format file
This commit is contained in:
parent
16b8d01b88
commit
d1dbb1bf2a
349
src/recipes.jl
349
src/recipes.jl
@ -44,7 +44,7 @@ end
|
||||
|
||||
# ----------------------------------------------------------------------------------
|
||||
|
||||
num_series(x::AMat) = size(x,2)
|
||||
num_series(x::AMat) = size(x, 2)
|
||||
num_series(x) = 1
|
||||
|
||||
RecipesBase.apply_recipe(plotattributes::AKW, ::Type{T}, plt::AbstractPlot) where {T} = throw(MethodError(T, "Unmatched plot recipe: $T"))
|
||||
@ -55,13 +55,26 @@ RecipesBase.apply_recipe(plotattributes::AKW, ::Type{T}, plt::AbstractPlot) wher
|
||||
# for seriestype `line`, need to sort by x values
|
||||
|
||||
const POTENTIAL_VECTOR_ARGUMENTS = [
|
||||
:seriescolor, :seriesalpha,
|
||||
:linecolor, :linealpha, :linewidth, :linestyle, :line_z,
|
||||
:fillcolor, :fillalpha, :fill_z,
|
||||
:markercolor, :markeralpha, :markershape, :marker_z,
|
||||
:markerstrokecolor, :markerstrokealpha,
|
||||
:yerror, :yerror,
|
||||
:series_annotations, :fillrange
|
||||
:seriescolor,
|
||||
:seriesalpha,
|
||||
:linecolor,
|
||||
:linealpha,
|
||||
:linewidth,
|
||||
:linestyle,
|
||||
:line_z,
|
||||
:fillcolor,
|
||||
:fillalpha,
|
||||
:fill_z,
|
||||
:markercolor,
|
||||
:markeralpha,
|
||||
:markershape,
|
||||
:marker_z,
|
||||
:markerstrokecolor,
|
||||
:markerstrokealpha,
|
||||
:yerror,
|
||||
:yerror,
|
||||
:series_annotations,
|
||||
:fillrange,
|
||||
]
|
||||
|
||||
@recipe function f(::Type{Val{:line}}, x, y, z)
|
||||
@ -99,7 +112,7 @@ end
|
||||
@recipe function f(::Type{Val{:hline}}, x, y, z)
|
||||
n = length(y)
|
||||
newx = repeat(Float64[-1, 1, NaN], n)
|
||||
newy = vec(Float64[yi for i=1:3,yi=y])
|
||||
newy = vec(Float64[yi for i = 1:3, yi in y])
|
||||
x := newx
|
||||
y := newy
|
||||
seriestype := :straightline
|
||||
@ -109,7 +122,7 @@ end
|
||||
|
||||
@recipe function f(::Type{Val{:vline}}, x, y, z)
|
||||
n = length(y)
|
||||
newx = vec(Float64[yi for i=1:3,yi=y])
|
||||
newx = vec(Float64[yi for i = 1:3, yi in y])
|
||||
newy = repeat(Float64[-1, 1, NaN], n)
|
||||
x := newx
|
||||
y := newy
|
||||
@ -121,7 +134,7 @@ end
|
||||
@recipe function f(::Type{Val{:hspan}}, x, y, z)
|
||||
n = div(length(y), 2)
|
||||
newx = repeat([-Inf, Inf, Inf, -Inf, NaN], outer = n)
|
||||
newy = vcat([[y[2i-1], y[2i-1], y[2i], y[2i], NaN] for i in 1:n]...)
|
||||
newy = vcat([[y[2i - 1], y[2i - 1], y[2i], y[2i], NaN] for i = 1:n]...)
|
||||
linewidth --> 0
|
||||
x := newx
|
||||
y := newy
|
||||
@ -132,7 +145,7 @@ end
|
||||
|
||||
@recipe function f(::Type{Val{:vspan}}, x, y, z)
|
||||
n = div(length(y), 2)
|
||||
newx = vcat([[y[2i-1], y[2i-1], y[2i], y[2i], NaN] for i in 1:n]...)
|
||||
newx = vcat([[y[2i - 1], y[2i - 1], y[2i], y[2i], NaN] for i = 1:n]...)
|
||||
newy = repeat([-Inf, Inf, Inf, -Inf, NaN], outer = n)
|
||||
linewidth --> 0
|
||||
x := newx
|
||||
@ -156,7 +169,7 @@ end
|
||||
primary := false
|
||||
()
|
||||
end
|
||||
()
|
||||
()
|
||||
end
|
||||
@deps scatterpath path scatter
|
||||
|
||||
@ -169,7 +182,7 @@ function make_steps(x::AbstractArray, st)
|
||||
n = length(x)
|
||||
n == 0 && return zeros(0)
|
||||
newx = zeros(2n - 1)
|
||||
for i in 1:n
|
||||
for i = 1:n
|
||||
idx = 2i - 1
|
||||
newx[idx] = x[i]
|
||||
if i > 1
|
||||
@ -249,10 +262,10 @@ end
|
||||
end
|
||||
end
|
||||
newx, newy = zeros(3n), zeros(3n)
|
||||
for i=1:n
|
||||
rng = 3i-2:3i
|
||||
for i = 1:n
|
||||
rng = (3i - 2):(3i)
|
||||
newx[rng] = [x[i], x[i], NaN]
|
||||
newy[rng] = [_cycle(fr,i), y[i], NaN]
|
||||
newy[rng] = [_cycle(fr, i), y[i], NaN]
|
||||
end
|
||||
x := newx
|
||||
y := newy
|
||||
@ -282,16 +295,16 @@ end
|
||||
# get the value of the curve point at position t
|
||||
function bezier_value(pts::AVec, t::Real)
|
||||
val = 0.0
|
||||
n = length(pts)-1
|
||||
for (i,p) in enumerate(pts)
|
||||
val += p * binomial(n, i-1) * (1-t)^(n-i+1) * t^(i-1)
|
||||
n = length(pts) - 1
|
||||
for (i, p) in enumerate(pts)
|
||||
val += p * binomial(n, i - 1) * (1 - t)^(n - i + 1) * t^(i - 1)
|
||||
end
|
||||
val
|
||||
end
|
||||
|
||||
# create segmented bezier curves in place of line segments
|
||||
@recipe function f(::Type{Val{:curves}}, x, y, z; npoints = 30)
|
||||
args = z !== nothing ? (x,y,z) : (x,y)
|
||||
args = z !== nothing ? (x, y, z) : (x, y)
|
||||
newx, newy = zeros(0), zeros(0)
|
||||
fr = plotattributes[:fillrange]
|
||||
newfr = fr !== nothing ? zeros(0) : nothing
|
||||
@ -304,13 +317,13 @@ end
|
||||
for rng in iter_segments(args...)
|
||||
length(rng) < 2 && continue
|
||||
ts = range(0, stop = 1, length = npoints)
|
||||
nanappend!(newx, map(t -> bezier_value(_cycle(x,rng), t), ts))
|
||||
nanappend!(newy, map(t -> bezier_value(_cycle(y,rng), t), ts))
|
||||
nanappend!(newx, map(t -> bezier_value(_cycle(x, rng), t), ts))
|
||||
nanappend!(newy, map(t -> bezier_value(_cycle(y, rng), t), ts))
|
||||
if z !== nothing
|
||||
nanappend!(newz, map(t -> bezier_value(_cycle(z,rng), t), ts))
|
||||
nanappend!(newz, map(t -> bezier_value(_cycle(z, rng), t), ts))
|
||||
end
|
||||
if fr !== nothing
|
||||
nanappend!(newfr, map(t -> bezier_value(_cycle(fr,rng), t), ts))
|
||||
nanappend!(newfr, map(t -> bezier_value(_cycle(fr, rng), t), ts))
|
||||
end
|
||||
# if lz !== nothing
|
||||
# lzrng = _cycle(lz, rng) # the line_z's for this segment
|
||||
@ -343,14 +356,15 @@ end
|
||||
|
||||
# create a bar plot as a filled step function
|
||||
@recipe function f(::Type{Val{:bar}}, x, y, z)
|
||||
procx, procy, xscale, yscale, baseline = _preprocess_barlike(plotattributes, x, y)
|
||||
procx, procy, xscale, yscale, baseline =
|
||||
_preprocess_barlike(plotattributes, x, y)
|
||||
nx, ny = length(procx), length(procy)
|
||||
axis = plotattributes[:subplot][isvertical(plotattributes) ? :xaxis : :yaxis]
|
||||
cv = [discrete_value!(axis, xi)[1] for xi=procx]
|
||||
cv = [discrete_value!(axis, xi)[1] for xi in procx]
|
||||
procx = if nx == ny
|
||||
cv
|
||||
elseif nx == ny + 1
|
||||
0.5diff(cv) + cv[1:end-1]
|
||||
0.5 * diff(cv) + cv[1:(end - 1)]
|
||||
else
|
||||
error("bar recipe: x must be same length as y (centers), or one more than y (edges).\n\t\tlength(x)=$(length(x)), length(y)=$(length(y))")
|
||||
end
|
||||
@ -359,12 +373,12 @@ end
|
||||
bw = plotattributes[:bar_width]
|
||||
hw = if bw === nothing
|
||||
if nx > 1
|
||||
0.5*_bar_width*ignorenan_minimum(filter(x->x>0, diff(procx)))
|
||||
0.5 * _bar_width * ignorenan_minimum(filter(x -> x > 0, diff(procx)))
|
||||
else
|
||||
0.5 * _bar_width
|
||||
end
|
||||
else
|
||||
Float64[0.5_cycle(bw,i) for i=eachindex(procx)]
|
||||
Float64[0.5 * _cycle(bw, i) for i in eachindex(procx)]
|
||||
end
|
||||
|
||||
# make fillto a vector... default fills to 0
|
||||
@ -378,13 +392,20 @@ end
|
||||
|
||||
# create the bar shapes by adding x/y segments
|
||||
xseg, yseg = Segments(), Segments()
|
||||
for i=1:ny
|
||||
for i = 1:ny
|
||||
yi = procy[i]
|
||||
if !isnan(yi)
|
||||
center = procx[i]
|
||||
hwi = _cycle(hw,i)
|
||||
fi = _cycle(fillto,i)
|
||||
push!(xseg, center-hwi, center-hwi, center+hwi, center+hwi, center-hwi)
|
||||
hwi = _cycle(hw, i)
|
||||
fi = _cycle(fillto, i)
|
||||
push!(
|
||||
xseg,
|
||||
center - hwi,
|
||||
center - hwi,
|
||||
center + hwi,
|
||||
center + hwi,
|
||||
center - hwi,
|
||||
)
|
||||
push!(yseg, yi, fi, fi, yi, yi)
|
||||
end
|
||||
end
|
||||
@ -415,8 +436,8 @@ end
|
||||
m, n = size(z.surf)
|
||||
x_pts, y_pts = fill(NaN, 6 * m * n), fill(NaN, 6 * m * n)
|
||||
fz = zeros(m * n)
|
||||
for i in 1:m # y
|
||||
for j in 1:n # x
|
||||
for i = 1:m # y
|
||||
for j = 1:n # x
|
||||
k = (j - 1) * m + i
|
||||
inds = (6 * (k - 1) + 1):(6 * k - 1)
|
||||
x_pts[inds] .= [xe[j], xe[j + 1], xe[j + 1], xe[j], xe[j]]
|
||||
@ -440,13 +461,17 @@ end
|
||||
# ---------------------------------------------------------------------------
|
||||
# Histograms
|
||||
|
||||
_bin_centers(v::AVec) = (v[1:end-1] + v[2:end]) / 2
|
||||
_bin_centers(v::AVec) = (v[1:(end - 1)] + v[2:end]) / 2
|
||||
|
||||
_is_positive(x) = (x > 0) && !(x ≈ 0)
|
||||
|
||||
_positive_else_nan(::Type{T}, x::Real) where {T} = _is_positive(x) ? T(x) : T(NaN)
|
||||
|
||||
function _scale_adjusted_values(::Type{T}, V::AbstractVector, scale::Symbol) where T<:AbstractFloat
|
||||
function _scale_adjusted_values(
|
||||
::Type{T},
|
||||
V::AbstractVector,
|
||||
scale::Symbol,
|
||||
) where {T<:AbstractFloat}
|
||||
if scale in _logScales
|
||||
[_positive_else_nan(T, x) for x in V]
|
||||
else
|
||||
@ -455,7 +480,7 @@ function _scale_adjusted_values(::Type{T}, V::AbstractVector, scale::Symbol) whe
|
||||
end
|
||||
|
||||
|
||||
function _binbarlike_baseline(min_value::T, scale::Symbol) where T<:Real
|
||||
function _binbarlike_baseline(min_value::T, scale::Symbol) where {T<:Real}
|
||||
if (scale in _logScales)
|
||||
!isnan(min_value) ? min_value / T(_logScaleBases[scale]^log10(2)) : T(1E-3)
|
||||
else
|
||||
@ -464,7 +489,11 @@ function _binbarlike_baseline(min_value::T, scale::Symbol) where T<:Real
|
||||
end
|
||||
|
||||
|
||||
function _preprocess_binbarlike_weights(::Type{T}, w, wscale::Symbol) where T<:AbstractFloat
|
||||
function _preprocess_binbarlike_weights(
|
||||
::Type{T},
|
||||
w,
|
||||
wscale::Symbol,
|
||||
) where {T<:AbstractFloat}
|
||||
w_adj = _scale_adjusted_values(T, w, wscale)
|
||||
w_min = ignorenan_minimum(w_adj)
|
||||
w_max = ignorenan_maximum(w_adj)
|
||||
@ -490,7 +519,8 @@ end
|
||||
|
||||
|
||||
@recipe function f(::Type{Val{:barbins}}, x, y, z)
|
||||
edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y)
|
||||
edge, weights, xscale, yscale, baseline =
|
||||
_preprocess_binlike(plotattributes, x, y)
|
||||
if (plotattributes[:bar_width] === nothing)
|
||||
bar_width := diff(edge)
|
||||
end
|
||||
@ -503,8 +533,9 @@ end
|
||||
|
||||
|
||||
@recipe function f(::Type{Val{:scatterbins}}, x, y, z)
|
||||
edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y)
|
||||
xerror := diff(edge)/2
|
||||
edge, weights, xscale, yscale, baseline =
|
||||
_preprocess_binlike(plotattributes, x, y)
|
||||
xerror := diff(edge) / 2
|
||||
x := _bin_centers(edge)
|
||||
y := weights
|
||||
seriestype := :scatter
|
||||
@ -513,7 +544,13 @@ end
|
||||
@deps scatterbins scatter
|
||||
|
||||
|
||||
function _stepbins_path(edge, weights, baseline::Real, xscale::Symbol, yscale::Symbol)
|
||||
function _stepbins_path(
|
||||
edge,
|
||||
weights,
|
||||
baseline::Real,
|
||||
xscale::Symbol,
|
||||
yscale::Symbol,
|
||||
)
|
||||
log_scale_x = xscale in _logScales
|
||||
log_scale_y = yscale in _logScales
|
||||
|
||||
@ -538,7 +575,7 @@ function _stepbins_path(edge, weights, baseline::Real, xscale::Symbol, yscale::S
|
||||
w, it_state_w = it_tuple_w
|
||||
|
||||
if (log_scale_x && a ≈ 0)
|
||||
a = oftype(a, b/_logScaleBases[xscale]^3)
|
||||
a = oftype(a, b / _logScaleBases[xscale]^3)
|
||||
end
|
||||
|
||||
if isnan(w)
|
||||
@ -575,9 +612,11 @@ end
|
||||
|
||||
|
||||
@recipe function f(::Type{Val{:stepbins}}, x, y, z)
|
||||
axis = plotattributes[:subplot][Plots.isvertical(plotattributes) ? :xaxis : :yaxis]
|
||||
axis =
|
||||
plotattributes[:subplot][Plots.isvertical(plotattributes) ? :xaxis : :yaxis]
|
||||
|
||||
edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, x, y)
|
||||
edge, weights, xscale, yscale, baseline =
|
||||
_preprocess_binlike(plotattributes, x, y)
|
||||
|
||||
xpts, ypts = _stepbins_path(edge, weights, baseline, xscale, yscale)
|
||||
if !isvertical(plotattributes)
|
||||
@ -607,9 +646,19 @@ end
|
||||
end
|
||||
Plots.@deps stepbins path
|
||||
|
||||
wand_edges(x...) = (@warn("Load the StatsPlots package in order to use :wand bins. Defaulting to :auto", once = true); :auto)
|
||||
wand_edges(x...) = (
|
||||
@warn(
|
||||
"Load the StatsPlots package in order to use :wand bins. Defaulting to :auto",
|
||||
once = true
|
||||
);
|
||||
:auto
|
||||
)
|
||||
|
||||
function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::Symbol = :auto) where N
|
||||
function _auto_binning_nbins(
|
||||
vs::NTuple{N,AbstractVector},
|
||||
dim::Integer;
|
||||
mode::Symbol = :auto,
|
||||
) where {N}
|
||||
max_bins = 10_000
|
||||
_cl(x) = min(ceil(Int, max(x, one(x))), max_bins)
|
||||
_iqr(v) = (q = quantile(v, 0.75) - quantile(v, 0.25); q > 0 ? q : oftype(q, 1))
|
||||
@ -618,8 +667,13 @@ function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::S
|
||||
n_samples = length(LinearIndices(first(vs)))
|
||||
|
||||
# The nd estimator is the key to most automatic binning methods, and is modified for twodimensional histograms to include correlation
|
||||
nd = n_samples^(1/(2+N))
|
||||
nd = N == 2 ? min(n_samples^(1/(2+N)), nd / (1-cor(first(vs), last(vs))^2)^(3//8)) : nd # the >2-dimensional case does not have a nice solution to correlations
|
||||
nd = n_samples^(1 / (2 + N))
|
||||
nd = N == 2 ?
|
||||
min(
|
||||
n_samples^(1 / (2 + N)),
|
||||
nd / (1 - cor(first(vs), last(vs))^2)^(3 // 8),
|
||||
) :
|
||||
nd # the >2-dimensional case does not have a nice solution to correlations
|
||||
|
||||
v = vs[dim]
|
||||
|
||||
@ -644,32 +698,52 @@ function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::S
|
||||
end
|
||||
end
|
||||
|
||||
_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) where {N} = StatsBase.histrange(vs[dim], binning, :left)
|
||||
_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Symbol) where {N} = _hist_edge(vs, dim, _auto_binning_nbins(vs, dim, mode = binning))
|
||||
_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::AbstractVector) where {N} = binning
|
||||
_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Integer) where {N} =
|
||||
StatsBase.histrange(vs[dim], binning, :left)
|
||||
_hist_edge(vs::NTuple{N,AbstractVector}, dim::Integer, binning::Symbol) where {N} =
|
||||
_hist_edge(vs, dim, _auto_binning_nbins(vs, dim, mode = binning))
|
||||
_hist_edge(
|
||||
vs::NTuple{N,AbstractVector},
|
||||
dim::Integer,
|
||||
binning::AbstractVector,
|
||||
) where {N} = binning
|
||||
|
||||
_hist_edges(vs::NTuple{N,AbstractVector}, binning::NTuple{N, Any}) where {N} =
|
||||
_hist_edges(vs::NTuple{N,AbstractVector}, binning::NTuple{N,Any}) where {N} =
|
||||
map(dim -> _hist_edge(vs, dim, binning[dim]), (1:N...,))
|
||||
|
||||
_hist_edges(vs::NTuple{N,AbstractVector}, binning::Union{Integer, Symbol, AbstractVector}) where {N} =
|
||||
map(dim -> _hist_edge(vs, dim, binning), (1:N...,))
|
||||
_hist_edges(
|
||||
vs::NTuple{N,AbstractVector},
|
||||
binning::Union{Integer,Symbol,AbstractVector},
|
||||
) where {N} = map(dim -> _hist_edge(vs, dim, binning), (1:N...,))
|
||||
|
||||
_hist_norm_mode(mode::Symbol) = mode
|
||||
_hist_norm_mode(mode::Bool) = mode ? :pdf : :none
|
||||
|
||||
_filternans(vs::NTuple{1,AbstractVector}) = filter!.(isfinite, vs)
|
||||
function _filternans(vs::NTuple{N,AbstractVector}) where N
|
||||
_invertedindex(v, not) = [j for (i,j) in enumerate(v) if !(i ∈ not)]
|
||||
function _filternans(vs::NTuple{N,AbstractVector}) where {N}
|
||||
_invertedindex(v, not) = [j for (i, j) in enumerate(v) if !(i ∈ not)]
|
||||
nots = union(Set.(findall.(!isfinite, vs))...)
|
||||
_invertedindex.(vs, Ref(nots))
|
||||
end
|
||||
|
||||
function _make_hist(vs::NTuple{N,AbstractVector}, binning; normed = false, weights = nothing) where N
|
||||
function _make_hist(
|
||||
vs::NTuple{N,AbstractVector},
|
||||
binning;
|
||||
normed = false,
|
||||
weights = nothing,
|
||||
) where {N}
|
||||
localvs = _filternans(vs)
|
||||
edges = _hist_edges(localvs, binning)
|
||||
h = float( weights === nothing ?
|
||||
StatsBase.fit(StatsBase.Histogram, localvs, edges, closed = :left) :
|
||||
StatsBase.fit(StatsBase.Histogram, localvs, StatsBase.Weights(weights), edges, closed = :left)
|
||||
h = float(
|
||||
weights === nothing ?
|
||||
StatsBase.fit(StatsBase.Histogram, localvs, edges, closed = :left) :
|
||||
StatsBase.fit(
|
||||
StatsBase.Histogram,
|
||||
localvs,
|
||||
StatsBase.Weights(weights),
|
||||
edges,
|
||||
closed = :left,
|
||||
),
|
||||
)
|
||||
normalize!(h, mode = _hist_norm_mode(normed))
|
||||
end
|
||||
@ -682,7 +756,12 @@ end
|
||||
@deps histogram barhist
|
||||
|
||||
@recipe function f(::Type{Val{:barhist}}, x, y, z)
|
||||
h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights])
|
||||
h = _make_hist(
|
||||
(y,),
|
||||
plotattributes[:bins],
|
||||
normed = plotattributes[:normalize],
|
||||
weights = plotattributes[:weights],
|
||||
)
|
||||
x := h.edges[1]
|
||||
y := h.weights
|
||||
seriestype := :barbins
|
||||
@ -691,7 +770,12 @@ end
|
||||
@deps barhist barbins
|
||||
|
||||
@recipe function f(::Type{Val{:stephist}}, x, y, z)
|
||||
h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights])
|
||||
h = _make_hist(
|
||||
(y,),
|
||||
plotattributes[:bins],
|
||||
normed = plotattributes[:normalize],
|
||||
weights = plotattributes[:weights],
|
||||
)
|
||||
x := h.edges[1]
|
||||
y := h.weights
|
||||
seriestype := :stepbins
|
||||
@ -700,7 +784,12 @@ end
|
||||
@deps stephist stepbins
|
||||
|
||||
@recipe function f(::Type{Val{:scatterhist}}, x, y, z)
|
||||
h = _make_hist((y,), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights])
|
||||
h = _make_hist(
|
||||
(y,),
|
||||
plotattributes[:bins],
|
||||
normed = plotattributes[:normalize],
|
||||
weights = plotattributes[:weights],
|
||||
)
|
||||
x := h.edges[1]
|
||||
y := h.weights
|
||||
seriestype := :scatterbins
|
||||
@ -709,19 +798,23 @@ end
|
||||
@deps scatterhist scatterbins
|
||||
|
||||
|
||||
@recipe function f(h::StatsBase.Histogram{T, 1, E}) where {T, E}
|
||||
@recipe function f(h::StatsBase.Histogram{T,1,E}) where {T,E}
|
||||
seriestype --> :barbins
|
||||
|
||||
st_map = Dict(
|
||||
:bar => :barbins, :scatter => :scatterbins, :step => :stepbins,
|
||||
:steppost => :stepbins # :step can be mapped to :steppost in pre-processing
|
||||
:bar => :barbins,
|
||||
:scatter => :scatterbins,
|
||||
:step => :stepbins,
|
||||
:steppost => :stepbins, # :step can be mapped to :steppost in pre-processing
|
||||
)
|
||||
seriestype := get(st_map, plotattributes[:seriestype], plotattributes[:seriestype])
|
||||
seriestype :=
|
||||
get(st_map, plotattributes[:seriestype], plotattributes[:seriestype])
|
||||
|
||||
if plotattributes[:seriestype] == :scatterbins
|
||||
# Workaround, error bars currently not set correctly by scatterbins
|
||||
edge, weights, xscale, yscale, baseline = _preprocess_binlike(plotattributes, h.edges[1], h.weights)
|
||||
xerror --> diff(h.edges[1])/2
|
||||
edge, weights, xscale, yscale, baseline =
|
||||
_preprocess_binlike(plotattributes, h.edges[1], h.weights)
|
||||
xerror --> diff(h.edges[1]) / 2
|
||||
seriestype := :scatter
|
||||
(Plots._bin_centers(edge), weights)
|
||||
else
|
||||
@ -730,7 +823,7 @@ end
|
||||
end
|
||||
|
||||
|
||||
@recipe function f(hv::AbstractVector{H}) where H <: StatsBase.Histogram
|
||||
@recipe function f(hv::AbstractVector{H}) where {H<:StatsBase.Histogram}
|
||||
for h in hv
|
||||
@series begin
|
||||
h
|
||||
@ -769,7 +862,12 @@ Plots.@deps bins2d heatmap
|
||||
|
||||
|
||||
@recipe function f(::Type{Val{:histogram2d}}, x, y, z)
|
||||
h = _make_hist((x, y), plotattributes[:bins], normed = plotattributes[:normalize], weights = plotattributes[:weights])
|
||||
h = _make_hist(
|
||||
(x, y),
|
||||
plotattributes[:bins],
|
||||
normed = plotattributes[:normalize],
|
||||
weights = plotattributes[:weights],
|
||||
)
|
||||
x := h.edges[1]
|
||||
y := h.edges[2]
|
||||
z := Surface(h.weights)
|
||||
@ -779,7 +877,7 @@ end
|
||||
@deps histogram2d bins2d
|
||||
|
||||
|
||||
@recipe function f(h::StatsBase.Histogram{T, 2, E}) where {T, E}
|
||||
@recipe function f(h::StatsBase.Histogram{T,2,E}) where {T,E}
|
||||
seriestype --> :bins2d
|
||||
(h.edges[1], h.edges[2], Surface(h.weights))
|
||||
end
|
||||
@ -855,7 +953,11 @@ end
|
||||
@recipe function f(::Type{Val{:yerror}}, x, y, z)
|
||||
error_style!(plotattributes)
|
||||
markershape := :hline
|
||||
plotattributes[:x], plotattributes[:y] = error_coords(plotattributes[:x], plotattributes[:y], error_zipit(plotattributes[:yerror]))
|
||||
plotattributes[:x], plotattributes[:y] = error_coords(
|
||||
plotattributes[:x],
|
||||
plotattributes[:y],
|
||||
error_zipit(plotattributes[:yerror]),
|
||||
)
|
||||
()
|
||||
end
|
||||
@deps yerror path
|
||||
@ -863,7 +965,11 @@ end
|
||||
@recipe function f(::Type{Val{:xerror}}, x, y, z)
|
||||
error_style!(plotattributes)
|
||||
markershape := :vline
|
||||
plotattributes[:y], plotattributes[:x] = error_coords(plotattributes[:y], plotattributes[:x], error_zipit(plotattributes[:xerror]))
|
||||
plotattributes[:y], plotattributes[:x] = error_coords(
|
||||
plotattributes[:y],
|
||||
plotattributes[:x],
|
||||
error_zipit(plotattributes[:xerror]),
|
||||
)
|
||||
()
|
||||
end
|
||||
@deps xerror path
|
||||
@ -898,15 +1004,15 @@ function quiver_using_arrows(plotattributes::AKW)
|
||||
first(vi), last(vi)
|
||||
elseif isscalar(vi)
|
||||
vi, vi
|
||||
elseif isa(vi,Function)
|
||||
elseif isa(vi, Function)
|
||||
vi(xi, yi)
|
||||
else
|
||||
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
|
||||
end
|
||||
|
||||
# add the points
|
||||
nanappend!(x, [xi, xi+vx, NaN])
|
||||
nanappend!(y, [yi, yi+vy, NaN])
|
||||
nanappend!(x, [xi, xi + vx, NaN])
|
||||
nanappend!(y, [yi, yi + vy, NaN])
|
||||
end
|
||||
|
||||
plotattributes[:x], plotattributes[:y] = x, y
|
||||
@ -936,7 +1042,7 @@ function quiver_using_hack(plotattributes::AKW)
|
||||
first(vi), last(vi)
|
||||
elseif isscalar(vi)
|
||||
vi, vi
|
||||
elseif isa(vi,Function)
|
||||
elseif isa(vi, Function)
|
||||
vi(xi, yi)
|
||||
else
|
||||
error("unexpected vi type $(typeof(vi)) for quiver: $vi")
|
||||
@ -951,8 +1057,11 @@ function quiver_using_hack(plotattributes::AKW)
|
||||
U1 *= arrow_h
|
||||
U2 *= arrow_w
|
||||
|
||||
ppv = p+v
|
||||
nanappend!(pts, P2[p, ppv-U1, ppv-U1+U2, ppv, ppv-U1-U2, ppv-U1])
|
||||
ppv = p + v
|
||||
nanappend!(
|
||||
pts,
|
||||
P2[p, ppv - U1, ppv - U1 + U2, ppv, ppv - U1 - U2, ppv - U1],
|
||||
)
|
||||
end
|
||||
|
||||
plotattributes[:x], plotattributes[:y] = Plots.unzip(pts[2:end])
|
||||
@ -977,32 +1086,28 @@ end
|
||||
|
||||
"Represent Open High Low Close data (used in finance)"
|
||||
mutable struct OHLC{T<:Real}
|
||||
open::T
|
||||
high::T
|
||||
low::T
|
||||
close::T
|
||||
open::T
|
||||
high::T
|
||||
low::T
|
||||
close::T
|
||||
end
|
||||
Base.convert(::Type{OHLC}, tup::Tuple) = OHLC(tup...)
|
||||
# Base.tuple(ohlc::OHLC) = (ohlc.open, ohlc.high, ohlc.low, ohlc.close)
|
||||
|
||||
# get one OHLC path
|
||||
function get_xy(o::OHLC, x, xdiff)
|
||||
xl, xm, xr = x-xdiff, x, x+xdiff
|
||||
ox = [xl, xm, NaN,
|
||||
xm, xm, NaN,
|
||||
xm, xr]
|
||||
oy = [o.open, o.open, NaN,
|
||||
o.low, o.high, NaN,
|
||||
o.close, o.close]
|
||||
xl, xm, xr = x - xdiff, x, x + xdiff
|
||||
ox = [xl, xm, NaN, xm, xm, NaN, xm, xr]
|
||||
oy = [o.open, o.open, NaN, o.low, o.high, NaN, o.close, o.close]
|
||||
ox, oy
|
||||
end
|
||||
|
||||
# get the joined vector
|
||||
function get_xy(v::AVec{OHLC}, x = eachindex(v))
|
||||
xdiff = 0.3ignorenan_mean(abs.(diff(x)))
|
||||
xdiff = 0.3 * ignorenan_mean(abs.(diff(x)))
|
||||
x_out, y_out = zeros(0), zeros(0)
|
||||
for (i,ohlc) in enumerate(v)
|
||||
ox,oy = get_xy(ohlc, x[i], xdiff)
|
||||
for (i, ohlc) in enumerate(v)
|
||||
ox, oy = get_xy(ohlc, x[i], xdiff)
|
||||
nanappend!(x_out, ox)
|
||||
nanappend!(y_out, oy)
|
||||
end
|
||||
@ -1015,10 +1120,17 @@ end
|
||||
|
||||
# to squash ambiguity warnings...
|
||||
@recipe f(x::AVec{Function}, v::AVec{OHLC}) = error()
|
||||
@recipe f(x::AVec{Function}, v::AVec{Tuple{R1,R2,R3,R4}}) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} = error()
|
||||
@recipe f(
|
||||
x::AVec{Function},
|
||||
v::AVec{Tuple{R1,R2,R3,R4}},
|
||||
) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} = error()
|
||||
|
||||
# this must be OHLC?
|
||||
@recipe f(x::AVec, ohlc::AVec{Tuple{R1,R2,R3,R4}}) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} = x, OHLC[OHLC(t...) for t in ohlc]
|
||||
@recipe f(
|
||||
x::AVec,
|
||||
ohlc::AVec{Tuple{R1,R2,R3,R4}},
|
||||
) where {R1<:Number,R2<:Number,R3<:Number,R4<:Number} =
|
||||
x, OHLC[OHLC(t...) for t in ohlc]
|
||||
|
||||
@recipe function f(x::AVec, v::AVec{OHLC})
|
||||
seriestype := :path
|
||||
@ -1056,11 +1168,11 @@ end
|
||||
@assert length(g.args) == 1 && typeof(g.args[1]) <: AbstractMatrix
|
||||
seriestype := :spy
|
||||
mat = g.args[1]
|
||||
n,m = axes(mat)
|
||||
n, m = axes(mat)
|
||||
Plots.SliceIt, m, n, Surface(mat)
|
||||
end
|
||||
|
||||
@recipe function f(::Type{Val{:spy}}, x,y,z)
|
||||
@recipe function f(::Type{Val{:spy}}, x, y, z)
|
||||
yflip := true
|
||||
aspect_ratio := 1
|
||||
rs, cs, zs = findnz(z.surf)
|
||||
@ -1086,7 +1198,8 @@ end
|
||||
# -------------------------------------------------
|
||||
|
||||
"Adds ax+b... straight line over the current plot, without changing the axis limits"
|
||||
abline!(plt::Plot, a, b; kw...) = plot!(plt, [0, 1], [b, b+a]; seriestype = :straightline, kw...)
|
||||
abline!(plt::Plot, a, b; kw...) =
|
||||
plot!(plt, [0, 1], [b, b + a]; seriestype = :straightline, kw...)
|
||||
|
||||
abline!(args...; kw...) = abline!(current(), args...; kw...)
|
||||
|
||||
@ -1099,9 +1212,11 @@ datetimeformatter(dt) = string(DateTime(Dates.UTM(dt)))
|
||||
timeformatter(t) = string(Dates.Time(Dates.Nanosecond(t)))
|
||||
|
||||
@recipe f(::Type{Date}, dt::Date) = (dt -> Dates.value(dt), dateformatter)
|
||||
@recipe f(::Type{DateTime}, dt::DateTime) = (dt -> Dates.value(dt), datetimeformatter)
|
||||
@recipe f(::Type{DateTime}, dt::DateTime) =
|
||||
(dt -> Dates.value(dt), datetimeformatter)
|
||||
@recipe f(::Type{Dates.Time}, t::Dates.Time) = (t -> Dates.value(t), timeformatter)
|
||||
@recipe f(::Type{P}, t::P) where P <: Dates.Period = (t -> Dates.value(t), t -> string(P(t)))
|
||||
@recipe f(::Type{P}, t::P) where {P<:Dates.Period} =
|
||||
(t -> Dates.value(t), t -> string(P(t)))
|
||||
|
||||
# -------------------------------------------------
|
||||
# Characters
|
||||
@ -1111,7 +1226,7 @@ timeformatter(t) = string(Dates.Time(Dates.Nanosecond(t)))
|
||||
# -------------------------------------------------
|
||||
# Complex Numbers
|
||||
|
||||
@recipe function f(A::Array{Complex{T}}) where T<:Number
|
||||
@recipe function f(A::Array{Complex{T}}) where {T<:Number}
|
||||
xguide --> "Re(x)"
|
||||
yguide --> "Im(x)"
|
||||
real.(A), imag.(A)
|
||||
@ -1120,10 +1235,10 @@ end
|
||||
# Splits a complex matrix to its real and complex parts
|
||||
# Reals defaults solid, imaginary defaults dashed
|
||||
# Label defaults are changed to match the real-imaginary reference / indexing
|
||||
@recipe function f(x::AbstractArray{T},y::Array{Complex{T2}}) where {T<:Real,T2}
|
||||
ylabel --> "Re(y)"
|
||||
zlabel --> "Im(y)"
|
||||
x,real.(y),imag.(y)
|
||||
@recipe function f(x::AbstractArray{T}, y::Array{Complex{T2}}) where {T<:Real,T2}
|
||||
ylabel --> "Re(y)"
|
||||
zlabel --> "Im(y)"
|
||||
x, real.(y), imag.(y)
|
||||
end
|
||||
|
||||
|
||||
@ -1137,7 +1252,7 @@ end
|
||||
end
|
||||
|
||||
library = PlotUtils.color_libraries[cl.args[1]]
|
||||
z = sqrt.((1:15)*reshape(1:20,1,:))
|
||||
z = sqrt.((1:15) * reshape(1:20, 1, :))
|
||||
|
||||
seriestype := :heatmap
|
||||
ticks := nothing
|
||||
@ -1161,7 +1276,7 @@ end
|
||||
if !(length(grad.args) == 1 && isa(grad.args[1], Symbol))
|
||||
error("showgradient takes the name of a color gradient as a Symbol")
|
||||
end
|
||||
z = sqrt.((1:15)*reshape(1:20,1,:))
|
||||
z = sqrt.((1:15) * reshape(1:20, 1, :))
|
||||
seriestype := :heatmap
|
||||
ticks := nothing
|
||||
legend := false
|
||||
@ -1184,9 +1299,9 @@ end
|
||||
weights = cumsum(weights, dims = 2)
|
||||
seriestype := :shape
|
||||
|
||||
# create a filled polygon for each item
|
||||
for c=axes(weights,2)
|
||||
sx = vcat(weights[:,c], c==1 ? zeros(n) : reverse(weights[:,c-1]))
|
||||
# create a filled polygon for each item
|
||||
for c in axes(weights, 2)
|
||||
sx = vcat(weights[:, c], c == 1 ? zeros(n) : reverse(weights[:, c - 1]))
|
||||
sy = vcat(returns, reverse(returns))
|
||||
@series Plots.isvertical(plotattributes) ? (sx, sy) : (sy, sx)
|
||||
end
|
||||
@ -1205,13 +1320,13 @@ julia> areaplot(1:3, [1 2 3; 7 8 9; 4 5 6], seriescolor = [:red :green :blue], f
|
||||
@userplot AreaPlot
|
||||
|
||||
@recipe function f(a::AreaPlot)
|
||||
data = cumsum(a.args[end], dims=2)
|
||||
data = cumsum(a.args[end], dims = 2)
|
||||
x = length(a.args) == 1 ? (axes(data, 1)) : a.args[1]
|
||||
seriestype := :line
|
||||
for i in axes(data, 2)
|
||||
@series begin
|
||||
fillrange := i > 1 ? data[:,i-1] : 0
|
||||
x, data[:,i]
|
||||
fillrange := i > 1 ? data[:, i - 1] : 0
|
||||
x, data[:, i]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user