diff --git a/src/recipes.jl b/src/recipes.jl index 5ae3cebf..d0e9e7e6 100644 --- a/src/recipes.jl +++ b/src/recipes.jl @@ -589,9 +589,9 @@ Plots.@deps stepbins path wand_edges(x...) = (@warn("Load the StatPlots package in order to use :wand bins. Defaulting to :auto", once = true); :auto) function _auto_binning_nbins(vs::NTuple{N,AbstractVector}, dim::Integer; mode::Symbol = :auto) where N - _cl(x) = ceil(Int, NaNMath.max(x, one(x))) + _cl(x) = ceil(Int, max(x, one(x))) _iqr(v) = (q = quantile(v, 0.75) - quantile(v, 0.25); q > 0 ? q : oftype(q, 1)) - _span(v) = ignorenan_maximum(v) - ignorenan_minimum(v) + _span(v) = maximum(v) - minimum(v) n_samples = length(LinearIndices(first(vs))) @@ -635,11 +635,19 @@ _hist_edges(vs::NTuple{N,AbstractVector}, binning::Union{Integer, Symbol, Abstra _hist_norm_mode(mode::Symbol) = mode _hist_norm_mode(mode::Bool) = mode ? :pdf : :none +_filternans(vs::NTuple{1,AbstractVector}) = filter!.(!isnan, vs) +function _filternans(vs::NTuple{N,AbstractVector}) where N + _invertedindex(v, not) = [j for (i,j) in enumerate(v) if !(i ∈ not)] + nots = union(Set.(findall.(isnan, vs))...) + _invertedindex.(vs, Ref(nots)) +end + function _make_hist(vs::NTuple{N,AbstractVector}, binning; normed = false, weights = nothing) where N - edges = _hist_edges(vs, binning) + localvs = _filternans(vs) + edges = _hist_edges(localvs, binning) h = float( weights == nothing ? - StatsBase.fit(StatsBase.Histogram, vs, edges, closed = :left) : - StatsBase.fit(StatsBase.Histogram, vs, StatsBase.Weights(weights), edges, closed = :left) + StatsBase.fit(StatsBase.Histogram, localvs, edges, closed = :left) : + StatsBase.fit(StatsBase.Histogram, localvs, StatsBase.Weights(weights), edges, closed = :left) ) normalize!(h, mode = _hist_norm_mode(normed)) end