabels = sort(collect(unique(x))) # for glabel in glabels # widths, centers = violin_coords(y[filter(i -> cycle(x,i) == glabel, 1:length(y))], trim=trim) # isempty(widths) && continue # # normalize # widths = _box_halfwidth * widths / maximum(widths) # # make the violin # xcenter = discrete_value!(d[:subplot][:xaxis], glabel)[1] # xcoords = vcat(widths, -reverse(widths)) + xcenter # ycoords = vcat(centers, reverse(centers)) # push!(xsegs, xcoords) # push!(ysegs, ycoords) # end # seriestype := :shape # x := xsegs.pts # y := ysegs.pts # () # end # @deps violin shape # # --------------------------------------------------------------------------- # # density # @recipe function f(::Type{Val{:density}}, x, y, z; trim=false) # newx, newy = violin_coords(y, trim=trim) # if isvertical(d) # newx, newy = newy, newx # end # x := newx # y := newy # seriestype := :path # () # end # @deps density path # --------------------------------------------------------------------------- # contourf - filled contours @recipe function f(::Type{Val{:contourf}}, x, y, z) fillrange := true seriestype := :contour () end # --------------------------------------------------------------------------- # Error Bars function error_style!(d::KW) d[:seriestype] = :path d[:linecolor] = d[:markerstrokecolor] d[:linewidth] = d[:markerstrokewidth] d[:label] = "" end # if we're passed a tuple of vectors, convert to a vector of tuples function error_zipit(ebar) if istuple(ebar) collect(zip(ebar...)) else ebar end end function error_coords(xorig, yorig, ebar) # init empty x/y, and zip errors if passed Tuple{Vector,Vector} x, y = zeros(0), zeros(0) # for each point, create a line segment from the bottom to the top of the errorbar for i = 1:max(length(xorig), length(yorig)) xi = cycle(xorig, i) yi = cycle(yorig, i) ebi = cycle(ebar, i) nanappend!(x, [xi, xi]) e1, e2 = if istuple(ebi) first(ebi), last(ebi) elseif isscalar(ebi) ebi, ebi else error("unexpected ebi type $(typeof(ebi)) for errorbar: $ebi") end nanappend!(y, [yi - e1, yi + e2]) end x, y end # we will create a series of path segments, where each point represents one # side of an errorbar @recipe function f(::Type{Val{:yerror}}, x, y, z) error_style!(d) markershape := :hline d[:x], d[:y] = error_coords(d[:x], d[:y], error_zipit(d[:yerror])) () end @deps yerror path @recipe function f(::Type{Val{:xerror}}, x, y, z) error_style!(d) markershape := :vline d[:y], d[:x] = error_coords(d[:y], d[:x], error_zipit(d[:xerror])) () end @deps xerror path # TODO: move quiver to PlotRecipes # --------------------------------------------------------------------------- # quiver # function apply_series_recipe(d::KW, ::Type{Val{:quiver}}) function quiver_using_arrows(d::KW) d[:label] = "" d[:seriestype] = :path if !isa(d[:arrow], Arrow) d[:arrow] = arrow() end velocity = error_zipit(d[:quiver]) xorig, yorig = d[:x], d[:y] # for each point, we create an arrow of velocity vi, translated to the x/y coordinates x, y = zeros(0), zeros(0) for i = 1:max(length(xorig), length(yorig)) # get the starting position xi = cycle(xorig, i) yi = cycle(yorig, i) # get the velocity vi = cycle(velocity, i) vx, vy = if istuple(vi) first(vi), last(vi) elseif isscalar(vi) vi, vi elseif isa(vi,Function) vi(xi, yi) else error("unexpected vi type $(typeof(vi)) for quiver: $vi") end # add the points nanappend!(x, [xi, xi+vx, NaN]) nanappend!(y, [yi, yi+vy, NaN]) end d[:x], d[:y] = x, y # KW[d] end # function apply_series_recipe(d::KW, ::Type{Val{:quiver}}) function quiver_using_hack(d::KW) d[:label] = "" d[:seriestype] = :shape velocity = error_zipit(d[:quiver]) xorig, yorig = d[:x], d[:y] # for each point, we create an arrow of velocity vi, translated to the x/y coordinates pts = P2[] for i = 1:max(length(xorig), length(yorig)) # get the starting position xi = cycle(xorig, i) yi = cycle(yorig, i) p = P2(xi, yi) # get the velocity vi = cycle(velocity, i) vx, vy = if istuple(vi) first(vi), last(vi) elseif isscalar(vi) vi, vi elseif isa(vi,Function) vi(xi, yi) else error("unexpected vi type $(typeof(vi)) for quiver: $vi") end v = P2(vx, vy) dist = norm(v) arrow_h = 0.1dist # height of arrowhead arrow_w = 0.5arrow_h # halfwidth of arrowhead U1 = v ./ dist # vector of arrowhead height U2 = P2(-U1[2], U1[1]) # vector of arrowhead halfwidth U1 *= arrow_h U2 *= arrow_w ppv = p+v nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1]) end d[:x], d[:y] = Plots.unzip(pts[2:end]) # KW[d] end # function apply_series_recipe(d::KW, ::Type{Val{:quiver}}) @recipe function f(::Type{Val{:quiver}}, x, y, z) if :arrow in supported_args() quiver_using_arrows(d) else quiver_using_hack(d) end () end @deps quiver shape path # ------------------------------------------------- # TODO: move OHLC to PlotRecipes finance.jl type OHLC{T<:Real} open::T high::T low::T close::T end Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...) # Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close) # get one OHLC path function get_xy(o::OHLC, x, xdiff) xl, xm, xr = x-xdiff, x, x+xdiff ox = [xl, xm, NaN, xm, xm, NaN, xm, xr] oy = [o.open, o.open, NaN, o.low, o.high, NaN, o.close, o.close] ox, oy end # get the joined vector function get_xy(v::AVec{OHLC}, x = 1:length(v)) xdiff = 0.3mean(abs(diff(x))) x_out, y_out = zeros(0), zeros(0) for (i,ohlc) in enumerate(v) ox,oy = get_xy(ohlc, x[i], xdiff) nanappend!(x_out, ox) nanappend!(y_out, oy) end x_out, y_out end # these are for passing in a vector of OHLC objects # TODO: when I allow `@recipe f(::Type{T}, v::T) = ...` definitions to replace convertToAnyVector, # then I should replace these with one definition to convert to a vector of 4-tuples # to squash ambiguity warnings... @recipe f(x::AVec{Function}, v::AVec{OHLC}) = error() @recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) = error() # this must be OHLC? @recipe f{R1<:Number,R2<:Number,R3<:Number,R4<:Number}(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) = x, OHLC[OHLC(t...) for t in ohlc] @recipe function f(x::AVec, v::AVec{OHLC}) seriestype := :path get_xy(v, x) end @recipe function f(v::AVec{OHLC}) seriestype := :path get_xy(v) end # the series recipe, when passed vectors of 4-tuples # ------------------------------------------------- # TODO: everything below here should be either changed to a # series recipe or moved to PlotRecipes "Sparsity plot... heatmap of non-zero values of a matrix" function spy{T<:Real}(z::AMat{T}; kw...) mat = map(zi->float(zi!=0), z)' xn, yn = size(mat) heatmap(mat; leg=false, yflip=true, aspect_ratio=:equal, xlim=(0.5, xn+0.5), ylim=(0.5, yn+0.5), kw...) end "Adds a+bx... straight line over the current plot" function abline!(plt::Plot, a, b; kw...) plot!(plt, [extrema(plt)...], x -> b + a*x; kw...) end abline!(args...; kw...) = abline!(current(), args...; kw...) # ------------------------------------------------- # Dates @recipe function f{T<:AbstractArray{Date}}(::Type{T}, dts::T) date_formatter = dt -> string(convert(Date, dt)) xformatter := date_formatter map(dt->convert(Int,dt), dts) end @recipe function f{T<:AbstractArray{DateTime}}(::Type{T}, dts::T) date_formatter = dt -> string(convert(DateTime, dt)) xformatter := date_formatter map(dt->convert(Int,dt), dts) end