diff --git a/src/recipes.jl b/src/recipes.jl index 5ae3cebf..f86bad70 100644 --- a/src/recipes.jl +++ b/src/recipes.jl @@ -590,7 +590,7 @@ wand_edges(x...) = (@warn("Load the StatPlots package in order to use :wand bins function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::Symbol = :auto) where N _cl(x) = ceil(Int, NaNMath.max(x, one(x))) - _iqr(v) = (q = quantile(v, 0.75) - quantile(v, 0.25); q > 0 ? q : oftype(q, 1)) + _iqr(v) = (q = quantile(filter(!isnan,v), 0.75) - quantile(filter(!isnan,v), 0.25); q > 0 ? q : oftype(q, 1)) _span(v) = ignorenan_maximum(v) - ignorenan_minimum(v) n_samples = length(LinearIndices(first(vs))) @@ -622,7 +622,7 @@ function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::S end end -_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) where {N} = StatsBase.histrange(vs[dim], binning, :left) +_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) where {N} = StatsBase.histrange(filter(!isnan,vs[dim]), binning, :left) _hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Symbol) where {N} = _hist_edge(vs, dim, _auto_binning_nbins(vs, dim, mode = binning)) _hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::AbstractVector) where {N} = binning @@ -635,11 +635,17 @@ _hist_edges(vs::NTuple{N,AbstractVector}, binning::Union{Integer, Symbol, Abstra _hist_norm_mode(mode::Symbol) = mode _hist_norm_mode(mode::Bool) = mode ? :pdf : :none +function _filternans(vs::NTuple{N,AbstractVector}) where N + _invertedindex(v, not) = [j for (i,j) in enumerate(v) if !(i ∈ not)] + nots = union(Set.(findall.(isnan, vs))...) + _invertedindex.(vs, Ref(nots)) +end + function _make_hist(vs::NTuple{N,AbstractVector}, binning; normed = false, weights = nothing) where N edges = _hist_edges(vs, binning) h = float( weights == nothing ? - StatsBase.fit(StatsBase.Histogram, vs, edges, closed = :left) : - StatsBase.fit(StatsBase.Histogram, vs, StatsBase.Weights(weights), edges, closed = :left) + StatsBase.fit(StatsBase.Histogram, _filternans(vs), edges, closed = :left) : + StatsBase.fit(StatsBase.Histogram, _filternans(vs), StatsBase.Weights(weights), edges, closed = :left) ) normalize!(h, mode = _hist_norm_mode(normed)) end