# --------------------------------------------------------------- treats_y_as_x(seriestype) = seriestype in (:vline, :vspan, :histogram, :barhist, :stephist, :scatterhist) function replace_image_with_heatmap(z::Array{T}) where {T<:Colorant} n, m = size(z) colors = palette(vec(z)) newz = reshape(1:(n * m), n, m) newz, colors end # --------------------------------------------------------------- "Build line segments for plotting" mutable struct Segments{T} pts::Vector{T} end # Segments() = Segments{Float64}(zeros(0)) Segments() = Segments(Float64) Segments(::Type{T}) where {T} = Segments(T[]) Segments(p::Int) = Segments(NTuple{p,Float64}[]) # Segments() = Segments(zeros(0)) to_nan(::Type{Float64}) = NaN to_nan(::Type{NTuple{2,Float64}}) = (NaN, NaN) to_nan(::Type{NTuple{3,Float64}}) = (NaN, NaN, NaN) coords(segs::Segments{Float64}) = segs.pts coords(segs::Segments{NTuple{2,Float64}}) = Float64[p[1] for p in segs.pts], Float64[p[2] for p in segs.pts] coords(segs::Segments{NTuple{3,Float64}}) = Float64[p[1] for p in segs.pts], Float64[p[2] for p in segs.pts], Float64[p[3] for p in segs.pts] function Base.push!(segments::Segments{T}, vs...) where {T} if !isempty(segments.pts) push!(segments.pts, to_nan(T)) end for v in vs push!(segments.pts, convert(T, v)) end segments end function Base.push!(segments::Segments{T}, vs::AVec) where {T} if !isempty(segments.pts) push!(segments.pts, to_nan(T)) end for v in vs push!(segments.pts, convert(T, v)) end segments end struct SeriesSegment # indexes of this segement in series data vectors range::UnitRange # index into vector-valued attributes corresponding to this segment attr_index::Int end # ----------------------------------------------------- # helper to manage NaN-separated segments struct NaNSegmentsIterator args::Tuple n1::Int n2::Int end function iter_segments(args...) tup = Plots.wraptuple(args) n1 = minimum(map(firstindex, tup)) n2 = maximum(map(lastindex, tup)) NaNSegmentsIterator(tup, n1, n2) end function series_segments(series::Series, seriestype::Symbol = :path; check = false) x, y, z = series[:x], series[:y], series[:z] (x === nothing || isempty(x)) && return UnitRange{Int}[] args = RecipesPipeline.is3d(series) ? (x, y, z) : (x, y) nan_segments = collect(iter_segments(args...)) if check scales = :xscale, :yscale, :zscale for (n, s) in enumerate(args) scale = get(series, scales[n], :identity) if scale ∈ _logScales for (i, v) in enumerate(s) if v <= 0 @warn "Invalid negative or zero value $v found at series index $i for $(scale) based $(scales[n])" @debug "" exception = (DomainError(v), stacktrace()) break end end end end end segments = if has_attribute_segments(series) Iterators.flatten(map(nan_segments) do r if seriestype in (:scatter, :scatter3d) (SeriesSegment(i:i, i) for i in r) else (SeriesSegment(i:(i + 1), i) for i in first(r):(last(r) - 1)) end end) else (SeriesSegment(r, 1) for r in nan_segments) end warn_on_attr_dim_mismatch(series, x, y, z, segments) return segments end function warn_on_attr_dim_mismatch(series, x, y, z, segments) isempty(segments) && return seg_range = UnitRange( minimum(first(seg.range) for seg in segments), maximum(last(seg.range) for seg in segments), ) for attr in _segmenting_vector_attributes v = get(series, attr, nothing) if v isa AVec && eachindex(v) != seg_range @warn "Indices $(eachindex(v)) of attribute `$attr` does not match data indices $seg_range." if any(v -> !isnothing(v) && any(isnan, v), (x, y, z)) @info """Data contains NaNs or missing values, and indices of `$attr` vector do not match data indices. If you intend elements of `$attr` to apply to individual NaN-separated segements in the data, pass each segment in a separate vector instead, and use a row vector for `$attr`. Legend entries may be suppressed by passing an empty label. For example, plot([1:2,1:3], [[4,5],[3,4,5]], label=["y" ""], $attr=[1 2]) """ end end end end # helpers to figure out if there are NaN values in a list of array types anynan(i::Int, args::Tuple) = any(a -> try isnan(_cycle(a, i)) catch MethodError false end, args) anynan(args::Tuple) = i -> anynan(i, args) anynan(istart::Int, iend::Int, args::Tuple) = any(anynan(args), istart:iend) allnan(istart::Int, iend::Int, args::Tuple) = all(anynan(args), istart:iend) function Base.iterate(itr::NaNSegmentsIterator, nextidx::Int = itr.n1) i = findfirst(!anynan(itr.args), nextidx:(itr.n2)) i === nothing && return nextval = nextidx + i - 1 j = findfirst(anynan(itr.args), nextval:(itr.n2)) nextnan = j === nothing ? itr.n2 + 1 : nextval + j - 1 nextval:(nextnan - 1), nextnan end Base.IteratorSize(::NaNSegmentsIterator) = Base.SizeUnknown() # Find minimal type that can contain NaN and x # To allow use of NaN separated segments with categorical x axis float_extended_type(x::AbstractArray{T}) where {T} = Union{T,Float64} float_extended_type(x::AbstractArray{T}) where {T<:Real} = Float64 # ------------------------------------------------------------------------------------ nop() = nothing notimpl() = error("This has not been implemented yet") isnothing(x::Nothing) = true isnothing(x) = false _cycle(wrapper::InputWrapper, idx::Int) = wrapper.obj _cycle(wrapper::InputWrapper, idx::AVec{Int}) = wrapper.obj _cycle(v::AVec, idx::Int) = v[mod(idx, axes(v, 1))] _cycle(v::AMat, idx::Int) = size(v, 1) == 1 ? v[end, mod(idx, axes(v, 2))] : v[:, mod(idx, axes(v, 2))] _cycle(v, idx::Int) = v _cycle(v::AVec, indices::AVec{Int}) = map(i -> _cycle(v, i), indices) _cycle(v::AMat, indices::AVec{Int}) = map(i -> _cycle(v, i), indices) _cycle(v, indices::AVec{Int}) = fill(v, length(indices)) _cycle(cl::PlotUtils.AbstractColorList, idx::Int) = cl[mod1(idx, end)] _cycle(cl::PlotUtils.AbstractColorList, idx::AVec{Int}) = cl[mod1.(idx, end)] _as_gradient(grad) = grad _as_gradient(v::AbstractVector{<:Colorant}) = cgrad(v) _as_gradient(cp::ColorPalette) = cgrad(cp, categorical = true) _as_gradient(c::Colorant) = cgrad([c, c]) makevec(v::AVec) = v makevec(v::T) where {T} = T[v] "duplicate a single value, or pass the 2-tuple through" maketuple(x::Real) = (x, x) maketuple(x::Tuple{T,S}) where {T,S} = x for i in 2:4 @eval begin RecipesPipeline.unzip( v::Union{AVec{<:NTuple{$i,T} where T},AVec{<:GeometryBasics.Point{$i}}}, ) = $(Expr(:tuple, (:([t[$j] for t in v]) for j in 1:i)...)) end end RecipesPipeline.unzip(::Union{AVec{<:GeometryBasics.Point{N}},AVec{<:NTuple{N,T} where T}}) where {N} = error("$N-dimensional unzip not implemented.") RecipesPipeline.unzip(::Union{AVec{<:GeometryBasics.Point},AVec{<:Tuple}}) = error("Can't unzip points of different dimensions.") # given 2-element lims and a vector of data x, widen lims to account for the extrema of x function _expand_limits(lims, x) try e1, e2 = ignorenan_extrema(x) lims[1] = NaNMath.min(lims[1], e1) lims[2] = NaNMath.max(lims[2], e2) catch end nothing end expand_data(v, n::Integer) = [_cycle(v, i) for i in 1:n] # if the type exists in a list, replace the first occurence. otherwise add it to the end function addOrReplace(v::AbstractVector, t::DataType, args...; kw...) for (i, vi) in enumerate(v) if isa(vi, t) v[i] = t(args...; kw...) return end end push!(v, t(args...; kw...)) return end function replaceType(vec, val) filter!(x -> !isa(x, typeof(val)), vec) push!(vec, val) end function replaceAlias!(plotattributes::AKW, k::Symbol, aliases::Dict{Symbol,Symbol}) if haskey(aliases, k) plotattributes[aliases[k]] = RecipesPipeline.pop_kw!(plotattributes, k) end end function replaceAliases!(plotattributes::AKW, aliases::Dict{Symbol,Symbol}) ks = collect(keys(plotattributes)) for k in ks replaceAlias!(plotattributes, k, aliases) end end createSegments(z) = collect(repeat(reshape(z, 1, :), 2, 1))[2:end] sortedkeys(plotattributes::Dict) = sort(collect(keys(plotattributes))) function _heatmap_edges(v::AVec, isedges::Bool = false, ispolar::Bool = false) length(v) == 1 && return v[1] .+ [ispolar ? max(-v[1], -0.5) : -0.5, 0.5] if isedges return v end # `isedges = true` means that v is a vector which already describes edges # and does not need to be extended. vmin, vmax = ignorenan_extrema(v) extra_min = ispolar ? min(v[1], (v[2] - v[1]) / 2) : (v[2] - v[1]) / 2 extra_max = (v[end] - v[end - 1]) / 2 vcat(vmin - extra_min, 0.5 * (v[1:(end - 1)] + v[2:end]), vmax + extra_max) end "create an (n+1) list of the outsides of heatmap rectangles" function heatmap_edges( v::AVec, scale::Symbol = :identity, isedges::Bool = false, ispolar::Bool = false, ) f, invf = RecipesPipeline.scale_func(scale), RecipesPipeline.inverse_scale_func(scale) map(invf, _heatmap_edges(map(f, v), isedges, ispolar)) end function heatmap_edges( x::AVec, xscale::Symbol, y::AVec, yscale::Symbol, z_size::Tuple{Int,Int}, ispolar::Bool = false, ) nx, ny = length(x), length(y) # ismidpoints = z_size == (ny, nx) # This fails some tests, but would actually be # the correct check, since (4, 3) != (3, 4) and a missleading plot is produced. ismidpoints = prod(z_size) == (ny * nx) isedges = z_size == (ny - 1, nx - 1) if !ismidpoints && !isedges error("""Length of x & y does not match the size of z. Must be either `size(z) == (length(y), length(x))` (x & y define midpoints) or `size(z) == (length(y)+1, length(x)+1))` (x & y define edges).""") end x, y = heatmap_edges(x, xscale, isedges), heatmap_edges(y, yscale, isedges, ispolar) # special handle for `r` in polar plots return x, y end function is_uniformly_spaced(v; tol = 1e-6) dv = diff(v) maximum(dv) - minimum(dv) < tol * mean(abs.(dv)) end function convert_to_polar(theta, r, r_extrema = ignorenan_extrema(r)) rmin, rmax = r_extrema r = (r .- rmin) ./ (rmax .- rmin) x = r .* cos.(theta) y = r .* sin.(theta) x, y end fakedata(sz::Int...) = fakedata(Random.seed!(PLOTS_SEED), sz...) function fakedata(rng::AbstractRNG, sz...) y = zeros(sz...) for r in 2:size(y, 1) y[r, :] = 0.95 * vec(y[r - 1, :]) + randn(rng, size(y, 2)) end y end isijulia() = :IJulia in nameof.(collect(values(Base.loaded_modules))) isatom() = :Atom in nameof.(collect(values(Base.loaded_modules))) istuple(::Tuple) = true istuple(::Any) = false isvector(::AVec) = true isvector(::Any) = false ismatrix(::AMat) = true ismatrix(::Any) = false isscalar(::Real) = true isscalar(::Any) = false is_2tuple(v) = typeof(v) <: Tuple && length(v) == 2 isvertical(plotattributes::AKW) = get(plotattributes, :orientation, :vertical) in (:vertical, :v, :vert) isvertical(series::Series) = isvertical(series.plotattributes) ticksType(ticks::AVec{T}) where {T<:Real} = :ticks ticksType(ticks::AVec{T}) where {T<:AbstractString} = :labels ticksType(ticks::Tuple{T,S}) where {T<:Union{AVec,Tuple},S<:Union{AVec,Tuple}} = :ticks_and_labels ticksType(ticks) = :invalid limsType(lims::Tuple{T,S}) where {T<:Real,S<:Real} = :limits limsType(lims::Symbol) = lims == :auto ? :auto : :invalid limsType(lims) = :invalid # recursively merge kw-dicts, e.g. for merging extra_kwargs / extra_plot_kwargs in plotly) recursive_merge(x::AbstractDict...) = merge(recursive_merge, x...) # if values are not AbstractDicts, take the last definition (as does merge) recursive_merge(x...) = x[end] nanpush!(a::AbstractVector, b) = (push!(a, NaN); push!(a, b)) nanappend!(a::AbstractVector, b) = (push!(a, NaN); append!(a, b)) function nansplit(v::AVec) vs = Vector{eltype(v)}[] while true idx = findfirst(isnan, v) if idx <= 0 # no nans push!(vs, v) break elseif idx > 1 push!(vs, v[1:(idx - 1)]) end v = v[(idx + 1):end] end vs end function nanvcat(vs::AVec) v_out = zeros(0) for v in vs nanappend!(v_out, v) end v_out end # given an array of discrete values, turn it into an array of indices of the unique values # returns the array of indices (znew) and a vector of unique values (vals) function indices_and_unique_values(z::AbstractArray) vals = sort(unique(z)) vmap = Dict([(v, i) for (i, v) in enumerate(vals)]) newz = map(zi -> vmap[zi], z) newz, vals end handle_surface(z) = z handle_surface(z::Surface) = permutedims(z.surf) ok(x::Number, y::Number, z::Number = 0) = isfinite(x) && isfinite(y) && isfinite(z) ok(tup::Tuple) = ok(tup...) # compute one side of a fill range from a ribbon function make_fillrange_side(y::AVec, rib) frs = zeros(axes(y)) for (i, yi) in pairs(y) frs[i] = yi + _cycle(rib, i) end frs end # turn a ribbon into a fillrange function make_fillrange_from_ribbon(kw::AKW) y, rib = kw[:y], kw[:ribbon] rib = wraptuple(rib) rib1, rib2 = -first(rib), last(rib) # kw[:ribbon] = nothing kw[:fillrange] = make_fillrange_side(y, rib1), make_fillrange_side(y, rib2) (get(kw, :fillalpha, nothing) === nothing) && (kw[:fillalpha] = 0.5) end #turn tuple of fillranges to one path function concatenate_fillrange(x, y::Tuple) rib1, rib2 = first(y), last(y) yline = vcat(rib1, (rib2)[end:-1:1]) xline = vcat(x, x[end:-1:1]) return xline, yline end get_sp_lims(sp::Subplot, letter::Symbol) = axis_limits(sp, letter) """ xlims([plt]) Returns the x axis limits of the current plot or subplot """ xlims(sp::Subplot) = get_sp_lims(sp, :x) """ ylims([plt]) Returns the y axis limits of the current plot or subplot """ ylims(sp::Subplot) = get_sp_lims(sp, :y) """ zlims([plt]) Returns the z axis limits of the current plot or subplot """ zlims(sp::Subplot) = get_sp_lims(sp, :z) xlims(plt::Plot, sp_idx::Int = 1) = xlims(plt[sp_idx]) ylims(plt::Plot, sp_idx::Int = 1) = ylims(plt[sp_idx]) zlims(plt::Plot, sp_idx::Int = 1) = zlims(plt[sp_idx]) xlims(sp_idx::Int = 1) = xlims(current(), sp_idx) ylims(sp_idx::Int = 1) = ylims(current(), sp_idx) zlims(sp_idx::Int = 1) = zlims(current(), sp_idx) iscontour(series::Series) = series[:seriestype] in (:contour, :contour3d) isfilledcontour(series::Series) = iscontour(series) && series[:fillrange] !== nothing function contour_levels(series::Series, clims) iscontour(series) || error("Not a contour series") zmin, zmax = clims levels = series[:levels] if levels isa Integer levels = range(zmin, stop = zmax, length = levels + 2) if !isfilledcontour(series) levels = levels[2:(end - 1)] end end levels end for comp in (:line, :fill, :marker) compcolor = string(comp, :color) get_compcolor = Symbol(:get_, compcolor) comp_z = string(comp, :_z) compalpha = string(comp, :alpha) get_compalpha = Symbol(:get_, compalpha) @eval begin function $get_compcolor(series, cmin::Real, cmax::Real, i::Int = 1) c = series[$Symbol($compcolor)] z = series[$Symbol($comp_z)] if z === nothing isa(c, ColorGradient) ? c : plot_color(_cycle(c, i)) else get(get_gradient(c), z[i], (cmin, cmax)) end end $get_compcolor(series, clims, i::Int = 1) = $get_compcolor(series, clims[1], clims[2], i) function $get_compcolor(series, i::Int = 1) if series[$Symbol($comp_z)] === nothing $get_compcolor(series, 0, 1, i) else $get_compcolor(series, get_clims(series[:subplot]), i) end end $get_compalpha(series, i::Int = 1) = _cycle(series[$Symbol($compalpha)], i) end end function get_colorgradient(series::Series) st = series[:seriestype] if st in (:surface, :heatmap) || isfilledcontour(series) series[:fillcolor] elseif st in (:contour, :wireframe) series[:linecolor] elseif series[:marker_z] !== nothing series[:markercolor] elseif series[:line_z] !== nothing series[:linecolor] elseif series[:fill_z] !== nothing series[:fillcolor] end end single_color(c, v = 0.5) = c single_color(grad::ColorGradient, v = 0.5) = grad[v] get_gradient(c) = cgrad() get_gradient(cg::ColorGradient) = cg get_gradient(cp::ColorPalette) = cgrad(cp, categorical = true) get_linewidth(series, i::Int = 1) = _cycle(series[:linewidth], i) get_linestyle(series, i::Int = 1) = _cycle(series[:linestyle], i) get_fillstyle(series, i::Int = 1) = _cycle(series[:fillstyle], i) function get_markerstrokecolor(series, i::Int = 1) msc = series[:markerstrokecolor] isa(msc, ColorGradient) ? msc : _cycle(msc, i) end get_markerstrokealpha(series, i::Int = 1) = _cycle(series[:markerstrokealpha], i) get_markerstrokewidth(series, i::Int = 1) = _cycle(series[:markerstrokewidth], i) const _segmenting_vector_attributes = ( :seriescolor, :seriesalpha, :linecolor, :linealpha, :linewidth, :linestyle, :fillcolor, :fillalpha, :fillstyle, :markercolor, :markeralpha, :markersize, :markerstrokecolor, :markerstrokealpha, :markerstrokewidth, :markershape, ) const _segmenting_array_attributes = :line_z, :fill_z, :marker_z function has_attribute_segments(series::Series) # we want to check if a series needs to be split into segments just because # of its attributes series[:seriestype] == :shape && return false # check relevant attributes if they have multiple inputs return any( series[attr] isa AbstractVector && length(series[attr]) > 1 for attr in _segmenting_vector_attributes ) || any(series[attr] isa AbstractArray for attr in _segmenting_array_attributes) end function get_aspect_ratio(sp) aspect_ratio = sp[:aspect_ratio] if aspect_ratio == :auto aspect_ratio = :none for series in series_list(sp) if series[:seriestype] == :image aspect_ratio = :equal end end end return aspect_ratio end get_size(series::Series) = get_size(series.plotattributes[:subplot]) get_size(kw) = get(kw, :size, default(:size)) get_size(plt::Plot) = get_size(plt.attr) get_size(sp::Subplot) = get_size(sp.plt) get_thickness_scaling(kw) = get(kw, :thickness_scaling, default(:thickness_scaling)) get_thickness_scaling(plt::Plot) = get_thickness_scaling(plt.attr) get_thickness_scaling(sp::Subplot) = get_thickness_scaling(sp.plt) get_thickness_scaling(series::Series) = get_thickness_scaling(series.plotattributes[:subplot]) # --------------------------------------------------------------- makekw(; kw...) = KW(kw) wraptuple(x::Tuple) = x wraptuple(x) = (x,) trueOrAllTrue(f::Function, x::AbstractArray) = all(f, x) trueOrAllTrue(f::Function, x) = f(x) allLineTypes(arg) = trueOrAllTrue(a -> get(_typeAliases, a, a) in _allTypes, arg) allStyles(arg) = trueOrAllTrue(a -> get(_styleAliases, a, a) in _allStyles, arg) allShapes(arg) = ( trueOrAllTrue(a -> is_marker_supported(get(_markerAliases, a, a)), arg) || trueOrAllTrue(a -> isa(a, Shape), arg) ) allAlphas(arg) = trueOrAllTrue( a -> (typeof(a) <: Real && a > 0 && a < 1) || ( typeof(a) <: AbstractFloat && (a == zero(typeof(a)) || a == one(typeof(a))) ), arg, ) allReals(arg) = trueOrAllTrue(a -> typeof(a) <: Real, arg) allFunctions(arg) = trueOrAllTrue(a -> isa(a, Function), arg) # --------------------------------------------------------------- """ Allows temporary setting of backend and defaults for Plots. Settings apply only for the `do` block. Example: ``` with(:gr, size=(400,400), type=:histogram) do plot(rand(10)) plot(rand(10)) end ``` """ function with(f::Function, args...; kw...) newdefs = KW(kw) if :canvas in args newdefs[:xticks] = nothing newdefs[:yticks] = nothing newdefs[:grid] = false newdefs[:legend] = false end # dict to store old and new keyword args for anything that changes olddefs = KW() for k in keys(newdefs) olddefs[k] = default(k) end # save the backend if CURRENT_BACKEND.sym == :none _pick_default_backend() end oldbackend = CURRENT_BACKEND.sym for arg in args # change backend? if arg in backends() backend(arg) end # TODO: generalize this strategy to allow args as much as possible # as in: with(:gr, :scatter, :legend, :grid) do; ...; end # TODO: can we generalize this enough to also do something similar in the plot commands?? # k = :seriestype # if arg in _allTypes # olddefs[k] = default(k) # newdefs[k] = arg # elseif haskey(_typeAliases, arg) # olddefs[k] = default(k) # newdefs[k] = _typeAliases[arg] # end k = :legend if arg in (k, :leg) olddefs[k] = default(k) newdefs[k] = true end k = :grid if arg == k olddefs[k] = default(k) newdefs[k] = true end end # display(olddefs) # display(newdefs) # now set all those defaults default(; newdefs...) # call the function ret = f() # put the defaults back default(; olddefs...) # revert the backend if CURRENT_BACKEND.sym != oldbackend backend(oldbackend) end # return the result of the function ret end # --------------------------------------------------------------- # --------------------------------------------------------------- mutable struct DebugMode on::Bool end const _debugMode = DebugMode(false) debugplots(on = true) = _debugMode.on = on debugshow(io, x) = show(io, x) debugshow(io, x::AbstractArray) = print(io, summary(x)) function dumpdict(io::IO, plotattributes::AKW, prefix = "", alwaysshow = false) _debugMode.on || alwaysshow || return println(io) if prefix != "" println(io, prefix, ":") end for k in sort(collect(keys(plotattributes))) @printf("%14s: ", k) debugshow(io, plotattributes[k]) println(io) end println(io) end DD(io::IO, plotattributes::AKW, prefix = "") = dumpdict(io, plotattributes, prefix, true) DD(plotattributes::AKW, prefix = "") = DD(stdout, plotattributes, prefix) dumpcallstack() = error() # well... you wanted the stacktrace, didn't you?!? # ------------------------------------------------------- # NOTE: backends should implement the following methods to get/set the x/y/z data objects tovec(v::AbstractVector) = v tovec(v::Nothing) = zeros(0) function getxy(plt::Plot, i::Integer) plotattributes = plt.series_list[i].plotattributes tovec(plotattributes[:x]), tovec(plotattributes[:y]) end function getxyz(plt::Plot, i::Integer) plotattributes = plt.series_list[i].plotattributes tovec(plotattributes[:x]), tovec(plotattributes[:y]), tovec(plotattributes[:z]) end function setxy!(plt::Plot, xy::Tuple{X,Y}, i::Integer) where {X,Y} series = plt.series_list[i] series.plotattributes[:x], series.plotattributes[:y] = xy sp = series.plotattributes[:subplot] reset_extrema!(sp) _series_updated(plt, series) end function setxyz!(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer) where {X,Y,Z} series = plt.series_list[i] series.plotattributes[:x], series.plotattributes[:y], series.plotattributes[:z] = xyz sp = series.plotattributes[:subplot] reset_extrema!(sp) _series_updated(plt, series) end setxyz!(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer) where {X,Y,Z<:AbstractMatrix} = (setxyz!(plt, (xyz[1], xyz[2], Surface(xyz[3])), i)) # ------------------------------------------------------- # indexing notation # Base.getindex(plt::Plot, i::Integer) = getxy(plt, i) Base.setindex!(plt::Plot, xy::Tuple{X,Y}, i::Integer) where {X,Y} = (setxy!(plt, xy, i); plt) Base.setindex!(plt::Plot, xyz::Tuple{X,Y,Z}, i::Integer) where {X,Y,Z} = (setxyz!(plt, xyz, i); plt) # ------------------------------------------------------- # operate on individual series Base.push!(series::Series, args...) = extend_series!(series, args...) Base.append!(series::Series, args...) = extend_series!(series, args...) function extend_series!(series::Series, yi) y = extend_series_data!(series, yi, :y) x = extend_to_length!(series[:x], length(y)) expand_extrema!(series[:subplot][:xaxis], x) return x, y end function extend_series!(series::Series, xi, yi) x = extend_series_data!(series, xi, :x) y = extend_series_data!(series, yi, :y) return x, y end function extend_series!(series::Series, xi, yi, zi) x = extend_series_data!(series, xi, :x) y = extend_series_data!(series, yi, :y) z = extend_series_data!(series, zi, :z) return x, y, z end function extend_series_data!(series::Series, v, letter) copy_series!(series, letter) d = extend_by_data!(series[letter], v) expand_extrema!(series[:subplot][get_attr_symbol(letter, :axis)], d) return d end function copy_series!(series, letter) plt = series[:plot_object] for s in plt.series_list for l in (:x, :y, :z) if s !== series || l !== letter if s[l] === series[letter] series[letter] = copy(series[letter]) end end end end end extend_to_length!(v::AbstractRange, n) = range(first(v), step = step(v), length = n) function extend_to_length!(v::AbstractVector, n) vmax = isempty(v) ? 0 : ignorenan_maximum(v) extend_by_data!(v, vmax .+ (1:(n - length(v)))) end extend_by_data!(v::AbstractVector, x) = isimmutable(v) ? vcat(v, x) : push!(v, x) extend_by_data!(v::AbstractVector, x::AbstractVector) = isimmutable(v) ? vcat(v, x) : append!(v, x) # ------------------------------------------------------- function attr!(series::Series; kw...) plotattributes = KW(kw) RecipesPipeline.preprocess_attributes!(plotattributes) for (k, v) in plotattributes if haskey(_series_defaults, k) series[k] = v else @warn("unused key $k in series attr") end end _series_updated(series[:subplot].plt, series) series end function attr!(sp::Subplot; kw...) plotattributes = KW(kw) RecipesPipeline.preprocess_attributes!(plotattributes) for (k, v) in plotattributes if haskey(_subplot_defaults, k) sp[k] = v else @warn("unused key $k in subplot attr") end end sp end # ------------------------------------------------------- # push/append for one series Base.push!(plt::Plot, args::Real...) = push!(plt, 1, args...) Base.push!(plt::Plot, i::Integer, args::Real...) = push!(plt.series_list[i], args...) Base.append!(plt::Plot, args::AbstractVector...) = append!(plt, 1, args...) Base.append!(plt::Plot, i::Integer, args::Real...) = append!(plt.series_list[i], args...) # tuples Base.push!(plt::Plot, t::Tuple) = push!(plt, 1, t...) Base.push!(plt::Plot, i::Integer, t::Tuple) = push!(plt, i, t...) Base.append!(plt::Plot, t::Tuple) = append!(plt, 1, t...) Base.append!(plt::Plot, i::Integer, t::Tuple) = append!(plt, i, t...) # ------------------------------------------------------- # push/append for all series # push y[i] to the ith series function Base.push!(plt::Plot, y::AVec) ny = length(y) for i in 1:(plt.n) push!(plt, i, y[mod1(i, ny)]) end plt end # push y[i] to the ith series # same x for each series Base.push!(plt::Plot, x::Real, y::AVec) = push!(plt, [x], y) # push (x[i], y[i]) to the ith series function Base.push!(plt::Plot, x::AVec, y::AVec) nx = length(x) ny = length(y) for i in 1:(plt.n) push!(plt, i, x[mod1(i, nx)], y[mod1(i, ny)]) end plt end # push (x[i], y[i], z[i]) to the ith series function Base.push!(plt::Plot, x::AVec, y::AVec, z::AVec) nx = length(x) ny = length(y) nz = length(z) for i in 1:(plt.n) push!(plt, i, x[mod1(i, nx)], y[mod1(i, ny)], z[mod1(i, nz)]) end plt end # --------------------------------------------------------------- # Some conversion functions # note: I borrowed these conversion constants from Compose.jl's Measure const PX_PER_INCH = 100 const DPI = PX_PER_INCH const MM_PER_INCH = 25.4 const MM_PER_PX = MM_PER_INCH / PX_PER_INCH inch2px(inches::Real) = float(inches * PX_PER_INCH) px2inch(px::Real) = float(px / PX_PER_INCH) inch2mm(inches::Real) = float(inches * MM_PER_INCH) mm2inch(mm::Real) = float(mm / MM_PER_INCH) px2mm(px::Real) = float(px * MM_PER_PX) mm2px(mm::Real) = float(mm / MM_PER_PX) "Smallest x in plot" xmin(plt::Plot) = ignorenan_minimum([ ignorenan_minimum(series.plotattributes[:x]) for series in plt.series_list ]) "Largest x in plot" xmax(plt::Plot) = ignorenan_maximum([ ignorenan_maximum(series.plotattributes[:x]) for series in plt.series_list ]) "Extrema of x-values in plot" ignorenan_extrema(plt::Plot) = (xmin(plt), xmax(plt)) # --------------------------------------------------------------- # get fonts from objects: plottitlefont(p::Plot) = font(; family = p[:plot_titlefontfamily], pointsize = p[:plot_titlefontsize], valign = p[:plot_titlefontvalign], halign = p[:plot_titlefonthalign], rotation = p[:plot_titlefontrotation], color = p[:plot_titlefontcolor], ) colorbartitlefont(sp::Subplot) = font(; family = sp[:colorbar_titlefontfamily], pointsize = sp[:colorbar_titlefontsize], valign = sp[:colorbar_titlefontvalign], halign = sp[:colorbar_titlefonthalign], rotation = sp[:colorbar_titlefontrotation], color = sp[:colorbar_titlefontcolor], ) titlefont(sp::Subplot) = font(; family = sp[:titlefontfamily], pointsize = sp[:titlefontsize], valign = sp[:titlefontvalign], halign = sp[:titlefonthalign], rotation = sp[:titlefontrotation], color = sp[:titlefontcolor], ) legendfont(sp::Subplot) = font(; family = sp[:legendfontfamily], pointsize = sp[:legendfontsize], valign = sp[:legendfontvalign], halign = sp[:legendfonthalign], rotation = sp[:legendfontrotation], color = sp[:legendfontcolor], ) legendtitlefont(sp::Subplot) = font(; family = sp[:legendtitlefontfamily], pointsize = sp[:legendtitlefontsize], valign = sp[:legendtitlefontvalign], halign = sp[:legendtitlefonthalign], rotation = sp[:legendtitlefontrotation], color = sp[:legendtitlefontcolor], ) tickfont(ax::Axis) = font(; family = ax[:tickfontfamily], pointsize = ax[:tickfontsize], valign = ax[:tickfontvalign], halign = ax[:tickfonthalign], rotation = ax[:tickfontrotation], color = ax[:tickfontcolor], ) guidefont(ax::Axis) = font(; family = ax[:guidefontfamily], pointsize = ax[:guidefontsize], valign = ax[:guidefontvalign], halign = ax[:guidefonthalign], rotation = ax[:guidefontrotation], color = ax[:guidefontcolor], ) # --------------------------------------------------------------- # converts unicode scientific notation, as returned by Showoff, # to a tex-like format (supported by gr, pyplot, and pgfplots). function convert_sci_unicode(label::AbstractString) unicode_dict = Dict( '⁰' => "0", '¹' => "1", '²' => "2", '³' => "3", '⁴' => "4", '⁵' => "5", '⁶' => "6", '⁷' => "7", '⁸' => "8", '⁹' => "9", '⁻' => "-", "×10" => "×10^{", ) for key in keys(unicode_dict) label = replace(label, key => unicode_dict[key]) end if occursin("×10^{", label) label = string(label, "}") end label end function straightline_data(series, expansion_factor = 1) sp = series[:subplot] xl, yl = isvertical(series) ? (xlims(sp), ylims(sp)) : (ylims(sp), xlims(sp)) # handle axes scales xscale = sp[:xaxis][:scale] xf = RecipesPipeline.scale_func(xscale) xinvf = RecipesPipeline.inverse_scale_func(xscale) yscale = sp[:yaxis][:scale] yf = RecipesPipeline.scale_func(yscale) yinvf = RecipesPipeline.inverse_scale_func(yscale) xl, yl = xf.(xl), yf.(yl) x, y = xf.(series[:x]), yf.(series[:y]) n = length(x) xdata, ydata = if n == 2 straightline_data(xl, yl, x, y, expansion_factor) else k, r = divrem(n, 3) if r == 0 xdata, ydata = fill(NaN, n), fill(NaN, n) for i in 1:k inds = (3 * i - 2):(3 * i - 1) xdata[inds], ydata[inds] = straightline_data(xl, yl, x[inds], y[inds], expansion_factor) end xdata, ydata else error( "Misformed data. `straightline_data` either accepts vectors of length 2 or 3k. The provided series has length $n", ) end end return xinvf.(xdata), yinvf.(ydata) end function straightline_data(xl, yl, x, y, expansion_factor = 1) x_vals, y_vals = if y[1] == y[2] if x[1] == x[2] error("Two identical points cannot be used to describe a straight line.") else [xl[1], xl[2]], [y[1], y[2]] end elseif x[1] == x[2] [x[1], x[2]], [yl[1], yl[2]] else # get a and b from the line y = a * x + b through the points given by # the coordinates x and x b = y[1] - (y[1] - y[2]) * x[1] / (x[1] - x[2]) a = (y[1] - y[2]) / (x[1] - x[2]) # get the data values xdata = [ clamp(x[1] + (x[1] - x[2]) * (ylim - y[1]) / (y[1] - y[2]), xl...) for ylim in yl ] xdata, a .* xdata .+ b end # expand the data outside the axis limits, by a certain factor too improve # plotly(js) and interactive behaviour x_vals = x_vals .+ (x_vals[2] - x_vals[1]) .* expansion_factor .* [-1, 1] y_vals = y_vals .+ (y_vals[2] - y_vals[1]) .* expansion_factor .* [-1, 1] return x_vals, y_vals end function shape_data(series, expansion_factor = 1) sp = series[:subplot] xl, yl = isvertical(series) ? (xlims(sp), ylims(sp)) : (ylims(sp), xlims(sp)) # handle axes scales xscale = sp[:xaxis][:scale] xf = RecipesPipeline.scale_func(xscale) xinvf = RecipesPipeline.inverse_scale_func(xscale) yscale = sp[:yaxis][:scale] yf = RecipesPipeline.scale_func(yscale) yinvf = RecipesPipeline.inverse_scale_func(yscale) x, y = copy(series[:x]), copy(series[:y]) for i in eachindex(x) if x[i] == -Inf x[i] = xinvf(xf(xl[1]) - expansion_factor * (xf(xl[2]) - xf(xl[1]))) elseif x[i] == Inf x[i] = xinvf(xf(xl[2]) + expansion_factor * (xf(xl[2]) - xf(xl[1]))) end end for i in eachindex(y) if y[i] == -Inf y[i] = yinvf(yf(yl[1]) - expansion_factor * (yf(yl[2]) - yf(yl[1]))) elseif y[i] == Inf y[i] = yinvf(yf(yl[2]) + expansion_factor * (yf(yl[2]) - yf(yl[1]))) end end return x, y end construct_categorical_data(x::AbstractArray, axis::Axis) = (map(xi -> axis[:discrete_values][searchsortedfirst(axis[:continuous_values], xi)], x)) _fmt_paragraph(paragraph::AbstractString; kwargs...) = _fmt_paragraph(IOBuffer(), paragraph, 0; kwargs...) function _fmt_paragraph( io::IOBuffer, remaining_text::AbstractString, column_count::Integer; fillwidth = 60, leadingspaces = 0, ) kwargs = (fillwidth = fillwidth, leadingspaces = leadingspaces) m = match(r"(.*?) (.*)", remaining_text) if isa(m, Nothing) if column_count + length(remaining_text) ≤ fillwidth print(io, remaining_text) String(take!(io)) else print(io, "\n" * " "^leadingspaces * remaining_text) String(take!(io)) end else if column_count + length(m[1]) ≤ fillwidth print(io, "$(m[1]) ") _fmt_paragraph(io, m[2], column_count + length(m[1]) + 1; kwargs...) else print(io, "\n" * " "^leadingspaces * "$(m[1]) ") _fmt_paragraph(io, m[2], leadingspaces; kwargs...) end end end _document_argument(S::AbstractString) = _fmt_paragraph("`$S`: " * _arg_desc[Symbol(S)], leadingspaces = 6 + length(S)) function mesh3d_triangles(x, y, z, cns) if typeof(cns) <: Tuple{Array,Array,Array} ci, cj, ck = cns if !(length(ci) == length(cj) == length(ck)) throw( ArgumentError("Argument connections must consist of equally sized arrays."), ) end else throw(ArgumentError("Argument connections has to be a tuple of three arrays.")) end X = zeros(eltype(x), 4length(ci)) Y = zeros(eltype(y), 4length(cj)) Z = zeros(eltype(z), 4length(ck)) @inbounds for I in 1:length(ci) i = ci[I] + 1 # connections are 0-based j = cj[I] + 1 k = ck[I] + 1 m = 4(I - 1) + 1 n = m + 1 o = m + 2 p = m + 3 X[m] = X[p] = x[i] Y[m] = Y[p] = y[i] Z[m] = Z[p] = z[i] X[n] = x[j] Y[n] = y[j] Z[n] = z[j] X[o] = x[k] Y[o] = y[k] Z[o] = z[k] end return X, Y, Z end # cache joined symbols so they can be looked up instead of constructed each time const _attrsymbolcache = Dict{Symbol,Dict{Symbol,Symbol}}() get_attr_symbol(letter::Symbol, keyword::String) = get_attr_symbol(letter, Symbol(keyword)) get_attr_symbol(letter::Symbol, keyword::Symbol) = _attrsymbolcache[letter][keyword]