working on recipes overhaul

This commit is contained in:
Thomas Breloff 2016-05-12 14:51:53 -04:00
parent a5e9ad9f19
commit cf9b60660d
4 changed files with 309 additions and 12 deletions

View File

@ -746,7 +746,7 @@ getArgValue(v, idx) = v
# given an argument key (k), we want to extract the argument value for this index.
# if nothing is set (or container is empty), return the default.
function setDictValue(d_in::KW, d_out::KW, k::Symbol, idx::Int, defaults::KW)
if haskey(d_in, k) && !(typeof(d_in[k]) <: Union{AbstractArray, Tuple} && isempty(d_in[k]))
if haskey(d_in, k) && !(typeof(d_in[k]) <: Union{AbstractMatrix, Tuple} && isempty(d_in[k]))
d_out[k] = getArgValue(d_in[k], idx)
else
d_out[k] = defaults[k]

View File

@ -338,6 +338,7 @@ end
function fix_xy_lengths!(plt::Plot{PyPlotBackend}, d::KW)
x, y = d[:x], d[:y]
@show x, y
nx, ny = length(x), length(y)
if !isa(get(d, :z, nothing), Surface) && nx != ny
if nx < ny

View File

@ -96,7 +96,7 @@ function _plot!(plt::Plot, d::KW, args...)
# finished (no more args) get added to the kw_list, and the rest go into the queue
# for processing.
kw_list = KW[]
still_to_process = [RecipeData(copy(d), args)]
still_to_process = isempty(args) ? [] : [RecipeData(copy(d), args)]
while !isempty(still_to_process)
next_series = pop!(still_to_process)
series_list = RecipesBase.apply_recipe(next_series.d, next_series.args...)
@ -167,7 +167,9 @@ function _plot!(plt::Plot, d::KW, args...)
# merge!(plt.plotargs, plotarg_overrides)
# end
dumpdict(kw, "before add defaults", true)
_add_defaults!(kw, plt, i)
dumpdict(kw, "after add defaults", true)
# getSeriesArgs(plt.backend, getplotargs(plt, n), d, commandIndex, convertSeriesIndex(plt, n), n)
_replace_linewidth(kw)

View File

@ -100,6 +100,7 @@ end
else
convertToAnyVector(fr, d)
end
mf = length(fillranges)
mx = length(xs)
my = length(ys)
@ -109,6 +110,11 @@ end
# add a new series
di = copy(d)
di[:x], di[:y], di[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
# handle fillrange
fr = fillranges[mod1(i,mf)]
d[:fillrange] = isa(fr, Function) ? map(fr, di[:x]) : fr
@show i, di[:x], di[:y], di[:z]
push!(series_list, RecipeData(di, ()))
end
@ -118,16 +124,304 @@ end
@recipe f(x, y) = x, y, nothing
@recipe f(y) = nothing, y, nothing
# @recipe function f{Y<:Number}(y::AVec{Y})
# x --> 1:length(y)
# y --> y
# dumpdict(d,"y",true)
# ()
# # --------------------------------------------------------------------
# # 1 argument
# # --------------------------------------------------------------------
#
# function process_inputs(plt::AbstractPlot, d::KW, n::Integer)
# # d[:x], d[:y], d[:z] = zeros(0), zeros(0), zeros(0)
# d[:x] = d[:y] = d[:z] = n
# end
@recipe f(n::Integer) = n, n, n
#
# # matrix... is it z or y?
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
# if all3D(d)
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, mat
# else
# d[:y] = mat
# end
# end
# return a surface if this is a 3d plot, otherwise let it be sliced up
@recipe function f{T<:Number}(mat::AMat{T})
if all3D(d)
n,m = size(mat)
1:n, 1:m, Surface(mat)
else
nothing, nothing, mat
end
end
#
# # images - grays
# function process_inputs{T<:Gray}(plt::AbstractPlot, d::KW, mat::AMat{T})
# d[:linetype] = :image
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
# # handle images... when not supported natively, do a hack to use heatmap machinery
# if !nativeImagesSupported()
# d[:linetype] = :heatmap
# d[:yflip] = true
# d[:z] = Surface(convert(Matrix{Float64}, mat.surf))
# d[:fillcolor] = ColorGradient([:black, :white])
# end
# end
# TODO
#
# # images - colors
# function process_inputs{T<:Colorant}(plt::AbstractPlot, d::KW, mat::AMat{T})
# d[:linetype] = :image
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
# # handle images... when not supported natively, do a hack to use heatmap machinery
# if !nativeImagesSupported()
# d[:yflip] = true
# imageHack(d)
# end
# end
#
# @recipe function f{X<:Number,Y<:Number}(x::AVec{X}, y::AVec{Y})
# x --> x
# y --> y
# dumpdict(d,"xy",true)
# ()
# TODO
#
# # plotting arbitrary shapes/polygons
# function process_inputs(plt::AbstractPlot, d::KW, shape::Shape)
# d[:x], d[:y] = shape_coords(shape)
# d[:linetype] = :shape
# end
# TODO
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
# d[:x], d[:y] = shape_coords(shapes)
# d[:linetype] = :shape
# end
# TODO
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
# x, y = [], []
# for j in 1:size(shapes, 2)
# tmpx, tmpy = shape_coords(vec(shapes[:,j]))
# push!(x, tmpx)
# push!(y, tmpy)
# end
# d[:x], d[:y] = x, y
# d[:linetype] = :shape
# end
# TODO
#
#
# # function without range... use the current range of the x-axis
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
# process_inputs(plt, d, f, xmin(plt), xmax(plt))
# end
# TODO
#
# # --------------------------------------------------------------------
# # 2 arguments
# # --------------------------------------------------------------------
#
#
# # if functions come first, just swap the order (not to be confused with parametric functions...
# # as there would be more than one function passed in)
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
# @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
# process_inputs(plt, d, x, f)
# end
# TODO
#
# # --------------------------------------------------------------------
# # 3 arguments
# # --------------------------------------------------------------------
#
#
# # 3d line or scatter
# function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
# # default to path3d if we haven't set a 3d linetype
# lt = get(d, :linetype, :none)
# if lt == :scatter
# d[:linetype] = :scatter3d
# elseif !(lt in _3dTypes)
# d[:linetype] = :path3d
# end
# d[:x], d[:y], d[:z] = x, y, zvec
# end
# TODO
#
# # surface-like... function
# function process_inputs{TX,TY}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zf::Function)
# x = TX <: Number ? sort(x) : x
# y = TY <: Number ? sort(y) : y
# # x, y = sort(x), sort(y)
# d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
# d[:x], d[:y] = x, y
# end
# TODO
#
# # surface-like... matrix grid
# function process_inputs{TX,TY,TZ}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zmat::AMat{TZ})
# # @assert size(zmat) == (length(x), length(y))
# # if TX <: Number && !issorted(x)
# # idx = sortperm(x)
# # x, zmat = x[idx], zmat[idx, :]
# # end
# # if TY <: Number && !issorted(y)
# # idx = sortperm(y)
# # y, zmat = y[idx], zmat[:, idx]
# # end
# d[:x], d[:y], d[:z] = x, y, Surface{Matrix{TZ}}(zmat)
# if !like_surface(get(d, :linetype, :none))
# d[:linetype] = :contour
# end
# end
# TODO
#
# # surfaces-like... general x, y grid
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
# @assert size(zmat) == size(x) == size(y)
# # d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat)
# d[:x], d[:y], d[:z] = map(Surface{Matrix{Float64}}, (x, y, zmat))
# if !like_surface(get(d, :linetype, :none))
# d[:linetype] = :contour
# end
# end
# TODO: maybe change this logic... we should check is3d??
#
#
# # --------------------------------------------------------------------
# # Parametric functions
# # --------------------------------------------------------------------
#
# # special handling... xmin/xmax with function(s)
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
# width = get(plt.plotargs, :size, (100,))[1]
# x = linspace(xmin, xmax, width)
# process_inputs(plt, d, x, f)
# end
# TODO
#
# # special handling... xmin/xmax with parametric function(s)
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints))
# TODO
#
# # special handling... 3D parametric function(s)
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
# TODO
#
#
# # --------------------------------------------------------------------
# # Lists of tuples and FixedSizeArrays
# # --------------------------------------------------------------------
#
# # if we get an unhandled tuple, just splat it in
# function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple)
# process_inputs(plt, d, tup...)
# end
# TODO
#
# # (x,y) tuples
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}})
# process_inputs(plt, d, unzip(xy)...)
# end
# TODO
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2})
# process_inputs(plt, d, [xy[1]], [xy[2]])
# end
# TODO
#
# # (x,y,z) tuples
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}})
# process_inputs(plt, d, unzip(xyz)...)
# end
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3})
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
# end
# TODO
#
# # 2D FixedSizeArrays
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}})
# process_inputs(plt, d, unzip(xy)...)
# end
# TODO
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T})
# process_inputs(plt, d, [xy[1]], [xy[2]])
# end
# TODO
#
# # 3D FixedSizeArrays
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}})
# process_inputs(plt, d, unzip(xyz)...)
# end
# TODO
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T})
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
# end
# TODO
#
# # --------------------------------------------------------------------
# # handle grouping
# # --------------------------------------------------------------------
#
# # function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
# # ret = Any[]
# # error("unfinished after series reorg")
# # for (i,glab) in enumerate(groupby.groupLabels)
# # kwlist, xmeta, ymeta = process_inputs(plt, d, args...,
# # idxfilter = groupby.groupIds[i],
# # label = string(glab),
# # numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
# # append!(ret, kwlist)
# # end
# # ret, nothing, nothing
# # end
# TODO