diff --git a/examples/meetup/nnet.ipynb b/examples/meetup/nnet.ipynb index b7bd38d1..ef43d4b4 100644 --- a/examples/meetup/nnet.ipynb +++ b/examples/meetup/nnet.ipynb @@ -1,191 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO: Recompiling stale cache file /home/tom/.julia/lib/v0.4/Plots.ji for module Plots.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Plots.jl] Initializing backend: gadfly\n", - "(xmeta,ymeta) = (nothing,nothing)\n", - "(xmeta,ymeta) = (nothing,nothing)\n", - "(xmeta,ymeta) = (nothing,nothing)\n", - "(xmeta,ymeta) = (nothing,nothing)" - ] - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 500\n", - " 1000\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n" - ], - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 500\n", - " 1000\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "Compose.SVG(132.2751322751323,79.36507936507938,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=15333, maxsize=Inf, ptr=15334, mark=-1),nothing,\"fig-f041f7043ccd4c2a8d50662e20dc19eb\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.920000000000002,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(124.47846560846564,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(124.47846560846564,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.920000000000002,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-f041f7043ccd4c2a8d50662e20dc19eb-element-9\"),Set{AbstractString}(),true,false,nothing,true,\"fig-f041f7043ccd4c2a8d50662e20dc19eb-element-15\",false,15,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-f041f7043ccd4c2a8d50662e20dc19eb-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-f041f7043ccd4c2a8d50662e20dc19eb-element-8\\\")\\n .init_gadfly();\"],false,:none)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAIAAAC62dafAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOy9a7BmyVEglnW+e2+/pqfnJYkZlsAGvLCKNbsBxuw61l7vhgQWseu1WTscXrw4bAhjNgyx4AVktBaxLIsQSFpgxcpCaIXQA4RGiNGMRprRW5qR5v2e6cdMv++rb9/Xd7/7vc+p9I+qysrMqnO+7/Z0fw2tW9Fx+3zn1CMrKyszKysryyAi7Kf9tJ/20366sVJxvQHYT/tpP+2n/XT10z5z30/7aT/tpxswzYK5DwbjfePPfrq+qd8fXW8Q9tM3dRqPq7KsZtniLJj7pUvbVWVn0NB+2k/ZZC2urGxfbyj20zd12tnpdTqDWbY4N4M2Dh8+YIyZQUP7aT9lkzFw5MiB6w3FfvqmTgsL80UxUzZo9g0m+2k/7af9dOOlWZhl2u2etfsiZD9dt4QI29u96w3FfvqmTv3+aDAYz7LFJube7Xbvuusu9XJ5efmNb3zj93zP97zhDW9YXl6epo3t7a61+zb3/XTdEiJubu5ebyj20zd16vWGM97Vr2Xub3/727/ru75rZWVFvf/lX/7lH/7hHz5x4sSb3vSmt7zlLdO0cdttR4ti3+dyP123ZIy5446j1xuK/fRNnY4cOXj48Ew3fmpt7lVVIeL8/LzK8G3f9m2PPfbYnXfeubKy8oM/+IMXLlyQpSwAtFoFf0ZEa9EYUxTGWkTEojDG0HNhDM8M1lqXua7gxFbc8xStQFHUglfTigavoRVX8C9CK9ZaxL80rUwim9m0MhVxysxXlzivYArsE+df1lauRapVqFut1txcxpfm0qVLd9xxBwDcfvvtly5dSr62Fxc3XAcWFzcuXWoDwMrK9sWL61tbuwCws9M/cWbtq6c2AODy5Z3FxQ3n+7m0tLm0tAkAZVkuLm5cvrwDAN3ucHFxY2enDwBbW7uLixvOaOVacaihVobD8eLihlt97+z0Fxc3dneHALC+vrO4uDEelwCwvLwVWqkWFzcuX+6wVnoAsL3dpVbW1lwr1rWyurpd08oAANbXO7yVxcXYytraDgD0eqPFxY12O7bS77tWdhYXN6rKIkK2lU5nsLi44ZyoNjY6i4sbo1EJACsrW4uLG1O0MgKAS5ccqi0ALC5uOL/A0Wi8uLixsdGpaWXsxs61UlV2cXHj0qUdAOj3R4uLG9vbXQBot3uLixu93oj64gZ0cXFzZWULAMbjklrZ3R3QgG5u7i4ubgyHYwBYXd1eXNxA9K2srbUBoN8fT2xlaWlzeTm2sr6eb2UwGF261A6tCOIcDMaLixtbW92f+vgJ10q3O0yJc3l565HzO3c/s7q4uLG+nidO1xcizlwrkWxcK444yzJLnLyVHgBsbUXiVFNgEnFmpsB4HKdArzesIc52M3HWTYGVlSmnQCROxwqplT0RZ1laamUSce55Ciji3NMU4MS5tLTV7Q7rpsC1SBO8ZYzRGe66665nnnnmta997erq6vd///cvLS1NbOP8+cvf+q23zc213M/HLuz8s0+cfOLnfuDVwL2f9tP0yVo8d+7yd3zHaxvymP/7i/Ydf79Bh3rP15eeW9l9zz/+7qsP32zT3/29pz78Y6//tlsOXm9AJqSzm/2bD8zdfmT+egNyddLGRqcoiltvPTKzFvdgCnfbp294wxs+/vGPA8Ddd9/9xje+cZqCd955q1unuIQA5b7zzH66ovTOL1/47ImNvZYqCvOt33rrxGwIE8jyxnAbPr81GJZ/CXry1s+evX/vY/0XNh07dvjmmw/NssU9MPfv+77vA4Df+I3fuOeee37gB37g3nvvfdvb3jZNwYWFOX6ICRGqK2Lu2/3y9Eb/CgruJwB4fmX33Q8tXq/WB6Vd3hlOk/M1b/3ayk6tU8ELq92l9lT1qHTgQJMC6Lh2M+++MTg7ACCA/UvSmT2BeWFrpuc/69JWv3xysZO+n5trcR13BmlCY9wms7q6CgB33XXXgw8++Pjjjz/wwAN33nnnNG1cvLjBgyog4pVp7l94eesX7n3lCgpe0/Tuhxb/4NGpXEKvbzq/NfjM9dODHr+w899/4PlpciJAb1wbggNhknadLYV47tzlaZpu/Io3xom/K9auZpz2hOznV3b/03c8tt0vrxk406anlzr/4lMZNrW5uev2G2aWZiFJUif3K4404zSOTx/f+F8+8tKrhOpqpeWd4Znrup7oj+1Ll7oTsyHuWfc8vzX4r37vqSsES6ZRhaPpRh0ReqN65n5FDBYRmo/RTTTIhGzXNj10dvt3v3bNV1eIWE3Rk+tL1S5NP9iVhZ1B+dDZvxARhKoc2G4nf5ZgzIK5f/u3v4Z2U+FV2NwR0PGHUWnbg+svol1ChP74eh7RemW99z9+8IVpcu4V6dv98vxVWuoOSzuehqMAIGJ3VItPi/C5U5u/dN9p9/Nb/9XD01hpisI076aGpq/8a3N6eb33m186PzHb+a3BI+fbV97MdGkas8yost/569+gbKudUZ3E/a0vXXj84s5VBhEA3FJpL5kB4Cunrw9zX2wPL3W8LRExj97bbz86y91UmA1zL0shyRDzkm2a5LCGcA3XlU8vdR44ubmnIg2a5gxSZeH81uCtnz3TnA33oge51B2JgVrvjq+Y148qO5p6E6/JLIOw2Ru/su6Xt9PP/3F9nUA292u2oXpha3jPC+sTs+GUK4hXl6Yxy3QGFbD+/uTHjn/h5S36emFr8Dfe8Zh7fvjc9kT5+vVz7Te979krA3VP6Xox99/+6sUPPblKP7PYrSp7A2ruS0ubVcVs7oDldEqcSogRa1csHiamR87v/PkLk+2zlBCus+ZeWuyOqscuTNae9oqy3WHFdZBPPLf2bz5/bo91+DQs7bRmmUZhiYBWcsCXVrs/MolxWIsXL07eb5iguU8sX5+G061VX00Tu8PqkfNTadC0Am5InWHF4VHz1SLQ0nkac19pcbO3Z2/uPYk6B8PTS53d4WRN6+Ra72/9zhN7hWdi6+E5b37Z3u7egDb3gwcXtLfMq9TcX8WO0Hf++jcmrr73Ct31Ze4OmROd2xr69Y1z7Z/55Kn0vdLcoUYlmSaNKhxXuNUvtyZteSFCr9EswzuCCMPSXtyesJ4wBg4dWmhqtLl8aKsu24+879kTa03zdlBOpbVdAe1ROrPZ/z8+fmKanLbGbsBTZ1gC41lcyD9wcnO7H6ltmi1uRGg2yt36L7+aJYy9rjVLi9MYbEuLO1PIgD0lDmmWv83Pz83Pt9L31y7Ngrm/7nXHlJ/7lbFm0tynUT2yqbJ4ZqPfTNl79RJDbDIjzCA5ZA6nwEjasWFpe6OqPShfvhx500Z37GbI7qjiDA1xz5ON0qi0o8q+6ysX/t3XLk4EstksYxFpjNCx+0mtG2PuvPOWiUBOwaTyWS5uD5rXJVNq7jD11m6m4NSjM5VZxmvuPhvP/zN/durZ5Y4ytE5M40b8vPp1+F4ruKaOTwq7/+sfv/SpF9dvvvnQTTfN9ODYLJh7rzfkqES88kNMpP5cme4fZENTugLb9HXW3B1zLyfAkPXk+/1Hlv/Pu08q5evXPn/u/Y8uA8Du8Kpp7sMSRxVOExsUERs099QsM40wRgR33L8hA0xiMQ1sdyIEg/FUOkOzL9CHnlxtprTp5cfEcfTMnVlB6Xls7WonHkSYql+ApcUf/+hLDfCnPZ9mTZBra6o8r561n97oPxX82RHjug4TmuyOqmFpR6PSBQ6ZWZoFc798eYdfs4eAV2xUsWESXlkNDunN82xPlr6/+c7Hnl7qXK0N1eOXuv/0o3t28QxmmSk091zHlneGyhpAz92RWEtPnBIrO6NPvZjZNmwPyvc9ujSurJ1CbCJAtx6f1gLXUN1ibmKliOhivEzMNhG2PFSTYBiW0ywwnGJR+/Xn7nl5p97mML1JZxq7qDfLhJ9c7R6VuLIzEuraFBvR4wrvfm6tTn+vK39Fbq/TCPuroLY/cGKz7oCL6qUbmk6n36xhXPU0C+b+0MrwF4LvmktX7goZbO5XdsTONdvc+J7WxU7MXC3NfXdUTeOxrpKjpMmaO2Y6jghL7aF6TdxTbagCTPAWP3W5944vX0jfD8b2maXdUYXTMeLmQ0zITcYIOI3AMAZuueVwU6PTcN76LBNBGJRTOUo0V9Os0Exvrp/GLqq8ZSqmmSaa+4TeP7+ye/xSb2yxsg1MPFPJFWyoTpv5ahiCgMkkXmHKnRAAAQ8dWjh4cKZxcmbB3M3C/Fo37pUjvtpDTHClx6AcTTeP6zQMiBICVIhXy+Z+ZftpwSwzWetMJwsCLu+M1MwSmrvU6JvbsDXzHAOczYZXytwg+51l+eGzbQqlYKc412SMue22m6ZpuvlrXTsTmcWwnFYbacBxcx17srlPlDRu8YRxusUCoxI3euMsX8umP3760sefXRtXtqofqAamPwHQTJGrk2dyJfUjldWiDh8+0Lyrf9XTLJj77u5ALuKuVHPnG6rTWVrf/kVxcoSbZXaH1f3HM+5xDtQ/emJ1umOfWNmrZnPP8t+JyaFiUE4WMFmc7QxK5clA5pfUlDBpL3pCu8PprGkNpnmL3g9vsT0EMstMqhARXTTg+gwCzr2miQUHV8MsU02zSJkiIU62i6rPvOmxRWVfa+4aIowqO65QLwNlnvTTnvbv97rgvkqYZBVGSBLNHQEBut1Br3fDmWWGw5FSAOtUvInJBtV7Gi5hEd/86dOcc1k2h1c7o5/80+NpKTcSn3hu7filyU6pTnO/Wieqpqe5Dz6+QufU3aGBYYm9UdVgnMnPHwRwrAc5loLRA/Ucbu6oxWwjceINxpP5E9ZUwmCIy690ItXUCS6C9oRskwGrrb+ZuTjNfb07/s9/W7hXK9/QtIlPPHf5H/+hj8nDVaL7j288tyIuDsRJ8POcU64jKBPXpcaVMDFNQ7Sjyg5KC1Nr4j/4O088OsW5jWyapgHMzYb17viZpT3cxdgshtPMg8F4OLzhNlRvPnoIhJ87whUp78h0w+n56YDxO1cqHHPF7HkHDH+nsiEgNOgjpzf6ZzcFT3lysZONGBdqm1bmrXZGi23v3E0bqv/8npc/8Ji+FlFBq98AQGI0oOma1UEa0mTNvZzcv2ajgY2wIWWeWKkx5nWvOzap5cmpbngmqo2DsbUIlcVzW4IefvurF3+X+Yammvuoso9f9ART2djQx59de1yyv+k1A0R9KCmbBxgwNpjLEWFcYZY51lYFMCpxMLZQTz/qNYbTDNPziFeviT9yvv2Wz5yenI9aZPQgN/m1DuS6cvTooSNHZnrN3iyYu4q26jp+pb6Mji9Ppk5qaMBsJnxD1VrojjKMmWyX04gfbFwsv//R5Q89scrffOrF9Xtz/iRUm6ppeWf4OznHcJftH77/uYfObvt4O5VtBrhhsgykWYlnSpdcDU0029wBYFDmh/2lS11CS8rgRFUoll8AMI0LjjHQPK8C52pEYCNUzTAMqzxu1Lt0BYAIi+2B29nmyLdJ8K/pjRg4tW6Uau5ja0FK8WlWDESc9UsfvUZ0vz/61KW9xi+bBgl143VVbDWQWxghwsLC3MJC5m67a5dmwdzb7S5fyLmOX0EEAj6x96K5R/WcZAMEtTTdC3W8AiedqQsgYVVvRqisVkKbGREmE3S5Pcoq4446nbmcdol7owlIyUkyBG8RlpUHvVi8v1LNnUZ/ULM58fRS50+euUStN4gQZbRxWtIUrnjo7pabkG3S1zq4JhLjYGxJ801ga24UEaE39r7ETD3MeC5l8XBhyw/ve76+5M6moZQTde0Ckz2kwbgAQZw5TlxuIgK51Na1q17TBsVDZ7cvdWqD+0uABeRTZlYw7MkHjxOikspac0dAgHa71+nMNNDmTAKHje2fv7BOe5uvXnMHqXostoc/d8/LaWaXV5hlECHwGldV6lJN9Y6n1dxr52dp9SxK2besTX8rbd7M7XK6OUCYbHAPh4RT00uQKAJuc0+MwBM095rP9HJY1ftLELNoZHcW/XYrl9ATSQkRms2dygqx1zTRIjIsMWtnSH+qiggwtSzDZAbVaaP/5e895QJ7vf2L57d63nt9SmezqLmH/GOvgCtgmnqPgKNAYE2rHyGzhW3wqqf8XNh7W3Xr1CoZLEQoy6qc4jDKVUyzYO533HF0VFlyKfFGjyvQ3MPpJ+Ut0+6XDbaOOrOMqyA1uwfCmiq6WbO0rxLWPFHHQYT3P7r87x/2N9OWNUYHl9M1TZSUhoJJSuU/19ncITHRTDoiUNcu/Ee3HfxrrzsyGOedRpQS1OATjiy+kEvTLOE+9dL6qpnW3LkzKP/kaX3zO9RwBPrUnMa2VnOX9ejvJMMC5ftkM4bdCeBh1Mcnq6hK2tHy1G1E8VFMBVKaSHOvhVD/jMieUuLyNQ0AjCv8Z584qfI8udhxV7nVqVh72gcU0kjCmTPL4G233dR82OKqp1kw96IwkIzfq4ofID3lkVEPTw77XC21TO9wBXYzmrv/Op7isLxTqep6Qpr7oLR/9MQqTDLLuN6t7IwoElZq2OE5EYSFqvmgbFazcy8UzxV8VnOQRs29ZomOgAbMQstM6e7dkIUawMDip1G4Hjy5+cxykyOErw0AAC53x2/5zIT4ybo4e64sZgMjZ12JtOErGSP06oi+vMyN+y/e9wrdPdSwJFLt2nr/LhW9i2nu/tFNtMQVsikhAgXeaQIyUS/CTLwSRjGq7Hu+vqS6+b5Hlj93crMOjLpV9Va/fO83lvL5c01nZg0CAhhjTMP969cgzYK5r6/vAFMbPVcdVnt1D+caBx82RGxwAeSauzfLhAkDOc2dHAOmsrkD2nqzTBXUq86g+vlPvQyT1BxH4cgkXx0zREQMkUUJzFHVoFzmTQdZs0xkoFLZn8IVsqZpBGNgvmXqhomjBRuNPzaedQiZp9hQtQjk5/70Umejmw8/O2FDtf47502Xdkd/+3d1ONloZMjpdKwJnYFkWNhZiZPIIn74yVW+aTTNutDXVpP1UyHYNZegwGzuTnNXAmliYpp7Pne6jUy0xOtviM+h2IsrrgyV5MeCNZBkCXipPfytL2XOXSuAOZxZV8iNjc7W1p7Pn7+aNAvm7kJCcn0QAN72hfNv+8I59+bJxc73vevxaaqisanklMjG5Es5F2frtWaZUHa6DVUo642+ZYUqmk2zgZh0B6KNusrRT2/gB1ImuvfUNa3NMgKeqWpwqcFbxgAUxjQo7nwZ3ij/Ir8LjU5W7oyBouWVpjd/+vRjyc1BNOgNAKQqMPukeVO+eGpzT3K6F3/rd5742pntCFgyuBbRbfYwc0RetKerKazhYr1Rdb+8ZZcK0nSLG6o0XhOFCsBEm7tewTBRyt93R/bzpzY/+pQ2mn3mxMYn5R0MblL0EvWxaa++Rnj3a86fp5KY3ieaOyJAURR/sS7Ivirp9tuOglTNwFvxYprqKEpNPHfEpsgq0uYe+YJ7TqUChtkwpStkg+JI26GWKU11DOL81sDxPmTB/rMbqr//yPLpdW865HCWjTpstunUcsWhhURHm7ShWvMesTCmMLUQStHStD5gyheGn5k67z++8WMfeZHXf8stR+i5zigROOkUuqhMXMDsWTDIbC5V6AMWkb5fMdKFMBaaIdaxTl8kLMhqMPDgqU0XUgZIgvIOIkDYUE3cBCZgjEh0SsxygaRoY7UzuudFfZfO00sduqyGz25lqEQmxTNitYa8JzqhOcCauRki3nrrkZtvPjSppquZZnTNHgi6RAAoK5SUCu/88oVf+9y55qqyh5gQ62zuAPoQk6tEzJO0lNMj9nCIqaaqyqKVk6FhBv5n//bx9e4YpQNMmXMv+ciTqxe2BxhO3hMqJgKcJWhgjnrhJUGrW5/ihGq+XWNIc6/hcYwYGtgrF5NQr4SOKquW5PyavRRPiW6rK31qsfMHjy7X04xkdrkMbrCaGyKEVxaUvcVt7zNuGy0MlCeP/FyjWeZ+zwvrqQeOS4rGUIzXBNYuuHNNXgUk8n6xbjUo/tGMA27GAdRr7nUwZ1/Wau5KuNKsye11W4TxuCqniBFyFdMsmPv2dhfYIDkkKCXOIvbGekKqRKIV5QkOR6x16pg0y8SB5z4z/bFd2RmFPD7zlDb3eu++qHdjGPs6Z8GQh/QO/7KqcUl2qqL3lgkZxo2b1FhDu+DDD7CctJcldRmsn5wElUqnLvd+80vnOXNf746/+MqWysYmRr4eDpsAKVFgAeD81mBtdyyoy2J7h65drbU4c7Gh0kZv/Mp6rZMy1wTr5DdJo+z7WA8AAFTWB7XHGpizWkWz7EHWwTrjMk2iAK3/WQWp7DdUWctZLbguNXBn9bNWC2hELyXXkcTmDrZmFKB+4PpTxOLPtq4q39npdTpX57r5KdNMrtk7MAcgqB/8VmGgJEB3gs/hZFDan83d+gZM51IzHHIxb0ktpTecoXPi+dqZ7R//45dCKXRcbCqzTGOES2LNZGapIyCXxzlUIFs1Z090IkkpK5bYV2Bzdy8U6rDmGabR3GWG0xv9e15YR29zh7LCF1a6b7k/c8ibD0qjK6TWWNNGf/aTpz7x3Bp/Ywzww4HZuQeMJOqWOA2CuTk5eUkWP/Fe8zUvsJ3CSBsM/oQnm0Sk6IQ3NdszaRM1J1Qrqy84i5p71HiaoghkE4eqdstdMnOuRiiNPts6X+1x/SD1H4tOVjlIsly8zu9DVcKlXfZ0y8LC/A14QvXYscMgOw+JXuy8ILwdvLQfeHwFAL58euvTLHAjBl6pqNM9ZS0zIK3qfHsz3fTgtaUQZhP6S2ryOcuK2dwDAHUaiWVhUviGKhHKR5+65HzsvF4TtbwIMAGyvDN8+Ky4noJPAP4SUldIMn1ovXLCpE6n7u6wchPVuYG58Mh5zQv0gNY14XI+vdT5G+94DMOuMs9zeqOv3OkR4KabDlEvam3uTPYn4DUlPqj1G5uNVYRWwpiiMymQ1FFs14UfmMZkAaxfbEGWyVbaeHwE2V/gJ1S95i5XKpM6xZ6nEgtBwUqKMw1ANaG6723uSVwNW1MDyEHkqTeu8vlrniHlLQCIcPTowRswtowLdKlXLnLPxBGP2n78xrmd+14Sp5PYhmp8Wae586++UXYShJMOJw7im1P6uTcEDqvCPli0udevYW3Q67jo4sar935j6dnlXfDaq0MXovab9M9PXOz8hgx3jFB7y13tCdVEHjRfOZGKrt1h5SxR5C3Tzx38VYJ/klkGIIbm15d1IMKZjX4qcHv9GG118hKnvnUAeNdXLqgz8dp0npQPQkjXjEqqhcfKQtDc/XuyMxy/1AWaMlMw2bR+rImYnT1QHeBB/pCsP6Zi2ZDDDL3nn4TwkOqFKnj3c2tPXOzw0UZGHt3U0Tlq7qmEwCx5ZzX3f/7nL3/1zHYqeFzKLg37/dFgkPfBvUZpJsy9OwJGZO5BKXBO/1KOgwjY5gFRpTGavUeo8XuBQPF/8OjyZ09scFdITcexlP873QlVbNhQLSvaUGW6cF1VwDX3OJeQZQixQfw/zuZAbqima0NXw+dObfKwlA51yqqoSFaIvRrgXcpo7qPK9asw3ixTvz0Vm25gFjQraZtANerOQquX1kKvN6KGcm7ITOrnwXMZEADe98jyuvSUr2NGmRoaMRg3VFHb3J1AOr7W/bGPvORazDpT11QLBDzU0AY4zb1G7KmNJWRjNJEq6kirAeyg7WUEicr/6Zc2nl3uAFM7Tm/0f+rjJ8KGqvZz57IwA0nuZT+31jyx1t3qlXk7WNYVEqHXG/b7U8XJuVppFsz96NGDAJr6OU/EcFJfGUwQPTujlDfLIMCkq4gePts+dblPpmoqFf5GnYWoatrYMvXEzVwhWeU1ub03BcS9B18D2+MiURc2DxClnztDaSbyASJ+6sX1r59r85eQ23citIBU/Sa4Qia9c1dsO7NM1Nxzkzmw9di7miY8DJX1c0Y1Sgjnb42Bw4fjirhOajcwaK2I1BRMM1MGzIl2pbESHkrrQ9opmzttbCIG9xtRNsdrmJZKzU20uZOOHz6J9xwDOSW4NlHOe15YPx4uw8mZWYROA/JZixmJ2M6wfOT8jiOS1LLatKFa7wqZvhxXYpWjyuX0Kjxy5CAnwhmkWTB3d7mUGi21hLdMFSUexZn7Unv4h4+vEFMDRqDuv4zmHioBgN64cuc+OAAiM5M0DrIpDzHVBHMFAKgQHj7X/tu/+4RlzKsus99QxcQsE7uDXnP31O/ZN9vsUj1KKSzDTQpjnGWcZROI5ZipY7t/+szamz99usbmjkgbqt4sU4tYz7nqPjMxTCFkLYtyDjUKMgLQ9ZVYs2qOrTesG6SoVo1SVYjwiecuq3OwU3JAom3h5x6cFylKHSaxphuYLB9H18esFwC3uXOYuQTNz53mHvHRCc8ffGLl2RAQgtdMb4hQn1rsEGFzhSy88Rfz0ktHXlm7EwqzTA7U3MusIXFU6QMWXMqC8vgAQISDB+cPHLjhNlR32j1I1CKOX0c9lvZLGTchXXWjN/7K6W2+3o6bPwgQzs6lydFTd1jR0JL6T18xGRuY9hBT/hCNr6FCviKBZBp8+MnVf/Jhf9bGshvjshuqiLDjry3GIAsRWQg2IQkQHji5+fMsWCbW0O7hhaI7EstulNxXzbps2hmWl3dHqaPn7qh0oDpXyMpiNrwMgpi3DZZ9MoCQwSo7xzBB9Q7zQpt8yVyGfSsYNHeTCMR//bmzF7eHLEOQ3IgA8NbPnvmVB86CVFGB4cEiOk8P4stecw/ZbRLXHmtkJh93Xn+ak5tluJRNGaWavNMnyjxMZtdPfuz43cHHiQ/fmz99Wi3febIoAkZBJCGAhAYI7LolTpYushdYJtdR6ZLa7wig0xl0uzO9Zm8WkmQ0GgPrv8OstorqDVX/uR2PzAHIVVVlAVpANQ8zNvf4tzuy1pJN37eoAPjg4yu3H5l3BIDYdJvzzqA8stBqFcbNulYrHw/I3cDHZ7VifzyQOnorCyDKPVJWgGATq54AACAASURBVNvcqSN1Skr2pdrVQ4AjC60NbUEW80TJ4GxPXaXp3Oh4swwYA8Y03nzNuEkDu6AZWFqcbxlM7lDND67F0SgG2Mpyq/g3D17MkNPcM1XpXVb+NZzI13I0jHZlIdxLF2AOZpnSohPGDUvGPPDggAeooZnSoqJjFMoQ0htVuhmMFDkgI164/3eGFelnKMUnyyn4OAQEctpz86juKEPU3LP8vYb00srGFlvGqLHjlQQ3AuoOjEbjoihm6TAzC83dXTwfuViYIexNUEVtJCb3Xgltfghbm2UaYyX3xpUNPjacQONURHh2effU5R5RSYNZ5u+8+6kXVt3JrFqNCcI6F6XmzgmFk7jX3GV+HjQYibkH7HlJILYfJF9mwNCEkZMNjyy0lAiJOT1gkWonsV09zXcGpRMnBkwRQuKllSiwGyz7JJwqb9fTWamP/IMxcPPNB6mGOqmNyUPaOmRt7qJsBnr0cMdP2XtL6LMekUD5pcUXV7v/258ct2Hdxm1oWbSp4W4wy1Q2ng3ksyPNLCbvXpR3yjgs47yh6cz6Ioy2KqfEDHo3Mwk5t9/y1pts7jVCKvtS29yTDEKvB0DAY8cO34DhB+bn5SGmgH2ONafhst0wAADkUSnYmPkikiOkfu7I/nZHFYLS3HVmJH81jAvhbNJEU5OxrNDF7HXsYKk9VBZn7mBumVeftLlHUUdHSDCYZaDGyFCjmGRAPbLQSrPV/awzmCCbOTxd3h1jNMuEzJN5ULYRAGaOoEM9yvSc1dwRoNWK3Syt7Qyrz7IgWZ5UcmopsE++iRpnGw5/imrOOxD9QhPlSFEpMjqRGuiMb3TrFmH7Z/7s1IefXA0va0YnqqtN4jP1luHUyNUFlPK4gbc/dHabH0imdqXm7rvG8cPrTDApPvl+cSFXrx8gK6U/1ZhlshU5s4wSwBzadEtvbq51AwYO29zoQMJuuD8DBm1I29wTvAb7GoDQ3F2pJsrujiqLYuZz5dQRa2Ca/n2D5k7jGigeAeADj62oIlXYSHAt/qP/8NwzSx0O5jBMYuLXbopGm7uMwEPPDnvp3pFCndba2PwMqIMjC4V+iTQH9HA0G6tTP/e13ZFDe2GAae4JcwwPG70xTPRzj34jBK3gj7wLlLa3e1RDZWG5PfzZT2Zu76I82TdZvUS9CTlR4VmZyOtuHPScjgYr/A3eMtSKXxTuDKtgwKlRPEFDAjUKQVmhWg17SZMQWJ0zQppeutR7cbWb5hwlEPBtH5TUzt+rlCKWyCMFDJlTXBbkZh7Ck9Pc++PqobPbaUMAej2NAFtb3Z2dG+6avUoeWSbrKkeI9eYI95xTEMKKGMLL1D3rpz9xku4wAjkkvZG1iHzIE6O/b4W0gEbmjtz85yr82T8/pU4DsQ1VQHRnmkSvB8EvkK33hVmmlGYZQgVnvtkldoY9Rd1NzFWnuUsdRM1wTD8lzSHmwuCs7Y6d0DRgisaLChDgiYsdp01PMssAMG+ZSjK1YCYWpayFkqGpkgYNKpUKv2zKHiBo+AmJgokhjqlSIelndHkMFVaMzzrx7/ZvlEtxNhGNUf1Z8Znxlgk6taqcy04Uv2Lqj+19L62rwyL0Q2juvsuCQWdpIKeyCNYBgc7rzC+WGWZ15TVoyRLj2KJFWO2M3LGDNJs2DCBaa6sprze8SmkWzP11rzsGnDc58hKSzS23k0NMiTLChzw9Kp03UCBAuIIu3VCNehZjrDjJLJNo7v5ZgetOqFK/Kqut0mR5JNHiCwYaUPHcEeClS912vwoLHVB7RwmXycxVlVKzTNq7je64PSjrqB9i9wWJjyvc6o8R4Cuntw3X3FPBg4AIv3TfK06gNmiCNlxNVQVLq2ItUUizWoyB22+/ybflGWJmgpMwq1tbYGgiVQml7RsxpzZCRCmSHiCYZiik/c2RXCFpagR2Hw04ebwl8kPUw1MVfIU/8NjKibXo4aZuPYNGMqC03h391MdPJhdI+Z/DUizcFUioFLvIuJFXAmLzSWSukw1Rs8ziKteR7CbKOGxnpwpBQJHgb4hw++1Hb731SK6Fa5Vmwdyt1tz9X44zp4Awb5mY05cKnyDSnBhONwEyK3QARHCnFgVbl0BG3Tl8KOvDD+i+BGhVnaUVNncXulLY3ENgMJI6yMxToDZUERDhXV+5+PJ6DzEq+BNt7vcf33CyLeW/GJi7VGNFVRbh1z5/7n2PLKefeJGU9W/3S9fcv/7cOQNgGm3um73xF1/ZKuWOeq5ffhpTSLWsiSDdUClF5GdNAKlKmHaQUmp9yosruTJQBB80d10PRtHlIPegloy5o7fdoRPtll7WdICWC0SieW+ZYJb502fXwoUBMbOSEHEKZJlfWIYmS4HYfXpmXY4zWlJpvhKX01qRHb38jjWDuwJhow+JDUdUO8XVspRGVVg8JRLIpdQVsqpsc/SOq55mwdw3pM2d2BlTdoRtumEbmvNldgOAf5mqVMBmQjTL+KpYWSTGGhQBaIoKSUthMQMTZdBxcyKAKtyeQ2lYogAmsIC6Q0wQ2AGtOlGuMPiUo7//15+dcrFQSNrxtDCnaUCpVBgCZDZTPybeMhRXBxG55p4pG4xgZGz5L/7dk189s51rRRzdcgaKlBEo7osI2+0uPVdYq7tBjVrH7W8pXai2OG3w9xBRGm3uWTDI2EJ/veYectsQ1Kiy+WHlsI0qXGwPeXN1ZhnajuLr2tQdywqE55t2pbRZJvyi3SaqU0bakPwa9QOInCJ3ykMA4MNPrp7fGiBjILnFWc2mRY6rOJs7xgHVc1AxMUTY3u62271MA9csXQ9vmURHhrihCsC0HqVjukSk1pfTA+tjeFEGr7nbyCV5HkUl05llxKCqAm62WBtVbOnZEQOp05RTc08dYmLW9qjg12ju/NlTYarcIaIzhStUc5JF5plXhxIMfJYnLomNiTb3bB0uTFsZwoXbcERTJdqPcSAFiYI8AyRzGwC5o4Lbps4t8mpHHFiG1ONTa5pJRRi0GWLx5C2jsiGQChKxh8FGT0eskS1D2czKp5NrvTf+f09j0B6gxuspFxUyMkplVhIElpVPiJjYNiNzT2YX13s0PuWDQnViy2XCKRQttbDM8/G8MSeTEcaVRdY6bytUpWuem2vNJYrUNU2zuWZvop877Yqk4yRKAeOAFIIqEGLmQgNgTIetDNjXMNmYxucnYfOGqmiaKpEAlBV6/o7o9F/ltzcsLZ8/gV/VhYuJCBHeMsIkGlHHwSNUcEy6DE6hbpirDhUBLXmcRD6b1OM4nfCWSSrB4OrHlgg1nuCBMZEfUW2jspGbbz4cavD3q6Rd4QBnP7lkEUqLF7YG7A2XE54Vpowb2AAN47WirCy6hUWCn2CjryJ+PC2Rs2wdwwqZPQwksNNU2Sg8yNQDeT/3CHZ2i4JKaebOuq9t7gKHioOrSsSzRf0GE5jLivCma2Ct5KUUB5vSuBKLckwya5s7wLFjh48eveH83IdDd0IVAODu59Y+9swagMaj31D11+AJZqQS2XMSzV0bPegrrRW4KSbZziZ12FeS1dy3+uUv3XeaCwNRXJao0LvK2DBJ+KwA5i3DNxuQbf1norCyv1Yu1QU8Ui11fBkxsyBNnVhIFybCJVQ02wzzmjsCInBvmWwdY2ZTfnZ59+xmPxs/kpllsGYJqKeWS3RCFWhDNa28vmskJl3lr6z3/867n+JfsSZzAFtrKoMQOkbxBWJMRNU8P9esabFrEb52ZntQv9K0yFTXBDZK5OdOUFF/QRJeHRPk6cGTm5gsK6nCcSU2k0CZZZyOVSt9tTjkUwYZAVBGckxQapmuP/syB0ZpaTbls8n9YUSE0ajkRDiDNAvm3vaxZRAAXljpPreyC3JOYhjajOZOqmh4IKQx5k5iGRVTo3rc38pGts65MyaLXEzMhS7d/ezah55csVZL7Bxv97MlaO7uBKDIQotT6oLn2iFberKDaBSDgpOFk/oFTCVJ9yQQg+bOOZF8sBa9HaPebOEqVjyTswZjoGj0heSa+/mtwXp3PMgdObaBJAgzWeGntDlrobM7IKg8GeT2KqBRgyMYtvrjtKeseK3koA/ZIKaubPbWAaG5AyLzn0GE/+lDL1zeHeeadeIw3q9dpzZZnq1x3ysAwGFOm4U3f/oVTMwy7tdI3gfrHng0BcXZWVt5sHl+K3m9S2XEm6hQdqp2S0m9diZEy+Z8Cm2ypY+dTn/GsWVmwdxvOnIA4qzDwGE1r0jvLcpimmggY5axGfJG1jSX54nm7kkEw5o9qwn9zCdP2URNgDrN3UblHUKoGZ6FbO5ctCBT0NSGqmLTVC3vbDZxwaAIMWW5amCQ3VsyaUNVvIm7vgCGAm3UqEJOc+c4rzugT1kUtYQMnnFwUjAGDh5coO4EP/dM5Q29AybttnqlRFHWCi/GJSoEGM0sWf3UDehGd3zLW75KLN5r7vGaSS9Knf+V0iJ1hV48a5nBk/TG0XcZRgwkc6euXZeTBnShVcwVxo1V1lNIHGKSIYPUgyJOJa7cT+UQxaL/Iy+lALYInz+16X5u9cs/efpSCieEzX/LfEAgQYI2yyAcOrRAoUlnk2bC3G+K8dwry9y5mPCHcJ4TQLxXeYBNZmWWsUm0oKgOB4rku22cJlwWNUOyzB39ti0qOgs/Jb1av5FA502U7kyWR2bBQMW/+DqGg4FBQDZsqHL7L/VO5Q4294yEoPns/A6zOppFbA+cu77eLraIxvhOifADKbjhphGO835Ocxc6ozPLyP3NsKEiKSHEnXbJme8EPgMZ+CYSGPmbCnGzVxvON2pzugbRhezFYa6sG1AROIxs7oyko3kqSO6scELnWsMIDHLmtbLCVmHIIoQMjQpRxuj4d6rhDz+5+sJqFwGQuZz96Pe+5vv+ylGXcci6RsXFhqoiSAQA+Mk/PUGB8/gnrxIxqkAExUm0zb0GWZXFH/r9Z9zziUvdf/mZMwEYkWjlQYQisQGQ2/87fPgAJ8IZpFkw993dIZDWw26eUyhjmjsZPTIDQHQVmbv7mwQIDF9JZ6GmRT0QikPQWRyryjN3iCdOQRBoRh2gLruH4Ocu+hLy6Jw+gzLLxPyRdqWnmn4AyOvs1J2Mt4zEv0MFiRNVw8rO6PVvf9TVoA4GIEDLeGVNBA5LKsHA1idq7qm0U3OPBLlqhK7ZQ6TuJGBkxU6u8q1+qVCtpKOmhMCCWUcCt1UFg3o+GFvicYie2nnIjcrb+kiFFC1+5fT2/eH+Yeu67J81tC5VCAfmCmWWCZwrPgOAAcM7mIr8P3v+8sm1nvUsO34zbKryChXNU51EJ08tdf7+e56+54XLA3avbMiJtPcQOhv/AsBDZ7cHpWUm8vxEcFXxpf/a7riOHJwi4iRcdsYBiLnghvXGvImp33fXOnvGWsldUwgYr6Q3CzDBCGxEaQCiWSYQogqCyhUBVy13guTcGdklrlRD1lsG2Ula0HSWKGuhIdfZECRSEzGBEax4on7LeoEMYAym/JoVBgLAp15Yv/fF9UDWXs4pxSd1P0+tK9REd1TxK8sDYJ7KJfrBIhbGuE4VJmP/4cn7uTOc12yoajjTOysgEULWQr8fdW0yZWSrTbkVRLT7yrf6YxrtrNFf1UmAQaCTcYXuFKhsBTFo2VJz91HF4xUlMvwAJsuNR863XcQuR34xiCajN55KiwstQyLHsmwKOW41lu0y66CHiijHnWLjbF2xxQrx3371orueSWl+48ru1ByQpkkh0RvdSf/nD714eXeUyLb88pHXv7Y7qsNVMMvETaZEdqe6I96Yd6jeessRYGos2dxVtvRSumzKbKi6v0mAQAjvPeuM9etWIokgMcE803TzhGRAtLkLVUMX8VpMsrZAhpYIhjCtaqIh5oVxYa6/Ek4W28OL20M1pVWFOc1dSz7vCol4qTP+6btPSnhitQph/+37n2sV/ivfUE2RRNgWmnt+Q1WXRp0hdIG9NAYojjZxzywYdYlzIkRo96PgUawqtC5AQKY3uLftQflPP/oiqoIQGdOQhZ7AYHNn5rsYbQbDPrPQG1jNLgo8AZbte1nhfMu4C1XYYpd3yr8pjCDLrAmLPvMBNcZICAWtVhaPX+pe7o6pg5RsWBaH7iMA/L+fPXNirYeJBSZMEIEHd9ocUbh4JmCLs7iXOiPClcpPNndM9plSACBQ49Gjh2YZzB1mw9wPHJgHppwq8x99qthlGila6YEIS7tCAipVmyYGhp9kEYpfKXOohAhLMfd3fPnCoxd2EMhuI6AKgkExYg+wDdpEKn64DZQUAWJhckc+wsa7pmzupcU3ve9ZTuteYiFiQqkIGScWNevILMMhVPA7wFTnFtvDVmFcAXGIKTe1+AlVl+r83CnRwl/yIJ3NdWFhId5L84HHVn72ky8rPPC/Gb4fCDLIaWEuEzkRORUpwIBxrr40Mtz74vqLq11kNncaLIve5s58UqMLFvplnGKIdJDHa1ScYtMhKC22jCkMhBsIfF/SzM4sAwA/f8/LF7cH2Z6G6RCXYsYkZhlZyik03hwP8O6HFneGFfXFAcPXE196ZWu9OwoG91gZkWKEhLlCqvmuwObHxzZ6tZcoE/u2sl2epO6IiLCwMMeJcAZpJiF/N3eBcTryR3RvOsPqxz7yIjDNXTH98Cz4HaTeMqj3eVRZK30A1Ha2Y1uRLBJXyIfPth0p07wCRiuc7Hi1wMxB6QlVEhLMAhuJLL4nUceAR8bdVEc+f2ozASwzS90br7lrqESdZA1QOSG8SbUVV9DdVoPovGXqA4cBjivdl+wJVUkSAVr2NugHWoi2232C1rWYUTlrsMST2h0BgFw9GbA5D3SlB/Ku8I89s/bUYgeCChLsyx6koLn74hg29omoVH8sD7LIRjBMFnzzp08/fnGH8leIc4VpGcPnSOYvOs0dEOGzJzf9vY+JTkMLWWaWMcwso/gsUq/Jkebxizsk3UmdEmoZe4kQHVsxdCf8RAzuwrS4TORRQAIjP3aoVZOK6EVCM9mqEaDd7nU6N17I3zLe427DYTmafhZxZWcEbkOV+H4NWoEx5YE844eYRn8FEAyRbnpiX1Fk5lp54qIbxZKVpUCSXQqw9etod8yK8c3wK7LsAIaCChICQmbK580plHmBQfwloevg5875IwDAV05vP35hx8E2FpFARHGqEBO9HgFahTfjmkk2d5dtT2aZuM5LBl1vG8iQvyAHERipZPsIjFq4SpgvG/6KURCI8l/4FdjuvbOx+A1VeZ2F19zpqmjacvAMLtISIYcU3spGwiNon17quIhDLpUVzrVMqzD8xAlNQ44KY7ymnF0LclyB3lA1SmngD8EYFecR3znHJIgQfeJzFsI+J92h6spqV8ga/ssnWrSnZ/K6DJIVJLVxIBGxLKuy8ba4q55mwdzvuONmYLOOLJ5+GgQ0VNJVEZLp4dL5zYHGY5gzlc2qUdHi7OtnLD5UHsg0gIMs0BgB4GZd0JVcLyL9QTINolDhV1qrmQACJPT6hc+k7YmM+1M27WYQiCl2DeP7BKuY8XMHRITnV3Z9ID3r54biTQQ/NZFuIjmbOwIaaLysI7zgzJ1vaP/ifa+425PTaakXQxEPjK0YoBvOMNBAXnnLgRerZTty6pPKnApRCRuAN7yITF4JsAgAIxZLFclbJswdG1w7hFmGs04Js2VuYBDA4xh2ZhnP3KN2xYAPo2+Ydp9lf8x+El3OnHQXehXNHVaWe0kSLZDtRYgc+idB1YIBvAJE+hCHXCV1fIxy1M1ZytNMD+7lLbccOXbscO7jtUqzYO4uXI7rcxWOONuEz5XyAmvE/Ax5+Fw7u3y2SVAObs0ANx+QD57gzoGARLsq4CJ5UqbU36ARcBMKKDoIXJh12c3Y2CnVEVoM0qdsKBJOl3x94N63B+VG2Lmqiy3DVZKGGGq8Ub1djFAEs0wxyebukkA4q2xtd9zul+qllXCGlx4/Eja9taCmN7G8ACHuDMr1bsa3gepP5HrsXU7BRAAt/Ppun5rV46LXxk0pxsgcr+dhrm00SsQdfo4cpSLQniqE4XZvnlrsvO0L5yuLrcK0jFsKiMBbyZiyaZLrL6f2abxleCKbO7ABYmYZiFCFgQh8O2IG48aeHyd2W2ftPMXkaoRUwvFkZdA6jQT201XVahXNh7SvepoFc7+0Gm+iYtLYPxASqsRbJruIu7w7VgWJVurUMWKgyOonAP6fT58mAyXKRjmvYWYZfRsZRLLLt6vs+z/+0Zf4/doMJESJASntIl1aZh9QdykooYiMvwdixT98fOVXP3fWZchp7mJ+ojvEVE/ENMm15u783BGgMfzAqcu9eCK3PlgbeoTwNwJpHLzUVrO11dWlappwHz705OpbP3tGVUsyldef3eiRpoKQk9kKQG6Zhqqi5q5ActniISPGsq31jE9WpResLsQY8U0Ma6PlneHXzmxbxMJAVnPnHBkADN8ikssFwhVNh6xZRun7HGx+eJVr7sAITMlRZC1CHF9ClDf9owAsP/rCLGOZwEg6CGGapAKghgXBxkaHiHA2aRbM3UVbpUnlXtLsolkWw0kDAMAXX9lyfDzRCxLLRhiwKjtjJU9n+f3zb37pgmXWQ6cEYQDJFekMq4pdH1xF4IG6kwE1UIk63fP86m53VEGYpQRMMMuIsN0cYN4XqrO0mJ4PYjMnAoboNY24qwHQKpLYMkHShKrQ7fy5372xve+l9ZiZ+EWOpbYK496J8AMCGfCrD577xXtPU18U9gik7MYDBNWVweOhko3EuGU0G6mqMxv9P/XB7CL2EDOCBDhfk2CIskyUKlBDWf/Az6licMLhF6XS+tJVlpplPM2gxIKEn6LQEJyuiD+ME4w2heE2d45MUa1xqzGHwjD1OKoRoschN8soB3luOaSXw4qbZeKE5ZyUvYzXDbKZCAgY91dZ0DSAzOjzpIItZzU2Sk58su0xiQRNvVgUxQ14QfZrXyts7i6poQJulrEIAL/ywJkXvXobMU5li6ASxgwIKiokH29gkypdH3Clnk8Sp0ieXOt9/7seH5bR1ZLF2FMCI0MJWnMHVNdeQ5z2wjKYfI0LCxIAiFBZnG9FpRgZDlkpoa2Q9EL0PFdNYMlihEK9Myh/60sXQOdHxNgo9bRVeI5vjKm7Zg8BR6Gxphj6bOL5N4GieIVxl1UWp5C/VBaDeerEWu8/PLbC4PF/U5UcE+IB0A2xlbpOAefxc28kOuw3UZLKiY8mZhnH4tEm2zl8P1BwyTAXIETixLAOKAy0jPH3F4Y5xfvlHgoTK0nFGDBJDNwsY0ydKyQvzs0y4rQHIkpvt4CfaJ/ktYW7XADDgVL09qtaAkt6wVUi+SmwkXTvjZ5TgXfrrUdo42c2aRbMvWT+vDnN3Wer9CGjSOW/dN/p7b6Plune8WOVgbHWXluRLhpA0haGS8u4VgWB+r98euvl9Z6wxiR0meqVvMtCBwxBsiCoPxAW7ErVSkGlZBFOhvONFUbmjrFR1n02pUl4EOGqE6pfP9feHVUSXbQf5d8o/VopvPyTMMvE2DK1E6xec89Y2GmFoSQTZAYC6W5iGhRnnvpXD57FUBUTfonmTgMd9twYDYiy1IrkQb5RVZs7d8r7iJKDE227xAJ7iYs1uOAHgL/375/+/KmtrAkUWZFSHsYp2IZqat0mTBqmAxFFqb7TElweYhLdQZafkvOW4RZ/oBWtNMvE1qWAcT85E+f7xkzPq02kUdXl8hnkiqG5QkQoy+oGvCDbX7MnJ6ezfjxwcvOX749LcjI9AwBS7FOEDz25sjuMXu2IYBjNkZDIr9CD4GUcDYDRH0Qq0YQSrvT0xdMYzZR4bSolmns0YVNbRM3uH2esDCGxL4j40iW/rKkszifmbKmseQ4smFf4Fcwy/uf//rHj57cGyI6bYnBCp5Tq164B9RoBwiEm4S2TlqWkMMyrSuVc4JiZjqeG+J2dvswmpIUwfwW+Jpma/xS5gyQ/DVXOqJ8qnn3m6u6MCQqNnD6Bu28zVd0mDI6uiAE2j6gghOEeB/J2mVuFaRX+3j4RD1kUBBPGMepnAADw7PLuv7j3FY4lYANq0hOqudnCvWX0LeGS6YcJG7pPSGZ6ksNJXKCQ6pabqUrYIOtydi1GFqFsXxShImC73VNEeK3TLE5MHTo0DwGh3FwAAJu9sfO3A0cHhQE2MDLAqX9+fmX3nSc351uGsypwRBwGeatf3noodi2Olq8NWSn65F9yAiLVBlzAXkmaqYlAJWLcqeaeUhIE8cPnhpBAjEHzCisL88GWx6QF1R/1C8cNkLP+ZEOVWuf6Y8ls7qBZcPynhau3uTuOAEUR32fTfMtwsaG0nEAVKZ8CRHj0wk5vVP2977qVBlRXHg4HClTQ4TUJGIIYhVgqUSrruoM5UONN1uG9OqhFBnSqJBRHjhOHbW6at0yrNcYHmkZWLYHBOaO3VwBp7t4sQ03zOUKJez0hA3izN37yYkdgCUX0vSRwmGAFLglvmai5e9GV5aF+ysTVsFr9YOgmQGD9WX6t3tAwpcMbxX9uNZanB4SFhfkb0FvGx5aRTCcdMLWhimz7CFEjkauBQRp7n99xha9569cgjoGYWgQDZxbIuGqgVw9SzG+12zsfxfyGaiAMpZCOyUQgeTHRk7L/1P2FwHm5zZ3DE7vmp5zvMmP33sDFGIHTH0UNSlVPzDL+IVWiybW54DZ3CSr9PDBX8JqfYOcniSvZBOfuoOZXTm+5IIhhDgsxAwAqrIcNmnnGhh6oLmufDcQgMAbJ3K7j+CAppz+O2y+I4ug/MB6EoAmDFHOqkLdY+kvgfCW8I3z14GOkeGcbdGMUrDRxJirgaeZZqd8gzcS8zZ35uYPEGKukxs/dQygWWF7XQQUqCvgRmVmGxhRrBijUEDDMBMaLq111qs4y9pURALJCBDh69OANGFtmd9dFhQSQllwM2HepDF4lpODwAKfcbugfkulUtyQnvhCmZT5b4wAAIABJREFUCv/r8uTPJXPX4CqcrY01J891RjrFDfmdZwi4MygfOd8GFptbae6RIoH6EivUG6qsIOugEFrcZtCSNzGhtFe4Gkqu32YuxvSVqwDFrnIHScNlHfRTMffF9tDtqAMjgCy7IcHMMAaKBijaKo17REWcosRnE/MIEtvS3KGGj6MEVY+aS6XFZ5Z3nYUNQPA+0UdplnE/5eaq8EyvwrW9vNrQr1hh0F3wxFr3T55e45siWU3CPRfcLMOsV1LMeyzF2DKZwGEZBAbNHUFoYxgkseDjENb0Yjh0l+MsJoGfHzKGJQCd+Uf/8Pnzm+EyL4KKSalIPJm6PQXegFEh3eVSRHbuJU0qovhKHWKCaHMnvgxhyItkQ9W6w/1BlaMW06mbGlvJbOcpIDTGA1haeUhK6UrZaHNZboghyCL9PLHWc6EWnRxCEVsm1hNgc30JtbkN1WDyQEaaEU7Gm1we5teP6ekeyyaS6z7d9Z7pTsBWYixG8OEHAKYIPwAAB1qF8nN/MFyLAxHDApMgdDE+00RChJ4MpW398kUcreBlMdkpoYIODJSfFKtS0iWUhVA2jv5jF3aeXvKbUv7ofORTqLoTYqSAZUbL9Fo+dzUCicN0J8P9HYfaVnZGD53dLgoTLleR61qpaNMw2mDl02TPLavsW3PgMJcGOc2dWklW25QE/pFt16HeUPU9yrJg1Qsl1dhz5EvAhkkUl3MBEW/MeO5Hj8abmCzbJFFEo0L+Wrk+VZq7MTFORTTLBIUrpTZg880ylh2XvXGdrkeKlv9yY4pTlODCaVKzi5+XQzYZSBXijBUYlbO+xFdV3iwTmwutIAkPzgq9K2SCar6dpZYsmQ060KhzT63CN9RwWQehUWnuAPDAiQ0FVWqWYcYHAMFAWTJIl+AQHZJugbEXPgMfFAFq3mlHZ0tfKjmk3lNmK0efZUBllUK2AySNFQBhf4hVSzOFKQphn5zIuwiu6MjmlOoLAhppc2fZkPJTi8IVUnvLRKgo8ckbZ4EljsznUeT4uSlD8xqdfc8VT8eUV8gfHGG848sXXGD3rDzgQojPoGzls7+JaRYbqv6aPQCQ+iCEEXKprNDOiekabO4xmKIxQMt8SkSvPOYRGWdItUwtFew5mvNyXx3A+avcVXdEBupaqrmH+hHR0mYDvVRdC9oW1/jowdncg7UUFZ4DK6fm/FdqoqU1d+RW1wAPkjCGnFkGpACmly3jb24TG6qQTwfmjKr5sQvR7F7HGUlUB11BMMFY+QFxfaVl7BKT3YLQHc1kQXKN0J3YLojBytQJjCdSd4jZVUzSQGDB1B1jyMIQ6RxUIGsEcItgG99II35skW8pVciPwmWUFRp9ZpYBZCKEMUdO3v6lYZq7QqlajakVdmgIEON2KIMK3G5B8jI+/8oDZ1WjmBueVB5bxPd8fcm5ZiDyIRY44TCD/BQ7hTBjzg6zYe7bW12QUg74gDEaFfstgMqqSM/ATlIAmyFeB5F0GQk64JtbbzmTxeBepsiO1Gp5LYakVJY/vgy/pB2D7fBIzpLq6e7533z+3OH5FmKeKJ3m3irAVrFRjWdAgQeGOh/0IxEbylDL2+XGEw4V3+3wwxTuRDZmsivkgbliJM0y7EBAGDuJSYijI4aVW5xdE3TxPOc7COJsFNMGAOVgEo2FAADxY4aLB8aXBRUY5ajN2CBWoTBGy3sEA4ZbNSvr8SnMMoAAxi2CqZWaU1F0ugcAwFooQsh1xp1jzdRZZZYBLtgCganZ6hLZ3ClbmoejjSuCSh+nLmBYZjGUCsQqPpBVwlTiOK8CJrNFbIKl1c7oVx44o7I5lHY6g6Iws9xTnYVZZjgcQUBBolHGsWQnVH0GZnP3fN8FogJvlgGqCgDQB9Rlx0woAwAw1hNaQfaJU0yc7QAxf2KWEUTZTDTSw09EdUfWFk0VRd9uL0FNpFAEK4Rf+K+//fWvi9ddgcAzImdbEHVz1wtjwAA/7huQyfQUQo7vgmQWxPjULAW/oQoAUwUOm28ZtTaSdrkMo4E4jVH+FDUjwmgUDsEF/BB/x+SUI29R1ZNuqHKhAgC/+aULWQAgRyREusC4lUV0rq180BGgMOJy+exJN/eXLlZ1nWJeH0jkjdHPHSFo7o7/xm4i6L8Q/dwZAmMG954bx13i4QeUzFAIUWyaV5hdTwQ1kTGWZG1ED2yBngyunIaOQiq2qlYMh2MGEf7oidXPndoclfbc5gAkkOApcExEOJt0HUL+umSDHZFtqGqpW7ERCqZbX48wywDlR5R3ZYWyomkiU4jzKlii81LB/03MMvFnumAERi5c1R1XETz0/IJw4v8y+saIqxoNorL4j/76HX/lWLhGjlUVuyn5kaonPe4LTEf25mlWInOIyTOgOAVcPa0imtHiZR2g0Ogf5gptluF6eophvtCxueOLrIdw09GDouZw5M0ry5aVDXiWhnXipBGYbHfueeEyBHasUtwPSEaHJ2QeKZyxGhMpEJmIpQsSqIbSB3AX7fIWHfx0FyiQzV3SZABPABhdIS16wwzhPMxEZQL1BTUfTzEkGEKd5h5yIpJpSBA8Uru/9/Aiv8+L2Ahmh0dBgl7FCU1kinAK3BmUu8M4z1FVBXDs2OEbMPzAwvwcMHkI/iGSgks65C9bb9KimwwIPAgRyvxKC0PWEF89JNtxfgDrrI02jQjK+tisufOCI7Y7iYG/+ErIfCxZiVAfZBuIUFqcK1zojqjCiBVS6BqGGixd3QBowBSGayUR59T9YKnwSZplkOw2EmkAUBN+oAZNc0XBg6ABwydhKfVgUZs3iswoteI5L4FJpXezfmXaQhYLl2Es0ymrsYG8adYKEyqsCXWxrRs4Mssg43cRA6ySSpxQVcTgW8HoI+gngsB8CmqogcaR+pjMxMwkEiF/Jc55tofPtl0QN+CKYFT7IjIh8GilaRBjAYCl9lAZiNLh/tgzl85u9mUvIoWQeS1FRewIE291CRHm5lo3YOCwy5d3QCIXpDbqUuItw23uGBTA4FrH6ieyswibvbELVEBsjkSuGmZFZ4EpRG4VYfZ3dMjgulL4BxjE+HK5RS+D/1kERmvZYvIDhNt2iO2qZBFbhV8rq2kGgS9ImzK3lnqzjOoIJOjiSW0hcBwqAGi31oCpO55HqJgrTFkhp38OQzot+bBaROkEpXPSNXu85qC/S2NuFLoZaOPqimBT3ZEUlZYFRieZ7R8EixFvXC8xhoX8TVwhOT8N4QdChhyPhnBCVWjuwVtGWJNlT9gKjP5FIRG64PFJL004IcV7yvvo0sXtAR1uEJq71QWZIEHkR7pk5Txhbknx/kdXXr7c528CK0AEYXNnPF1Uwnl9OgEdkAi4tdW9AcMPVFW8Zk9bNoRZBrkdPM5njM/uii9gO3XAJnll8d0PLXYcc2etsAkpfgKfPOjGwBCHoi34VNgQ8KqJlPW4xFVdccOOZIjEcZI3ZDXSNLuyM3IKlzoilNrcQwcREUAGX80sg5iHMgZeSXnSi8i9as8JGhE4cxeBw2Tx8LtVUPhiwfs4KtScAcbUONtSfBnl8XRgiOXWHiVWxeZt5LyRYHhPOTYyL9mgSDYR31NxpLsPQzV+tSpOqMbniuXxswwRrImynPUdIwzSFdLZ3KNsY70WGIiukHz/nPcLmdmKY8GwDJAggZKyUvoKJQKB0aQizqz9hPCTW5dn1nn0vpKebDqP/CSVVZUTrAr8fe3TLDT3u+68FeSkcgmDxcClqLkHFs89ed0jt7kjwi/c+8rTSx2iV0fuH3x8JVQeWpGaBa2sgc0utS+H8pg1uA1VNQnZzwYKAKnqjhJXE8IJhTimHNwsg5E3x/SL973ijpiGKAKaLRJr5jjh+otRJ8KSGhxW++Nqu+/P16XeMlQwzlgAACD/e3HNXg2WnM2du2aq7XdI6AcYm+ZsXePJ4LFbRMhfn9n6gnwDMOBZSAjFtvgc5hyQQZXhMXUWP4FABGuxFdZhfOCKsCfh5k2DWaasolkGODFIEci3fywK6avULI4HEVuGCXUu7dLpkMZzz7JU/p7HC1FG1AhACBmiRELKZDm3QQmt6ibRFaK/+zOUjbOGt2WDzdLKlb1oGuD224/eeuuRbJevUZqF5u5EFp97LjmqoBd0spRmGgU4JVunCeEpHKN4crHzQ999G41NqugBG0jaqPRsgkePE1PalzSSYVkVFVKST84DN/7ImWWokrh8fnZ5F/KaOxNRoNPCnNPcReQWyRajxRwRVjvDA3MF/TRGnggLc0OF4nn4bPvJxU7aHVVKvaFDj4aZftTEox+Ouauzx64sAloZrJ8S3zWBRJmiVFWigzTuNixodI8kqpVmYFkB1AX9MCmeCAxLio+gLG4x3lqlMsTjb2z9lJplKsTCxkZTiehgEH7uFouCe8vEzLxfwCgttawS8q3sIIQdda5mRSRIBKaau5VO0ryURT12iBr5svLIUhROVM0uR8UCXqVVcn4CqUrB27VYVdaYWuPktUiz0NzX1tqQMB2Qmhf4r/GNYJ1hKIgN0eWccVcH0qiNuiEMdKzqR2ZWC2oIKrNMldyXnVHBahZlvOBIHvdUcw8kvRLAWZbh0sG5Akhzl6YnYN2hyv/oidWHzrY5GRrIzDTiHbnhkFGrgspJrVN+cpLhgcPq0lzLqA1VYOSRTmOeQUlukGNhbRryF3lHhO3b6RzypKivU5oKeVXc4sx/ZvvC3sTMDHXINi0jbgsDo3A6X5hlLKvEv/FXFPkMcbCETk2xZUB5y8QxFV1zBekwWsR5wB498MUxpbo7VBVWGGmFobcgh4nTXgx8FmrLz0FHPVnzaRZa150qR3Zx6MNOQBj0vMh377e3u+12LwvbNUqz8ZaZh4B0tdTlkwQkH+FmOwyUSmeXwv1B0Wccc5dPAsN4ZFuMpqPzAwmAlNqCq1lqa2aQ+7biV/ac0dwDmSoMqIIkV+LaEHQ64Ji7fMlnCNdlaPITDzLMAz0ChoKrQoITeRVclI6sHjdefqe3wVuGfs4VpgoWCdYRgkcQT8wQ7CR8K0UlY6A1J1Y2GCoPiNWAoaLVGlae6U6oOcWG2h4AJhd5bRZ9NDfgdAJgKJKdlD2p9C3ZWQq36FHQYqiEA8zjQ2RMUqEg391Btu6RG6q6p5lr9iKPFhhkm3AxpzDYBtINbYlpkXIVnrgiwvNTtVQzXVaeinOFmXSTNs2GCHNzrbm5G85b5jWvOQoJIiCMveRl8S/Pxrf+3f88wpEbDH0mHiP/oqklzT6xNkQoLb602o3z3AkSBnNilslQpJjP7FnY3NkVwEGb0FUxVgIA5GmeaReU5g6ij5Ag2QZcEY8z6kQYqUusBkiAdD1aag9futQlHCJbl7r/irCGN8BMDZBP3hWyqNfccyUjM5VsV3FqFwMjVhsEvJLxrCO5CytYcEquP/LmohKXQJv6kAgiDH8tiwTAJasxho7sWu4tw7vgtAHrjcUKh4yKOOoQ/IYqiy0jZwdP4rIOKfgZlvCWQ8Lka8Aws0wGYwxLVFvsbGpzd2hEEOQNCaFScgSS1dz/yUdePBciPsr6eRxyVBl4R/gUyHYKAY4dO3z06A3n5z4YjCDyCPFJTVg/5ZhmDYxiAOKxbAOGCViAnB8OPSCrHHKTwU3y51Z2EaImEgMkhfqTE6rxZ6q58yQ090QIpcKMXtDEIx0/bSJo7pljL0CKjGT6pLm7lNHcE3Spdl2P7j++8c4vX4TA7FJ9lqIOmPoTqtTdVgGVxZY0yzCWp1U8D17Q5ho0dwAYjcJNXpJN2BqsYk1Vav+2rjupIRiSoYm9Q5ETUXsWueE3bNmHXOxxh59AzNZGzlsl44IYNwijzd3wqJB60AMkKPzcczzaYdXt6wjrn4Gnl3Z/7p6XkVWYprRCwnbGvJ5Yz9AvJuoqR/bXv9wdVhXqIjRYTm8QjDtKHeQdqZUriIg4GpU34AnV7W3nBAIAShtClBZnPj8VypQiWQRFlWzuORaJvAgRYhoiVdGlG0ijXSHFJOGlWBP+VXdU8YvthSukuGsm1s+RwFlzYUxwts3TzgG21uPzgeOBrWMiBtxPt9WplC+Qrkr8ve9RwCFdr4oym3uIZhmAwpi5xt0k91VlYWbNvOM54TALQKgEer0hf0+lHPjK4cR1KLMPyV0hY0NihvsWc6IoXb9nItuEG+9Eu0HbYNe8xMqDsuLzuywVQxdf9RK0TN9EIOYOhistAVeiI3xjPOgNQHVCEDA0Q30pAwbg3Obg8XAHS510zO5MZLZG2KTmBRpkBmqzsEY+ryG1eqUDSpBwyuGV85ydTp8CHM0mzcJb5vChAyA1JpdSRYYHu2B8CuhltLmHDVVieVqAs1ZUBm9zl94yoS1E754RvWVItdGHd1hzCuaf+NiJH/lrt9NXLhXE0jIxTHkYAAHgh977zFpnNFcYxe5VOjgfzTKQkKZiPXwp4N4beYsCMdPIGuRCyvfIZ0PLqhJzDD0/8mYZA8YF9R1pJYl+tTxzV2aZ+JAVbmprNGuWMSZesydLSX7BCtYwgvy6Pu0OYpZfxKr4e5XTygsxINCJYSfgOGwVlxAs1iORFr/bkk86zjEtarEKAZkkdVz9hu0HpPBDIB4VqREACmM2eiNWFZGoSKkIRxRMgJv+SBvjmVGuqlnmjI8mic+srYxVqIuARCOAziabhoMH541pUm6uepqF5n7LLYchICI9wc+x4QJBhJkm2I3jxSagkty6ydiaMfjIYVM6fp0RjQbISDOCTS4a5gOpFmgIIjN3kElXkRpyAAD4b37/mS+8vNUfW2esiPuWLPPRAy0AONDiNveANMkT1TyspFuh9HPXcGYtTnS7DXcn4OC5UqS5F8a85qb5737tYQA9memn09xbOZs7hoOIkCQySgxLu9gepqzh1OXe8s7w4EEZzz2MabhTUPQxYIwwgL2R5fCk+yJKU8lakLjrCwcmYC/yCGWW+elPnDyx1jMmxt6RtMfBQPIXUM6svEIMHIegEmYZyXZ5TxCVES9YDCEWREBr0Ug4XfiBrV6ZioTs9pV6k9Hc2SeObRsM8dkkEa7fpzmBUWAmT1RrhNRJK0SAI0cOHj58w12z1+kMgA0GvUdm3YPwdVRZZYfhI0pbf4YVV/KTl/INUXPgrw8GNr1BKBFkvtCukDa5s0KSlG+CusbFGGf0kkARU8gtIsJmr7SI7lCPDfcdMy4NALAwVwDAAeXnLrHBT6PQ+7ihiuhvUaBOefCicEr3ioGZZSjAMrG7YWm/emYbPXMnmzv8g9ff8Wtv+g6oT3mzTKjf1nnLhNE5vtb74fc+k7LXe19cf2qxo244i/Ke/eSfuNC9sDX8xfteAa/6hf4SzQh9JTJfxROpL8s7w+WdIc+vOA43y7jh6wyrip0A4K0D23UARniI0TQUXSGjdQ55i0AbqozpA3vgzyZRBSIxs8HiZ8ghLN22+mOUZdOUjrJlaGfw5Heh6JfSkpGZZUQ99FVSDlduMFcEGM5jTtR5QuU36E1MXX6HasIf1dgMxlaNLvdn4IeYnHymq4pTmzs9cH7XMkZMBlmWSwsTvyJkTqgKyNWCESRDl2aZmBO9KVmA7n6MrQWA0mLLmIqRF8/rZjs3y9C016JRmqSjK6SM1wiMKFUNNWaZuIER+Dtu9Mb/wwef92ZiiDZ3+qtnY/jZqtfcUwBYBgc2Wnf9UA3TcLv61JzvVHAZVIs5DOpn2jThrW4a55+ZZvfAic0HT27K2gRd2URz56tV3muXuIMAsA2edBlHMNB4RVRgxp2Jc396I6gFBU/nL4uwN0vJGNjql2r7B0APWMaigoIJcC6MchUFYb4jCjgpcWWO9w7rWXZqdUzECaaVyAyAN+odqrfd5kKNCxKEwHHUpB2UlvvMgBS2NFw++AbG0OQJi/S/aR66dX2rMDxEap3sxST8gG08ocpZp/tZ2hiFI9XcA5BaKaAMdKFHqzDBLKNZlyNf7uceWbPSuyWnVkxQ3HwS9T7/6t0PLUICJJ2DZ6eIYxNlsKsXzObOe51NTnO/5dDcvT/xvQobyLRslaL13PrDO6Ejojm1IqbliGXLRz6ImAR0A8YQUybO+UUopeFNxWRq0nFNRM1dEH9kvlKx4GBkgnaI2DIcZgaPCBymiEF2TRnxFOuHgFUHLSHBgDHGtPslaz1AJfGkTpO4jgjTE28LNUularXmDkhdE3+Z3JX5Y+skMLLJSnRlO4UAR48emuVNHTCbDVV3vxTXmFzidEaJNHeG3CgV+DV7QTYEsaHWBGyS88XvXGFoYkMictwIBq1Tz4HGa/Zko4CVjeetc5eOxp/ZlQoxdwcwJ2hKbppxm3um/vCXE3HJzuL70yVMaeU9KozZ6o8hGaYy+ORREFoMywtrkcw+JqjubqqHuMQKjf5n2FCFYwfn2NeYLW9zD5i3uetzqYa5+VboIALjsylbh9CX7KIB2RsMe+8ptFkYwm42ex/45la/7I19wDsrzxNRZjbE3qPG0ZXy/krt8hlXyEDqPFv0lgFRg5RkKOR0jvs78NSpJWeWKW3skCJRVSdPVh1HYFIBQQ86BlVD6e18CNJRwkQb0IZNQQOagOMsy1GAo9yFhVkwW55moblvbnQgQRnkpC4ADErLeTFE5g4A8c4gOrNTr7kL/g5B9aMpwU+7CZBoWSc9FiAJnaq2cYC9cVyPdBxesHnXgUBimru/xkRNRUKCN8s4RQkJzxKw+NPBU2+WCe8dlgoT+SAHklwy/DLIxsWpxTiH6QImbpypS05zN2DS2GFKBH7Paw+rDI6zV0noV0q7u8ILjUC1gUEAwNfObK/sjIijRRwmMQ5TpY+/yQIAhPxU0iP+9lcvfuX0NrXSKkQRl7jN3Zh4ipWfuFabJYoYmKITYSaMZTT3BGOow77HiUYF0WvuugZ1zq5OEOZs7jnVkEZQFqBfabgL1MolG7ikZj5luM6XJsVneOUvr/fag9L93Nnp7+4OMuWvWZrNNXtjANgdVscvdbVRQrI2Y2BQkuZONAoQEEe6AN23ZxN25iuPBCrCxM8V8cYDAE00nPIovDB9bfCWSUmkYmFSMhuqYVZjEjc8aO6eo7To5muMk9MlV/+BOaG580picyBEIHnLYAg/kM5n0txpxqb1R7MMIIlqtw/sVz9BbnAWr6qin+QFz6cl7RkwnQ/+k9do5u4ISR3OCvUjAJQlHWKKL8mlxP381QfPPXFxx3eHXaLCeXqqSaQcMPPM/qZl+Sxwz1Fz173xOHFXrNBPYBTIg4uFDKk4ibSUckNUmWXrnNCQ6RPA5o61aOT1jYbtuChBqMYs6y3jH9gahbcuZSpiUic0DBNVpfRx2bqQeYrVMDHJv3ztzPZffdsjF7YGLsN4XI7HFcwwzWKl8C3fcgsAPL+y+8b3PnNoXogTlKNwaL41GFu+4QnKLANiGmC9twytLh0RtwrvF+8UYVUtX+iRtFDhB0AxdznE6bqhYjb3UjB3SaCoCdH9ooOsweYeltIsr6v+b951E8SZg0ogpbGNwFNhrCjE8QZCBbGbwkTiThPGna64JlWauzDLsA6mySnsxkD2vg6++ub8hRlYYoQ1SDiUumYv6n3MnBq2ZAHkZM6wY6rEUHAb0Wg2WW9F0W9QLA7EhipXS7nze2Hi/qdQVlj91tLUiMAzXqZ5d8Zbhuu24FuRZhlQGXx30O+lE+pMoARVFhKkpZq7yinkE9t1U7Vl3fZD9zVJc5tfYqoVAixNiiPRc3ccL5ZAgFtuOXID+rnPtVoAYBGWd4ZukeJSukN4aL4YlJYHxYU4ewEgmjjD+TeMNnclTsXIef0XnLcM41ZqThKhIKByLgRIT6hyli3qcQoUkRfvtaghzASeMhuqGN35eV43vX/0e18LqeYe1+aqgxFC9zfY3MV7ILNMYbJmmchKODKZuC2DVYcCh6my8Wf4Hcwy8F13HH7rD/3HAeDA/hi6pWrvMzh3ppQ1+CK5yDZWXlYOMcKib1FBiIE/SOLJN5maaMgmxvL4r5JBxBgMvGrqs0URiE2ZGVPNPb3RjMPPzDJGx/bywyo6Iu9BjEyRKRDe5q4SzVk16ZSwb9LcBfBEGKIGG9S61BWS+iKGL5lWXGKBFI3qgXVcVwIAwxLDV0CEVquYZbxfmA1zX17ehMA3L++OIV40AyB1k8Pzrf7Y8ruKQGvuZHOnkL95zZ2xaUCngVpAgFZhwpFLgGQgT6z1ltpDV5IIPa+5a5JCXo+zV5Cg3uhqFygiMkxt7oDAzDL+hCqtQlhm7l9oAkqVshYXlewnKCGRmGUwcEnDZpGE32erQlBGNRmccDJkkGFA1iWnsBsDtx6a+7vfeQuvDaXNPVUeLYJFLNnpV5Q93d7u8/z0SQmDMqi7ljneNGyoZv+mDfF6Mhc8MdOcA0nFcw+9jpq7AaNPsYZs0uYe5w5VWHhDn4aZ2fQzRELZMpq7VIQxiB/D0EsGurRdhagc3vRDaCj2ghXH0GJic0/YNLCB0xROracbqhqM+J4LAM7HLOLGRmdrq6v7di3TLJh7UehW6P5flIg+NF8MSztit38BiGUv95ZxL3sj+8v3n4aEuXPSQQRnlgFvc3dlkQz3b//ieZf5zEZ/bdeHOSO+xmzuon7entonAICKLa7XM8zd50+IM6e5k1lGZuU6FD0pJq4ASyk4u6FKNbQKk95DwjPTTRG06cT3DIrCcD+Z4IyvhJlPXnM30YDDO8IFG5+1pLdaf2+OBtS/yIkVy5SDUFuEKmtzVw8AilPk0CQFZFZzZwZosExz5yow980thObuc7qGVFAg1Slk9kbF+p0NLfVJEh1kK1qqMEWLRTqhGktH/cNjI4+rzAjKT8pYpGyMNFMSbxk/BO97ZPnXP38O1CAmA8rXvqqbGjwU+KSXQx9FykugGd/UATO6Zu+uW3SrUc0UR3gOzRf9ccVDa4HUd8g2XBhwVp3euOqP4z2/lGgwnBnanfNE5kDmZoiYF5rJAAAgAElEQVQb8kEp/ChdQTaXfNWTA4cxKnetuEq6o9qNFKxzhSSbuwm39Cb8nVs86BATdf91RxeoNuKMPMyI+5u4Qvo5wDR3j8a078jMMiSmXMGL20MIh84jkAneeM1klpHYgABPBEFaBmKGihGTmok333yIdzBUrs04pPrzT9l46FRVLaOXAJBewlukN8oPhB9ios5ygWcMqO16GlAeFY7URlm5ceKEGzwha3NnVE1VpFdlKdbmSFqdfDYpiUZaFahKDWsp0arW0yFwhM0Thk8bvTFXtgh4Vi3y/qoZRBlAZgBvEYqfhuFmFQfmbbfddOyYuOvxWqdZMPd0jzho7npVdWi+GJY41huqAMTTi2iWAQAEdJwd6jV3V7YVXPr4CdWCxTEXZcOkUsSUbKgKNgGMINBtqEqlWDUBQeYrXy7XHLXVCmYZZAVdEhYPWdwi3nXzAfrJmT7BD0ERS0P+EgBFjiXF4nRC1W+fIAbd+Sc+dhy863QEtTnRhiowyarIwCU+b3nI30Zvmcz1xEFzj2XYNSba1AuMQUiuhxwhsV3Nr/3uRe7QAzL+5TZUxd6pS+xl9DEFSXuYWORAbrQgYmEIWgEz25ZA/iAklmSaQonGiBymufucxmgSRfmTUs7mnu+pG3QrC9CAZm/+ksJPAZ9nIMi6lk1C2MSX6G3u4VNZVlWVIcJrl2bB3C+v7ehW2e4Wx9p8q6gs8ussQNrc6b0JcrsfJEfGHkdNuEgXiAgw14o7hIUBW49tvn/lUqPN3b+kr6X1YVvmW7WMjQiUJ0XcbkPVTUvJiITkIGnn19rWT0Iyy6CsXNWjuD+xttd/y5HU4sTgJ5t7VKD4lZ5xQxWYWSZBgks8IDC/qBM8y4sgp5q7U9uzfu7ugaKtilHzsZRjYgbr3E4aLYAYlxFKt0QO76YBKqvzo2zLIpK/EGKGSWnNPdAzACA7ake8Ru0ZtAqDYqXlv+ZOqDJQA0fOhR+Q7DI4/NAhPo8BtaGaoDf0TnU3I6UYPIh5OHUt1OXk4oeMAJONesRGMlA11zRKNnc3EO12T931eK3TLJj74cMLulW2QOOU56yBwebuX/IpVKjYMghRc8/pvxDor2V84NyWiZYEFduIl0WMQcqYWUZmY89EAfSmCnakhVYGyQw8rRYo4m4ZQ3dIoiSgwu9AZq0ZXuNji0rZbgDDGCgKrUatd8edYQUA/91ff43S73g2xBjYxFE/Bvj91ggLHAbspFU2tYxxztEpNlCaZTi7I9uCRaxqLtEGgFbuhjNMRCm7o4pvESecgj8j/5tvHlkI3PQ+L1TeMonXo0sUha2ssJVq7jQibEM1PESwEbnNXXxlJ1RV10Sn6hZhvJQNAenihmrQ3Tnl5+tJXtOL1G0BM/4IYZWfwOnXcIk3EUhdDeXXIMCywIqOqErI5u4+LSzMz/iQ6iwau+22m9QbZnMXY9kyBhHVFdL8AB4EZFENvVGd5i6Q3ipgu18+vdSZa5HNHQuToSRqhbxlKIsrON8y46pOX6CfWCEaEC5rqn4IM1lDrph7AVnfBtDeMv5rEJmeS1oJGF+hg1fE1LEUBIA/f+EyNaEssyGb/6u8cUBqtWSWEUDWrH+dJFBmGWHQDAU5SukUkufvkU5E/aRh8Lb9TjXyN9RuZpVDk7yOoadMnxJxukxwf8l/rQwAGW3uBuYKM7Y4tjjXMnmbe8LKAYQhAsEUbtcUNfzpVVlcqyWKVd4yNPTxwS0cRe/91o439+vJInIqzRqS5SbZwWj6qJ1MD6eshHrBrv+Nfxv8L6k41xdlzrhC4p+YzR0Q8Kg8aTGDNAvNvZfcP8K8ZQSiisIgwKiU3JyNAak/xHkn2tydJC+MWdsd3X98I9rc2W6hSm6wUocNV/Bbjh5YaBUoSSrRKTyb4C5r2YZS1SNrlvmz5y8P6NxnSFIpFom8LBRgKRGD8ysNSFbfaZOjYYkDzCqF8l4FI/1kmg3vxphW4r9mc4Bx7d43FxY3LGyO4PLDYeaoASYIqYLlS7pCiiIQscp4H6NSnpOeTcBhxrYgrEloMYbGRMZzDZi5ltfc54sYpIF7y0ByhRbIPmLQaTCBJxPPPekUaJuY1nJcfkd+JlmXu/DUai2ohT3oZJnEVfAgatogpp+cmfLyTLtFhL+Kd2daIbTUAKyKOJs7/RwMxlkivHZpFpp7u629O4PerfUmR3beVhVe8vDrhj0AAKLfUOULQJf4bEE2W1pFPMTUKvRlMaFIWEc76pc3Eb/xr946LFGt1JSC7GgoaCv5JvxDEn5AQdQKG3Fp4tTL/Mw8PMIsExpkFOyRwCFMObhJxAOHn5M7UT8/RlAE1T3rban6awBahRYDtA6oN8v4DroWf/+RZZNbkPVDtFU5arU2d873pTumrrmOocs8GDV3uS0PbNToJQscpjV3A2Zs7YFWocwyxPgk5Qv27bheEdyCldJK3jLZ7tCI5/zc/SdE+MRzl0uLFuNS0gMPYMAcnCviHJGVUGpQopXbDwa5GEmI7aLV6VS1ZpkIWI7ga8c24hllNuJjrvJud1AUxYEDs7PMzEJzJy+02GrU3MWAtYz5/7l782DNkqs+8Jy83/K22qt6q+pWt9QttfYFsQgklrZaSCKMAyRESAygEHjkmBgLM4iYAUxMBB5jBGaGGcszhmEUsgJsBwKPZswMGjmEjNksMEggGRoh1EKtXlX7q6r33vd99+b8cTJP/s7JvK9KoHrh6IyO6vvud29uN/OcX/7OyZMRTgGWhENQnfZE8kZKBlU9OFuTfi3pcXUcnsCWS973mzVcIQepfJl4mmrOfdWLtww1nVt1dnkt0ULuJmSr0YWFbXe0TIxpC5UDO+j4QTJXidXWV0su9fFoessMsMJNgzh7EA7Z2UZan80DpehmEtrX9MZAD5/fOX9tiVLY0DK5etK0jz26jVvkKDdtPp/WxQneN18ti4o2LeMYAOiKpgVP0qEf/o3tvd6d/YLPRIh+FYmGiIHDCkUjXcNMy75Fy+Rq9BbnUuUIkCOtZ32ff8IDsk31bKMsiVcGcIy07OMb//kn9lbDEKOEH8B3mWltGkq5dihqqqGMUwNY7cH6I6hYiC1aRv5rxnatOfWGPLHdMlY9vWlcISNtbMwlPu6BpQMR7oe8d6cLLAf3aRiiR+5AKTKxgSHZoBoq5B6JPvjQOSL66F9e/qH/5y90hqife4xlb71LMgi4Gtzqup5Xr+YVfDJmmD+G3LEgv+awDjy61CDBCFBsFuuNAoY8uIslNl/krMrDajquO4Ot21xdfy1OJy1y7mpGy8x7w6CqOTNTFxqc+7/4wyf/8PPbONmwybqwUKHmOlxee+jcbg5MH/Fd1/l2p74potF8qzhd5uDulQINSU+arXD5XxzVAwQOG2C3Kmf5vhriJBSDqosA0fKWKcVFKkvSGrljrYjMp4dlk5+82goJsyG96pE7ExOtTbrY0hmY/GE9FXK3upZQO6veohHkHk1IZFSKoGxa1RtbPROV84IcTtsDr78Y4/r6bG2tgTBuXjoI4X7hwhVfakZwTkTKPtLkLWNXT4P9YJrDtVHkHv/n3/w8ET11ZfF7n9tWWmbiNzGNVpvrwGFSh0zWGzExuGGXwg8wtzl3nYqxZe53fVWztOkn+HqJp8o9qgKiQu6mlOhomao3tHT3i8M7yVUmRpVT6t2UhXVh3qmVlTShY6MGKA8SSvqj1MqlAdRePsjFPPDpL1z71T856xoSyXtJwyYmv8rByuB97OHmcBL6vuktg46eWARGAkA/d7lc9iLciwIo1WiRGF8E5y7eMiA9qWqyPazDzOCLOyLc07IYD16XwzqEc8fM606rxagzfqiyEUQxQI0V/CG1paW4/tcpULexrhUScn4ukPazWS/u5RhZ0kfb27tXK+vjTU0HIdzdyYE6LuXzWJMLx0gLu9/EIEHOW1WTK2Ti3LsKg0c9UMKubTsXfqAJSKMs68zkIYilpUVAJf2dbFDdz1tGLsasBZTns5v5mtB5nK2AVug0+KFcxDFl4Q5+Qb43mEwoHqi/aS9WLFPA6TNlYd1ouy+rtT9bGVVctdQ9uo/ol/vLflhWZ/y0kPtoi/S+SzVR465j5gDR1Ix1i9C9LYNq4dzFvzAh9zx3dR+ZZNiXantsHosxCUrXfgvq5+61GsH4MZ8S7JkxW8vEOpINquXhTMuoUjFDsdmfqSE5l4fPez/xCCOEki91+ru5YI7kj9zR++7uF0HLRN+TUjGlZeTfxWK5WDztDKqnTh7GP2eTUOLD2U7tAkWKzs8dgYkafNR+CLSM/xjpQIkhEpzM2XHi9Adw+G0mFXk6ttR13VGTVHHukdCgOsrLxBhj9EZdg825sN6UIQD+SiOMx5AnoYKdCN3oW6owufq1+ESPaMFSsfyfRe5cu/RUmEirkVzdCXRV02WlcQ6D1Yh1KUPklV1dUcaYeKdw7s0T++zDtaGiea00hTzfVz0Zq2Pi7WbUdD/TMtwPw6Tj3vaMIlZApjpuSe9kV0j8UumxG43nDp3/d375z+oRkpG7sXxkWibsrXonCiup6rqnPPDpszv6p3q/OP2hmbsxEnOHuJOq9F+/XvG1GE2wGjbDY6GxZYgi0eHDG+OS4Kakg0Dua2tGhUxDAmj525T+EPeVZV+c/0mRYALsSRRmcg0Mqv7o7XJaEFE5tkYo7A8+dO63H76kK2WXZLmnkWf0EZlOAqDsNPfsR4wafmB0GzSlAefVkkfu3PD8lWS9ZUzOhfSk8i9VMyrm8APuMcx2sJ3g6o91jngdI5kdqpLbqBahxLl7E8KQpe+Yt0yuQLlucu6rGJdVN+6zQxW/i6HFKpxu/y2//ti/fVgC0g2ZRpd86i3oKKEyuNY/IyB35tz2KYSPxWP2yFY72juSvws/ALRMHVumaC+9xu69uugHJ9Ly4iOvCGOuPDHTfBLG7KiaWt4y5k8ce0MW8bkJHPO0cpb5emWD1YjmjtfZeJ/sVyZA/booyQWZ3ptOu8mkG2n0TUkHIdyfeOIi/jmbtIOZEJF4Si2st4xD7tmBOpGD48g9rmDQ6xp2Ergf6FNf2Hnk4q5allwSgAwRVtP9HKNcJVR7nsuFion9w6rEKvwA/hXs2jbaidQAxfkn4NxjfpEIZg4CHJ2ELeSuPh6u2kU6UIZFMRaGIX0vZlm7bMw6agllLDQh93ydG6LT2GB8n4mtM+FUjJGIlqvoQANZYl2SHvcxtAyqbQ0X/R1J1xbDF64uNavahAOVN5z7YKJCAi0DrxhvGfgWEQzLbgZRlj45cJhH3ODnrhVrpAYi9pq+LBwxB3GFpFKur6erLdzxwhSLrlwhizpxSZrmOPdmHepCm8+4+82GxFzuhQtXn4bhB1y4nGkIZYeq7eLNWRcj+aiQSUZHAiOnfjkJuBgqZ/BBaZkYqULuklvtY4NJKaAChZSWqWpen8i6kpPGrm9QdWsA4y0jOeBC284W+dfYKnXmGFomv1Jv4CRCWsZ3B6tBtTW0cT4rbEHOXZTT6SPzd379XfbFRm7CuaMBlgCwo89ik5rX66Y27WMc49yxaeV02TFXyKriBt7aNm7L+Zl5GZdomWrMYbYyNIPh3HO7QrFhoLeM5Pf45YWWpa2rS4zgR+DUdtAlaUuYxlyfylfV95IqM7aaOwjnXvqqjOpmhuVOa5LGbMzFLxiYry2HGMv4x+cleW+ZmMRLtE/Gitips8r11zUQ2KKraJ3DMDwNA4fdeeYE/jntGKJCFswy7XjWhUhRxOIYco9wESnNWETuXeDbD89izAbVmG6mX5mVTh2lZWL5tJ984uofPZa8fdS7scW5E1m0qAT9fuEHqEBdyArllDmrjOzAQhlXDsiOkYj+5Mmr8qtMlV/703NSIsC6VAFGYr2qp7oh1QMab2ZvmbQkJ/hM7aDzkFsxkzI1d6hmFVtuNpB71S04zYho0JWcKdoDNN3gOuAB2SP9X3eaGxLbe72qOkDuVeUtbzsMpLHmkJah5HNCBF4JlIXIHz9+xbUoVvW/sugJnBGi/XWUc8cmRz+eh0pRDyW2TPFhkzXc2qSrce51kXtF+5hrLD8wfeTTF7REn49VfnqTYOJo/rEiVFuigoi8z4JrSHbpiSdOHDp2bHMkj5uSDkK4OyahM94y5VNtTDtdFSJhYr0vGH0i9V1E7pPAtx2ai5LQF3VETjrWLeZKPjaT6I8ntxdPbidvn1WS1w3iuPbA7fMxktczqNarzpK6wJ6WsTXUrnCFnL26ROT+rz+RYsWgEzRleOL4et8JkA/U3DyPqs7sUJVYYGoS3JehYiqcOxhUo0Jj/Nzu3X2Qu/7SQu5pzaGpnKGKYXg1KwszLWaPZH8dhri91ys0abpCag1RIo8ZVHNnMlnk7iKRQfiB6L7d2/7Vn6bJlZSxGbQBz9KFhjtFXtEyea1jmtNQwC+8feslp7dUHGOvYro+517KjZGM1YThp6bpRdlasmO4lgJIjrkUqz81K+iEcqJhzMqjufy9eengjtlL5XEZl9F2x/o0qD0HF3QOCcYsNfBdRO5idOoH1QpEFrn3QxE9beROmZq0mikXrbRMxFfIjtc+HQBP1TlUJSu6HnKfTwxyd/UxO1RTthH7RHPTGVi7ahCYqevflMRsGyeKAib1ClAfjBfdvvXOb7iLAWij93rdFdSS2hGgd5nDLTpVU5dJP5fc2bxEo2eoEpWdKTRCC2ihY/M1Em3vrWLuDTUXNbxlrENwhOEaLeeu7a793PVd9ObMjcLx4xdqlpZxHFGjqu4bDSqsQakMJbYMaeXf/NJb3/iiW4oyGOvV6k7tCIfXA3zCppuyPjlGi5GTy/nOGEpwNce5bIAC2Pwi0fnzVy5evFYXffPSQbhCzqZl060gd+w0/XIbs053PeAThsPNwWkZBJYsBcowYmI4g1SVgfwpUSGTqtjXFTK9nvME5JJPI4OXa+4ib2cd4dz130qd45/zLgRmNJHhs4jZxxxRVDWqiLQVsN4y1YRzPtFQf9PeZE3Nguye4+sPn9+ZdLw2Cbg6dkuERT8sQdQxk44NfQdOO0Ot5qppBFxnfwbk7hnPobJmF84dBC6epFGLJOtSYsoFWmbUNO2qEZMxXH+KCg5Y9/smg2p5BgsFb5noSoxoUI3+dWe20QvXZDech9JjpjkTS47VCR1LXIb+yVYmMduEG8jdTnn3it/ElH4qZTz01NXf/eyl2BhI7cZoX1YfonjlxkiTSXfAx+wdhHC/9dbi5y7IvSy04cttTINYODM60DFKVKnN7OcXiejY+iQYpytmLsfUeYMqkx7pMB44LMZIIYjgZXl9BXMgI/eSKs6dNOQvfk9UEqktAMzvPbkemDXOJRGtTQO3hrt2JuZMtkroLaP9BkET07/MbUCtRaDNw9QcpUBuvozpdNR1zqEBtCkS8S99/KkPPlRWdUzcVQ8PRWeAfq0W/aj1Os+5p6uWn7tfKzc5d2x6fT326xDj9q7SMoVzvwFaxtDfgNzZcO4jksIxb2Q0eiSiwMkd0H3EFGUoSzEdq8agGn3nO8Ahzw9D5CCxZYzmQG+c+gOl2lZGx4qWSfWJyVUGtX6BODV9JPeVlrn7f/idT/zgV6jxSevz51/Y+fVPX8DAyy55DwjUnfDTEGMXSh8e8Bl7dDC0zO5u2aHKDDtULWpdV87dEnbIroTCuRf0sT7tdN8pJdqEdZtrpmXSr/nUOqJE8qTX5FA6SflXVgmOOry5Wd+HH8jnFLMVwRNYbuuFDo5ZF+aTYGkZgz/s4Ml+MlTIGRzpDLQM5cGNhjuCJx39ij8pseN/s+uACMioeWCeVlKT+B3CkgiQu+Hc80Wuw3WQ+whV2vBzbyL3LAWGGD93Ydc30+nm/O+15fCrf3LWkHhEVxbp8I9+KF68LeEe8bvEfQKHZck67bgpeiLZHar5Qisco7rE6JAA1AJLUhn/5Jo87trrhrSziqUioA8dXNM0xHh8Y3rfyQ280yxIy5Iazydh1hVGrq5mUq6gs6PtGS1OFlweuTebDe+6juqHdECFVHCxWB3wDtWDEO7nz22X8pi7ULBVhPsbs6AHwVhaRv4tE4wgtgwRrU9DMFEsCJF7RiuZlgm87AdF7jruN2dmf4HWQU2vmlK4O2um92Akx4pyBtWpPZUppnUlzC47ROaT4E81g1+DoWXIJYwtoxcQgyw3E9WVz6OQCW4GuvYO0dAy2RiQ/tUmOFrGGTM52QzLuwSUrkHurRW3JunjetV/da+f/OBH7FeLDvpZP0L6+v/1Y+REQNVJ8ve5q8u//UsP2WUB6clQkSKP0zJOyqBBFYHOGOdu+8Ecx6ptgVrFEi9I6qMxcm2LcDWMuY0ZPLBZQ4y6DsDMM3obhQtENES69+T6Nz3vBNyxwj0XqoSt/P5dL7/ta+45mp/xtoGLO6u91RBhB69IgQh5agUkzzFXiOj/LKLGdcKkKyH5trd3Dji2zEHQMltb5QgSpGU+/tgViTRERF0AbxnbrRa5Z1oGpsT6NPTgQsrMgYtrhDyjSviOw/Mh0m9+5pJk8vMffSxVDKSurh5iTKMSdXihZcxM9uO1H9I6F3OeFoNPJNJRXhJbx8e1iR9gDnGX67zb201Ch4/qqElCy2QJ7ufbGCnk5nOZsRIaxWqd4i1j+R+xfeDKXeO5ayqUbqXV3GN6XdEyKe2uBmdCb3jLDKZpOPYanQAfUVwtzdweohL3EcyYNxJ+YJIHDQr6IKqv8paxVTKHddQfVNl/bTf2Pw5stu7wWtX9OTEtRdYB6ApZt1rr7JrA5CRAo6V6X5UzV2Me08/9h8c+d2H39sMzjOcOoLvo+CFGccdw52M2s80VSF/ZKekOCIa1tWkzgOvNSweB3NG7k8EVsh+i8svr0+7U1lQpP4Pc5QjmGImIqdAyelOQu/WWYef3pjNha97df8vGxZ0ljfixQFWlXCK70m/iXG8YMCF/y7uT7MCs0yZCLG+msmlIUkXLOBlXRkttDUNvGcp91dxF4bbD2J/aZglsBRUxna4TLZMbNfZi75F7OYkJaBnFVuXZeo4Y4X7DU0i8ZfDOCmAdWRFP1coJZV+MtOyNLI2W9mFWJ9FKuNvgcf1A5oBsNaiCCUdO7ahbFGGH6phWVg9gp7rYnsRUbOlUuiJSg4mukcFg44tpwjNaP/bolb+8sEvkheaqjxr5GfP3xeXbTdGP/WYraRdnBXSXNORdr2N+7q4+bnGcH479kMLcyrTd3Fzb2JjTAaaDEO6XLpZNt+gKSYAy3vCiU//8zc9j8HPXV3AI6m2F8F3gWRfwiGe23jKSFHrLr+7YDXcd87JOBZZB7jTuLaM5RFr12RUSRsi0mhlDpCeyHz3nmKv663wSTMUqb5nCeKQHyu/y03VomXyQcYSbmJyyAUNfAa2UpZ70idoD5Vmcpx6VV5z7pNrFBNiqVK/pCEH5MyU/DfuTVttN42jPXVNPKuwQJ7Ldtf7rjkEUtV2GZaawR2LLGMnYNqhyAaejyN1GKq4/qGSev1e6k2tokTvRT33kc1RlMkrLmOlQ9vpp5lRoGSKih8/vPHVFdtV6/drZ1lWce6TcvQRrOy0lliW3zySi/o7t0TXEKE5TN+rnXjrcDIBsUJVy47Vrey4+7s1OByHcr1xB4c5o6HfGJRdOWhJy7tjZ8jlmHWdXSBij7K1n1rEkPWyZdJ9YFmsxEthjifyoTZVxf6pBdYRzV4mw6Id/+bEnMXOL3PdDoWbvoiL3aO44g6oLGRjzQkfRUF2EZTxMKUWAGiSV1rO6HamxvMgK2yB3pvVpsnxowxReWYzvkzTr1q0ZVQsyJ3DtW5HAQ4aqA0jRDVeyqsWlikiNKKmZD7AsUzjSMKha0NcPGFsGDKrAbdRaEF/HJrg0QJSbSPThP7/gBowmbm2NjrFFsAC012q7xxJH57SjHUWSJKAxrksqbxlzX60yVYkWd+fXzGEmsVQesx2i6fn8fKtDQR2ihojZH1R/3dlZ7OazHg8mHYRwP3nyUCmPqavCYpBV7GTFLoJiQO6JV51PQmATJUbwrwsKr7NFZoj63mDFNIlIvz4tY9BWeVhSjgppMIjzlvGYiPzNtYlBD265wNAhwLmb3JprRldK0/8nZWK3AviFKoAdyguLIUOempbR60j0gU9+4RNPXEGoI4GlXKgcVQCiP3Q14Oop2Qhy7/LYaCYMXSJXqyJ/WQOHGe/1dk6FH5Drle3iaKU2WzLE5YO1GoBSiNEhdy60TEu6I8PTcspPMksauerjgz/7MZyDGO5U9464TG7EV3uIxvxbVbI8VqdlPzjk3jS9Rlg+Ov0Us83MPp8+E+7gBYsOKPih7S1TsvIrCd8uzacDf4RDh9Y3N592tMwGnBzI3AiLgb/KsMNOVf1MoI2VHJx1ISF3Za6ZmP1ec8ur5GM3LJzX66xIyiZYa1BltqqeKoNqjNQPpDER9bFpt9/MYPYGzPnEQJhoBzp60tQzvenn7toYNcBTBb5Sti1bZXkd2ouC3rlCgrdMuf8//sYjf/DIdrQiaH3q5TbaDKIlfOxjqUMINOg+DcfMVSjPOsY1uzbQcu6oG4oCEP85ZHhEdui7YZ+Qv5Zz//mPPjYSfiBZKYloOrIhxgqvch9RhcT2iNknBL8v0iacY00jEKmFpnsg34m4YiMYDNiHTQfchNwR3rlo3vl56UlUn+UZe5A3wQfFhZpeuQEsPbOPK6TjjXU2RXhYJkLMi9rZbDKbHdzp2HQwwv3s2culvGRQTX/qQMwOcII9I47ctIQfIoHQV5A767hjNsidiIl+/5FSKFnikvJ0bca0SoWqt2Wk+kmcA5JGDar2XZhjRhmUzPc1qJKdCW7zJ1sHzdxSrVIb/jDkUyM9Z1B1GB/bG/O6oXDuCYN7iCl5fu7CruMxmFMICn2XcOYkwVSaVndLQu7JWyZLkNaTKfOBCIT7FHYvRwlADcBCm+myQniLkEK6ovW87yV8kO0AACAASURBVGUnYYkgcBjFeuxRMqg2UqxiQGrTUpMz504WNhEOA0qzo/YBiyMhItxjQ0sHUF4ZVC+atBpix156NorLQx0HEcZ9GltlIupTcWxVfgpeUocf+N5feuj/+7Pz0SuSdj2HKNskRYHFy5d3rlzZpQNMB72JKeyL3GU8RStq86l4RJaWkZmWaRlGiMRM7/m9xzFnRNBNWsayH4YKIMu5yyYp4esAj0Qiet9/fCLnECHkb3nXIXc3zTl5JZa7axaFRiss3OZP5z7hkHtFy6Qxx8z3nVxHhsFmYv70oBgrlhHZMCjnLrXCGqY8V0N89FLam1/W1C3Xz0LLwCer5UvauMBFuI8lO40jwSCchGJCH4b43Fs3a7at1n9JxAxEVWwy9MYJmcJuxZapqY8si4fSHGRiuvFQ0kDLlPuzTn0rk1OmWv+0+VwZVJ37R3psRLOahouhHj6+brWLlTRsGlQNcm8NXSrSs1S4GHV8jQpzaJQfwBR0hWwidyJ6/PLe45f3orW1RhiiETq/j3EC1VsuV8tlX9XrJqaDEO533HG8lMcJaEtqcu6x7eceCeSXPjmbCC1jVmf1uGfd8kPExH1C7uWB+hV1KviWF5560e1bJSvAuQpRpXQNDky61BihZerBR9YeIOk6O1Stt0yatNAPBEva6GdIuf6f/tZ9sfUMVTMZNtdEfH7Ie5iEYeiSCM6VZJMbE1/YWa4Gb4FkpvVpV3HuETG4fkRXvST6A1EVOMw1yvqlEIFExnAUkejvfPXpBi0DWWGnyS8Ly7nEFi6uaZn/8JeXPnveYLrCuRtzUeHcHekBJZpj9rS++yD3ItzZGFHf8aozvf3KJGigVah7rEbuDjy5C0wre/w31WuvXJNhiB3zAHIZi/C4O/+7Misb6KsymNWg6qHMENMh4Fb3NDqcsmLWQXL06OYBRyA4COE+hcOl2B0i471lkmKv9bZzhZT/R4riLdMF6y1T1UEnQxrBlSukXB6ad5Q0cDlKhm19uLINcLVHP+aop2xViDeo1vWEm8fWJ29/xelqdRnhYfRzT9ex/EpYpfba1vZVXR9XehfMk45zV9ohJD/3hLKLLE55ZrESI2AdYmLl3EG4l6rGPN+Ahi4yiwpyN00YM3/pWwqlMdaVGh7dK3XOKCg9cgfNFEqUHp/dxx+98shFI9zRW0abw2yG8Rhyd96ukhS5x3yaayyuhDl/+9aJzSk6++v9muyvB/NQce7aBFyBNQ22S0HuNrdGSxNyL7/iSmGInnPXPDxyrzWTGlR9DjHGeHFnFe2kVtRvtCDFIcYuC4pI1HXhgAOHHYRwf+SRs6W8wA8++/izTyUNBpy7/JsOgrFcROk4hGwyQFveMq1RRUWjcC63doX88jtLjDPOJ6kjQKY8hiJaDlucu45v/KI+/IAdtFnxpLvzSbj35HoT8khy9Q+W0PScu31XxZaS9VTJQSLfk/t4y8Qs4ge3Q5V8Chkgr3pjSGSmtanpH+kNrFteDbDrAcnGcu5VwfAkXhvkDk3TXTzWFbICiTCxK+FuRKe8O3YiLiYMPwB0IutQ5OrTlEIh5K9WFpB72SvrlI1kr7XrmDG+mOZ5I/JpqCjvBINsfJFaJhJRf8MG1UU/zCchjnxrx1K2aZmCSAqm/M2HLw5gvTdFE13aXVG1LUZbjTXps3yQUs6d275w4WqjojctHYRw70CiBaa3fcXtr7g7yVAv3XJPYa9mm3jE+/rlirdMQe4NLzHV6pn6iGQxiLyRPgbFqLQMRQTIZNBiEi4lAEt+JuZZja6Qb3jRqf/92+5PD6R/Db5gUW+2Sq4l2GEIVZiNBZgKOIr1iwSg29ys7rnSD807dUIlZ2kEQW92qEL3ccbdCpkRujN4y8gLm7Pu6mJAT+Rx5E563+09cW0yTocDkePcs1u9qCiErlTTMiD75Be3dQ69ZTh7y1xXth9dn7zw9k2tfNl/Z8BNW7bHkZD9wLmXM1TdwiWp+dxEt8Uh5ibXBetPmoZ8mIEmXXDIsjhvny6vY9ofuWtxiz5KoL0kNGCeDnVUSEXu2KgygCPlkfMfH9nO4Qc8lImRLu6sorW1Fn9K6INY/NxlCEXm0UCeNym1hftjjz324IMP3n///a9+9asfe+wx/Ond73735ubmyZMnT548+QM/8AM3UsaZ04Zzp0qp0hfPucuW1EjqLePjudf5hzJJUoR0fAylhoEq0WeoUHeA8IeKC7DaMtq0LfNJ2Jp3OduiipybJmopIqNYHEgx4QdAG+kdMsi9Jc0zkzvmCunAy4+99pn3HF+jMsGy5oDB7V0hYZZl/ZpqtbI4l4Fzl3RkbXJpd6UyNFbeMm7PgUHuZOqGTdbkXCEt5x5DUOQOr1sYq/8mWsa5ukd6169/TtsuvzWFL6aTm9OXnTmkNVRyQNQkJzwxTssMpeFaUoXco9bZuZkpTJ502c/dVnhse3DtLTO2ttBMxtaLzovf/bzqo/jCLftBlFZ97CpVuESNt6h/VRzL6NKZmJG7z1OQ+x89dgU7oT6RXK5FPsRM5x8/vvWfBef+wz/8w9/4jd/40EMPve51r/uRH/kR/Omhhx76hV/4hbNnz549e/anf/qnb6QMDHQpXTKmwHjczz0CNCORR9mgGpIrZBFqTbJP9QcpRWulKvnlcBKmyPMcmnfH1iciDXXtGUqYPYXJMSN3U+caTQSm4xsTreSsC7q0r5E7ym6yzcQoAvgrHHbhi5YKa0QRquQgtb6UoYnyhZDLCueRPLGVlDwTfdSnlwq2VW8ZeffY+uTS7qpMv6yh1ejaRu4jy9GtbFDR5Ihy3E84wEHSeN7eKHK3WWn6wCfTAYch70S/Li0TwM8kxgJKhKtQBamdie9GGz1Y74Mlv4QfSLAJDKoE2CKonzs2tkXL1O7qNeVtvGWyubUJOOh6yH3RDx/4xNlItOjjtCvADteIDc49/+uQO0CHAtUlSpAY8zCHYYhXF/2PfvAzHrnnB2paRntvter/szgg+8Mf/vB3fMd3ENFb3vKWD3/4w/jTQw899K53vWtra+uVr3zlQw895F7c3V1K/IQYy3bbJ5+8qA8w8c7Oota0fR93dhYSF8x98eWqp3KUeBZVwyB/ftNzjlIcAvMAUSFbJFyiR5bLVQHaphpljur3WCxWAsCHPGnf9OJbvuslp+QjLVd9yCVKJeWhnZ1F38c8vMoU6/thlQOlLZar1WoQtaHjJA40QyNOhWsiHOwp9Rcrxc7Ool/1IjTLFmeLy1a1I8cQh2FYrZJ71s7OYtX7eNPOeWu17KW+e3vL5VLPL0lBVOTb9cOQ/FVSyDeKMYqC7/ueQBcu+4g0JRPdcXh+1+HZ7m46APbwfHLhWvKjHeIw5Jz7leRT5p5kIjMpwJ3FYrVcpUad2JiQB5iRiBa5BwJz3w99H4mo74c+i+rFsnTLEq53d5fLZZ/8ZJYrqrxlCE9HGdInuC4t0wXe20ut7oG2Fwc9kVl9P0j3Ok22u7dcLHvFxfr5NIzF3qIfhiGCGiibnvrInKYbyVHyMe7sLNJugFUvQ6sW7onegbb3Qxz66CxVfT/s7S1RSUvnLBbeQXASdJ1DzR4TMLGzt5qEYkLr+0HL623phLQMZNcPMUkSEt8bvZ8WoOj7OwyxH4a95RCtl+Ry1etxDjo8xG2JswNNP8Rz565cvryzWvU7OwuZdIvFamdnMdSnk3yJUlu4P/nkkydPniSiEydOPPnkk/jTy172sh//8R9/4oknXvOa13zv936ve/Hixavnzm0LIDt3bvvSpWtENJ2UfVnM8dy57X7lP+fe3vL8+StiQBtiRAy6WPaUZZNq5sXeUrjYB06v96s+MPW5j9AmWVIOdnHt6h5z5vF7qAZgNNEv/aq/fHlHplP5ZjGeO7e9WvUx0u7eSsH13t6K8gC6cOHqqu+HSBRp6KOWslgs1eV/e3svLWhiUUWrVc+D75kI317s+KVn9lZM1Pfx3LntxWIVmFarKH1OWZJqt7igRQIlFote7jPT2bPbOzteuF+12y52dvakyZcuX7t6dU+rInt/kljMrtkygmVWb2/vEKzhEh/SW10V6XX3H/u7LzuuTVgPw9nthXTPajXs7S2l9J2dPRKcnruuz7FDiYip4IArV3Z3dpK2OzrvyEoKub6a9UegYbFciXRb9cPVK7tSz+0re7n/aXu7dMiFi9s7O6l6UkqN3FWnDkO/XA1UkVF1YooXzl/Jb8U+K6dhGPp0bB/t7S6Xi6Th8N2LF6/tLVYqknb3lto0ubh6da/PsYkHu8NzsVgysb4ipx2cO7ctc+Pazt7Fi1fLAg2SfMQdCJzSDxG1oKS9vdWF81eHOFD+RtLVV6/5KOcabyvlVqlMuXNlZ8FDlKARRLQEhmC56t2is2lQXa0Glcurvtc3VnkLBgr3GGmx6HeqAzeu7ayksUOMGLG9l13LFIloteqXy3467XZ3l+fObcuku3Jl99y57Zvn/N4W7idPnrxw4QIRnT9/XqS8pp/8yZ984IEHtra2vv/7v//jH/+4e/G2246eOXNCTAdnzpy49dYjRHTHHcf0gUkXzpw5sbY2dS9ubc1Pnz7OGWCjDXY6mxBR6AIBkbK1uSYA/fTp45sb8xBYPWuZaDbtXP565uSxY5saNxirMZkEIlpLnDjHGOfzyfETW6JPNjZSBIXZtDtz5sT62jQSzdem4v3CTB/57DZlsHHHHcem04kg9+m0W5unUjY25ocPr8v1sWOba+tTJg6huIrO55OjEPu+65iIcMsyM2PPbG3OpeZnzpzY2poH5skknLrliPwq5Wq3rNtwo5HibDaZzadHcpXOnDmxUcW+OHlyC/88cmRDhMnJk4ePHt0sloPAkSh0HCkSp88kFegCz6bdiROHiGhzY425OKUM+UVJIVAIQYaNlHL78c2dPhu7Jt18bSbI/djRTSIKzJMSiI2JaD6bENF8OpHOIqLjx7f0OIF3fN0zdNOpJBkGs7XycWez6Xw+IaKu606dOiQPK1XKTEePlvjVt9567PDhdclPuq4W7soOzGeT6bQju3Ropi6EsjWEeSt/lNm0m00TY3Ho0JqMSSfCTt1yeDrXXiGNMbuZ23jo8PrG+lQ3JRAg2c2NORGtr89zNWiI8cyZE5RKXL/ttqNENKlorxACwRyRam+sz5yzwMbG7PTpY0QcM585mXZEdPiwZ6IngSddh7n5ErsQiSaz6cbaVNmzdShxOvUhHZVWwk/UTYIIlkg0nU6mkxJeORJNu4C7DjnQbD6RPQiI3NfWpzJJY6TDeajESJF4Y30izM90Ojlz5vjW1trW1tqZMycOHVonouPHt86cOTGfe2H4pUpt4f7qV7/6/e9/PxH98i//8oMPPig3H3vssb29vec85zmf+tSniOhDH/rQy1/+8hsp4+rVAnaQ+G7UJu9QNZ5GiV6I+CJzwtdMdOvW7OjaxOxQrXJGAw2zoWhzxYQ99yx8tK6Qlmsr3jJ/fvYaIeduTmIqGerb564tj/393+QUE7ioJfQFZPg3NdmSemgM4HTOdUE8TKXfqLYr2j+b8Ti1W+yd8ro+HuFlOV2MgHPHiECSobqpIJ1afzVnUCW7iQnjWCQFENJ909J8cfrIHPdDaJ7FoMrIuUdwhUzPn7+2/MU/LAvZWHVFfQY37P9M1trr8q54YkmkEiGSU5Lr0c26PWxq1abeWPiBMjW0zuqqXzj32qBaNSH5AY80MOaYCiOUu/d3agZsIKJlH6cdM5ezE/ABHxVSc3N+7nl0xVi2oeTwA1zHKRLmzckBNx202smgShQp7u4uZX1/YKkdyOYnfuIn3vrWt773ve89fvz4e9/7Xrn5spe97IknnviZn/mZN77xjX3f33777e95z3tupAxdYxIVaeieUaEvvYw/98nsUx6jYpmJzPwPX//MD3zyCx/9XAomw7Xhkoq3jMyOHDisPJYrRkRUu0IqvgxZbMUYnc8fobDLss7IbpDF4iTHULQ8MEekwOVfynIWcV+wrpDehMVSUCmRqhRjKSVG+tij2+4BBwzVzRTlmvwZ8wzRoBxOOVE2A3L21ljpxtZUYa9ZN2fdTnZAyXsOmIpZ1RtUMfxAqVu+qI3DzltmYneodjkanXbd1UX/Ww9fdJnIl5ZnauSuwh23bvl62BQgHA86jMvnzr2aHqnd9cRPPL2eS5+Bt4yiBPRD0zzxz5AOrDf51914bdEvejO+hurAJiUwI2Titv5p0oDG3/uVd/z8Rx9rkKwUY6S9fkCDKsFgG+qokEmIxzFXyAjnkOTwA+RomSGmT2y9ZRQ/RRw/6Aq5WMVXvPsP/t/vfv7tp0qI3Dr97mcvPXbZx3x/8NnHDq/9VSKOtd+54447PvShD7mbTzzxBBG97nWve93rXvdFlXH0aFl2ZVfIdmKif/+Zi877G7Vi2b2S3N3KWL9Bbxmi4rlokDtonSSXVdPAu+qKF6tTKcgKFBnfLmxWiYc1lFLMEs8gd8ZXApwcn+tspGH2gij9QLiYsB2Se9XYnf6Pjz5mn2r725VM8sUAXi9DNjdltWGy4PSxiNIB2eYnlyaBNURBTM5qOROmwD6+vIyKLmvoui2uNYND7kkrJJGnm33GhDGOzIQlKzmEuDg7IF5HuGOo9hiNyRRXrghHSpUohTTRPyVNjZ+7deqo3DdLTQK7cxmpNbn+/WcufuLxq5hL3sGHSCUNCfxSuCbDpD1w+sicRpB7FOQegnr14EiOjaiQokjMykmHrZSgpxsu+ygq1gh3okhxsfLC3XjLQIk9uEI+fH5nZzlMZ9dhYN71kb/8vz551t38o3d+BYY/qdPVq1fvu+8+57NOB7OJ6ciRQlMGCCmFSfHj733ucgS1r4I4+7nn56lIXgK3LbJynOB51CsCsCwJ48V0Eo5ZHsl9jVQe07LL5FOPbzLIHTdZRJ0AgNx5DUM1OOSemShNwTIeedmRfw1M48jdTRdp0aqSTfVqAHWG93OPqSB3zB42Ia8nEmT+jb+48MePX6nLknZNUpjGqBVWbepIieTb2gSzNDow1K4rfwrOUmGtO2mbbtSaM1Ic7hQBsnFPx2SZS1h99M8T5cR5BNZEImXkjv7acjGbsD4QmEEXW1oGQVLe+I0VjhUkl7RtCYd6D1HOk5VNJRrVnYrc5d+6x+TGYqXIvXTyWD31s7qdWaqhUY+uhijrpEkV6W85NGgZd6EFdZnZk/NEZ/O/bsjf7/me7/mVX/kVIrpw4cI999yzWq3e9a533XvvvY8//nj98EEI9wsXCi3j0KhLAMzL88gMopjAFAKXWdRgZYxgZUrL7ZqWwZhTnMNei0gSHY57zIahRu5F2NV+7gTKqVdobzn3+YTdw7BoKGBHHwBtxwF2t+qLyLnb9VCsb9asQkNNwnyraJlIRP2QaRnbOVJJ+Tr64rKPwEr7cieB9VzSTJGlrmASvVgmM42EH0Baxo0MKbq5iQk3+9wYco/UQu7Yuus6QWo1AARYWo+K1Gs69UeK/ZDGKvbztJy4TchjENIyiTErSW1gZLuxTlf2DNs0DH5fN74Uc6PqrX+pB7KnP4agIZtDjHE5ZM59yPUv/eBFhKPgSj7QuruPrR9ZmxDRMp/jOoVjveThGrmXMNHAy8hOly6Y1XbtF/TFpje96U1iDX3/+9//hje8YTKZvPOd73zkkUeaDx/MMXvFoOp2GGrSPQ7u11A2f1bIHWiZjgv+Ym4oD50MDFajMVqGYHCkbT5Es0nA+ouswfCHZIXdoLFlQHajGlATMVbD0DIO+FdSBkfY3cfXJGIPTEIzMSLEKWUgHLTPY2zIJrdh2oFffXoYyrhWg57W3yH3MTFX6+RJ4BWcOh1LGM6yfSxVIJYpN3b0ZT0qHC2Dm5hiTBEHqVr0uIQLi1o7agrMNVM09iQIKdihCv2vorOB3DMtg8pekbvSTdompSkEaiB/LbSM22nR7N3tvR5bV8vWpJPKCizVtpl8bJkGLROJaLGKDrnDA23O3XNQuc7SyDe86NTzb9skouUwjCD3uA9yd7XohzgJ4X/5zUd28+6W3b2/rtfjAw888NGPfnRnZ+cXf/EXv/M7v5OIuq6bTNoLgoM4GeTW7JxH1+Xc0wgoX1bRR0buKp4EnSXv9S6UM3SYm8qj6A8ugcMAJoOwiBl0x7xdlpnmHV8rtAyrZsakHxeJb7SXaon9IPYWYxVkpnlXce7weqx2qOqv3/biW4YY/89PnMVfCSbGkEIqRiKadcENRGlR7YLd2qHK2lKD3PP1aohTpGWsrpXObIpLS8sQZeSeikibBqVWCdo5Qix7y5Q7eBEq6d5bNKdHK5DdoTomgxC5521Zo64wbJnupkjK1SjjfID9MqhZlZ9pcO6ZlgkGuZcMmQnlNSJ3shxUYJRcCWU3zTDbDrlHOWOy1BY7IVI8c3R+ZH0ypA70/aA7VLPd1Rcn423RD9MwBc4dwBP5gL2SGsgdPiLeD8x3HJlfhJ0fso5vcu7aCXsrHa7y7UgdPch5i/6V0nQ6fc1rXvOzP/uzly5devGLX7z/wweB3NfXixkhWYEqmaFindwkz7HXnStkyFEh5Y4R7iNkAgrZhkGVTMVi9oTLtAxn5G4+apP5xTxdtCBYbidvGcO5E9fIXV8OIFX1Tt3S0dgysIRfy/68npapNst5n4f8eNa4ZSirfF8NwwSQO5vXieD1qiyfJh33g2FmgXM33zRz7g3krmXVWr+B3GMpLmRXhzE6BTVcomX2Q+5meIysLkobtfIQOIy1CQoampy7Infg3PWL54ENnfD3vvZOysJR7zMrcrfVszKDmb75+Se3dxucO8xWduEH7jm+/sLbttBogUnNmN/24lve/orTtYtuTKo00TJN3mafHi6P5fkS1XUiv9UFfs+3P/eB+8oeHZHXsrrFTuizAeMDn/zCQ09dhcyjG4rdxO+/+Sukb//2b/+hH/ohiSCwfzoI5P7YY+flQsnE6yF3ROgGPaHPuMJqkvCkEH6g5WrJmQJmNW3hU8YVEtRGzNpiLsI9G4RjLH7utcyKuSZs64yue7o+wNqq2C29kX9NzhswjhW+aRuNn3uF3FVMrE1DFmFRFWqMDdnkXSErnKiZ66qiH2g+S+ubXEmssLHajSVF7qsc81enHxHNJ+EHvv6ud//W5134gZCXcdQSGbUuTJx7CflrWhTY67BmQuS+j5uj+rnnytDYEh0jq/QR/dwp01oFxVeukFFpGYZOQOQe7CGR/RDvPDrX/LGx6Aqp/7o+ZOKXnj50ZdHPYegO0Z8OWKcQCLYVux5IF/NJWJuEtisk0SK7QmY/d6CzRs758/ng0lPiv1KZblSBm0hRbOYW5FF93Q+x9s66dHnn5OZ+DjPf8oJT9530W7pu2TJ4/1WvelUI4S1vecu+LSM6GOHeZxeCwAV5ucTwL6ZQvGXs84mWUeROBrnX+dvNRJLcsddk0TFnuw0zM0XxFDbeMmX9m0VMzg0lLHrLaIG67YIZrMdMOEM439TXi87JnePa6Bb+NMK533V0bbu1n6JhUG31JAHe0YarXlll5KirMS7vJt/Qpgh0KzbKOlv1kEKhWcf/4LXP/Ke/9XlA7kREIRBzdRYgUGQuNf3ci6mZEp87TsvE8i8R7RtawLWaGzaUlALuhxii0r5JNWaV76wOmsTmwWAdnXboOF82Z+md7IFjlGKz+bHaHMRMW/Puie3FrDO2RwbJiNVW5MQ0aoSYhICBiNuukFECh4XADS+voQoc1kw6aOtvXEsqKXQ1+EX/AIsbrUnf2hCwut4Gtu/+8tv3f2C1Wv3qr/7q13zN15w+fdo0pDVGD4KWufPOFMBAD368DnI33KLuppM+BUQPwLMzZ6h6kcTAz+IveK3IvQB2TgBBkLuMXWdIGfNz1/zZ2ksdxpc5h+eo4QxxFeb0Iizt/URLNbfPl/sqJn7u2+5XSkFXS7HpCulpmdw/MiWKPaoUvSq0gLTRvk5iUG2MxdrgOe24jzr9iCpOwBFiIo/GDsgOFZTq7QHZXSjiRu3hsTq9WpP2IWWqel/k7lTv2INmhTGASsb7+iE8LUM0xDgJsqhLJoR12IufkXuEljZ8DSR1jDaP0ZpvzborlanQqWpFbwUjsx9FQImYodDk3Ilo2Q/TjlkjeLc86/dPyMJVtIxvBTqFGm8Z+K5qsM3I3dRBog78ddL73ve+d7zjHT/1Uz91Iw8fhHDXpPvF637HkYqTXE067vuq5MrI3XxUJybe9hV3/PevuQfJAa2PyzAw6+ZsBTKCvufAueuc1z01koqwK9maE6CUfwcTkCGRUHi52ZucHKBdzkLIdrmd/dzL5ESrw/Zu/+dnr+kqm8domWqAYJlaFuK7gtwzzWrmOZsXTc7VY514y0hZGU3rr7gSUp4tsGcqoOY15x7RWpOO2Us/JT0Uq7Hnmo+sxT7ILNjIB03JM02rQ1NDXYgw4J5Cyzjhnjl3Bq+kQ/MOH1DAJKnPFEpubxG1mZaJRPTklcXualBv1NKQFGIsOhiOkg0HHiqJAdQ2wdBSbxmulKK2IlJc9HEabLhv0GHXF+0tRxd9qwlDmxoON/GqoO+rwwLpBvavXTe97W1ve+SRR65rSk2V/GsWdiPp8/mYPeXcx2BLGbhc7iRaxq6GQj5NRoUyZuI69ej65MTmtMATW1y6zotcdZgJ2UdVMhRaJnHuLp67ZX4pw0a2Rj8s0W0VgWuvb0AnsRsb+0OTemCpmAhMj13e+7U/Pe9eqZ093PhkWNmQaS8YVPvEJNTQUjqfrZ/1WIVJ/dyVc6+Y0NqUHZg7qCGZCdnoMPG2lOsOelhxXIwN5IgJV5bXQe7wZ9OX4/XPPXFkbYIrDPTISmg896qMOqd9I1EfE/JVWubw2gQHnnOFHIaIIw0bGwIr5/CvPvbkX5zdoRYyC9VeJ8pyGWpeOsHRMgCH00UXyjTlpqcjRUqbmEIIOZ67feaGaBldF1bmou0EVQAAIABJREFUhNpejWu4prcMIXKPsaYQLl3euX6dvnTpIIS7hj3ruK0PSVFeHgGpcnDEUsW5k+4wIruVw+N2lZIFSKbfLd5PJXbZHzkj9+TnLsg9h8RS5O6bg2hOxjdSSWhQlTsduNMwMQIxtn1VuwY7miEZVKtFrlYMFgECUaP6ksoSvkXL+GQaCyuVmCGe59zBFTJJpxtxhSQiEe66Q4Qk3If5ZCra+jy9eTxwWHO2TzJy/xv3Hft7X3tnBGGtpPN1aBkwP1yHc4/mz1q+/6PXP+ueE2vAkJtAMSIr0KOXGt4yUdyrM3KPRHRo7mgZgxKAXWSGcNkyOGGbQToWsbb0KP/j7sO1mZQxzQuP3LUtBblXTFFuJsVIsokpMNX74JxFdyxFMJx4WobLGMZyc1XLzX4o9xUd9UMDTPxncczelzbdfvtRudiHlpHEtkPlG2N0IaQ4MLk5z9X4I8Jdr+a+pIpzj2xOYmq6QlLexIQD1y1OjSEX5liiZYKF9jXMh7Wt8WBLGY6vPt1P6C3DWU/E6+5QdT2Z84x2WsqqPAk4dYXMChsWH94SsE+FKQl3s0pAHp+BlEg0F1MIPOYtw1VzCIQ7Wfkbc23jWG1Z5YL0ANG+yD1YCRiAU4I8eRLMffRzD7YnmwbVqAdMU/EKQ1omI3cjstXpi62tVeWvlCsUWT0kxKR5bTHY+2b9rQ0s9u3qTJ0iWGFGcTWnKAPtVZ9aql8fH7gROVo490LL5N6ucZtZZKAcAOSer4cYu8omtrG5RgeYDkK472UfWDnJmlpzDDG7AhdZXeLkwcEdozGolqzIu0Iq2KEMTyRZDiSJ6Rzrh5jo0Ut7P/rBz8gwlXiNKlwihj/EUQVSTwCLodQBQGkdDLS3mJdgtHFy7QcBYWc2O869mvZomqNKT8TW7vmGU2lWfphDhCXDaogSgMnVX1/nEfLRYj0ioklXJG/UVZTRhUa4S6srGrospRv6o1PRwHnpQ5TJCh43qDKZgMDZDXQcudvVZ1PTENG0CyjaBntehIoLvWhw7jFq0GCp+OG1CWrlGrnDGgsIw8pbJjuKVEOC6PMX9378w581N+2w1yIUUqgbvsruQsuUGVHsrq6ZlI3eAaC9lhlv2M9dL3QVi5XBOwW/NDj3dF+Xbqshhqqn9FCwg0kH4Qr51FMpSqquN8e63XVGF1jNUOoOIT/hDiOqkTtc6zM16jcwOT1D6ijGTIvVcPbqkpkopm0gysMs+kFRFebjgYCh1EvV8p4sltVMqidwyrrP28GfeD0BMcZCRGBvM8MTFeBwMqjWm5jsn2yENSJ3/bPENimvQIWpvdB2ZanOjhQ185gXK5qzdy1N3jKmH7BDmsh9CWd46QSOSbKw1aemK37udx/bWw0vuH1T2/5nT11rPJqfN3R2gt52nUc0CYxsm0Hu2cGRoFcbnHtC7gXzWlomOop8GAyDgY3tAvUDyW7PPkahyOohgZGdsC3Im3O+GanylqloGbPaa0kLUTlDmjKswgF0mDf8NlPh3Cv1oE7P5vl8gbgKNbrdEO7H2+XtBZ26gWp9idJBIPetreQApMi9qfzxX9HYEhsOiTmUdKicDedOfmSoLKA0bgyAxQqEvCiORExqqGFmdYVMr/z+I9sFuVfyLrP2xHYc6KhVb5lgxSUGq8mLCdLaRrtAdaSeExWukwcbX5DyRip8qubcG94yAAmdd9Cl3ZVkggZV8zlYAXIjNX2oOmYhi3A5D9UrgJSyuHeukOVhqIamaTaochbukhAVNlWROGkosJVZjXvNfVvseoVbtAwRTQJ3gRAEGG8ZmCPNqRRjChzGwFZbg2p2bsmVsbSM00AJucvrq4r90FrVXWTWYfanmMNoJyRUiisXTVcrzIGyh34IDTYstoZTIx8wnEToXgK/OHg4woK73K8XN5SPrHE1mFYnxN3UdBDC/cSJLRlqXTCcaZ2Qc2cSVGu2gDM8KSYv+dPaIct3RfBbaxRLmCRJqovWACe8MLHEa9TF2u989pKEjiMrAevYL06mSJ11lCTkTqnhhlPOZRHRc27Z4Grvzz7jvv41Go/pdKfsUCVaVhvNtbbwp1lAFIY6YfZIlSuk477kr7EgunXTkBPPy/nSk964l03iruE5z/QDVml92u3kuE4MDHuMImIojpBIgbkfoobLGifb8/PB71BtKrNJ8KSiiS1j1CTRKC2T6KsY6Vkn1v/JtzxbH5CgFwEcloao845RAzEwHlKl1RBjy1AZmGs+CuWyo2X0LRcVskzblmQ+vDbRLX4xG9jTN8qqXd+KrT1EddKif/vhSw7o1H7uZCm+XGej2Pb3c59Xx4ve1HQwIX+vMvEk8D6bmNAzRCWIUIfZW8agBnHnAuRe5Aguhhr2SZsJVEDusAo+5nL8k0PuTHR5d/UHn9+um1Ot8oyfuxaKISG5DH0OIBYZ3vq7rzyDUlXrz7YJlhY03TzYEFRU2amaQa9aRj+TJ7Zakpi59EnUtRuz8H2vupOZHr3UiH1az2eGqEFlOQ+r7zoAZEHu+Q4CQ11MaFqfhr109jqhuW/IZ62MbVBloiGmcJjUgq718wvoYeZ2304yTafJIndWQXw9gyoxN8i9mBcNjkDQbrG0DOOBKnLtap2XCJVwB8mGUrtg5ELL6IhNzwfYxKQXb37prS+5I51ZES0tQ1W63tcoj0np//JjT1YSxkOTh8/t1ouMjk34nb5cNGgZPav9YNJBCPfLl68RUcdcYsuMKFXEqsxJ1Orx5ARAkrn455J1oqj7NEHIyltmFLkLqaJcHhMTzSbMbPif3374Usfl3QfuPTbrNGYL6Ytu+iklQhlpYjUMLQP/isdkdFEhQcztk551Yv3k5jRSBM6dKVtBtc+vLhrBTnxPZkmd/f+KgNBnALmnNmoem7PuRx+8m4n+6W9/vlFW67rLtInWFtFr7YYfqnMvMU9dIWlan5YAmWzX6ZyRe9PBkZmeurJQ8npsJ72mwPwbf3ER/9TKd4GfdSJRl5OO3eYXUMm2V2Xs2cbGmGixtEIqTUuPDfloX22Tsi7yccGgqrRMkv5NWoZkjVsBA+cDppO6Nqiic4HWFpCB9oNRUaS0jI4HGDY36goJmnvRp0B+WH/M4kc/+BkdCfjtmsg9RvK4nWh372kn3I8fP8ScRm1NUktS4Ex54DLRh97+klObM/2QBANLeNsKuaesnPhmKBSHy37InSJbM900BHV9kYcv767QueX2w3OJzU/eoMpYRJ51SX904MPBTqwDfpeuw7hgVBHi6OyBrbvt8Ozw2iRCsISE0ch4jP2b/3SOqjQ2Q7JEy3/CTz4qZJUBc8Mtxz2p704CLzNyz81sf0HKmLQ6rKNaSsPwW880qKtmRoU0RIO4NQXm//s/nVU38Osjd6/jS4lH1ib/6JueJRVzBlWicvIGNlyBf4XcIyB3EdzmCaVZTGjfrIzZfspkUM0IQI48rBQqcysSHE7DJgYpyB36pHRO9bE6UIe69wXFsemHG/SWgQnjvjKeSaCpL2Mp3ZkERjpThXvToDqb/3VD/n5R6SCE+6FDayzIfTxwmCQnDl50+9Zskug8x7nLutItz2Evho6MkqHqFXS5KUXnbAPEjFT/S1FOwS6lV4NZz7Jd12tZgCyKBtKBFKz0D6YhcjO9Ja/jHOLxnsS+kjGmG7J14uB8ZKJPPH6FquSyd2DEce6S+oGyQVU/h892sWoJ94bK5y5QRu5pOQ97vhq7QkLeodrIn8t/mtZtjGWd7RnhcoyxGchX6TWnzseS70kYGIhJJ8HXv7OaPiv+dKcmppIpL3HuhUCXlDl375dJ+XuhW6GCaxmQ4jnjF3NETZMmfs2y4M5MSKaGUpXIoi7EcKDIy3WmwmIIZkoitB+bGVh/rPRiFXGoKseL79aLjM5GlQA/dxE05vXp7EANqgfhCvnkk5eIDHK/AW8ZvwRTokNTNN4ybF7XbK3wJXvRDOQS8t4lRTfy+DSUoFRyZzVEo1QA+GRip0kdyBRKD3RsOFaL3Mu/CbnbTd7eW8b7uRedwZwc2vKfoifKFl+G0Hqc/UdjrFzpc93wo5ClZZZlE1N+hVwmvOyvQwFpyzoGzj17WWidWwbVinMHaYVdKkmFe5KG+laWLHEEuXOSdzEb/K8j3Wvkrn2rizdmmnact5em5KNCam253IyRnn/b5rH1qRhUJ11C7ujDXtrFFJgXsTQKBoZpSICQv6S0TK2DiauDAMow05xJh2geFbi5l2FHCA5snOMOubu3rHAYjQo5CazaejC0zMCQSdP1Q5c7wLnL4ibdXwFyrzvqytVdok06qHQQyH13dyFSTENG7I/c03WCKjn8QN5pIr8GG58ke62kzMFBhfVfR0qQneSFcw+sIi8jd2bmaULuJUP1lnHTjFCgVErFGFSz7UhxmbEMy/PpdCHmHAgTuwvFOxNdXfTXln2zMyNEn5dfInjLkNkHVDBL/aHSAiI1MzOM8ACe4Umtb81jtEzrjoR0Jy+jyzBwOf+zb7vfxb+GVb+IRKMS16d4Ink5OXrInjlDpEWTcyei7E6K1RtLLTZDfyr3xe8An8V98Loq5WolenR9csvWNKpBlYv0xDSkUMZeiJOiE5CbelhH5twHZ/agPN1G/NxL/lmtlio55I7LYtTfdSbkaU8slPWBMXMUmmTEAUEMHu4r15FFyNAyrI9hT6qSG2LD+LdcXifk75c2HYRwP336OBOLH2QOvOVTxqpJdOIMRG8EkNqEAery0jVl4mkZMu9qakaF7DK1wjbqukwY5GGG6iQmduuMjJJMS9O76U/0l2LrTZSnMRMcGYypXgB9+M8v/LtPXySiE5vTzZlhk4cY0UJAFS2zsqgE11huEaCpIHdA/c6g6hhkeWaxamJhUx+5U3vLIHVef9Nveu4JaXgj2kkpqLxWkDt8PsrQT4RRs7aFlqF0UT8z1jqydBxu7puUEB3pSTiJySxJFSfplxJsgfEIy8osv6hHw5uvX9CJO6wjhXvMy5T8vFuKcWNrbg3UNKmGQL1odHbL1GORex5vCJ5QaFQWKcyn1ISIiF57/wkiWqwGp0uo+mq1n7tzKDLIvZqxG5vzdp1uTjoI4T6ZdEQ0CWFiww/8/Qfvdk/WWI+tesf7NS1TDKr5vnU7SRIHRoMvWk57iHk4Kr5momkXlJbRhM6wgqqcTLGcu1QJch6hZRyVLwWlKJXRyiPbV0S0s+yJ6EcfvPtr7jmi96W7CtZTwQR9uBoihjW2vD+2iKh4y6SbsfzKEBWygX0kjSB30LXwZXUTk6Nl6sybZSFPxWhyIaJ9OPdkrBNapsW5hyTvnFVwLNUCsXx0kGXo5y4Xze2+TAUnASvIkdJJTCEv9XJxKhaLPoBRV2CEA8VDpHf/1qPqLVNz2Vwto7W95TPlP7hFy6iN1yJ3xRNeBZLFRm1XyPHvUSH31BtuTNaukARSSCm1zrYdOfca1oxSFjcnHYRwf+SRc4J8T27Onnl8nQCN6jNIArBdjqG/FGJk3XxB3s/dY7QsVeVOe1Gv1E3XMqh+58tv+9YXngojs0Jlsa40CxgBGykKSt37KghOG555HhCsuSDOcOC/e+AZqfTgZxoRXVsO+XntK0aNpT0QEdkxr4b4lXcddt3lXDK0OO8tE9MBgYEbh3XU4qBpoqxHPsMmpiIUQGRU0XVKv4HiKasKHBuSLC1j1JWy8G3OnYhyxDTaV5pIcosMlGV4kJ6YpgiEo1J/Up+CJKDa+QGKkYZIGn5gyLvwy4ejyMU9xkwE5jLmtWJ9jJ+/tCt/ircMqiWtSY3csb2OQ4+ZhzEGVUIjBIgCzQRspy7ovF5jM8ccvYxwpxhz8xerAZVK21sG/CD0MTWqv+C2zeItM0QUNZK2t3ebVbpJ6YAO62CiLtDrn3viH77+mVSJjPIYV/9SG7kHZgwfYRE6veVlt95/y0aBOQBMCD4YLty0SiGUJVUOEsAvun3rObdsKExAXKk5f+sLT7HSMmm8MleNzY4HGbkHA3CwIVhWibkG87oCg0xE1xa961tpy2B3mZOjZZhWQ9yad+QMGGS6juxwB849vuzMIc1n6gyq9kMz8z4HSbumIS2Tf/JrZ3ir/FsnXSFhfcCgmrBkolkG3cnZ9pZRJR1b43PseawqIPTyK9IycmEChxk7KuNjav5NtAzwHpgQuaNYpNyxD5/fKTXM8dxx0FIN3lvBgmr1k99lgWW6zI35GTSVMft3O7g7FIIIFgiumfVdIqqQuxax6J23TKqtzbbm3MuOgeehcI+NkX/dQfKlTQdzzN4JglFLILD0GYaudHYI6x9Snh+i+fAEq8tX3nP0ubdu6uliDO9i5i1XSLPKG+Dbk+VJsT7y71c944gbr0QFuasaR+SeSyyzyy0FtE86mNVYej2wd5bDkbXJrYdmZXoQMXMED2X5X7QeY32mZRga5VYqnBcE/+S3Pr8ArlG3vzLxahjs+qM5924MuTN3TG4TU8jqkMl/Dky4qsDKq8qXSo7RMhGw8JifO4m3DKzV9klOTCCYLY4GxJMQgGRnAgCByBQWkdnEmpVTCfmb9oKUUUfFemlu4ld+/x89BZU0G5dWQ9SYXyfyQc/yFRoGVSPQLSYgs8zVKsFKQmFZo8m0D3LHGT0yNFq0DFO1Pms6bdec+ySUHQMdc9kaRjFUQ39z62kX8nexWGWIakZtwyGS8d/UuSYQuT4JS06ynLv8+6/f+sJX33eMq2w1Z4IvpDdD5hlFIOqCUZ/J5+plvQ0joMZKVkqaQjVniRLlqiRmQ6z2bMKcxzrUx2JqIiK6tuxfec+RN77oFte3gz0qkxKLrYcj02qIGGLBeOyYjiIi+r3PXV7ChI6Qee0t41cY1E54X8W3Rv3Vo0Xwc3jkDiNHk1YSgaH+uQYGDEwyulhomVUzoEp6LCH9L5KWYeMKWe4X5J7vNzvTYpT0fELusRx2UcfwGQZSO5Aj97UUvVZppZy7/PQ37jt+59E5PlkXxPAhXLbZ880bVGv2jyATGwlZ227QGOqw2gFB89FriVQtNxaryNCtdcBXqjzKKO9QjfkaYst4ZUNEq1XDA/jmpYMQ7o8/foFZAsukO9JkF8qRYEqjxh5ixPjOevHIxT3su2ZsA4QtSCxKwmGhwz1AyF93CEBgakIe5PozLVMqULb/wcNDGdBc4iJkg63omKwCiYhmXY0DvNCUpGcmWB1AkdRbJv3ipuOqjxgczTStaGWD9AG5q8s/7Sx7OQuU9ZWWCK5TE+NDVEhsjtbHvISjqIbSGfymN6TC1vBTnE0jUAeLfphVO6OyyZ3yWu2Lo2UQh6Iinyrnzn6aMHQmsxl1VL5y8ZZhLiszLVx2IeECsfSbmXZSNGPEoT5z7r/2t198aD7Rdo0hd1A/oJJ1VVQMqgm5F2WTe8StsxveMiMqgcaHGc56RO7SUqcy3XlMDVoG/IvwPF6xbbg6bF9ZtOt0c9JBCPe1tRkRTWAaoZgztanlF/MQzT6O/CRdXfT4dIlKBngBiTOX9X/7wDNGDsguOyDU7EnwKyZndSlghBIwZ5WSuW3yL+6G0BHMoDxgwjMRCcOUxFOe3qiotBrXlr2TkrJwj2WHKqlfRJn8TH2ML7ht67X3n7gR5E5EPQS6iWAK3t7rsVsa35TaiatrZjdhDBXDLCbl6+RvtUJpglQSI7cwLLxs+IGo8QhdPyg1dQPhB6qPous/GBt3Hp2fOTInKus56y1TnvRSPtcfD8hGkFHaZTdCE5UNIhYG8eas297r9Y7zlvmqZxx+3q2bMsib3jJwbWZlhL6lsonJRH8qMz3fxH28T11Zaik1uUr7cu44mBXGEdFeP7B5jEvPUOk9l0kHx/xOALknbxlbdDcZq9RNSQch3G+99Qhbe4h0XItzh+v8Y4zlPHinHjB12XWkPEOMWZURTERE3/LCU0aaZCwTmGNMArcORem2NqAPGYKR2lvGvaJRazp7rBosIExzZl2mUQG0YraaSgBb6DRu0zLoB82rId57cv3rnnW0gdxLLxFnJToMJby10jKGSSjdckOpVlSc9hMO1NqhSoB581vlD1A8oEcBnaJhI3cUa/SeFDhMOPfVUAt3XYHdIOfuYIFEc6t/evsrTr/9FafxPvrSIIzQT1NoGXCFFN0wVBs1dccQ2RGCXbE5S409NO8u7670Jwz3z0T337J517E1ya3pLYO1hRdLPD71OiXg2QmQPg54jC3zu5+9BP2gpcDXH9+h6pF77o1lnwJO5OLKv1pEi5Yp1t0O+kEDtGGarz3tYstsb+9yjs0iCWcXJhU0BcyS5dxLDkx20NRn+OnIwLFbJL4tGqWqjlNZkjZmVNHbUG0L/bSlKvWQIwKeEcA47IsrZkMmIrr/lo1/9sb7CWZ4LTTlz2uL3g0pGbIaiZvzk86querTct4g95SDyVFa1EdLy8DnnI4c1pHr0552zbv3ndq4sLOipiuklQilxJFZXXMOZJA7MdMTlxf/2+88SkldsYjLfZD7F7GJyb74469/5mvvP641qWuu31dPPpEvX+aIFWqqivCwjmLYzxd5RVI+MRVZn/6WXWCchHtB7krLSHGZ/GFuxnOHtjgdLGbeUKJCiqw3gQRqxaAzAlOwPg56qWTL1z3r6FfeddhUBr6keDFmg6pFcsF0kfYe9hhlWqZw7uDnjppJ0qIVePXmpYMQ7ufPbxOZc0k4aUX4KkkKe5HNXDwxCOZnLaCV069nuyRQLemz1VCxIHeWoo1BNZQiVL2z5ixC80OfOn/+2jIv95grsgiROxF16OeuPmqB9XRd+f/R9clXPeOwymWd+fVwv7YcVI3l9hIZ5J7KQ28Zzv7pOq9C9a+2UR6QMFJyP5YTB5mqfTcujcheI/TzSOBveFY6Xb04SECWzVW5kk5aN0mhyMdSVcM4Ee2uhk994VquTxKXy36YVwvqpOGyk/P1gHtpXYnPDrK1ZVDJC1wYPwWvlAGQvK30K4uFkHPb3VcQW4KbKc4cpXubtzJylySHdSC21aFy/U1MpR+yq7GNCmmNEH70EkxwV0qTc4+5ycfWp4fXJta6xvgY5U+5WA0oi+v1KzU3MYFA7wL3JfxAdBKGiK7tPO0496NHN5kETZgPNuotk8Gm3IzGoEqYA5tvphOglILLz//6lWfIIl9TtEj8HFlX7ujRybkIv0PVOIMzMdMP/ptPf/yxK4XrNMi9lKtBLt1Oa1hrF4nvFuacfWkcNJA3dpatmFwZLuXuTeIP52o6wYfYBTMh+6U4YyU8XSyqDCIia4pQ7hhzaKb6NjNtzpOgiZF+8tf/ktFzFE5lqhN68mhu+Alk1VXQYlWxALFlGsidpBPMzoZ9kuY97cTftJT23Fs2cw1NP8tfJnBYfoTRoJrWf8wQzE7+rNcTehIToc62sj4hd6ZD88nlvZU+aWkZVrMtN2PLWK2J15lzd8gdZ25ZXuPyomb48C0CQINaje1rhnOX8ErMVMKipZTs7daoVmeSvGUiUcW51wNzOjuIQI2aDkK4HzmywcxdwMEkHVeeweGlMoiImFh23KXH8vOOHqEcNxGfAU3ARPSVd+Xt+CkHM1bk3QfuPfaBt71IP4yKYH3GkZWo3jnVNp67qtYeOwm13OINxoGNbwAYVAssqk+fYNAoLgl1aJqf+KLoKm/P/aBVHztgxBDNmaxyQ8SWGJKeiNoVr7j7iEiHkoOvYzsZcVB6uNz9xBNXVDOlX61qbKrt8nDRiER21aWtM/UhzrRMk3MnAm6qaVC1gDFd4LJG0s+96f5mlQ1yhwaSxcVqoWGmFexg4hSiw4yTRHCLYst1gi/FREWhKi0jmbiTmPQwv9AMP4DoG1QZw4IYXcsQg9uPUoqT+xgYjkceFpE9Cfy+Nz+P7JBASirGEhaNyAz1mpzEpF/W+LkbWqYRW+ZpeIbquXNXiOg7XnbbS08fkjtpdtUyK09O/KHNuVs5Ti3iksmz8AQAzfV8QkmBD+WRXUahmUXmY1cR+2iIdP7asoT8VQUAzBLr0dv5EHCdugonwbuGC3ajhNCynHLCqDTc3WemSF7NOG+Z1dDg3HOFSy9xdu4UL0BpVtnExPxlZw6lzVC2Vq6r90/6Lo4RNYGALnQft3wdWFUUtzm8QHcIaimhkOXjYrUv5z5uULXwpYgDX5/WeFaB6AKH6fdSVR047XET7jvktRLDQeTauCEWV0gtTslGKVE5d6VlGsjdHGbbChxWYSBNSns6gypw7qzNtLqEiOhVzzyiWYVgmHpNukF0a95xS8vquMUi9GLaJQdlh4dcJpQ3LskGKA1PTWqzsS/u7B7oSUwHsUy4cmWHif7m808W94BA5PdVy7/1HREc+aZiAXhGkhrTWySsf1jq0JALTJwmAHMJP1Cq5IapU+/yyrlrS+Pnrr/mURUg4Gpg5y2THkYDLIoDuZx2/NYvv901yjUQZRkTD0OLc4ddvv2Q5o8OaM540HWp/NEXY1SC8PKKW5/VdrAxKN8U+lh0P0Sbv1TPv+ZuAOfOnAQHU2uXSt2BQsssB+PnzlzsdUM2PDQNqh3zEnx1pA54stI+SRVbdSBt+rWQbJSgACvVm5+MFTmgboiE+tuKMPCWmYgrpKRVbyLNdbmgwM2TmNyYKYJ7SGGHeZmCOSckZDh3vS7LC1XeJmdnNSnNLPYJ82Fhzka1jUEOTESzLlhaphpjeRh0gf7dpy/srgaSUAS6iSltgjMvLlqU6c1LB+MKedQNZfmryTZQ7rjynaw3mCTnf0p51RbYQG9ck6qIR3xXioZn0NmZ4NMGNlCdvLdMGrjnrqZzhhxDmmj9DPCluE7pUhipgVntz+y0IBETzTp+97c+m6tWuF4qrzBpgGLtW5yPTLwcBnFXBV1VL4ZSP1BepEsPDENEBaxdrRW+kWTtB9pv5YG8a7S0zykO/KPeVZQle3rMce51ki+zGmJw2yAzDiCgZZqMO8Y1k+c3ZqEx7Jmwx+Amaz09/kK9AAAgAElEQVTzpGC2HzExe2lNV2JyZJOAX7WMhB/QL04EBtX1aRATjnoBlKWeXSvXARoYAI2hZYh+5Y+fkovsaERE9BV3Hf7Q21/i2o5yucvb/dwZO2g10fSxR7dL6fZDdADJZSMrQ27yx6wzSLEeIjpNusC7OSL0BAyqMTZgzXxtWuV0E9PBbGKacjVwKTvMpTtwXweE3B8GH35gbRKmlaFD9vGfOTr/F//F87UUk1Ue9JwFKPY8LgmJdKpU3jJWk+O3Vxl6Ec44Z5XsOrhlR99Q0EqAua0GHH2F2ZgcnO8NJq+u9IKZwH+A9U6M/VA21svxeKpgECQ6eCuvD7C7L+aI84ym4/y8r+eIOG08aZ1h+mge07Kc7nFwScVusD94o2IFpuXvxWqYtpj9oJ2Qv3vdItzWKpmvT8Mkb9/Vj6gi2zefiVoLXLI9w5zO92Ai+aCcG4MfXdIA3jKO49Yvmw2qrFJbMnG0jG69aCJ3pXqoGj8f/dxllgh9A1H+QJPAh9cm+V0zXzTDGrm7hS/2YrCQCF/RX4cqyKWk2SS9jejNJbm3OeuObySR7V0ha5g1FmP+5qSDKOzRR88/49hazZZMqqZmWWnGOhpUpcvf+Q13fe2zjpL9ZqLYzSRUCGlLQRVS38TJ4KRJqGgZ9P+Tt/ohrrLjq84xFHkhMz/a5KbEAYnPjpYBpXVDUl7uxNYB2Up5MdMqIXf4ClkXwpq6yHo5YU6uEacgi00tyTUi2+23Y5OJpH5IZ2+WLyJnH9qHRR3WrpAO8x6CEJh1WbnmtOjjpDMtUPs5EQ0xCvprcu7Oy4iINqZdplnKbyiysTeyfNHnmcuoKI3V0cKya0m/HWPb04X1lmEsV/49uTn97pffrvXvYdPTYN2rOtUiTdmXfyXoc2wd2/ADBkGbSZeLC14n5V4qSq4qwvRVzlAqT0Qlyo32g1zOuuCiiFetS49+9d1H7jo21w7BA7LrVl+9ulfldBPTQQj31ar//e/7sqPrhd+XfjHIHToRhS/bwGHp4VYpk84fG092+enmtluPB3gml8L+22c5og/Vm5iGWOKNUBZtVj5yCNmgKgdUGW+Z8gxnQT8Z6SjXFU4gIpvE6QzVVKjcF8Gkw3eVqZWQG/XUj71q2nkNogtSsSV2CQHFLhP0bIVFPfObssDd15FQc+5I+8gEri3za9PGwEZZQ0R3Hl3D3qinorB8i36Y2oGFaFRPocPdGJpefMeWFic/rk9D26Ba9wCzgGI3UBV8qI7hHCmTifpiWSGmxg7VaEL+lhGi/TOfhFsPzTRnhOSGx2Ou94SbesJ4Nkg8PxA0KmSxk+tPrNwpzDVPElJqOxaKMwX7qtzHte9qMMy4vjLrjCJpQigwjxX1g8I9OxOVtGqFF7156WBC/p6Uw5hKqczU5Nx1vMJH3d7rlc8Ndohg12W3k+bXtQIxf5U24oB3q9gybbISEHGK3J8591IBReKI3Bl2MOmfuaDSG7jtRRenZBu7T5KpMiByZyJKBztolyaDKhXO/dj6BGtFlIF8kmvFAyfC3ENCieyn3D/VzWH44tRa6kpZbo+bSCi2cX4o97wOEolruL9BlYWWsWIbJ7zSMjHGejz/yKvvJhuM4avvPvIrb30hVX3SHIoyBlCIK3eEcCHkUcGcfQHyn7DfgrUPqeLcEfegIA6ZlinqvJK2TnS6FjW+KQxC94FQyNY9E9hMt/yKWTdbfFBmjf18TBm5f+LxK6hUNM0mATcwVx/W6GP9dRJYgt6wRpa1b21sPO2O2auTtLnBucu/9gt97NHtsu5OI7tAXX1SVm0O/WGGTtY4Tqi5/nKukK+9/8SxDeNfZFwh80ct8akVzPoo5MagitNJrWdKJhpapjEtob160yqzkCdSsD0QM76QUmT/C7P/CtWcyaAVfIQFwovocQq4Xk4995bNWg6OtQVnstvtoiqzs73BRHNwQkQBx9B7gtyto6GpldR80UeNoIulqEVO+K4mcpcb6O6yNg0SF4xaHxHf56zLkUxjpn/8zfeSGR5J6nECDUrREKXYhGbAZFfIUj28YGsB4rKPT97FYETZyjJKyxQYYRGJ/IvhB8rzWh8urUt3Mbxa6WEbmqmqQENbpLYHJqLf+ewlM2JzPaeBa0XiUsjSXz9QgIWO7sLF9DQ8rOORR866QMYMg97eLx8D+8X5uXN5Hp/xKrp+HlMocqyRp0jAHN4rpX/8N+99xjGzlrdrN2KifojZ0lhuoilPFmsQgajMWy4zmfVEbK5MajoETQOqVmNLKY+2/ABTQu7FoKp+7ni8FDYTOidlqK8r54O1Qp2K6X1veR5ydKXarYa4MYKznfPOTM/aMc8ngTOl61ohg+RDb3+JrEv2Q+5EzLTs47Qz3AhqiH4gOREsWvNpKtGgP9OrbORdQ4So1HYU85flE6/0W6iSk3Gl3c6tqABRBKuzFcE0ccgdvWtQNjHjWq2qvUUYIGZNW9wmplITXM7mi8D8vrc87/SRubOUYiscCgEtVRIa0v/kyWtEZqhLDrOJoWVqEa95djD8cAXZjAp55erTLvyA42QoT49pHSMbZAd+7HqHaq3DJzVytyxK+dItie8QsSR3EpOrJ1k5qCNYVq8hW5soQTC9BuTOuLGWuXCUxQ2f2WxAV51Rp6agJ0pHrcaalqGIoSJXfQkVi0WgGMI6yNnQApFjLOa1QsuMa6B9FvKuLZ5xJmYcBpz6EN+adXzvyXV9JeLD6YLvPLpWCzg/JAInzr0zlcAJn7514CYtUyN3vXADtdkDGRlw/hO+DuiYEErna0gT6SUE2pKGoYnc0yhNSJy0ROPjiLveKMfg5arninbJ17UGZaBlmp42Wu0y17QfbFn7IHftSdQH7vOhStCGqEF1LPyATnacvziW5JhGJ975YImSgyjt9OnjTr5Li9FbxstfO1w8ci+ToTzWgQDNpTBelGUBEVV0AeIgShMpG1Qr6eREDyyQ84SHvf44ylO54CGgbGmeBiAic1mOltHxXY+eZi9JnrVBFZE7p9gy9LdecOr7vvZO18nItHzrC295zi0bBDoM20UoMoqDdtWBY4rIPUaNRXdRz7mX3Fkuzz618aG3v0Rlh9nEBMLRCbi6VtLPi37wtAz8K7QMwx5dV3/Onqy4kquLa37HwBwCr03DNz//pDJRue3mo4SQMu4T1Svjl+vduci5e4NqlpUo9K23jDm6SxeXjuHEuA5SxH/zdXe94m4T/ENG8gAx1wwggFHqKknuk2WUjx9XX0Q1U+5bGh21hQ6tV9x95MFnH8eeqVPi7oGWwWNVhogzKF3M50+7kL+7u0sXVklaO4rc8V8iwtkLmILITA8NqYG51ThX+fp6vW/qILDFcu7182b3YL6Q+VNCfBAzGkiZ1FuGwBoWQL4HEx6LDS3jattqgkuBidkaVIkondpT+qEfYsd85sj8/ls2MGe2OX/Xy297/m2blAMiGko0kwNmSd4WW4164pMFljrsY+8IcVEm1bjOcENLOwFtxXUlmWmxis6g6mkZioEpxraDQNAtqQo1VEzXFTMrpKTF1ybhzS+9Vauda2ukpJJ7gw3sXIevyq6QprtwlQwykdlu0nYkj1q5XBHm0FcmIvrqe46ApUH7ISN3KKJRB7bZ4q00AIxgLR1YusiMQWm7CUlrtQURveqeo9/8/JM0sqAnmEQdWLwRuee1e8mTiFb9026H6pNPXuxbh882ZBbIbuzPsdmLf9W0DJWJhEXg+sBn5V53gcMg21T5fC6dFZr5BADOAyvkBS/l+2ob1DNMtO4hL8YTLOKyxOHkIllmY1vxgGylPMhwhS4Xgtxx4YlHkeAkrMhZJqI+RowMITYPMtYwxuLqGlY3G9deB1dyjZm6Vi9woXQLa0z5M2mjLHJ3ioSZOCN3I1A0w4TcmWuHXa2GjZHpkXuzKyjXsLJ2lE+PdrxCywxZdeVP7JqmJzHhZy1rrAwF8n1GpB/RoMo5NGlFncExgSrdTLv0dTSoEjyJc1MvtHvdYiukIzyxwFREaYj5fIwdwtBe92mocEGNbxTylNHh94pnHJHz1pmS8QM1NxFd2znQ2DIHIdy3ttb9tCGi/ZA7uzsVLWNQj6TkdmJLYfOWydONyGA/MFsR7OtJLIFbZxIhK89ShgkvGW7Nu1kXGJauAYY16w4UNuNJkIhWG2mZtiTItcIGQtOIGeV4mjtDLJy79iH2Xrl2EpaJshego2WMJoCedGkEudctMmwpVfosCZfKJCM/YWCALGWYywAgIrPlypUvkm7Rx2nHLzm9pZvyUWBpoMTYDIQHn8/L9Epqux7AznRa2V+raCPOIU3SA3ogkWYs/jOObSicuz1dgG1EMGNQzXvCXbW1Y3Mm7QErmcdcJdcttSwu2XpMlhyKxrSIe0X1JeBFfvapjRfctolvOQqoOTKlzC7ornV6yemtjRwtOeZPgKU/DY/ZO3Fiq7OrJv2EeIIl+WFRnncGVW4Nmi7wXUfX3vPtz8VSamml0mGEczd38t7rxieR+AdrKfyhqd6gyJ3p5990/xtedOqlpw/pFnbGnKlsPylCJ3BgvvfExquffVwyx01MgQsicevNSgQXsUv2XA75xXLuTNW5ENqoIpigh4SWUdgC1Jnv57r3ml1qSYn02Ajnzvor28BqY8lKSebiMWJytq8Qs/i58z947TP/7dtfguADQmNSYBpaBlVmYmI8AsX2ahH6dc3f8ao7N2cdVDgV7fGNSLeQOnyIUUZUWq5VTRuy3zoOnjIybaDNwrlLBCFnUE3LBb/NSv2DuSUcUc4aV0gq47B0F7xbkDtO6ry+acWnMys8fJ7ssPym555488sy8ZX7GQttDiuld9CUpRJskDgQxHg64HT6tIstc+nStcHSdTqN3Xwon7ZcJ/WYHuDG85rV1rxTu408rFu961rVQ4HsqKJi9my8K8uOWRcIMQWXt3AIfuS/emmJmxE4gD9sCWaZbWJCy3z5XYf+y6+6Q7Kto0I2pa1riybh9Iu3TH4g2oNV///2vjRY0qQ4LLO+Pt99zfHmzX3szuzN3ssCe7PLsYBgWcQlYbDAQkISCIEAgYxsHSCErRB2KCAsgyyHwgJH2JLDhHDgQ8KSkEMyYB0ECiEtsLMMzO7O7Jt5R/fr/vyjqrIys+r7uvsdvauhMzZm+31ffVVZVVmZWZlZWQDyKGzorM6qSjKMm2WMj53we3whzBT0qbmD3BmA4z5hPu36SdcW3WfrkXGslltXQOp31HFEtHHuAHDb4WnhPwcAgNV2948fOY+IeQ53HZ/9yIPHFQ4Y7t0Vwi/ZX/7g/fcdHq9lAj0U3/JbrcnN3ulySnb5F3kTMs6dxjbgQ/ZAy5o7LKbA26Bc4WTgOchMism1A54qirIlc9MQEwZAWLGSjrMXKAHih/2cJw6j+qN9fKgfkjPl68yM1hvsb8pakzGps37pXbN37tzFblfY3GmCVRBbEbkntMKofIaJz9XN8cA0Jk5AkFIwEfBvz64WYWWZu7W5RyLBJTqPbbiEAOWbJLMMNWRcMvfQZWGWwbBxSconAIEM+D1KfFnH//nGU62NrkiYxwrw1aUbQoBw8h79t6jWCSEZS6AkH8foN7EhhhUXbKA195Soc6yDWdj+8xuv2T9d72lzt1PT7nSrBftOAGh1un/+rWXjTyQmLTMVMZuoN0aSKaiGOGGoQWBD5B2bIRTScWieBsP+oDtU+UgGp5G0EKKP2bXdUlzYsi1Kfc6eu44j7bH4nowpcLlDSZtl2E6FXWgXCJLV5mzuwSpIwFc0yvIghToEyYGI8KJT83TzBNfKOZCozQxmolFbJ1Lu5YwJnvX1Sy6f+9zcpJHzT72NNHf3L6cwiByqXA6zMppjILtcWHzFFmcoHKjKfoIAYJN5JlmGXfD2Doeg7CCCv95FJpsKXMkuRdoTZD7FFY1EJm+PQ3kTk1IlklxSgXfhsj4iAMBXHrsATCGCAps7RmZ0C51u3s3zzM8s5S6mZUk/UiglnvJnsSvMIHSimu364byJ1/bNc+sf+8K33OfBKQ3WwOq6nGIBVBIBW528qq2CmhGjt24nYnuMMMvwD4tq48AMzaEOO4N8ZHxKTqR8VY63R8SfM5EZCxiUNncjb77u5nk48urUKbTZhzjOPhSSeHtB1/wdRtIp4nqkRmlxqkbmbCGPnQxONIRshPlVOX7XIupnMRF4+e7xvZMuZrEo/QA9zChTrK3Nr6aguSN0/PhUa5ecWWZyshG5xdxQKmsp2VJBDpZS8CEiWZB3tFIZcUWZbzqIEFm45w9e2C54a5ZBNqkQeRrjbxF5KKQ9ZISEj1XbacDmxqqX7Rrz34rgs8IuSH5hzZEyn3v4jnO3LCJTX6HsAiB1U0TLuB6hHJP0wkuMTEI/4ovQIS80MgRjkI6Aqu+fXNn47Fcf99EyugmyhlH96ntLUK1Olx8io6qUccBr7hp/jDQMzqBBjbMiYGaMAk85CltLDmRzF4nDUidUbfIZe7mHNnn5fnHK93HubsY5qladqkYmERUdFPWR0Paau8wkDBBuTyQq+tSrr7BHc+PaDE/SAOIV2zuC72nC5g7FrhfVNT4yxJqUUcv+pvSc/HLuLLrPa0dhOKGQ51UoJPVWa+6eINQ6VxfGc8qmMrHmDiEOnbEDRkASJcEQOUHE1VqFBUhzJ1pEgHAfguKPSIsnaO7ecIlM+/BbbPfxfZfNfejFxwJWbB2WqEUc3J5ast1Pfv8p/zZUmAz+RTEsoXCHpR8AttNXQjGJZLS0UJUMrDDUb5FBJjYcQ7dzodehz37jFUOfl4YajeJrFaaWNbc2guYucGPF0V/aGWnuiPImRV6JUGIgDcjKh8JcwFNuGbAKY24rtqNkUyPwerxDNbAnXrkfUrfKDKrcMvImJmeW0QuPVARM8lyGdpeHM7kZp28DXYlxkCn+uc2dUwuwCUK+9fS/o1COgDPHVmkAqmlg0kL0LmSFFGaZ1bVLLv3A2loreYgJY81dvA2TGtvcQf6AInNnhomvwM1KLKLD4omwVTV7s0ygCSrpIiiSeznP5elsyLvvPvSeew7zAt/54HP3TtaKVrvxO/QYN/WQXtnlmkvfaVBqGKsSGYxDbZpnWbA29zhahlpR/lsxCNGjey+ba6T0moTNXc4aItQcc9eqtzUcUZsAiXWLwqqjmbhB5Jp7o2L2TdWJfnhVluuVECH9mZR2nP4VAuAJkn+LoBiWw7/TzW22CURAlmWePuT53Kk5puyLaBkEaXOXMVeZl6yKPOTFwoU9RcTcR8tkcvKY6HJPi27eQHCcPeEzS5rCootKXP2Mw/CqVLQMZ0ToC/AYM7rMh25n5V1rb1xyKX8XF2d1KKT7VwT5gVzAScbNVIxAQBbUGXEAQEThIQx724CDajr5pMDmjhBs7r5yQPCmSRNJCE9GgBDMMo2KaVYNqggBTOADkhOBI/1EOfXILtc8GgeQdDxWEzoYXxhqkdi/uvEhJiYJ6KOkPVTZfA3CW27bN1EPOSqIQpTpAKSHw/6uZmIWCNUNn8QNAJRpheOQGumAeauTV72Sf8+JuemmU0hUuhJrlrliz9iJhTGOAyLZ3IkvOH5BXLII2A5VDQsgwkQ9m25ULElk3olKR1Ltt/wQvIU8iIrE2ILchhqETjefblSuXpwAaT8Bz7ZU4h0IDlUs7yNp7l2/vaAOxnSI7M8oFNLFI6pFEyQEe04rKGmWiQVSTKi+ckfWdPkfTQ0AbaGc/kr11euXnM29VqugHkr3p4pzkP8CeHmomDsB/yvtUJWCV+EgSIGxPL+xTTcKfs7AM3c/0a5k7u+fS7qTeCgk4+a6dJprS7tH/Fb86WuwPe12XUz6Jx4+CZHhGBEevGJBDEWoJ7Y8IviEiMbHm1J/uYSOsWL9TVyNq/qCcbRMJGzQ+z9i3c1q7sJfJ9atF0KsZo2Ay+fuXrz8ml3ouy/5COaQI8JzjszcemgqPI+IkE8zSWhIKSsCSaT/wnp54an5N968GF4BALsjwj6JU6Vbu412y/syqG3u2MnzvVO1e0/MQZzy1wACVI0eeGFzj2eWdCyA1Xb3d//yrM8XLYad4aYnV4288f9FDYVx5mMeUz4bZ60ucZ8HgIimdw5VIwaTfhMH4KGQZZJ8B2A4KX8fT6b8RUzb3CFix5mcacY4kJeJmakIuSW6AYBiV0kM8Zul6bq9ZKcWdMZQku9keSXEFAzSTUwBZAxAUi4AeEsxNVfAOuUniMg098td6hixZh44OffDz15KVoIF0TKWb2YGbf5eyqXDCrv+xoLKuJwwoWSRAh07/YLQ9SNP54Qld0aruXtw0pR/rppIrGqfz90+fPEVC8QdlH4XR5SDZyUu073ipAV/xp+rJ7yntjvGcxC0icO8DQdczgnBxx1xGjHiPGQe2W0tBiFn2Wl4tMxHX3rizmOziIVmGe/5F8wxdAHQGPzW+bUf/O2/IiWXRoP4IfqLlvhwScO3w5O8CG+6Zd/R+SawLSPKKbadVecipUrO+hK1rlhQZpSBzhXr+LClcJAFcWXlkrO5x0CjoWzuU43s6HyTy3z7mvbU3KumIGWW0Ym9eFtKV/YrNnAQpWFxeMHJ+Z+66yBisLnzkizlb6LXlgpVYgPSv8KfUQdtx53rTLIG9VutZ+Ox4pZWr2i4Mr/6ssvuODYjxocvSIUGAni92CDMNqvAJBzRt+JEaigMFm7IqHWMbKMA8C9eeuKaxQnfNUQkh2rC5p7TlYdemoZhIY7mcRCywdff7gTNfbZZwTB0CAD3nJgFr6nF/UVAVHnfJF+Oh0U/CQQfKkbpVPzEK0/esH/SItblF2Qno2W6IWST+Ql5lwUdAuN3vLJj882ZZgUBqpkedn3pq1qVVAzx7MX2+kY3z2P3Zlh+XgvRY0K1GURjQrDjTLNS9eFJ8ebbeJs7nV3gtgGadKpfu3NRVGV7IULy/IgRPVAekcxcipd1HDgwr1P++uFQmvuJhbHX37AX5cSAjOIQ9bDfSbNMHNtHPD1pavCLJ/FKQYZY9Zu0YJYBBHm5KKsk1GYwcSpPWQaLVDla3lDAN2Ow20PtULW9KPD6CoQjOWf/6uQujbu9nYpuceL7bigYPWsmZhuyEtVVMSC88cDkTLj/Dwyid6hqUbdhzTLW5h55a8lawnvKMbRNbHRzTlnElP/TP7p6rJaRSYoMx4hYYx4mq2EkpXWsxOgC0iwDHFUmSC7fPTbVcI10GBoImIOOlsm9yETOs9iUCa1ZsjZulqHRiDV3I3uU3IYiQmbg8Yvt9Y2cfI/0VeivFKUeK4GATWdvvMVS9ItGSaCHAM4Jr3DmLVrgF624t/IHyy0TSlqxaqUs2dwNYr1xyaX83djoKF5GwxfcXOyVpB4AkRBO0Pqdx2eopLBtuW8RUT+nmVbF4/0vW/MJMIi1Ck2bUJa7uUsDG+EjCvNxUCSFKe8/tVvE05myI9A2zvya8FMlW1GfFyHjHapoHQ9x0j61PiWqIT4dCgqo2kjR5mXQae4m2ZcH/81XSFfiYScWqmE7aFmYphOLPN1tRPgQyzC+aQTB9WrMeYtha+9lid+UuDLA3kZdUBqrEpwAeuF0c3c3ix12vp+w0GWHrdQgW71Has2hZogcqvZVNQoLY1khkyLNvc0MPrm60c3zVqdLuVE9PuEPJSpAymD0yjjZf8j3w82DXEXwmrugPeHbYG3FKqCSr+yyjvAQyaEKSEb5zGA3v+SiZR599ImOTGRMKmQi15JbZsryJWaC3rzhpkUqww95s9r4fXWyEtQl+SuM5L8Cg1ALOzvBEMMdqlH9voPRQxRMn/dRIqm170LbvEAVEcM1e3w0ihV3kWqRCaEwSp2uCwqyk0iWZVJkaI3F82IXJN+MF/SXny0M/7J6AIEcqnIAEQCg3clX2h0A6Hb0YeMq40G8CarZItbJNYd1njREDCH2VnN3XDts+T2RJ8mJs/UYAeDcXPIOAL0Q0P/n49zdoLPEYa4sOYS4zOa1cf+oCizJQWvuJrK5ozw56HshOmWhYlwQ/dpGV/eLSVBHqMw9w0+7G3YZoVrXfNBY/Q5bPkcgRYgSMwDAUrqGJUBmmYQZh2nuLI1afgmm/G00amrx0nT/4ouOuQzIbPQ5qdl/U7llBL+GZJw7AgBUvE0wMETP12JNLQnJN42qufHAJIl93oSPlonqsYULrvSVZpk0t/OaBS+Z6IKicnXNnkAm1YxmHPGpekAIicMoWgbUxCl+xMH4NNz0p8aBlfQ/ovn1alpwqEYNnb3Y/pNHngK26qgar3Rj/Ar8CjcIHWWWcRsGFyZBTh1+0F9q7mjT8QsiRMa/ikcJQLgTuQ4RaSqOoXe64r6tWNcW0TIMSaqfzWPQSYO90TtUaTSUzd34u1PsmvD/soH1/9Lsr7a7ZFOdbtiLbTWhCjrnv22ojM/eddvhqTuPzSR4OqvNdkqbZbgqw55rQRXwcb0mh6ok/pAHouK0S1S7kyHAMJj7nj3TyZS/CHj38dlaFAKvxhcivyv94Ewhi4YOnR6R1sEjhhX+9aYPajQxJbsnar//5usiRoZAjvKIQwctDKPuyLLxtwrt5C4+yfF9dxyrokbjAVQQL0j1kBKHMc09cITQUIpzoQsjSTfHkdTapSzmNHevPosaZIuxzb0amwQF23L/auaOQTk13peLLMAcfPQOYZhw9ZOYVs3pQUCiK0XdTEgIQUIpTex/OaM6C7m7rINrUTQOiCy3DERjHrtnEaGaCbsMyhOqyam3PSJtbK3dJYnyP976LJDSyzhCDd1U0+E0dwOIeOex2QdOzvOGbG3caG7bZQ7V0AoZpgjouS8c2v70D1wF9hCTcMa6Ortd4j/ui8xgtTaMXF4Ew2Duy8trUcpfAM0+GI0KHmQZhy8mmRqvoZLUQiNbfKw0WeBMM/II9QDFPbvdoA/ydqlwHAFiFzonx2Sjdvmp7hQB2z+6J/LqqwRDFB/KNfxfCHQAACAASURBVM8Rtn928jzP88w4xwmtT2bdph8aDKLU3NPd4MirZUZNIHKzTOFohGgZj06IqYiIgZozBju5sLmj59f2LTlU+eWiLNGY1fHDoHG7FvWiBJKyjQ8pCSFLPx2XRtzpEKkTqo7ZIZ8pVjl3IKkCKv2A66zUqmhauYxPaiqBuW90YpcsDRchkxwxdC0mlX0MFBitvrC7ihaC6A5j3Gqs7GWTIZ87hnoQfGJ9QH+4Dwxiq33Jpfx94onlZMrf+DcI8g0vdGbgICd5mURVqDMduqFP7PHZA2UmLmOggZEF6PiMj0VdUyvWNSpxSjaKMoCBsyr+iTTjhguqYhUjvnkyVVtaKXZmGb+Y58aqH37xcc4ruX1AVw4gbO5RMaa4oXrCwWvulJuT4y/K53kX5KiSzT05HU6rQGx3cqnKIWmdSYcqmYnAk3HFkA1cjCoXKkkBw8bQ1ewr0Uo3VRhOqKJjMYqQKPFRqJb/UEpG4JJ2DEGBlazKJ8EvO43njNYgqRqrVnPnb/nuAQCkqFA27mBzlw0xK7y4kMDb3LU4AXC7fP6CH3H3QyQ+JH8p1W//pZuYwj4GoNXaiMZjB2EYzH1qaiydpcv9BmDDZyRJoBv0xPJTf2aRQ9X+mTFOjV7Xi9VATu7aRd6rg2Rzt9Ns4yvUTgJD4QTjViSle+LBXUlcKm9ADqm1CfrfemD7srlLzYXA3jBHZpnxWva6G/byOoOcjhqxt02VRMtQ01pzV28NmhAKqWZfgM8yFOac+HKSv5Pwa3e0WcaEm/OQcpZxs0yV9YsoQemb4V8nrdMTobQHxmWiQQZEUhg9neeyLaA7VE3YAgp5A8gzMnqHKn2b53oKUN0ebgJzD2UUbVsgxWKt3aVV78mSa0KivyCXJ3qbjPSLJEaSXmmHKlsIjiTY91yXAqZAILEXaXP35f0dqhQijPDzDxx+992HItR2EIZhA5qdHVdP+IKPDceKjkFo7sg/518mDzFhZPH0y0ATAC+UMdKPMVTY+jrDn3adq7Q59FaaZQQXEKa9VKMs8id8xepHjCLohebO1k+JWYZQImSSMfs+n7scXm6+9KgmRtvHOaA/A5kU23wckqGQtoZqsAsVdiczmXrCQiGFHcBd6QkAABVjWp2usikjS/Pt1X+XfsAWqLGrMjFKHAbFwjvGXxg3GKdmPD08QcRO10Xg2QLxBdnWfMQN2VSY9B7OCoGRWSrOPY6W8QmdAlayj/5D0tjWNrrcJu77FdYCsHgVRSqekDBHvUeRjDggbPuuPC4WAcsrpD0A+eihN/GHAulDTC7yGFlAYL1WaTYvuTj3xx+/oFL+gtShQI4+MuXUr7EwuP5bzZuSKX9B2txpAorCM6T4DSgVgZIxxPUQtYOXK0rM5hAKGFZ+90R1qqGZETA1PFCbLBCfyPWfICibO2oEok6Fd3WyMzh+jQCw4RyqBRdAUxOpNozPB0Lb8CI0Yv+EKAOASEkgRC2qSmsY5FzV29wRQWzbHYbOSwztjowPQUCWTocihSj9ACJctmvsjTcvevSQjncxtIP2YHPRJGkME6So8RRD4e5NRP8npswyrlohIZjU55NC3N9/G8W5RydUDbPU80GLPySNYZU5VH0lJG/0zgO0fRyMQRWPGLY7/gc37imey8nMJkFT3eGtoxuWsJz5Bdm8vJOyLus9ImCrtbGysq4HYidhGMz9woXVPCYL1D/cn34Bcm6bMbmdrARSp1gtfdMd7cDUn6QaSPUbvRR7QNhUAoIPKohD+Flh97sivToEH37x8Yeu2R1/GygphRjXhtjDQPfqNA30q7m7LAsKNrzmrmSG1sKSa5uSrvglUcS7tZFHvHXiQe200hAcIa6czfWIHhk+LPSjYrDdyY2I6kH0Ixls7ihU2kOzjVddt8cVVjkwxL8IAB9/5ckwVqmB8o2KStjYehGFAF6xoP+C5u4rtAyaLkuKhlRq7qE5tEOoQyERq9LoTNY2J8CiPgXiDw7Vbsks800GeN7KmzPo916SiCRHDrVZ8aOWJ2nuUeuCUdiR5xbgTLkcvFzM/bHbxanaH/3YDYjQbnfW14dqcx+GWWbPnpks8twFulTPpWZqQR9i8kPLqerh63avbyTctlyDDlw+QlIRKDcIlHANWpN80XbyHAEr8voxbqYgaqgaETPXU4q4ax94j+Q3lQxhQ8pFttFO2dyLO8X+rFeEgdL+azV3Yu5skF0ZXliBoQsWijvrDUf0iVs2qh7bUNUYpf2pmquVTCEjzDKR9d82lxlsd7uSNsAY8KHrKA8xhXZJgzMIFasPcmKABNdLjABFYnjckL3i3UTPTK1i7ojEXrPHpAKoUEhZLXrZTM+V3lpgljFq2Ck6CGk580559sdDIQMOXuowKhL4Q2okjUHDb4kK37onsTywREt3BAbNXW64vRSn0UZk+37EcIiJ14P+4rNdE9XjC2OHZhsIMDZWm5xswBBhOIeYqvG+m01n+BeAbcTYkKm7cTnfITg026Dr6KgwojbX2ClPeucg0JZ425PrGrY8wOdmSvoAAODWQ9OH55r2SUWedum53NWdXmq7j8mbpzC4yKRx0K2iora4/KjLIHHH3DvWoapsyuGADAnvuA0EF+TgZUwaDUzklpFv/Wtr+S0ZwCzK587TS7EZFMUqBlsbIlrGMiuyxsh0vvZfRHlpp7SVJRYCe6sh9k6DWCNaqaQLgCxjjXfMziwjNhPIKzcitgQBQp7b2Czz0DW7X3hqnqNtohOqVI/oCFvU3TwnDUzxdI6V+1M7VJnmrpcbSYhAGcZgvYJnPvhcS7QkmShVJEqTukF85bW72Z9ec/dFMiNcWbSxto7rl1216/33HbYlK5lRKbZ2GobB3B977NxGdAUJF4b8uSJfCwnNXYqEEuBMlqg55ib8gWITJa2QBOL42ORNybu/AeDHnrv/uUdmCDdqwvQxFZnRluWogGDrIL2FsWcv2Sjt9H1JVJq7hbY1y9ApTd9FI21oShVyZUL4muewURnLoZjNPdFv9MWqWaiN94LgdVfOqYdVf0sXX89K17Oau5IoiEGh4+eneOskg516IZFB1F0u6l3I0+K1VODsmIkiBEAMUfnGsWMtNrreoYopg76zpfhP1L7B3lnIEb310NS1+ya0Q9U7JNBvNBNdk+H/MqNA4JVQINT5b+e/Se1KY2Zi8ZltVizR1tjuDVgAFYff+YGrmKqOnHsgYPqyDn+HKkdpdbW1vLwaD8XOwTCYe6vVlulCAfyiAmkIhogXkAJl/1RmhBLFEzzFcwMZOs0rIRs4SRn5tqQNIk1adcBs7upDlF9BQgD0EFaZXNWaQdB1mrJf5CKL7z8rSrc51aj8t7dcR3/WUxdpbXQSZhkM/FroYgoUqukyHn/eU8kQg5oZ5yZU8NITUyDXOdnEDM9MEipHIJs7Z15MYTcsUEeMgLxisEC713sF1TsLcZ4WPji8WltnN3fWZ8upi3LLKEogxoQyW32o3Jueut089pBLetOhkBxbek6m+XpwhsuJ9oPjzB3swlttJSu6pZZLPuSfhxGga6RCtExqFjjyaA+9+zJZ5HKwTXd1tg/Mu3ms4+4oDCfl70K8H2EMLk4/gCjZlg7Fg0AKJYDuW80BFX1wfNxMR5acckD5uYuWUTinaJ3HY5VbFcD1xRkfigSPQW5hsE+CRMwi/ajI5q66z6Jl7BME51ANi5nV7L6yT6cald0TOgLMR8sktuECEx42mhIDxtsf7H1AsVpAcPDggnqIznSmd+L8c3eISaZJQEDiX5ZxN1h+JBp28BKuKM49bi7exbKz2RDsDH4K+LjZ7ne7OTKzjNIfwV7k7Yktrg0Ye2IiyjE+e2wtphll0WapsgIZqL5XvE5gU0sx4SoMj8mRkSOJ8R2qWs+IjObgd7E1b2FhNvcEKfLlhow/IMaWUvdvNzrYPDFRn5kRduOdhqfnsg5wyosjGpC6iRTdAOwmJqXHJXmTAh6pRTX7vR4jCPYJzdapPeP3nJgtUaj9Sg6TDY65Y5HNnQMzyyRUj0RffJ1sWXJkEjcFO80d3ecgB7Zc2/XVFkbL5JBnBqtSM1UW21dcs+uXHzyuvjVac09y9rAsU2Yb15Z98ejP3n5wplHSGUUDFqzi5ixX8q1T5TJsdZRDNbjjDLrrW5vVTDVBmnuIHmEMFDHw5TI9MajYrjaGnirp5Ecnz5VwVb12DlXDxjYwPrY0on8zg+sb3QstnSoAIs4b7lBFAIBvfeD28Rq7HRcRrKmayUVuFvMcGf1Iiv4iaD5uyDmvx8Q9efNtS/ddNkfjxtmOSvtMG7IiQAwogZsg2l2FbxESUrAPXrXNMJxr9s6qa/aAdTWOSYrZXNGdEuV2DKvCiDh3bwSMV5SgYx+dWjFYy3ozQCWQmFlGCA+uZFngfe9TUJGumkYDdO5TzrkSce5pm7vWcMf84iQuAwDtThfYNlzVjD0WCc6OVW85NBU00MKSihXyLrh0UcltnKrwG984Gz+sOpuddiECo4SNrjSeen3N9t0KtjGnuTP2zfCPL+vACEM+ZRzYdVGC5XEhEUbJJg7z44k2fZXEBxh/pFfo+47CoET3wwEiZAh/+/jqH379XHQ4TxAMgjDLIOBMsxL3KzNOwbdy0bDxiYyienLjvmjNXX5yw/7Jo/MhTMU+rxicalSOzjVpmYAPninhKsbnRCI6yYxIQUxN57k+HnHx4tq5cytFNe8EDIO5J33EysvHicPTa3iubO5EjuUMkb7luglExO1fBb5hwhG+gGdJE8xiiEAO1XgRRMAvckyKHAWZobVHi1yJRn1oSGjuUg2EkjAV8RvHqhkAXLFnfIKpYK1OblcCD9FBtjhLemMQrtgz/mvfd1nM5ni7NLxUJuLg4UG5XatqlWvJZilgxqAYFvC9qBiMUyUjP8SUIYATfr4viIIpq3xtVI/ehCVGgJ/2RLhi7/jVi+PUcV0hIIbEYa72cEE2wvX7J1/gMyYabuRhqgnZwbiwsWXDZSypVUf4GHZiE6P5IoQrxmUG9mYZZDhQ98O/XPrGG6kMtTsdJG1w9AiBWw5O/dRdB/lCcGI4gTNbpwyZL/74jbXMJNx1gJ0ow1pmsjgifEdhGHHuS0tz8UNaiPEd2Yia0bFoDSkJypm7XR7agG6XZXhyx7GZb55bB0cNCE6fdVqMYgdFDfEfXX9uU8yusA4hAFQzrMrwlZ4NJeLcRdecNZBreV5zRyiIpUl2RyrIMF4zAPCuuw4enmuAH3abUQujG1diLTjdhK8cQFwqH4PhNwrJSrjoRbm8VYX798+pzwGgauwsC7OAr9yOmEOAVYvEr2ealUbFmmXinCQeJU+BxcQgeqSAT9nLr95FxRQrvPPY7NpG54uPPNVlVy8h2gzArob5serSdB0Yf4yiZYA9dCNDz+ObtjgYf18r6UNFE0p6hnW2kc2d3iqs1J+gR9Jr7tGuFCVt0A/qDjKzntfczbvuOliPskMT2OTsxFKu3z8JgaEDMKGe5/p2xomJ+tRUs6jmnYBhMPe1tXa9XlHLl5a3CqRTVEEGsooJG2QMU9KDG4I6xESzDoFirtw73u7k9AqYeO+tuUfbZADodPMs0/lYVN8BoJYZHgrZR1eCax5Z66pmhbAxBTZ3v8bSGMrHY7XE3qvVcWdPbNomPwKkgpXya+k8KMKBpqMTOQZdPU5LdVWVtLi22hqvNdU4VzPHiLgV1dcMQEZYqXpTZ//322748ukLADDGbO4WIe4qkFkhEexF29omnkAd+T0+BbLBgs1h8KffeKrTZXHuPLcMBJ0U0UUZhCnzXUNpFeExP+X5mdkSc501sY7mWwGASkaauzXLhPHgSylgwva4UtZ6mzu7DRHZvzGexFJQSCz38MBM4pwR1ZyhoBZ6CKR3+vLdXFNjp9Pd2OgMM9R9GNuEM2fOJXLLkFkmabGNzL5024574rlqCVh6sfmU/VfuYZLx2ivkwduR7TJenKpPpFgbx9aw5QH+rIfW3CNsaxlWNhEtYxRTEE0Ymd0UvHxyn7Nl43qa3GKjnhHrEKPn9n+tjS5t7qXzwPOj4o5gWAYI0uQqy3jmEmzuAjHeOzV6qspvf/s8R97C0flGNUNjePyDGD0uDn3vxGbFFmhym7svRvWoE7wA8Pc/8+zpRsWXF0xBATnr1BvGl7ngCRcA2RUULshmk47K5s78GeG3mCPb0zACMRDV2fFJTqjql7e5x9Ey1GU2MqLvgthim7t7xZxeigOAl7i0qeWyvAxtqe9TQwwf14qOcwdYXV1fXl4rr397YRia+8REM+Zb9HexzZ3/i7UMV+KVU0pC9u2NB6bmx6vuiTdr0O6plpmF8Zqlgj/9iRvB1Y9WtTEIv/7Q5T07yJcHAGxQtIxET+kmtYrh6QfKuaGFjPYctCxlAROtK2NPqFra5VYgz/rTPZK/x6KrEAGg3XVmGfQ3EoBUrEpklfFKnf+qrOvGYLeTLokYBkHv+WSV09NN1S8A+J9vvV7jzDCEED7Bx01ofHZEuc3dV+imCdUxupJ+RkCIabmFmpYIrElw90Tt2n2TX3zk/BcfeYqHsRIeBhmSrFpIae6Wl5Vr7gbhjmMzXz59AZlZJknSThvwW1vH3PkWVvaLYwJeoqshMogGc9URTI6bdyrYnBAhu5FJhLfxVixYOleWc1uhvbuD+EAU5w71WrVev+RuYpqfn4g9CSRXEzZ3prW5h+Ay/5GeWM6bQlUIv/SiYzcdmIqbsHD57rEP3n9EESEpAknFVlTlyzMlyOWwLdEC7It6xbD0AyWcMEDmQ74KdvGIqO3XwuYuVEvNtjh6UkHGtFlmI6eVnEi9Wcqy1dJN9giDWaagEp84TJVPwvz8JPghihoKliuFGEXFsEbBsLRTtuMNtq0ULNIpCoKHEtgAU6HERKX4HeISZ4jrRLTJCPH2I9MfvP8IAPzB18/xktRWkq0jV5xRmHEgsmDEeFp/u+E2mQhtapQONqtoGS7POFsXBCm7bF24MVacHvjwch5CM2sQqqUREG4QEB21sFe26f/w+itBae4S50ajOjZWL2li22EYzP38+ZX4ol7qeBTnjrRVB7ZUqkzBj69U7RPQc3ZuEoWIL7hop8i4Vlytr4ed/UvkkZe11bLAI7CAwSmIbO76E4PafGyiOHf5trBHvGSzKkSG/WEzanGxYbsZAkWKe8O24eHfFBquC4rRqHrSnE7+ef78Svw5VRKPg32Q0twBMRy8yAw2KobTqt/mh0EoOvc41Qh6XHIEEBN2IXBcOPEhyvBq1GijE0IyjybXdW48MPn8y4Xn2c478s1KimdwfYv0syTQEhaau1/1jap5w02LEHUw9rjS2xddMf+xl1/GXU3cnsOfABs6G5vAvGs6T6TC2TZqx02507jjiuY9z/UItFsba2vtoiZ2AobB3M+du6iu2QOAv3nPbQvjVUjlYEFG1u4hYo2lfaCT/eUO1ZjCmOYinijIDHizTA9uywkaJNplDlVEAKhlRkbL9GFzjxVMXq3fc3DWzA018WmaIucYf/yOOw7sn27EKXqs5v6CU3N3HpvlKTBjE0eiCd/CPhe/Ubh/B6/WxRwcWQpDj3Zhm08+eZGajpDRXhOAsJhBEokdZNpyZWxbw/cQCZs76Kqm6pW4Rwr4aU9IlVQKBL/xNRac9iwP+s0cqTj0+bMPT7/kSnGUl0a13CzjspZ7lYhuekpNqytvhYT1RVPl47Xsoy89IfBnIjPVZRyvZXsmaynNXT/ia6eSISLypNPV0jhF49FGt95RveLLKuZOiNhqtVdXWyVNbDsMg7nPzU2a6LQMHW3QCWPlZpyEcI3tYSmXWzkzTK50bbP29UiGiPF+PN2Er83jGfbg8TV7qrJaBfkWpJ9dQrhmL+IU9u1Ms6LkFnexpi7ILupXgDfdsm/XRFWF7Rt0RzfvPDZ766EplrYzDEWZ5u5zQvz7114JcvA5DlwCxV1GP4PkmSxhlAvzE1BAMCiSHIQZgdSRRWMQmZY306y8444DnGsonF9x9e49kzUlLy3w+1jS9iJAnn6Ad42zEl5Jtxsi8ORYIQIcm3eheCEMRmx9xBIgCkEARCx3qJLsRyc2eqzNihEO1bGIOTPRLqYA5dXz3K6i5g6j2ST0AODgTOM5R6aZQ7Vcc3eNZtL9YKHGQidjRk/tNur1S9AsMznZKDFeK65BTFCcc/O37Sgzfbmqi5HwRv88LIAUlzQYdm09+ubKB/nvI1LK0g/Y/9ejUMiejWVG0w1v4uTusT/+sRuVKx+Zcz9OHFakucfA/cOIUM2w3QkuLJ7AJ9hMiztE3eXIJIuBtL0oMIwpFpWxYEOMk2UMS9zIeoEQbO5cKAobxUyz8t57DtvfZGBEcEd/EeFn7jtsDwfQ5wGlRiWMQLL7MrsLqyQgpAxoPALPUTvrl79INgypT7mVEJxUPymtfGQUZD75GpllnO4eld03VQeffgDRMffxmjZ4o6QNRdLx74RoTAjLUO2NBybfffchHuRTbnP3gwAIOmLN+U5cE+G3ctXU69kl6FA9c+Z8HApJoBPGemrO5IqqcZu7N0/0yXxDPd56q4IQFBWacMqjZ4XuX7+QgkzSQot3BwEAahXDlQWjJVEC/BJCoqT4C2ZhwPCJ/S3OSQMA3LB/sqRfHGTIB9YytHHuhBh1k7hVSRJjbnPHAt6t+CzvFBXgRictSiVDPHPmXPyQ6mG8TPyINff7L58/MteIogAQQHAHjrMd/7jhybpwUydx4yl/Fc7AWBU97MizM6KPLCiT3OlFkTw0I0RvzCwTVw9klzN0gWIBMf/2664EP7AZonWojkcee4VVcbRMQuTQJ2E2U3ILmJ2zh+bu668YdyCWV1hPaO72X1Hh6krrwoWhhkIOg7mvrbXiSwMIkidUQS0Pgy7OXX5Szg2T/ALZVBXVYEIoZF/Cg7lrwtmlklBIC/WKYVkh+2pI5ReFiIAAtAKCXHNn3jm70/zFFx1LdifGR01TNTNff3wtGHyYKFa7oiQECcRmOYEJAgB85gevCjKDFX31s/bYO25YnYUtrq62eZ0KmZCRjSSKAQgnA8I3b7196bqlyeThLwroQnmIn8d78Kq85h7e6u4TAuo5cpLj5ZGHV8djS4oUHZq1TDmhHfO2GPHwHxzonlgS1ZiSSTQatpLMoNXcJ+p6RBU5JRk6xznaJ+se+b5INc7QHPWpuWPMFmpMaeIjqYRlt9tpt3WKrR2FYTD3xcXZkqQK8SVtljiUmlljtyL061AtWOtEr6RPKc2R9un92MG54onsGpqU0ArdAYCpelYR1+yV8SYLtCbj1UhweLbB+UXGbrNTicNKehfXzF0IiFDLxOXL3ObueVnZRoRNgdjJijL+x1WLE1SMw1tuWzo6H45QYKTG3nlsdnHKZRte2jcLBSSBgvyEZKqwdO28fGxLBHG1k8DWR/sk5OW+qXqSAgmSoZAPXrHAj03xLne6acXFVh/naOKXd0umGVRaBJgfr950YJK6E+NJEUHG2zNtBXGvbdMVxtwNYrOqrfSElxKKqFwgqH/QJ0l5gBJ/+n1wtvGpV18R90uVpCA63q06C4TlZjSFwNjYsNMPDIO512o69wCHKKegK5q2uXvKiGVjP4Be61ELQNVj/PG5fjR37z5y2NL9MllSl3CN4ngtq1cim3uv1rJwQWBiAVs4vtBUKhiFMcp0fYW9S3LACkudjP7OGpo6mXqzsBICzS5TmDDrE6s2LibVJQ61CpL4rNertnCseKI3PfNKnKZWQAYlmjv/3NY6XjOvv2EvAjx0zW66dM3Coz97+0yz0A6Lwcon2vvEwyfpK2Huk+HVYtwYS0W/mTOIfMulRCP9QIQb9k9+2OdtTuoEwRsUhFlRpxxbB4Ab9k+O17KYswObaIwalRYYElcJF5fqWqxGNCrm4EwDAMZr2bMPT6cxZppQMhSyFp0NVALJPqlUhp04bDgpfx+PU/4SJPO5YzSFtVSce7lmjaApjIZeOf3oB1VLMU/9AKllXrAjApZHy9hgIZl+oHdDmXEXopYw0Iev23PX8VnwzWXsdnYVkNtn7yxEZpmgoYCPhAO5ISjV3EP5eCWwYgCMJJLFuNKtBpwv+Ece+S54Pq5q4AFFih0kNfdXRDzaQo3f28eoeqpRsRntS5wQRcxQOYeirzRHlnHusrDPYcnp390IHTVP5GpkljEo0Alc4Lx1NnpHSJI+ueb+Bz9y/dxYdbyWJYWB1IXDw6QQkpq7I05FLSd3j6nPjy80P8duHCsB47YacNXe8bFaxntWZxZj6R8ScGF51R62GBoMg7nHQe4cUnHuCMHaiD//wqN3HJvxNncEdjlWuQsywQg8vSk1UwEdBO15QhX8UiGpY118Lzw1X34mYqZZQXDXXDD0egCloyspec+J2Redmud1UkgJ3aIAUNY7TA0d3RNvv61JrpfILcNYfwzcoVrUHS0aSxiclBO8FcKLvD4JzZ3jw0QFyPgigl0T1YOzIr2ULVDN+PYc1IdKgdA4pN4gCysopfRQ3l4UIx+Gf8nmbrwW4g9q4uP/7HlJfBiXd0/SDlVmKSWxmuyvU4N8LdUMx2XyBo2AHc+IwBQyJpI5+2fqH3j+YT4I1vBSzjSSgBQyhPgf33D1kbkGr6PIoWqi+IX4LOeOwjCY+6FDu0pyoencMt5AQdNpZ43vefsOhSzgGonj19LNwm5j6AeI7VWcIgTvvPNg+QnVmWbllkNTxxaaHKWeVJf5OATPGXvYtQHgA88/ct2+CVtKnVAd2ObOGN/sWPXafRP05OOvPGn7wlTsUs2dmE5kD5FoOA57eK5Z5Hjk1lj1nPufjx7ZbTGPha4xGMs5rmD26Ven7TmmXPEl8om+iqEodQF9gvLPrr+JCaRwtdNBZhkyHpJZZlZah0jtJbHXl+bu99z2X27KIyC3mf2zmuFYLUGJnJD4CCiax4AVRx4AYH6s+tA1u3WdplqPQgAAG4BJREFUPf1aBcD9wKoGb1RwglP9S01PTzVnZ8c31fgmYRhxlxsbnSwrSi6buCTacSK/mO2fXFVkoZCDYeJnV5/RV9WYkH6gdwNeT3Ekaxd2vWIeODl/80GV0yawoZlG5W3P2R/3uhwygzblJKuqx3fPOzpDoQjcd51kQB7PRKVqmmablWsWJ37vL8/aP23KWQD49YdOntg15nErBBoxLBYDhMZEPfvKO2++/df+bCyKhgb2eawqcs293e5k9QpKRz3hqRR2kApmTzKjDSX9Vq4RACj3zxdpISEUsuBb9bzLTr37YQklmD3T2cUyxDy6vJ5XSzmg6Elh+gFAmk3L35ObV+7MAIDZZvX6pcm4I9yYDlKixHwcAD72fZeV3FrMIko3obgHQ1bSBVIcCim6k+eQvF5852AYmvujjz7R6fSyuRO38quCnYhDALjt8PSuiSpnUtCLtWE0k0R8kcFXVLR5zd2bZeoVXJyq2URxMarPWpr8oVuXVCU8Q2kRuDTcnmx6aYKMldvP2QdYmjmnh+aOgL6zCm45OGXDt3vuKtQC6DnSiDA/Vk1pglRAb5W4Mf1b33ocGLtUNVOoUmBqTMHsV3P3URMY0m/JhkrNMsm3LOVv4q36Cv39vfQnbxqDZdzZxE0qdyl9S3qP19zdqxLNHZg3FQtiCmxz5G26dt/Eb77mirj7ijAk7THC9s/Hahm70kc3qm7F2QRQtExcP4/14MtNEdrFC2uXoM290aiVLPSEzd1TCUCwHvzws5dO7R53lBEMfGXtFr1EyRHiAsYMEOeOzKJil4rxmXCK8Lly7/hLr1pQlWCKKBWo7HezzcrxhQGCq9RlHUW9mxurvvuuQ+qhOKEK1uhRxr9jycqBVj2XVbqGaEAWfOpmWcxXpdlZMCkAQLNZo47EyKidHPimlc2wCGwB7kHxmntZd5KVqCcDhVdgyqFq/71uaeKtt+8Htrmk+pNYcSHXj0OVhUK6TxDSksPx/Z5DKvGX0TIAAPZWjTJ5yX7THe7lZFlSlRP2zGdOIDV3JnikWaZaNfaux6HBMMwye/YUxhhBMloGRLyRENrEQ6XcLgKtOnke6oMZGF+Q1NN/+gG3GwUAn/Tm6HzThiGXYBJV0rsv4A8x0TjcdXzWBsYU1Rn+tXqHEdRWJBqnG5V/8my9sYgO3LqzryVQ8jJo7k4LS6l48tG77jr0X/7qbJJZqB8W6hXDNfd9izaCCGP7ILK4GmbDdWoEDKi533lsplGN3XtlAw4FTIrvANIsGNRmBbsFV1Ydmm0cmm1A0D+cbaFisN1JmWUgLDGujUJRKCQbQM9DC7NeI2B0UEATAJcuwMYHASoZntw91qiaD95/arqRYJfxYFbpfNngtlyPBkA41CZeUZQUvbL+norcLoyP1ScmEtc87RwMQ3NfWVkvO6Eqp3nvZP2afRPAdkC0Tn7vTdc+58g0sE1W+apLRssA4+m8JCcI42/z6JMOeNAIAnzlnTfzbK6slbJKbj88/byjM+UNhYOUfeHFmoagLlENffIsCwmzTMpdxlssGT0TWcYKKgnvXnLlwv7pekIGsB4pfYqr5BcvrgOkzTJCc6cfAJBKP1CAJ4BXDx84OX/nsdk4WuaG/ZMPX7ensIYCFdRie2Kh+a9fkb40BqPf7EY6hIhU/OkhAOtbSllOOObGI9bLoepsRy7MzBvukpWbVECqZu5Q6JWZqGWffPUVAPCGmxaTNw0oOQ3BHQIw+NoBxoWyoBSGahKaO0Czam5m10ggYqfTbbU2Bm988zAMzf27331qaWmuKGBGnVC949jMHcdmXvXv/iK28U3Ws+V1+4nBiBpiwGgi7aaMC4wkrzQIGQL2bZZB5lAt9FL20mTvOTF3+5GyLQ74Q0yYklvJOsGXRH/ZN3s7cJw7Fbc1JW9I4K2XGW2YIgZucBKrPdLmEhVyFY8XqFfE7Wvf+c75iYndmDLLIEsdTO82rbnzz3mnrl6cuHpxop96OGKWC081KrdI57yF99xzSJUHuQmOoeID0km5TooVNiBChc/ztKirGBfhbncbdi6KNHcTvSoT8MqvQIK8F5fmr6sskGkzHlXS3FP+bXlC1bVSNUhRBhZWVtYvXlyv1YaXO2wYLU1NjZX4iN9869KfPPJU/Dw4pqNPVa6xTQDNQeAyrLLM2OQbfV/WQQ7VUmW2ZyU9QV3WMUDlLHTEImv6E10EajU6pa9Xo0VA1vAijbXwq0Qr7tmuieoUS8WlNPeZGRfDk4xzv+nA1C2HpiAy8nCNryckbO59961IWSkMMiuoBCBSXGQFNvaRWGR/mjtpV5Wn1jaSa5mIwSkfAAZFxiFVeXIWVBnqjiqLveKG4zf2PkuSaoMC2cey1OqrysPbtjzdI0g4NxrVRiPhNNo5GAZzL4/uXJyqzY9V9dQyxhpHPtlQyN6b5Vj1o//kGlbFDOVz74O7I2NVJdcwQqm6PdWolBx6InjRqYVWp/t3T6z2Q6COzoRiG57ggMZHlT4QS7cpAD1WES3dEuMMRqtotlmNPdXGuEp+4YUiCVo9M1yEzM1NANOFZQ14+5HpF56aJ3xom1LpjwxsaXvlgH8ymAxOc9gBTWc8PgoKtB9yqCKAMXh0vvkz9x5ONu1rCwvtN1516qFP/b+kL7RikPbE9G+JWaYoXSBHgL3SfWxUzdJ0j9zo/KstmmXAn0ii8wGqkr99721WftA1ZFV5HBkBGvUqefWHA8Ng7o8/fmFmZmzQvAoU2sHpm/PQnmSf4BfeG0n6L803L2t8Vs9+2B9XByrFa7FcRf39N/d1Bvq6pQkA+LsnVgclUOfmEtvbUuUngrc998DlFMBeHOjG6i/X3LW/Ll2DfPXW27WbF4o3cI2q4YeYzp5dXliYxNQhpvj7ij/W1KfN3UI1yi0zECRHc7BoGdm0rW+mKbRFm2yHFlejYnjALkPG/eARR2SpT+HpzTiesyeH2leOseYeI+C1kCgTKuBVe8d/943XlHyrwOd064tvJEFq7rqKI3P+NKL/N07Our7eWllZH+Z9HcNwqF64sFriUIWk3ObRMlH5Pi2hRcu+p9ZPO8E+9SbaupYrs9sF5GvqUYwpj8huPvOVDMaA7r98Tl46gUVRdAqB9Cs2O0VSZqZR7dvnkXherxhuiXrqqVUoMgjwYbFC2tsTfH60viiNH7FKxrmX9iJRNIltaSUBGYJ9U0JbtCq2ZdllktW/4WvTx0QmyntTvtsWmx4G/fTlmrIvRB7iVT/DsThVV10jzR2j8ekHSM/reaaM5j1OINxuddbXh+pQHQZz37VrqlxtTw4UWS35ptj+qhhsVMzah+7s2bSaSEZ/YpIeODl/iHEuM0jiMK4OVItt7pt15GwV/IIPNnd6vmk5ZPvSwyxTqiJRokqv6STKfu09tyYD2yNk0qBCISkeN7YD33FsZnGyzmurGLS7fhWnWw6x5j7QlCeLbsrmLv5U5ouKI2xEl2GmoKqguYcyTuMptbkvTFRnmxUrr4s099989RXx7RzJvthGeYvvuuvQsV5nO377dVfWMuGgqUbnjAYFHi2zMF5V+yFWzCIfeYwBx8bq4+NDvWZvGGaZfnYi8YCT7yKmkH7M05A0y/jnbAEgAPwoywQA3uZ+bKHZ51lhWgAlZplthD63lkLf8YcwP+ftPxWDs2ObnH1bW7nzONbFOGzOoVqETLIGobkj2HWV5Dh0Tx5AENK3HZ6GgqyQSRwgqbn334v0w97mC4kGApMo9v/2WjsC6/P3PKhQ/CBTC5hZplxzR0T86bsPPWtp8te+8C3EwviC77t6V4y5KknTqohdnf4rAoUk+bo3R2/EhSzxvC/lpaD6wWnuRj2vVbNhhsrAcDT3xx47t7FRlhgyyYXt8tg1UZtiFw9i6m7Swmqjmu0ec2Gc0lkUOnwyxPsum3vzrfv6bAX93Beuli1zMdVo3yUtl0Eb3HnvZXP2+dH55p+9/abNI4AimXBRmRKsvKAVW6jNYFIwGPUMDZuORx99AvowdOyfdid9bBxbtW+/OgA0WCjkoD0qKr8J2z1XXN56+9KDVwpuSCZNZ5YpxsfXFnY/3ixTqLljoLcym/tAgP25vqKvxEKsspPGm1PAuObesxjGNneAlZW15eXVTTS9aRiGJGm12pBKTsQhHnA7jr8k74GrGHzzbb0ZblGdFm46MHWTP1+QLGLYXe894eceONKouD1gJStP2LI97L1fzZ2VyUy/HKovBLwKXGZVxzJxxk0HWxyVotFoVM1GNycV1Zo7e7ryfvdN10y993/NNqtX7hmHQQ4xNSpG1VwerpesRD/ZnM0dw59j1UxxWLu5LHGNWnjhqfnJegVAXaAIUGApylC0/sprdy9MVPvfyP703Ye0HuYdS2ZTBk31gTPLwKBhBL42hB+8ae9Ve8f7yZpgy1ejiets5OU67rbDMDT3AwcWSlL+QorrYUFWjWqG/+rl6aN66Zr1n6KlIs4yUAz4O+44SPF5JbuK7bXX9L8NsO2O1wbiEr3r7Km5YylPRL9iw95/sxubos+Uzf3wYWcKKF+f9uVth6ftePlcIr1xi49KJqPyi9tNlMVN2dz5BiKede9QRb7jjOFXX3aZvaHQ3ipDtRV9ogLYPvD8I/un6/1vsptVw9EGaQs6Oj/wqX2lWYgbEDdFaNONynSz0ltzdx7XKL8CwvR0kw5bDAeGobn31Bl/+cXHG1Eylq2br+MF06fOaw8xDdAQN8sUr+jt4u99qjK8yFi155GjgXEoD4WE0v6KA5Bbw8QUaMj1imltOM39k68+RVcjVUq5u63pOf6ocLVPzR1hLEXA/WuJmJrUw3ONXRMDHHuxFYQb+JL+qgyRWQ964jfXDNH7JUoPv4ortLUFhYJwm25U/u87bh70c4UnJQ6DTakRJA57soW33Lbvj//+PEIc546b3DVsAYahuT/yyHdLrtkDgF0T1cm6UHwwleBpUIhZuVbkC9ikQey5/1LV2uLVYrPMtprcB/bUjde3VXMHNMWBbq4MlnWZpob+3YLNPQ32EJNd5LcenPr6179jGyqnK/uOrHbeobpJzX2L8HMPHH3xFX35Dy3YAadAjqRVhwxNGGWkSMLcWJWHQhZ1iodChofZ5tnZVo112iyJPaMYe+LTk3gA4MTC2O6JGkahkIjw1PmVJ5+8uJm2NwvD0NzLbTJFsEN3yZazewtmYFsnes29jA9sF3d98Mr5+y+f6wcr+j0ub33cInhCLzW8lK7Pmw5M8YCNreBW1Mo1+ybOrW58+fQFsMlMqu4ut/KZtYNGgXr9H2KKY/uOzjf7VxH6UaJ7V6I0d0xoSCrlb09ONzdWbXWcpbgkm5DdGH7i4VN0nAcGtCkp2GLocKxbVCmpzmaQcZbDfpjSR15y/He+9J0v/N05hU+WmSFfkD0M5r601JsTKcAtRGGHSiJ9OebsBTb3wc4i0Q6gRJndinKqoJaZXlHCol0AGK9t8w0wWJxQMJQpfvUSH8JB47Vp7IrYom2i1en+0/uPHJhtVObtLYA9QjhcxBtLO9qPeouIYzW9bv/ip27prwe2hv7LFlcCANIsE0uyjzx4/PBc45En1/qkx7mxypkLLfvbFIvz3RO12bGqSpVVlFumH9jigMTrly4B3lzNBvFfvuxEPyWPzTdnm4lsIlNTzampAW5f2DoMg7mvrbXr9cqggnjrdoS4wb95z226TOpDM+glCb6erSQO23bgmIxVs52Ilik9xNTXlnwr640aKnn7j29xsVWrqy2b2aOX5g4gjcUlpjYOY1u+h2HrlOM0d5ZuOibj6/dPAsA3z62DPKBUBHefmH38ojtXaYp9USo/pYVtCYXcHMS6lPU6lVsL+6+tZ/k4FLKz0d3Y6GzOjLE5GAZzP3PmXEnK3yTgdpgse7KX65Ymk+cRHr5uT6yIlTYUmEKxzX2bze59gm10h6JlSqosN8uoqqAXjy6B9993uOdxx243f+yxc0eP7sZetgI7XLxMPyklMGWWGQi2hTa8zZ3MMoXb357pBwiecyTcMVCe5DmG/qNlYtiinSr+tuondXMLYdCvokNMuLKytrxcHeYd2UM6obqJSd5OblQAeydreycTedrU7rIn0HGQktDv3RO1ifpQL9nieIzXtj1aBjKfXStdoD92tUWbDADYC4Z6tEInVLGvaBlepkRgcxhIG0i2u102dyLpEkkWcjcO0myJWSYJ5S73csgMHp7bvBEjFivXL03WKqZPnSOGgTqCiCrOHQFq1eqQT6gOo7FduwbjldBHVEM/8MPPXup2exye2hbgmnsR0n0a7LYdvM19ezV3NO5u5d5N964N4PU37lX5rbYXENHmlsFece78lLmFknxBBDcfnOqZgXYIgAhzY1WK28His3iUlWEgGNQXtRWzzEyz8ufv2NIJaoXpf/2ha/3zwc0yg49VrEOMj9cuwdwy58+vTE72m6eFYOvMSB2L2Dm4fmnyE688CQDX7pv41ZddNpxGewInx8NzjX/+gqPbVfPRuUae532k/O09hfWKeelVu37k9v09S24F8hzOn1+xR0h62Nz9Doye9GOWuXbfxLX7BrtlKWp3a9EhrhLcz2QMFnf21J7xr7771g/990cGajMzA2ruT58LqtxguAkYSKq96NT8c+WtaojQWm+vrbWHeV/HMNjfuXMXu93Bzt32PCb+jIKJenb57jEAmGlWbjww+XSjE4AIcqZZeVXxBZ6Dwr2Xzb3ltqWsNKKpTw1pop792+8/tV2IFUGe5088cQH6oCuLM1d4+zTLbBEmG9lvvGqr4zA7VnneMXENb/n2d1CT+DA19y1CkYa+uQjLQY8fLU3XT+0RtnUEWF9vra62Bm57CzAMzX1ubtKYgaXIPyDm/r0J5WaZ+y6bm9ts1sltB0RcWLCp4npznLfctiTNMqWHF7YJapnpM99hCdx9fPbu47P0Z8944kGDQAaNIhtOktQkHJ5rJid6006ArXOjZrM+zJs6YDjMfXJy8NQQ2zGa3+NQmvVvG2BhvHZT6tZmCx968bGiV8MHRLAhxiWWCoJff0gkL9pKyMfTC1fsGT84W8ZNBo3gyga8i+bGA1Mff+XJ/stvI/zR224oerVJm/vWlhIi1mvVev0ZkPL39OnT991338mTJ++9997Tp0/3+aoIvvvdpzqdgdOhbd2hOoIdheuWJj7y4PGnG4u+IM/zM2fO29+D0tWnXn2qn4CcZyD8xPMOlGcvGNwNNhhzn/TmymcObDrCcou65nSjsr7WunhxfUu1DAhp5v7e9773/vvv/+pXv/qCF7zgfe97X5+vimBlZb38mr0YELczRe33Jmzjmdh/6JDnYNfV8y+fu2lAp8hth6e3GMP+jIXnHJlW2d7LYdBQyGcg4Cazw291Kf3hj15/fKbaaj0Drtn7/Oc//9rXvhYAXvOa13z+85/v8xUAXLy4vry8lueQ57C8vLaysg4Au3dPr6y01tbaANBqbSwvr7XbHQBYXW0tL6/ZaMULF9YuXFgDgG43X15e63S6GUK73VleXrMjsrbWXl5eswmRV1ZEK3bddjrd5eW1gVqx/g3eyvp63EoO0H8rXQC4eDHRysZGZ3l5zWYV9610BmnFDkLLDo4dattKnufLy2srK7yVNgC0W+033LDHt9LqpxU+1NTK8nJZK7IvYqhlK3ao+2xlPWplg1opmNBuckJtK3meLy3NXry4fs+hyVsPTctWtoFsOHGqJWAHYdtbIbIZZAl0VSsnZ2rP3j9OrfQkzl11/PI7by4iTtuKn1DRl15k09cS8IMglsCgxPnCU/NL0/VBiXO+kY3Xsn6IM1oCa9RKvV6ZmmrGE7oJq0afkGbuZ86cWVhYAID5+fkzZ870+QoA1tfbq6stgBwgX111DD3LzNpa21JAu91ZXW11Oh0AWF/fWF1t2YFYXXWu5G43X11tvf+OAw9ft6fT6ayutiyBttu2cBcA1tZEK3aIO53u6mrLjpptxQ63b4V/CHmuP7TotVq6sF2l1BfeysZGaMV/aPsiWrEfbmzwVuwgiFbsIFg6s4PAW2m3u/GIWWq2hWVfOgDQ2ej+wt37bSt2Xuz6UUNtP7ToWcZhC9tW1tZaxSPWYUOtW1lZUa1ssFY60VC3ioc6zH7cChVOjVhopdPp1utVRjb8wzAvnjj1ILAR67K+pIlTLQE7YqlWeiyB1FAnKJkvtKIlwImzjyVg0QuFaV5a6+3pRsX2RS6BLrXi56VtiZO34pdAJxrqjaIlkCLOxIiVEyef0B9/zv5Te8aTxNlux8TplsBHnn/wruOzdhBs4T6Jc3W1Teh1OnmWmZhp7Bxzx6TBZN++fV/60pd279797W9/+4Ybbnj00Uf7eVUE3/zm44uLM8NMqjCCEXDI8/yRR87SfR0jGMHw4YknLmSZmZ4enhMirbnfe++9n/70pwHgM5/5zH333WcfWvdp8lU5DBrkPoIRbC/kOQznrPIIRlAEeZ4PmQjTmvvp06ff8IY3PPnkk3Nzc5/85CcXFxcBYO/evd/+9reTr0YwghGMYATPKEgz9+2FjY1Olo0iG0fwdEK73aluOSvvCEawaeh0uohlufa2HYaRfuDRR5+w7qMRjOBpgW43/+Y3H3+6sRjB9zScO3fx/PmVYbY4jBNTjUbtH+ohvxFcEoAI9qaOEYzg6YJqtTLkszvDMMuMYAQjGMEIhgxDvbB1BCMYwQhGMBwYMfcRjGAEI7gEYcTcRzCCEYzgEoQRcx/BCEYwgksQRsx9BCMYwQguQRgx9xGMYAQjuARhxNxHMIIRjOAShJ1l7pu4tmkEI9g0fOxjHxsfH19YWFhYWPjJn/xJSFHgiCZHsHNw8eLFffv22d/90N6OUuPOMvdNXNs0ghFsGr761a/+1m/91tmzZ8+ePfsrv/IrkKLAEU2OYIfgQx/60PHjxx977DH7Zz+0t7PUmO8k7N+///Tp03menz59+sCBAzva1ghGcM8999xyyy3j4+O33377X//1X+cpChzR5Ah2CDY2NtrtNjHVfmhvR6lxZ9MP1Gq1ixcvVqvVVqs1OTm5vj7U+2FH8L0G73rXux544IGbb775ox/96Oc+97kvfOELMQWOaHIEOwqIjqn2Q3s7So07a5ZZWFh48sknAeCJJ56wl/ONYAQ7Bx/+8IfvvvvuiYmJt7/97V/60pcgRYEjmhzBcKAf2ttRatxZ5r6Ja5tGMILNwfr6+uWXX/61r30NAD73uc/deOONkKLAEU2OYDjQD+3tKDXurFlmdG3TCIYJn/3sZ9/97nd3Op3FxcWPf/zjR48ejSlwRJMj2FEgs0w/tLej1DhK+TuCEYxgBJcgjA4xjWAEIxjBJQgj5j6CEYxgBJcgjJj7CEYwghFcgjBi7iMYwQhGcAnCiLmPYAQjGMElCCPmPoIRjGAElyD8fyEVaaSNWbnhAAAAAElFTkSuQmCC", - "image/svg+xml": [], - "text/plain": [ - "Plot{Plots.GadflyPackage() n=1}" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "using Plots; gadfly()\n", - "default(size=(500,300))\n", - "p1 = plot(rand(20))\n", - "p2 = plot(rand(10))\n", - "p3 = scatter(rand(100))\n", - "p4 = plot(rand(1000))" - ] - }, { "cell_type": "code", "execution_count": 2, @@ -193,685 +7,155 @@ "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: Recompiling stale cache file /home/tom/.julia/lib/v0.4/OnlineStats.ji for module OnlineStats.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.544174 seconds (2.08 M allocations: 156.080 MB, 2.81% gc time)\n", + "\n", + "\n", + "\n", + "maxabs(β - coef(o)) for\n", + "\n", + "glm: 0.006636741266573876\n", + "sgd: NaN\n", + "proxgrad: 0.010237129356885588\n", + "rda: 1.4318993623506318\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Base.FloatingPoint is deprecated, use AbstractFloat instead.\n", + " likely near /home/tom/.julia/v0.4/Qwt/src/widgets.jl:5\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:13\n", + "WARNING: Base.Uint32 is deprecated, use UInt32 instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:13\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:13\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:18\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:18\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:21\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:21\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:45\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:120\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:191\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:274\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:336\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:338\n", + "WARNING: Base.String is deprecated, use AbstractString instead.\n", + " likely near /home/tom/.julia/v0.4/Glob/src/Glob.jl:346\n" + ] + } + ], + "source": [ + "using Plots, DataFrames, OnlineStats, OnlineAI\n", + "default(size=(500,300))\n", + "df = readtable(joinpath(Pkg.dir(\"Plots\"), \"examples\", \"meetup\", \"winequality-white.csv\"), separator=';');" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(xmeta,ymeta) = (nothing,nothing)" + ] + }, + { + "ename": "BoundsError", + "evalue": "BoundsError: attempt to access 0-element Array{Any,1}\n at index [0]", + "output_type": "error", + "traceback": [ + "BoundsError: attempt to access 0-element Array{Any,1}\n at index [0]", + "" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 500\n", - " 1000\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 50\n", - " 100\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0.0\n", - " 2.5\n", - " 5.0\n", - " 7.5\n", - " 10.0\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.00\n", - " 0.25\n", - " 0.50\n", - " 0.75\n", - " 1.00\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 5\n", - " 10\n", - " 15\n", - " 20\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "\n", - "\n" - ], - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 500\n", - " 1000\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 50\n", - " 100\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0.0\n", - " 2.5\n", - " 5.0\n", - " 7.5\n", - " 10.0\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.00\n", - " 0.25\n", - " 0.50\n", - " 0.75\n", - " 1.00\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - " 0\n", - " 5\n", - " 10\n", - " 15\n", - " 20\n", - " \n", - " \n", - " \n", - " y1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.0\n", - " 0.5\n", - " 1.0\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "\n", - "\n" - ], - "text/plain": [ - "Compose.SVG(132.2751322751323,79.36507936507938,IOBuffer(data=UInt8[...], readable=true, writable=true, seekable=true, append=false, size=52906, maxsize=Inf, ptr=52907, mark=-1),nothing,\"fig-c1a42d59b95541f7a2d51b4b6264587d\",0,Compose.SVGPropertyFrame[],Dict{Type{T},Union{Compose.Property{P<:Compose.PropertyPrimitive},Void}}(),Dict{Compose.ClipPrimitive{P<:Compose.Point{XM<:Compose.Measure{S,T},YM<:Compose.Measure{S,T}}},AbstractString}(Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.05756613756616,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(91.40968253968256,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(91.40968253968256,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.05756613756616,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-c1a42d59b95541f7a2d51b4b6264587d-element-24\",Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.920000000000002,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(25.27211640211641,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(25.27211640211641,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(6.920000000000002,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-c1a42d59b95541f7a2d51b4b6264587d-element-55\",Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(106.12634920634923,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(124.47846560846564,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(124.47846560846564,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(106.12634920634923,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(73.73174603174604,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-c1a42d59b95541f7a2d51b4b6264587d-element-9\",Compose.ClipPrimitive{Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}}([Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(41.55544973544974,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(58.34089947089949,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(1.0,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(58.34089947089949,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(70.87841269841272,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0)),Compose.Point{Compose.Measure{Compose.MeasureNil,Compose.MeasureNil},Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}}(Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(41.55544973544974,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0),Compose.Measure{Compose.MeasureNil,Compose.MeasureNil}(70.87841269841272,Compose.MeasureNil(),Compose.MeasureNil(),0.0,0.0))])=>\"fig-c1a42d59b95541f7a2d51b4b6264587d-element-40\"),Set{AbstractString}(),true,false,nothing,true,\"fig-c1a42d59b95541f7a2d51b4b6264587d-element-61\",false,61,AbstractString[\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\",\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\",\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\",\"/home/tom/.julia/v0.4/Gadfly/src/gadfly.js\"],Tuple{AbstractString,AbstractString}[(\"Snap.svg\",\"Snap\"),(\"Gadfly\",\"Gadfly\"),(\"Gadfly\",\"Gadfly\"),(\"Gadfly\",\"Gadfly\"),(\"Gadfly\",\"Gadfly\")],AbstractString[\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-4\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-8\\\")\\n .init_gadfly();\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-19\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-23\\\")\\n .init_gadfly();\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-35\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-39\\\")\\n .init_gadfly();\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-50\\\")\\n .drag(function() {}, function() {}, function() {});\",\"fig.select(\\\"#fig-c1a42d59b95541f7a2d51b4b6264587d-element-54\\\")\\n .init_gadfly();\"],false,:none)" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAIAAAC62dafAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOxdZ2AU5dY+U7aX9J4AoXcFRQRBuQoKKqJeFUVQVOx6r6CIguXakKaigl1EAQugctULUqRZAAWkJ0IIpGeT7X2nfj9mMzvbZgaISzIfzw/YzL47M3vm3TNnnvec5yAsy8I5nMM5nMM5KAvo2T6BcziHcziHc2h9nHPu53AO53AOCkQqnHswSMohf1iWDQZJOTsMhSiaZuSM9PsJOcNIkqYoWs7Ido1AQNoaci5WKEQyjMQYgpC+Roo0u8zZLh/yZ7tMnDO7HCjA7Klw7haLU46ZKIqxWFxydmi3e2TeBurrHXKGud1+jycoZ2S7Rn29Q3L+WywuipK4WFarJxSSsL/D4ZO8syrS7DJnu3zIn+0ycc7scqAAs+MpOIZer0EQRHIYiiJ6vVrODrVaNY7Lui0ZjRo5w9RqFYpKn2F7h9GolbwOer1a0hQ6nRrDJOyv1apUKkx8jCLNLnO2y4f82S4T58wuBwowO3IuW+YczuEczkF5SAUt43L5JSlaAGAY1u0OyNmh1xskSVnslcPhkzMsECBa9xGsbcLplLaGnIvl8QQl2UOfL0QQlPgYRZpd5myXD/mzXSbOmV0OFGB2Mefu8/kKCwtjNtbX148aNapnz54jR46sr6+Xcwyn08cw0nQYTTMyfbHHE5B0HBxsNq+cYX5/SM5iY2og0+yncSFsNq/kc5rT6ZfkLt1uv+S893qDoZDENWqPZpeEzNkuH/Jnu0ycM7scKMDsSZ373Llzu3bt2tDQELN95syZV111VXl5+ZgxY2bNmiXnGJmZJhSVfkTAMDQryyhnh2lpeo1G1mpBbq5ZzjCDQavXy2Ln/27IN/tpXIicHLMkLZmVZZTk09PTDSqVhP3NZp1WqxIf0x7NLgmZs10+5M92mThndjlQgtnZJKAoiiTJ+AHFxcX19fUsy9bX15eUlMR9iqYoOuY1wzAURdM0w7IsTTMURTOM8HXMYJYfnOyDkkfhXss4itjp8RtTCflmP6ULIflNE9kz9kKI2FPOUWj6FI6SYpyb7W18tkd/6pzZZSHpvQ7DMBxPcOOyWCzZ2dkAkJWVZbFY4t511dbauC9WW2vjUhsbGpw1NVaHwwsAbnegttbm84UAoLnZXVtr49jbujp7ba2tudlNURT3AgB8vlBtrY0j4h0Ob22tjSOtqqqs1dXNnCn5o4RCZG2tzW6PHMXrDTU2Oq1Wd22tjSQpAKivd9TV2QGAoujaWltzs4c7yokTzdwRnU4ff5SmJpfL5T+TG+dpQL7ZxS8E/01JMvJNa2vttbU2t9sPcd+0ttbGTbLjxxsbGhyQ2J5BALBaPZWVFr8/yB2ltjZiz6YmNwD4/URtra2x0RkMktxRuKdRi8XNHQUAuAEeT9Dl8tXW2mw2DwB4PMHaWttZydJL/WxvmYetOdsBQKmzPfrdBGavrrN/vauqdc2+7UDtgi1Vi36p+b2soV2aXdz3xw8oKCiwWCwsyzY0NBQWFsq5gZw82USSlOQwgqBOnmyWs8P6ervXG5Qz8tixRjnDrFa33e6VMzI1kGP207gQFRWNkmHxyZPNBCFxsWprbX5/SHxMY6PT7Q6Ij2mPZpfEyZNNGzduGv6PkenZeQCQlp07bMQVmzZtOu2zSjbbm5ubp02f0XvgYGNGVlHn7tfccPOWLVvk7FCRZt9TVp/z3PZWPKv6evu6Q5bLFu8ZvPCPHSdd8QNW72964rtjMRvdQeqvJl/CHabe7KfAUnErGyNHjly1ahUArF69etSoUXI+WFCQIUnjAgCOowUF6XJ2mJ1t1ulkZcSXlGTKGZaWpjebdXJGph7JzH4aF6K4OFOScy8oSJdM783NNWs0Enx6ZqZRsmqhPZpdHAzDzJj1xI0T7/pVe4Hz+tfhsQ2u6xf+qrvohon3jL99Ek2fTvZFwtn++eefl3bv9c7W40d6TPSO/6Du0qfXeovH3jb58ivHBAISKWfKMzsA5OWltdY5XPXBPoZls7PNarUY5+4JUc2+2OyXXVWuh77+K+H41JtdIs8dQSID8vPzGxsb6+vrJ0+e7HA4MjMzly5dWlBQkJLzbB28v6NuYLFpUImsVdazCDlmb9cXom3izGf7nVPuX735d/+1L4Mq+mdMhfT/e3bcJf0+//STMz/PZStW3P+vxwPj5kJGSdQbDK3dNHdgFrv9pw0YJlFB1nbQKk6myUv0mber+cXhFdZAtkGVrpNYCz3Y4N123PnIsGJ+ywl74FCD7/0ddevK7cS8ERiKbD3u+M/6E0GSWXh994s7xjqNpX80bD3uXHprL+HGTUftczZXbXpgQMzgSlsAADpnpdS5S8RoQtff2NgIAIWFhRs2bPjjjz/Wr18v06HU1NjkiCpQFF1TY5OzQ4vFJVM05sSJJuGf68ptRxoTZFva7d7UE44ikGP207gQJ040SaZCyrlYDQ0OyYzdpiY3x9GLoD2aXQS7d+9e9c2aBJ4dAHCN/+oX1/xv/c6dO0/1rGJmu9vtfvjRxwLXvBTr2QEAxYIjZxystq5YsYLfZrfbn3x6Vr9BQ9Iyc0q69LjmhpvXrt2oJLNzqKsLC41M++7Y9kqn8K1vDja/sulkzPgqR/DH8ihv03POLoJm+Vx5i8UlmcubLDJeW2a7fcVh4ZZPdzd+8Et1is2eiiImmfmnLAsyyxC4hWY5I2k6ahhJs34ywcmwLNu6FRBtEzJLySRNyxH34mNY6SFKM/sLs+cFB4xP4Nk5qLTBAeOff2Xuqe42Zra//8EHTIcLIKdL4tEo5rnwzmdfnM39tXr115269nh7U9mhbre7x79Xe+nT6/wdx99z380TJgSDipKXYSNuGVbsbRS+1ewlqhxRX3Z/vZdiWACodYUuXbw3vAdgAYDfSUIn8/6Ouk1H7cItDW4iEOdSCJrxEbERUupneyqce8eOOTgu/ZCoUmEdO2bL2WFBQYbBICtjtGvXPOGfBM0GElXfZGWZMjIMcnbYrtGlS54k596xY7akJkxRUabkmkdeXprJpBUfozCz79m7l+0wUGQA22Hgn3v3ytybz+fbsWPH0qVLd+3a1thYy2/f+usuX6HYUaD4vIa6ao/H8+VXX91x30Oe6+YGL30ECnqDPgPMeay5wNt77Nb9xy4YPNTnk1Uz2C5QXJzFvyaoWB8a41RHvvenw08BAEkz1S1+n2WBhXBI8uDXfxUUZAgLNSqsgXlbqvbUeirtUfeJCcsPr9xnuevLMpFzoxm23hXS6zUpnu2pEA6jKBrDMEm3wrJA07Sc2wBNMyiKyNEJIkla6KpImom/zXI7RBBEeWpKMYixRkLIuVgUxWCYhP3lmFRhZrc3NYJRNDoxZjuaG8UGAABAKBR6feGbr86dj2UVhwz5qN9ONR7r0b3bojcWDB8+vKqqGroPE/s8gmjTc48dO3b/Q48Grn4RsjoBAAAL+7+HXSvAmA25XcmMTmW1hwo6lL712rzJkyfL/45tFhRF83E22xJ//1nnafKG8+hjxtv9JAAwLBA00+gh8k1q4MiDloFcZjA/vtET+u6wtXdelHfm7gd3f1Vu1mK9txhIhrmoZT2vxhnih/lJ5qNd9c+N6sQwbCpneyoi97o6u5w8AYqieeJMHE1Ncjn3qiqr8E+CZhM6d6fT16ZYyL8J1dVWSaqkrs4hyblbLE5Jzt1q9XCJxiJQmNnzikrAFVtsGQVXY25RB/GdBAKBK68e+8qnP3iuftmZ1TdQtt3XVB0yFx84XHbZyKseePDBTp06gDs29TsKLBt0NG3evIUu6g953blNsOUdOLIBrnsRJiyGkVPhysfZyZ94Rj3zyLNznnxaVgloG0djozN+484q95pDzSAgWziwAJwfYFlocBNLfq/nNrIssAAssH/WeZqaojh34Q+HYtgtFWFPxbDAsCwABEha6Fv8BL3k94Ynvq/gtwSDZIpneyoid61WLSfKRhBEsmCdg0ajkpNbCQAx2XgkzfjjuDAAUKlwxcSPItDp1JLXQauVFiaVY3+1GpdMqVSY2QddOLCueg+djA0HwGr2DLpAlFEBmDzl/t3NrH/YQ7B6OhT2hTs+BHM+9xbbcOT9NYuLNSFdZiDQa2TSXTQcyc7L37l3n6+gJWdj/3dg+Qtumh+7HlDU1zdu3rsrZvTt1eOOO+6Q9SXbKuJzcy9bvHdYaTi1Oj6mYQFOOoI3fHIgsoWFUEu0HqJYjUaFomHnft+q8hv65fAj/QQ9bsmBN6/vDhD27Bz21Xlf3njyim4ZAEAzECSjvA2KopLPza2LVETueXlpMvPcxZNVDzZ4vz9sBYDMTKPM20BhYYbwT5JmA4k6UZjNOqNRgiBWAGKskRByLlZ2tkk8BRgAMjIMkry8wsz+/MynNPtXQ9AT2eSzQ/VeqNwJzjoIuDR/rvzPM0+L7GH//v0/rF3nH/4wfD0DBt4IV03nPTsAQEFvuO3tBnUheWQLOGqT7IM17132n1lPHa88CeY8AADCDzuWwZVPJF7p1Ri9l/572oyZoZDEY1YbR3a2mWdRuP+rnUGqhWRh4rw7y7I+gj4kyJ1jgT3U4ONpmcxMo1qNc59r9IS8oQRBIRt92xBPIVj4a12FqzWVyCSRCufOVTNKDmMY1u8Xm2G/V7s/3FUPAMEgKdktiENMNl4yWoYgqNZVgGubkMxNBHkXKxAgJJUjg0FSkt5RmNn79ev30H1TTN8/BQEnNFXAtzNh6WTY8RnsWwMrp6JLJ48YevH5558vsofVX39D9BgFhzdAblc4b1yCEQhKX/McqtHpvnsaPE1xb7O6rW91Tcfvuuuu0o4t7E3dIcjqBJnJ6aC87qQmbffu3af6fdsUxAUXY2Y0R7+cjF4a5cbwI4NBUjjJ+R/FkUbfLyciDeOEt406dyj+WABQZvEBQJBiAlK5la2LVDj35ma3nA5YNM1wOgzJQDGszUcCgMPhlWzzxqGxMapvXzJaxuMJSBLECoDF4pK8yTY3eyRvnHa7V9Ipu1z+QEDiGinP7PPnzrnzxrGqpXfC19Oh9CJ44BsYvxBunAP3rWTGzNy2r/yBhx8VuXfu3n+IyiqFQ2vhgpuSHgPFyQtu7dm5g+6rh1S/LwNHDTAU+B1wdJvp639dkObfvnmjSqW65KKBestBAADrCcjuJH7aVFZpWZlYvkfbh83miSXWW/4us/jZ8AvfpM+PxLwLAN4Q/e5vdQDAht0+AIDD4RXqWvPDt1U6Pt8bWfMQ5uF4gomjma8PNHMv2orkbyvCbNbLoVZRFElLE6vgohiWW+M2GrUy2auMDL3wz2SRu06nlsnztGukpxskOXezWYdhEoNMJp1kUpPBoJGkbhRp9rFXj8bVGrjpNTj/esBwYChw1kNzJRT08t3w+op12198+ZVkn6UoCgABVyPkdBU5BJvXI0jS+3fvGt8NL942G1t0Tdrqh4d4fv1i8byfN280GAwAcM8996BVf4CtCk7sAkTqZ45grSuGnnrM3dnMv2YjL6KIGh/BcEF0TA2G3U9N/e8x4UgAMBq13KIR27I9AXEv2OhJxNvEoHU1hCWRioPJzO7EMDQ9XWwkzYDdTwGAySS3ijcryyT8k6SZhHnubUTe+u+GHLl8ORdLjkSGHDJdkWaf8cys4JApkNMZPM2wazkcXg/6DNAYwFkP6YXegTfOm//ag/ffl5ubGwwGd+zYUVZWhiBIz549hw4dekH/Pps3VzKYClDRe6fG4HY5u3XrtmzJh8mGpKenvzZvztSnnvZ7XIBJ/Mxx+4mePXue3vdtI3AS8bx6xPOysfkyScHT6CaTDsejUuBj9smBP2qdS/oZVFKRqXWRCudus3nT0/WSy3Q0zbhc/szMpA6IYhi7n2RZcLv9Op1aMjAEgOZmd05ORBQiWeTu8wURBFGkrxEixhoJIediOZ0+g0Hi4cntDqjVuHhgrjyz19bWlv/1F3v3i9BUAd/MgD6j4f6VoG2xeeUO2P4Bqcv44Ycf7A7HK3PmQ3oRmdkRAcDtH2LepnsnT9JXbvOiGPgdoE+++m2v6dGjh+TJ3HfvvVu2bPly1wloLAdbFWR1TDyusRz1NF100UWn8X3bDqIoFBZ+OGJ1Bam/mv00w3bL1sdXhkouLLlcfuGiEc/In0nP6WAwpbRMKpy71xsQ51s4MAzr8QRFnTtLMawnRPn9IRzH5Dh3lysgdGckzfoTRe7BIImiqJK8TEK43YHsbIlmTF5v0GzWiatO+XwhjUYl7twDAUIyt1V5Zi8vL1fndgn67PDNU3D5o9B9BACA3wH2GtAYoeMguLUvuXLajFnPB7UZ3jEvRakINFUs+vxNs1HnR3XM4Q0waHyyoxiObRr30C1yzie/oAgpNLDF/WHzW3DDbMDjTE34kU2v33rTjVpt+05boqOVRlbua3IGqO8PWwcUmbplR3Gzn/7R4A7RpGB4Qkfv94f4xSfu7b21nhyj6rDFx3V8YuNon3jUukJC5QMi0YLf34dUOPecHLOcVEgMQ3NyTCIDuEVZu5/KzzDKKWQFgPz8qNzKmArVw42+r/ZZXhzdWT7P066Rl5cmybnn5Jgk89O5LDHxMWlpesn9KM/sPp8PVBr4/XPofSV0vwwqfoHfloKnCbI6QcANHgv0vgo6DLBW74VrZ4M6yulAblfv2Dnsf6eng9v+xxfQ/VJIS6SZVblT66i879575ZwPhqEIAuwFt4D1JHzzFIyaFiU3Zj0BG+arWHL06KvO5Fu3BSTr+8j5X7ufXLW/iVuxa/QQNMMebPAKxiRARoZR5XELxwQp5r+HrACwr85r0sjyP98ftg4vjciYyxQqby2kwrnLDM1QVOIJnaQZALD5yU6ZcqOMGOY3hpY56Qiu/8v+4ujOch4CFIDW4sHlzFE5K6XKM3vPnj0Z60lw7oEpK2DLYqjZB8OmQOeLw28HXPDbUjj4P7htUaxn56Ax+C57DF///IXn9dv9xSNw0wLILo0aUPGLYduba374r8xAu0+vnvoNX3oRBK6aDn98BV8+BnndIKcLsCw0HQPrCRh0q/rI9+2dcAcAYfgYH4nvrfXc8teha3tn17lCP5bbIQl213j4PWi1KmFT1thkykQf5zY6g1TLn7GjcFUqElgih0vBMRoanDk5Zsk4jqLo5maPSL8O7kHK7ietVo/RqJXjPmpqbCUlYUUhhmVphhWmQvpCNEEzAOBy+VEUUV4gGYPaWntxsUT3EjkXq6nJnZamE18dstu9Wq1K/FahPLN37dpVhTBgyIL930NzJdy2CFQtXjjggj++gvLNkF0a67KFyOsO5oJ5r7688/ffX3x5GlN0HlHQD/QZiKfJ3LDHSLm++H7NsGGi2jICjB49mvn3NBhsA2MWXHQbnDcWqveCvQYAgfPHQYeBUHsgN8PUrVu3M/7qZxmhEJWQXYkpMmr0EI2eBMQ3N+y3k64LS8LkgdXqEeb7xnhqhoXdNe749HkAiNeD5CFex9PqSMWdhCDIJLe6KLAsiGdPUzQLAA4/RZKUnMR5ABCqQxA0CwBBQRK3j6A5ATmKomVWRbVrhEKk5HIQ12NPfAxJUpLipSQZw4ImgPLMjmHYxPG3ISgGf66Bsc9HPPuRDfDJZDixE3K7Qp7EWiiR0am8vPzpGTMsdTULHr75tuLASOTIIwON77zw+Mlj5cOHD5d/PgUFBfdOucewbSHQFACAxgjdLoXBt8PgCdB1GJAB4473F8x5RRiitlOwbAs/zsLeOs+OKhf/p+QiaCSpRjAuZpLH7MJPhFPjTwkyvVZrIRWRe0lJtpw8d5UK46PshOBk32x+Mi8vR45YDQB07hxRhCBpVq/GhLSMlwhH7iKruEpCaWmOpNlKSrIkL1ZBQYak/XNzpdtdKdLss2bNWPzuYrbPaNC1rPccXg+7lsOYp2HDfOhzFbjjK0tjwWWdm83mRx999GGGRWRJoCbG/LmvHj9x25Z1z/uGPQTpRZE36g4at7359GMP3XDDDae567YEjUbNQri/YIOb0EjxBJJYVx0IUWyDmyAZBuQEpwKwLDR5iXj+J8ViG6lw7vLFocRHUgyrwVFHgDyVHUauMUkzWhylaDZEMdy19xE0F86f/k+nXUFOgCaz3ExyjEypOMkx7Q55ebk6c7ovv3v4b78Dtr8PE96Bo9ug5+WQ3RlO7BLfg9pxslevSPO2M9RWU6lUa1Z/teC111+ZOw3L7UKklaA0iVkrTAjx5uIFN95445nsvO0gZioJMtyj/kyIhG+uPtDct8BwzOoHgCyDyh1MQCqI7NUVpH44YgWA7ZVOTwt/kOIJn4rHsaqqZjlt9kiSjlHojQFFs7lGtc1HNTQ4ZJatV1RECoUJmlVjiF6N8sG7j6AJigEAm83jcCincUEyHD9ukaRlqqqsZKJsUSHq6uyShdQWi8vjkZCyUaTZq6qaS0s7gbqlFmzPauh1BaTlg70asjpBUT+w14D1RNLPW46iHsuQIUP4DfJnezJgGDbjyel1JytXvvXSnNsvfXHC5V++++bJY2WK8ewAEAwSLBspKZJftZQMoRBZ0RRW6GVZEEoOiKPKHly4vYb/c/1ftm3Hw3LEHo9E7/LWRSoid5lpiwgC4ut4FMPmGlV2P4lhmMxwJqZThwpDEQQCJJOuAwDwhsKRO4qiMjWE2zXkaDbgOCoZXuA4JhmDYBgqeY0UaXYcx0ZeOuzw7zVh71J/CIZNAQDANUCFQKWFC8fDxtfhn3MTJMyEfLqtC196/hmdLrLILH+2i8NkMo0aNWrUqFEOhw/D0HbUQVsOEATxEfTNnx7i/hTQ6Cwkyp8RQvgu/xJBkG8Pi8WayRCkmH31gjxLwZFTvLaRioMVFWXK8e84jhUVieVy0Cyba1Tb/WRurllmxqiwbx9BsyoM0akwvo7J18K5Z2QY5JTUt3d06JAt6bjlXKy8vDTJVKXsbJNkK0RFmr2oKHPM6Cv1lVuAW+JzNYRlezNLoKkCAOCCf0JeN/h6BjQfj/pkUwV8+eitYy576KGHhJvlz3aZUKTZY3K32OgX3L8hqRV+fmRZk397lVtiKECZxcepDrQcJbx/IYcjPGSK6/VSEbkHg6RGg0vGeizLhkKUiNegaDbXpD5uDYRCFI7LCvr8foLv10HSrBpDcBThaRlvKJwtQ5I0gsh9wmi/CAQISTch52KFQqRknw2CoDBM4hop0uzBIDlq1KguRbmH9q1hBtwIhmzw2cGUAz0vhx2fwsUTwZwPlz8KB9fCmlmQVgBZpQAA1kpw1PTu2umtN15bu3ZtZWUlwzClpaXDhw/X600yZ7tMKNLsXPS9p9bTr8AIiTR+AWBfXVLR2Rgah2ZYObWkhxp9tFTamPBMFJgtY7E45cSDFMVYLC6RHtkcLfNHtdtu95jNejk9suvrHXyPbIJmVBiqxdGAIHInGYYTq0FRVEnNmhOivt7RubNEj2yLxVVYmCFO4FitnsxMo/h9wuHw6fUa8R7ZijR7ZWVtdfXR60aPPP72OwEAJrsU6g5Afg/QpUH/sbD5bRj7AmA49LsGeo2ChiNgrwJAIL+H4fclV4y4LKegmE4rpDI7IZhK46xGHVUP3P/Qc7Nmms2Jip5OC4o0O6cBTsW5WjlSMGxL9XsC7TFRCD17sk8KbxspznNPUYWqeCS45lDz1b2yMBSJ6YoXA4phcwxqu5/UatWSJVEcjMbIDYCL3HWqqAVVlgWSYdRq6d5yCoDRqJWkZfR6taQpdDq1ZCCp1UqIzwCAwsxO0/T8115/5dW5aGYJldkJivrBruUIpmIrd0D/saDSwiV3wbo58M2TcNmDkNsNcDWUnA9F/ZDyTfrfPy3t2HHR8m/ZGxZATmfg+nwCgKPurS/mH688vvrL5a3FkivM7By4CekMUAcavBDtUiU9Nr8SG39vaBlw+suzwo+m+GkpRdoy4gMmfX7kxKyh2QaV+Egucrf5STm65Bzy8yP1rgTFqDBEr8b4IlWudVaIYsUDTMVAvIshB8mLBfLy09PSpCNNJZmdpumbbpu44c/j/nHzIKtT5I2dy9A/v4Y1M5kbXgVcA6NnwP7vYM0s0KVBVifE70Cslef165M/ZNC63/bBbYtAGy2vlFFE3jB37bczXnl17nPPzGyVU1WS2XlwUhY+guYKRGNTIePGNySqU4Ukflyma5e8BaRYWyYVC6oul1+8oJGkWYphGYZ1u8VShWiG1asxDY5aHD7JdD0Owkw7kmHVGCqM3L0EDQAExQQCRDAoq7VTu4bTKZ13KHmxAMDjCUrmtvp8IcluTUoy+6zn/rNhf5X/mpejPDsAXDyJmfQh6qjWfvEAHN0ONAEDboA7P4G+Y7TWo10NxJ87tn/z5YofN26Gq56M9ewccA0x8vG58xe4XK4E7546lGR2HskmZFQmjGD73lqxpm8xSKgTfhpIcVPJVDh3p9Mn3ueFpFmSZmiaEc96phgWR5EMnaq2WbrNGwebLZKTRIazZaJoGQAgaNbvD6W4A9ZZgc3mlQwunE6/5LKP2+2XvLl6vcGQVMdIxZjdYrG8vWixf8TUxG0xjDnU5Y+lqeG8xvWaj8Yblk5Qf3xrN8v2jxbOKT90oH///lMff4I150Fhn6QHyCihMku3bNnSKmerGLMLIT4h5fMqCQeGWkkkQ2Zz0NZCKmiZzEyTSIInzbAMy1IMi2GoeKsgzrlnGXASx2U2rBIWwRM0o8ZQYSqkN0TrVChBMxkGrSKrJWOQkyMh5g4AWVlGST49Pd2QTGGVh9kspxWfQsy+bt06pNMFYEwuntHlEu+v763+YlnXrl2dTmdaWprwi/+yYyfkJffsAABAZHctKyu7/vrrz/xsFWN2IZJL/krjTOudWuBKVMUqhEarOFrGZNKKLOCQTHgpA0URce0FimZxDMnUqfwMKnNpQpjPy0Xu+ujIPVOvImhGq1WluL3hWYHM9niSq20Gg0ZyQVunU0suqCrG7PsPHfGndRIbgSB4Xurfd2YAACAASURBVGeuCXV6enqMb3Vam0GKCgOaxPHWadKmGLMLIT4hxY2742Tr8F3OgIRzl9n5ubWQCufe3OwWedLnWqKQNEvTTHOzWOEAxbAYgmTqVdVNXpkPOI2NTv41H7lzqZA0wxI0m6bFCYr1eIJnWOHdLmCxSE9i8YvFwW6XpsVcLr8ksasYszM0fSZNqI1pGWCtlPh007GePaVb68mBYswuRLIJKaRZbL7EE1JIqbdWFJ/4QIGU0jKpcO5+f0iE8+JacHALqn6/GBVIMyyOIVkGVZM7KFMq1uuNTGKec/cTDAD4SUavQjU4StAMQZApXus4K/B6g5Lco99PSC6oBgKE5A0gGCQleXnFmL1/3956d7X4GLq5MllPjN59+0HICzX7k364uRJzVI0aNUr8EIcPH16xYsW8efOWLl26a1dSeTLFmF2IZBOSZSEkLVB9ppDJ6VOU4hZUCwoyRGhcLnKnaBbHUZFOHdDCuWfqcQLDZCYVlZRE9AwIilHjkWwZb4g2qDE1hhA0m5amV15BdjyKizMludaCgnRJyiU31yzZxz0z0yhetQAAijH7mDFjmOM7wWtLOqJyR066OVlPjCcfe0SnQmHrYggmSuGgQrBxwaTbbhHpvnTixInR144bfOnlD8375OlVex5d+MWocbcMGDx09+7d8YMVY3YhRCbkl/ukNZZTAzl1l62IVDh3tVqsnJ3j3EmGRRBEvO8any3jDjEyqzCEl5xkWBWK6NVhWsZH0EYNpsbREMXgOKY8Bat4CK1BM+yCrQmCTfGLxUFSewAAVCppkyrG7IWFhXfffZfu13eBTRQ/Bj2GXR+/PjdpT4zrrruuX4+uKrUWVk2DuoNR71mOwleP5aCBjz74INnRKyoqBg0ZttGZ5Zu41D1yJnPp/d4rZngmfLw/45LLrrjyl19+iRmvGLMLkWxCctVMpyEcdqqQJNxBkcJhdXV2kbToMC1DsxRF19UlbW8Igsi9zu6Xmcsl1BAmqKhUyEjkTjEOh088xV4ZqK628nMXRZCn/nc8XhlD/GJxsFhckny61eqRJHaVZPbX5825uEir+/Fl8ETHiQ1lhv8+OfXeO0USXRAE+Wn92vM7ZmpQFta+Asvvhw0LYNMbsOJBZPUTRTr60J97k/kFmqavGH2No+9NzOCJgAsCQwRl+4zxj5wxZuz1dnvUz0pJZucREp2QyUpPWxEi3fUiY1K71JEK5y7uLMLSXQzDsiDOpNMMi6FIlkFl95MyWTQh7Usy3IIq6hdG7hhK0CzDMCnW9DkrEFoDQUCnQv1x1RkUJS2wQVG0JMlI04zkNVKS2dVq9brvvn34uqHaLx4wrnse+22J+pf3TWueyNw8+80XZ7z0wvPiHzcajb9t27zo5Zm5Zr3GZ9HV71Ud3ZzBuBe/MX/H9h0GQ9IU4WXLllkZPXPeuMRvdxpElA55ec484TYlmZ1HsgnJbSZl6EGGx5/ukmqy1VohxMt9Wh2pyIjq2DFH5N1wKiTNqlSYiGoYRCJ3lZ9BZLJXvGoYtETuelW4056XoA1qTI0jBM1kZSWqDFQcunTJE/5pUGN+gjZpotKzxC8BB3FlZg5ypA4UZnaNRjN/zuzp0x7bunVrWVmZVqvt02fSyJEjRbhyIXAcnzJlypQpUxwOR1VVVceOHTMyMiQ/tfSLVf4+14kMIPqO+2rVnNfnzeG3KMzsHEQW4c5EGUY+uJ5N4jAaU7rUkQrnTlE0hmHJiFw+W4ZlgaZpkQR23rnbfCTLsnIKMUiS5nNL+cidc+4+gjaqMRxDCIqlaQZBEOWpKcVAaA0A0Kuw+GdJ8YvVMobBMIm2nnJMqkizZ2Zm3XzzLWdSJJSRkSF06zTNoGhSa/9VXg6X3yx6Qh2a6usIglCr1fwOlWf2pJF7is9DFH971k40UsS507QI5x7Oc6couq7OIbIfnnO3+ULiSZM8EnHuYeGwFs4dJWjG6fS5XNI33vYOIecOAAY1Gu/c6+ocMjh3Z6tw7oo0u/hsl4P9+/c/Nm3aFWOuG3r5Vfc+8OBnn30uYkkMxRKv4kbAIkjUUp4izZ5sQsqU/OWx51Q0Z071QD6fROPJ1kVqsmVUAMmzZehwhSqCgES2DFehqlc5AozM5X5hJV64QlUtiNw14VRIHMdkagi3a2g0KmH8Z1Bj8Zx7q2bLSIxRpNnFZ7s4gsHgjeMnDB0xctHv9s34gB1pl35Ujvzr2ZcGDR164kTitqvduncDW5XYTu01OQXFOB75ISjS7K2ViPK3UjgpTlJKBS0jnr1OMmFaBscx8ZE0y2IIosVRHEMoyYJAAAAoKYnIfZAMo8ZwvkLVR9AGNcYCEBQjR59WASgujuLK9eoEtIz4JeAgVOxJhtaSBW53kGPAhAiFQqOuGfdHQyg06VNQRWh674Bxf619tVu/gWqEoSmyQ5fut9w4bsYTj5vNZgCYPOGWP19609X9smS7NRz5/vbxNwm3KNLsyQQVzrxTthzIPEaK2+y1hQrVMC3DMKx4pxIucgeATB3e5JaVVOT1Rp6DIhWqcUVMBEEpr2YvHkJrAIBBjflCsc5d/GJxkFmhKknvKNLscgyYEG8vWrynyhG6aqbQs4OnGT67jw166CufDEz8hJiysqLv3W/8d1dxpy6//fYbAEycODED8WMHvku4T6TqD7Ty16eenC7cqEizJ5uQDj8VbCVNRxFQNCuHTpcpVN5aOPvaMkQLLUPTTHOzGOHFce4AYFajFpcs9qqxMaKmwmnL6FXRRUwYStCMxxNQntpGPCwWVzTnHhHI5NHc7JGUdpCpLSOppKFIs8sR54lHKBR66dW5gaH3ASqIQP0OWP04DPwn3DQfSgeDPh3UeijqGxj5pGfUzNHX3bhnzx4MwzZvWJdd9i3+20dRBa4eK7p1sX7T3B/WfJOZGfXEpkizJ5uQnhAtPw/ytBGkGDkt+oLBlCotp8K5m816MVXIlmwZFEXS0sRShXjnnm1Ue+TdjTMyIk+gMXruHC2jxtAQxeh0apHG3IpBTAcrvRr1EbFmNJt1kly5ySRHzlcjvoICAIo0u/hsT4by8nJWa+Ia7EWwczl0HQ79r03wgeLzPEPum3zfQwBQWlq69/cd/+yq0i6bbF73rOr7Z9APboZP70LrDyHGnFGjr77+5lsPHTrEf1SRZk82IeX43JSkSgIoUhUyI8MgstzBL6hiGJqeLta0lytiAs65E7IuiDCll4juoRqmZXCEpFm9XpPiDlhnBTFy+YZEnLv4xeJgNuskp6nRqJXUlVWk2eUYMB4VFRVIRknUpqAH/toCg25N+pnul1U1OX/++WcAKCws/HLZp38d2n9xx3TUWcdcMRUe+Y6a8K53/LvEPV/+rzn94mGXbdiwgfucIs1+Jn7zVPtinzYkFZlaF6lYUHU4fGlpumQzvoVzZ2ia8XgCIv6dj9xxAK+8BxybzcP7d5JmVBiqwVGKYWmG5WkZT4jy+0MIgihvxsfAZvMK/btB0E6Wh/jF4uB2ByTl2r3eoEol0VNFkWaXY8B45ObmokFn1KbmSsjqlLjxXhhIMKfnq3PmLnhrscPh7N+nl8vp+O3widDNb0V9Sq2nLriFyu914/jbdv68rW/fvoo0+5nQ2Y1J+qm2OlLciSkVkbvbLdaWUyj563KJSV7wzh1hmWAcnyDExqN2R4ACAIcjks/L5bkDgBZHgxTTQssgBM0qsqtkPJxOnzBG0asS5Lm73QFaiqP0eALneqgmg/hsT4aePXsGLSeBElDhniYwiVQLs7DjM/LwpvW17HeeDj8bhy3e1bT8iy+9o59LfD8o6hcceNvU6U+BQs0uOSHbAhTYQzUnxywm+cuEs2UwDM3JESuM5p27QacC0choysryCqsfAPLzI0XwXIUqAHCS7l6CNqoxNY4SFGMy6VKsxnlWkJeXJpnnnpNjkkyCzsw0SvLpaWl6nU7iIVSRZhef7ck/lTNm9GjVoR8im9LywdWYZDgLW96Bmn0w+RNm5OPQZzR0GQqmPOhyCZhykx2C7nvN9u3b7Ha7Is2eYsbj9KBNbZu9VNAy4tmdPOeOooj4SN65a9WYSHDJsmDxEBTNAoCwbx8fuXOqv8JUSElXpQzEdDFMmOcuJxVXzhO9nCU7RZr9tHOZ581+6achw8jMUugwEAAgqxPYq8HvBH1c4vzxHVB7AG59Mypp0lYFedGtmgJO+HMNNBwBdyOYciG3mya7+MiRI8OGDTu9M2zLaBcixgpcUG1ocIpk1wnlBxoanMmGMSyLQLh2kgpR/uTslSNAhiiGeyCoqYn0TyAZVo0hAMCtqQpTIV0uv8ejNBHUeNTWRkm/JsxzF79YHJqa3JLsod3uFa9aAABFml2OAROia9eum9Z+b9o8V/3L++CzgdYEPa+AncsSDN3xGQyfEuXZAYAMgFqQbHbwf/DJZAi4YdCtcP1sGDwJEMTTWPX+R0sUafYU09mnB8lfROsiFaETQZAiNVwEzQAAzbAsK8ZJ8WE7AGAISyT//TS4CWhRcA6FIjskKEbF0zJ85I4jBMVSFJ1iHf2zglCIZFngmZmEee4EQUnW4JCkdOMykqSTNaTnoUizi892cQwaNKj84P5nX3h5+aeTVXoTqlJ77FbEmM1edFtkUNADrgboNCj2wxnFYK8Jv/7zG/hzDUx4B9ILI++WnAcD/7n6+1mmZ5995YUXT+8M2yxSrMl1ekix0nIqflpFRZkYlvR5hI/ccRwrKkqqccqXpwJAmkkrwrlbvAQ3HqIFbAWROxYgGT/JGNQol+eenm5QZE12DDp0yJbMcy8qypDMYc/LS5dkXbKzTZLEriLNLj7bJVFYWPjx++8E/d6Du3fs3PxjRdnB4vptpu+fgvLNsHMZ/DgXvp0JxqwEnywZAEe3AU2C2wI7PoObF0Q8Ow9DVvD6eZ8uX15Z+ddpn2HbRLvI3NcbZIk/txZS4dxxXExClqQZLY5ywmGSer/cazWOibRWqXeFoCVyF5JcXCokAOhVqJ+g+SImgmYwDFWYAmpCxFB+CfPcxS9WyxhUUlxMjkkVaXY5BpQEgiClpaW9e/fu0qVLRdmhy3oVoT+9gdirobA3dBsORCJNx/wekNMZdq2A3Suh/9ikK6tac2jAzc+99MqZnmIbgxwB8LOOFM/2VNAyVVXNRUWZyRw3ybA6FUoxLEnS9fWOZM0ihM494AtiyR/5uaxV7oGgosLC9+sgKFaNhyN3u59SYwiGImocIWjWZvOgKJqRIVZCpQAcP27p3DkvipaJc+5VVdbCwgzxlZ+6OntmplF8WdVicen1GpNJLFRRpNnjZ3tFRcWmTZv27D9kNhkH9O973XXXcZpfQpSVlf3yyy/HT1SZjPpuXbtee+21er0eABiGuf3O+346cIK5c2k4YGdo2PFp4oXWkVNh9XSgSbh6psgZ0qVDd34/XWRAe4TMvptnFx5PAEC6iU1rIUWRu8i7JM3q1RhJMwgCIkl4NAP8erh45M459wSRO8OqUC5bBm32EUYNBgBqDCUoBkXRdrHafoaIcdkJ89xxHJURuWOtErkr0uzC2e5yuSbceXf/Cy+e+tH6j/6CN3baHpz7SVGH0hdefIlf2LBarf+8dcKFQ4Y//u6387bVvfDdgfuef724U5cPP/oIAL788st1P+8MXPtyhIpBMegzGv74IsGxjdlwy+vgd4I5X+wUzblOm4WiFKUd1k4id8VJ/op3ZSPpcOSO45jISGHknmHWNiQvKmt0EyiCUAwD0Zy7YEEVs/pIgxoDAA2OEDTbRoLH+vr6O++8s6ampri4+LPPPissjHCm2dnhL8KyrMvloihq0aJFM2bM0Ol0AHDnnXe+9tprkvvv0CHqqcigxhJx7q3TQi87W7qXWxsxe+uCN6Ddbh/2j5GVmtLQpKWg1gMAC+AFAGf9giVza+rqPnzvXbvdPuTSy6t0XciWMSSACwAsR/8980VLU/O7H3zkG/Ig91YEF02AFQ9Afk/o8Y/Yw6M4otKwXisYkl9Hr82YniVUeFcA2gXnnuLyglTcScQTMEia0akwimFZlhXNlmHwlvseCiCaLRPKM6k4WkaYICVMhWz2kkZ1S+ROMxRFt4WWwTNnzrzqqqvKy8vHjBkza9Ys4VvWFrz33ntPPPEEAJSXly9fvpzbKMezQ1y62N+dLSNp0jZi9tYFb8B77n+oUt0pNPzhWNecXui9dvZXa7d8/vnnt915d5WhOzni0dgxed0D18+fvWCh3ekOp70LYcyCG+fAlsWw/QMIRHRPoXKn4dtpHYsK0IZDsR8Rov5Qr959zuArtkW0i2yZFDfITk2eu0PkN0wyrF6FkjRLUYxInrswcg8FQoFQ0ttAo4coSddS4Tz3SGY3QTFqnFtQxZp9hEHg3F0uv9t99jN/f/rpp9tvvx0AJkyY8NNPP8UPsNlsb7/99vPPPw8A5eXlc+fONRqNw4YNKy8vl7P/2lp7lPzA357nLkGDthGzty642X748OH1GzeFhtyTeJDG4L343mlPPvXLrzvIoUnGmHIC3a4g9UkUCHK6wMT3gPDD+7fgH9xs+uoB1TvXdj6y/LNF81d9/pn2z1VAJtHEZmjD3s+nPfLIqX+zNo12keeeYqXlVDh3vV4jwoiRNMtF7iiK6PVJ1+gohuXpWb0WF6lQbXCHitM0nHM3GiPPQTznzkXuYeeOIwTFqtWqtlAtabFYOPolKyvLYrHED5g2bdrs2bM5KmbgwIGzZ89ubGy88sorp0yZEjPy5MnmEyeaAIAk6cpKS329AwBUKvzECYvd7gUAq9VTX91MMizNsLW19spKC00zLMsGAqH6ejsABAJEZaWlqckFAE6nr7LSwjXebGx0er1B7m5dVdVcWdkEABQVOYrXG6ystHDNuK1WT2WlhZvTdXXhowBAZaWlutqqVqu41xYLdxQ/f5T2C262b9y4ke12KaiSS1h3GOh0eUI9rgS8ZYoyFBz4AdbMgk/vhs+mwJpnAFPTgeQdDozZMPIxGHbPTeOu/vl/qyz1dRXlhxmGufHWicFgAPnmySilmvAhaN2mOQN7dbvmmmvO+Iu2LbSLxZsUU2GpOFhOjlhXNoJi9GqUk/wVGUkzwEfuaUYtgyQOTIIUEyCZXJOao2Xy8yMZBQTFqFpoGauPLM3UQkvkLp7UkTJkZ2c7HI7c3Fy73c6T7DyOHz9eXl7O147PmzePezF16lT+NY9OnXK4FyoV1rlzOF+oQ4dIfnR2tik726RTlftJRth+r2fPIu6FTqfmP5iebuDVOvPz03mrduwYPgqOR45iNGp5nQOtVsWT70I2nx8MAuY9PV2fnt7u0965OfznwSNBc4n4SFZjZLI6hv+wV8OaWZBWAP2uhYxiAAZs1bD3a/A0ARmMLUYVwOCqGj5+7Hnnncey7F33PrB63Wbf4LvhukGwdjaseAiGToYOA0BjBMIPe7/GDnxHUKGfD/tLOpcOOP/8V1547uKLL269r342oWkDwZkkUrwwkIrbncslqgrJsHoVRtIMw7AiD+lCWoYm6VAShU+Lh8gzqVUowkXuDocvciCa5WgZnQpt9vK0TBtShRw5cuSqVasAYPXq1aNGjeI21tfXcy9WrFhx003hZpihUKhHjx5Hjx4FgA0bNlx44YVy9u90+mK2xGdDil8sDh5PsFVUIRf/XP357gbxMe0OnAHTzSaEkmoWxjJAhgAAXA2wejoMuhX+OQ+6Xwo5nSGnK/S8HCYshqyOyN6vk+7B3Qgnd91yyy0AMGPWs6u37Pbd+AaUDgYEhWuegREPwsH/wccT4e1r4IPx6JEN9GUP05M+hn+vd4ydvxV6XXHtDQ8+8u/TawrY1nBOFTIeqbjdOZ0+g0GDokny3GlGr8LcIYqmGYfDZzYnfpIVVqhSBBmKkzPk0Ogh8k1qvMW522xePjAU0DKYzc/TMihBMX5/CEXRs77gPmfOnMmTJy9dujQzM3Pp0qXcxoEDBzY2NrIsu3z58h9//JHbqNFoFi5ceNNNN9E0XVBQsGTJEjn7t9m8aWnRzZhUsXVMTqdfr096sTi43X4cN4pnuHq9Qb1eohnTnzWeHjlivbfaI5xOn1aLb9++nXWLPg4yFOt3qhwnSQDY9h6cdx30S0SVXD2L/eIRKOwDJefHvhXyGTe+Om3q1Ozs7JqamkWL3wnc/lHUwmzHC6HjhQAA/30OaIIZ9zJgLZcjrYBJu8bf9dLP/vuURjNj4WuxT37tDiluT3p6CCVfKfw7kArnnp4u0YlJp0dtfhbDxOpZhJG72aih2cRcZIM7VGDW4BjCycTzvSkYlmVZ4Bo5ceu3LXnuSIhixFcFUobCwkK+XQ6PxsZGAEAQhIvTeYwZM2bMmDGntP+sLGPMtzSoY1Pd09P1kvSl2ayX04lJcgwJkJZ8laWdIj3d8OC/HjvqVUHdQXDWJ9AAAAAA9NDaCy8ctP/AT2TXS6GxLGnZUWYHuHomrJmFD5lE9b+uxXezULnLtHvpLVdf/p/nngGAZcuX090uA11cWRMAnPwDHDUw6YOIZ+ehNfmve/X9j+558L57evTokeCz7QcpFlw8PUj2JmtdpOJg4vohXBETt6CaLGwHbkG1xTOZDBo6ybNko5vIN6tVKMpF7vzdguuxx73WqTAAiBQx0azCutIkQ3yXq3hJdzliL3KWKOSk9AZpNt2gNMvX11et+vpb/+1LYPdK+HEu3PhqbJojADQf1+1esfDHH977aMnn694lOlwQWVaNR+nFpo69z8NO/P7xrdqcElDpSGt1YUHBKwteuuWWW7igZNfeA0Rur8Qf370SLp4EWJKnUq2Z7D/u1fmvL/3o/dP5tm0GkoJIbQEpztpIBecu3g8+LD9AszTNNDe7AeD7w1YibjzNRGiZkD8USpKux9EyGBoWDmtsDOdWct2xudc6FQoAkWwZmvF4gsrrBx8PLilFiHhJd/GLxcFu90qyhy6XX3IZw+UjMVZpee5vLno/2HM04Bq4eCLkdIHVT0Dt/sjbNAWH1iErpy1b8uHgwYPfW/RWkY6RKCgFINM7jr9xnMtu3fbfL3745M3qivKKsoPjx4/nHzftDgdokjz1Wo5CJ7ElGbpk4M4/dp/Sd2yDSDGdfXpI8cJeKpy73x+SLGIiGZZhWC4z+o8a98sbT8YME9IyDEUlK2LinLsKC0fuXm/YZfNJ7hDt3LkYPxQi28XkOEN4vcGY6xAv6e73E5ILqoEAIXkDCAZJSRrUR9Cq01XHbbPYve8AldMNAAAQuOJRuOBm2PgGfHIHrHkGVk+HD8dDxS8qDC69dDgAaDSaJx+fqvYlSHsVQu23FhcXa7Xa3Nzcr1atGnjREENWvjG7oEe/ATNnPWO1Ws/r0wtx1Cb4JBUCmgCtWLoaGHOaGtv9sna7qIYjSMW12SsoyBBrs0ez+rD8AFpQkM5teWVT1S8nogqahM49O9PIQGKKPMy5tyyolpSE0+/41VQA0KsxAOAqVBEE1BiqM2pFGCHFoLg4M45zjy1SLShIl2yzl5trluxqlplpFKla4BBi2NwMpZk94PeChu9CjkCPf8DkJXDDq9D/GrhoAkz6EK5/Ra03u91ubsR5552nsR4FkZQViqDqy/r27fv8iy936tpz8fsf12Se7x/2sO/KZ452GjdnzR8lpV0wBAzHtyTQkcc1oDGB1yp2xq76ko6lp/192wjaRZs9Q2pJyFQ4d7Ualy5iolkEQThOiqDZC0tMD67+S8i90AyLtXhnrRqnkhTyNnqIPJMaRxEuz52/5LywDERH7gCgxhAGUaCCVTzifwDxku7iF4uDSoVLioKpVJikSQMkYzzbGUqtjj69e4K9OmoTgkJ6EXQeAh0GgCETqFDI4+jQoQP35pAhQzoVZCF/bUm2Q/zQD0MGX/Tuh0teffM9UpcBkz+Byx6ErpdAQS/oNoy95K7g9Qve+2S5CSWRIxsTfD6/J1SJsS7q2r3Dhw4+jW/aptAutKNTLByWioPV1dlFslAJmtGrUZJhKIquq7NzWyZdkN8rz/DMukp+mDBy97r8wSSpkA1uotCsxrFw5F5VFY5ZeGEZANALFlQBQI2jTVav8urg41FdbU1Ay0Rz7uIXi4PF4pJkD61Wj+QyhidIs0Q7UGo9JQwbPNRQkUA6ggdStnHQkEuEDT3ee/tN/W/vQV0CQRjkxE7tn19NvHX8ex99Qgb9cPNrYMwGAKjaAyunwdvXwBePwpePEJjW2tSQvvcz9PCPsQ8B/cYgvy5JqkbgtamOrHt6+uOn/D3bGNpCnYokUrywl4rVW3FnEVaFpFmWBU7VhOPH37qhe7/5ux66pKg0UwfRzh1FGCqR/gDLQpOXyDVGiph42pcvTwUAbVzkHlKiglU84klwvSq2iImiGMmiFoq7WqKgaUaSu/eTtKY9BFynhGuvvX7eG6/5yn+CnlfEvclCzX71jiWjHn9s9+7d/fv3V6vVADB06NAfvl099vp/kl2Ghc77J6QXAbBgq9LtW6mp3//Vl6uef+Vlvy4H+l0ChkwAFjYthJp9MOQOuP5lUOuBpqDuIPnrEoRxdq3bWHfov76cPuCoBmc9BFwohmdnpvnXPusd80Js3o7Xavrh6ZdeeL6oqChF1vnb0C5KsVKsbpYK584XqScESbN6FUYxrEqFcQq9BM2qUCTfpO6arbN4yHjnXpiXTrHV8buy+0mjBtPgKM+58506SIZVt7AEsZE7hhrM+oyMNqFA8LeiS5e8mC3xee7JmqUI0VqywAGKKcyRVgZuX+jcOf+7r78aMfIqL8uwvUZF3qjeC9veg4CLLeo3f83ON5auUhPuV198/p577kEQZMSIESePH31p9pwvV/3H3tQIADkFhXffMfHJJ1YbDIax43YArodulwIAbP8AnPUw6YNI9iSGQ4cB0OFtx5ZFHVWWC/Nzf92xhRo0AToMBEMG47I4j21mDq1XfTKRHngzUzIAMadSIwAAIABJREFUTLngrFNV/Y4dXvufl174978eTb2VWh3tIps5xTInKYrcMSxp7zGSYXQqlKRZlgWapnEcI2iGa5nECb+EdyKoUEWBJRNF7g0eIt+kBgAcC3PunHwVABBUJBVSr46J3NEAQTEM2y5ouzMBbw0eejXWGK2ML36xWsYwGIaIU/M0zSAIIm7SAMlocaXZnKLoAQMGbt20/qYJk2xlP3iLBzPmPDi+A6k7wI6cCp0vJgAJW9xydOrsRdt+3fHpxx+iKJqVlbXwtfkLX5sfDAZRFOWCegCorq7BdXrC7QRTLjhq4chGuPuzhHnx7D8eOfDxBCy7I3XP55EBunQivwf0v0H7zeN9iTLX3p1NjfWFJR0vG3bJsysPlJRICOC0F5yL3OORIs6dppMyM3wRE0XRdXUObgsXZXPaANwwYeTudnjjE+EBoNEdKjBrAICnZSKcOx1JhdTiKERx7ojN4W/vYoRyII9zd8jg3J1nzrkHKQZHEI/iljq42T5w4MCKIwc/nv/8vy5Kv9CxHa8/wN76FnQeAsIsr7zu3rGvrvl53wsvvSzcg1ar5T07ALCsivB5QW2AoAv2rYHzxyWoiuJQuZPGNMS1LyZw/Wn5wRsX/HXk8G9bN52sOLlz288fvPO2Yjw7nJP8TYTUZMuoIEnmIgg6MSEItGTLMGHnjiFES4ROs5EKVZ1GlTBybxRE7lQ4Wyb8aCJMhcRQRIOjwsidBkQy/08B0GhUCVIho517q2bLiI3xhWiDBlWe2fnZjqLoTTfd9Nr8eTabjbr8scSVSrjGe/n0Ba+90dTUlGyHBoMhJ78Q0gqg/gg0HYPi85Ie+48v4JK7khajphUwPS9/feFbOI4pz+zt4rE7xSeZmjx3sdTpcBETzeI4xuW5852sVRiSkJbJzTYllB9ocBMFZjUA4ChCMgwAlJSERW6FRUwAEJw7IkMX9vtqDFHrNCaT0hKu4yGU9uWgj+PcWzXPXUyBwEfQRg2uPLPHGPDYsWNNdhd0GZL0A6ZcrOOA9evXJ3s/O9s04/F/a3EEdq0AvwMMGYnHsSxYjkGni0TOLVh0wc87f09L0yvP7O0iz138F9HqaAMVqky4iIlhWL8/BFGRO8pH6EJtGZqkEkbuhxq93OqrCkO5yN3rDfJHUSW5bapx1B/8/1KhGrMlvo2q+MXiILNCVZze8ZOMDkeUZ/YYA5aVlWE5pSJPrgDgNXc8dKQs2bvBIDnlnnsL9IBQQQAEnPWJxwVcgGtElN8BAMx51VVVBEEpz+ztItstxdKVZ19bhqBYvRojaYammeZmDwhEvqIWVJnIiqjP44937iwLG4/aR3XPBAA+W6ax0cUfRZ1k7U6Do05P4P+Jtkw85+6P1ZbxSLbZk6ktEwiI0aA+gtZiiPLMHjPbaZpOIMcYAxQnkxemOxxeAHTH9i0laWok6IGyJEn0ujSgQkCKrmG4LcUlJR4lzvZ2cbtSoLaM0agToXEpJsy5oyjCpQrx1aRcDzx+mFDyN965H7H4tDjWNVsHAueelhZ+/CQZRpWkPEyNIYBhKVbjPCswm3Ux1yFez91o1EoygwaDRlKET6dTi6uw+gnaoMGVZ/aY2d6jRw/WViX+EYO3pm/vnsne1es1KhWWl5d3ZP/eZ6b/G47/CtYTCcYhCGR1hJr9Cd5qgbrh4JBBF2i1KuWZXVgU1maRYl3iVDj3rCxjskp0mltHxcJt9jIzjZAkchfKD2RlGKi4pKJNx+xXdAvTkaqWVEi+b59I5K7GUFSFp5gOOyuI72IYn+cucrF4pKcbJKep2awTb37iI2izTqU8s8cYsGfPniYVAjX7kn7A76SP7+Ibb8UjLU3PJRoYDIYXX3jhq+WfGf73DNhOxo4LunUQUu9YAkySZ3+vDTvy47R/P2owaJVndrW6HTh3BbbZczh8TBIpGI4K5wJtmma4PnBES9qiSpAtI4zcfd4gggAd7d9/OubgnbugE1O4pwdJR7RlYqDGEY+PCASUVgcfD5vNG7MlXs9d5GLxcLsDkuyh1xsU7zvjJxkNCsoze4wBcRyf8/ILxt/eg2Ci9jIso/t50aSJE0SyEj2eAM857Nu3752PPgl5ncjnD8O62VDxK9iroWoP/tsS7bK7Hpo84aLepbpNcxP4d79T//3T0594vKSkxO8PKc/s7aQTk+JoGbc7aVtOTmYdQQBDEIJiXK4AhPPcw5E7SSfIc/d6gyoUIQX7JGl2+3HnyO7hbBA80kM1nL0ubNYRAzWG+oJku9CmOEM4nb4Yzj1ez93tDtCJFquF8HgCZ95D1UfQGrR9SIKcEuJn+8SJEyfdMMb4/dOxdIrPpt/46vmZ7BsL5ovs0OsNcp5r0eJ3ho8c8zPSi3pgDXvvl5DZAfatgVVPYOteubogdHjfngVzZm/433cX5aFp3/wLjv0MXiswNDjr8ANrDCsf/Nddt73w3DMA0EY6Brcu2kUP1RCR0pNMBfWWk2NO9qTPB9Q4irAIkpNjgiR57sJUyIwMI0e8aFtO//dqd+csXbYh/NSDo+E2e/n5aS0HiqzHxkCNIahKJadzUHtHXl5afJ57jJ57To5JMhUyM9Mo2VMmLU0vvh9fiE43qpVn9vjZjiDI4rcWdil946XZMyG7czCzM4WqDJ5asnL3HXfe8dq8OXq9WPerjAwjjmPLli176oXZvhteB3MeAACmgsETYfBEAKBrD/y04SVOQ1in023dtGHdunWvvvbmoTUfuGyW3KKOw4ddMmnpRxaL5amZz5iM+tJOpVdfnahfa3tGipscnR5STMukwiIiBB/R4nNxDGFYMOo1IODHYypU+VRIrValCgf1YaJt0zH7yO6R/F++WYfRqG05UPIFVRyl28nkOEPw1uChxVGSYYXrGXLYWDk6HpLz2E/SRo1KeWZPaEAEQR6fNu2hBx/ctGnTkSNHQqFQz55XjxjxeW5uruQOtVpVKBSaOv0p38iZYc8eg+L+gQsmPvbk01s3rOM2CPvr2u32+x9+dPykyXjnwV5dHkYFjO7v4d9T585+6b577z3979nG0C4ku1O8oJqKn5bF4srONiW0PtkSpKtQJEDQPqc3Ly+NEGwM8QuqbET5y2738ortHH465pg1shP/J0/L1Nc7CgszgKN6ki6oIm5fyOsNxvs+hYG3Bg8EAZ0KDZAML8YgcrF4WK0es1kn7pcdDp9WqxK5DfgIBmcZ5ZldxIA6nW7s2LFjx449pR3a7d6NG9eRaUVQkKRLKgDT9+rfP1leU1MTw907HI4hl11+QtWRnPQpJ1pAATgBoKnisWdebrA0Pf/MrFM6mTYL8QWeNoIUL3Wk4nYXDBLJ6mJIQeROUgxHBUayZQSpkLSAcw+FSBUKPOfuDlJ/1nmGl0ZkCHnhMK5vH4imQmpwNEjQ7WJB5gwRCBDx1yEmGzIYJCXljUIhUrJmhCAo8Xx5P0FrsPaxDnZKEJntp4dQiNy3/4Avs4fYIEylLuh26FCsIvyEyfecUJeS//hXrBxNbtfA9fPnvfnOxo2J+nu0Q7BSWQBtAZIVJK2LVDj3oqLMZFmoEeeOIoCiRUUZIMxzjy5i4p17bm6aGsf4tdZDjb7eeQa9IBeKj9x5AVuhKmQMVCiKqfG0NDHeUxno0CE7vt4gRjusqChDMoc9Ly9dknXJzjaJ8+l+ks406ZRndpHZfnrIzU1zez10pHVfYjAao9MZ1Zly//7927b/Qg67L3F9rDHbf9Fdjz05sxVP9SwixXT26SHFK0ypcO44LqL3G1YFUGEoxTCcW+Ejdz5dHaIXVDEMFb7lJ2iTJurnpGoRDuNJLjFaBkcopn0ID50hElJ+BjUqzIYUuViCMaikuBiGoeIm9RGMSYspz+xyDHhKwDC0b68eep9ED2vUWdetWzfhlu9/+IHscUVCceAwevyj8nhFc3Nzq5zn2YXkhGwLUKBwWFVVc7JEJWG2TJCgqqqsXFkTt76XLHJvaHBgCPDOPUSzmujEDD5yr6gI95UXrVBFXd6gw+E7w6/Z9nH8uCUBLRMduVdVWSWpkro6uyR7aLG4PJ4krd0AAMBH0AxBKs/sIrP99NDQ4Ljggovg+A6gkmsG2KoYj7V3797CbXsPHKEyOortGkG0uZ3Ky8tb6UzPJtpF5r74L6LVkQrnLtIWVkjL0CyLoogwIV0dXcTER0QoGhW5hygmxrnz7/Kqs6IVqgj5/yNyT/gdY2gZVDoo58ZIDEKkhvgJ2qBWYOTe6k2QURTt27ffpcOGqHZ/kXgEyxh2fvjU9MdjUioNer3Y/YD7KBXS6ZSmENlmkeKni1Q495KSrGQ0LkGHW5uqMIQBtKQki0+VgehUSJqJ0DJ5eWkaHCNbllDinTsfuZeWhlPNxCJ3HEVxTHnkbzxKS3MTcu5C7TCRi8WjoCBDkuLMzTWLp8H4CDov06A8s8sx4CkhLy9Nr1d/+M6i3NpfNHu+ADZ6UY4MGn+aN6BAN23qYzEfHNCvl8YpKmtDU4Gm6h49RJdq2wnaRZs9gyGliWGpcO4EQYlly6BhWoakGYKghCF2lJ67gJYhSVo8cuedO1/vKx65B0mmXUiGniESVj/HSLqLXCweJElJZtSQpETPcU5+QHlml2PAUwJJ0gzDFhcX//bz1t7+Q8bP70H++BIqd8DRbdhvS3Sf3XFlz+wNa3/QamMdx4QJE7Bj28DvTLhbAMAOfj/qqtEmkxLa2Ka4g93pQVLYo3WRijz3hgZHUVFmwnCGX+fEUSRIMA0NTjzdxIfYMXruvHO3Wt3CNqohitFEZ8K0lDhBTY2d65EtpueOod4A4XYHMjIMZ/5l2zJqa+2dO+clKFIVSLo3NDgLCzPEqy2amtyZmUbxWMlu9+r1GpGOwL4QzRAKNLvIbOdA0/TWrVsPHDhgabb16dXjkksu6dy5s8gOrVa32aw3GDQdOnTY+/uOrVu3/rB23d4DO7QazYVX9p3wyS89e0YUJWtra5cvX36g7Kjb6+vTrfMV//jH5u1v+q6cBWjcL916Qrdv5atbN53Z120raCdt9lK6MJCiCtVk/KsgWwZhgNXr1d6W7tgQx7nzzl2rVQtTIUNU0gVVozGcKhDTiUkIDY5S7P+XCtX466BXRdEyer0aRZFfT7jKmnxTBhcm3I9Op5YsCNRqVRKSvySdptcoz+wisx0AVq5c+dj0p/2aDH9GFxLXG9fvYx+bfvk/LnvvrTcKCxNbW6tVC4UcRowYMWLEiPhhDMPMeHrWO+++B90v86d3AnX+j7/UG078iZN+3XdPBy65H3K6tgylkSMbDHuWrfjko379+p3Jl207OFehGo8Uacske0uQLYMyADk5ZnuTPyHnTjEsf/kyMgwaHOWLmERomfz89JYDJdeWwREWQZUnchKPvLy0+I0xC6rcxfrtpGvDUXsy584pM4tDkkz3EXRuht5gaAdU6SkhM9OwcuVXn3319ZEjZSiG9enV655Jt44b93/sfXecVPX19nPr9Nk2u8uyLLD0JiLNAogiRbA3sKNgYonRWIOg0VixN2LUxNgwKiARYywoahSigKCAylKXtr1Mv3fm1vePO3v3zsydmVVgZOb9PR/+WG7fM989c+5zznnOWSRJPvf8C7fOv5ufNh/dh2kHhwBI0Q/WLR477sR1a7409e9debNRVXX2VVe/89la/uIX4YiNlpSBwNjLyA1LbJuWuf6zAPZiorSaiIaE+u1Dhwxe9J8Vxx577KH7vX9l5ESUkIfaMsFgxOGwmNZFGKtlBEkJhSKiYl4tIysq3UHXcFyUJtEVzj0Q4N1uG9Jry1BkRJSiUSn/JhgkQLeGEQl17qFQxG63tISFpmDKV8hwOGqxMOl1wXheoGkqTagSFhRSkfPM7Nu3b580dXrI6vH3n47jTgWUPe37V996b+mCu555/NFb5y3gz30SRZVx59AW+YS5jd/QZ51/4fr/fZl8TY6LsiydPkm7bNmyf338BX/uk4mdqAShjJ7Fq+pIqWbRk4/W1NS4XK4BAwb3798/n8yOrDd//jLk4Zi99vZgSj33DufOUERUVNraQkb+hElR5+73cyQ6nbsgJzp3ggBJEJKiNjcH9BulSajygqyNb81vtLQEMta5t7WFZFlpCYlpnLvPFzaOhftga1somrhqAwE+va4sL8qqIOaT2ffs2XPchJMaBpzlP+0hDDgRpX1Q2g8DT/af/Xht2fizZ10aGXVRomfvgDz20p927f3ss8+Sd/n9XEbhlNvm3xU+7qpEz94BZdQFNbv2RqPR2bNnn3vuuRUVPfLJ7BrSzCk8csBH8k5bprDQkar4N17yF0VFjoQ6d9MOVZfLZmESOPdEx82QhKSoJSUxAiH9gGxZzY1SqoNESYkzo/xAYaGdosimoNASFkynkANwu+3GkPw3S2p2tiaO7nQ6rWliQ0FWCBAFLms+mf26G28O9J+mHHV68i55xLkCF1SHzejcFAlg3T/x4UN453Z89DC+f5frd8o7776XfK7LlUGjraGhobmlFb3HpDyCpLi+E1d+Gsud2u2WfDK7hizT2b8MWX5bysbN0tCvgtyZUJUUuN02oTXaybmniNydTitLk1Jqzh0ATRGSrOp8ZZqEKksRkkrkhDbFQaKw0IS9Tahz1z6slrCgqmgJC93dJqmIhBqYsCD7koL09DmMsKA4WDKfXExNTc1/v1otX/aq+W5fHdzlnUoAm/+N1f9Av3GoPhbucvjqULsWezeu8lcnn5pRNXP79u1MSVXawdhQinp+t3mr9nM+mV0Hw+QAy5TlxEA2IveEefBGJHDuLS0BoxeOU4VUoSdEvd5wXCmkrFiScuU0SYiK2tgYK/JNXwrJC1L+zYNPRlOTP3ljQp279mG1hMQiG52KmWlvDxmnLPGi4ucTaRm/n0tDy3CCbGepYDCSN2Zfu3Yt2WtkSiEX2gK5wxrfv4t1b+KiZzD1VgyahO5DMWQqTrsL5y7cUbvn7aVLE071esOp6vxCodA9995/2hlnB1ozKM8gEiwrjSVa88nsOtKP/TpCkOUBWNlw7hwXTdnEpMT6UTXJX44T9FgeCZG7gZaJRASaQJpqGXRoh4VCsUWcNnIno5KSE4vjIBEKRZI/h4Q6d44TFEVtCgpHd3c1pnDuPC/o39airAqy4uUTV20kIqZJH4UF2cFSgiDmjdlra2s5a2nK3e4ycD5EQ/DV4evXcMETKEoamtptoHL+43Ouurqtrc24ORIRTLOF9fX1g44a8ciy/4bPXAjeD4FL83g2764Rw2Jy8Plkdh050Q2XhwnV8vLC1GP2OhKqJClDjU3qyNShWlzssrK0gXM3o2VIQlJUfTZF+lJIWSXStNvkDbp3L8ooP1BeXsDLKkUS1SXWxoC5c/d4XBZLjMXiRBmAj090FkVFDrs95es/Jyh2lnS77Xlj9qqqKpvgTbmbIDHwZKx/C2vfwDHnoKCb+WGeaqXfhIcfe8K4rbjYlcwZchx33ISTmvqdzk+5A+X90W8cNr6T8u7BFmLXmgsvvFD7Xz6ZXYe+II9kpPmLOBzIhnO3WpmUTUyGYR2yAquVESTVyLkbOlQVvRTSYqFZmkxTCgmAJklJUXRrGiVrEqC9HxxaPZAjE6Zka8KwDquVaQmLZU62m4tNFblbLIxe2MoJCsycO8vSafpKtMidYai8MfuwYcOI+h+QRnhg9Ex89y/s+w6DTklznUi/kz/69HPjFovFxJJPPbOo1VktDT8z9v/jZuO7d7F3g8kVBc75yQN/uOGG8vLYiL58MruOnFCgy3KnVTZuVlfX3hXJX0GS6+radaIGqTtUm5sDhKoYnLtZtQxFiLK6d29rx41SRu4WmoiISiCQPiOVD9i3r9WMlonj3Ovq2hv90TInU+5iU3HuTU1+nT3UzvVHEp17a2swDbHLibKdobzecN6Y/dhjj+1X1Y2oWZXqAOrAd3169USoNWXYrqGwcm/tLuOG5uZAsp7tE08/wx9zYef/iypx9n34aCFWv4RIsGOril1rHO/cePH0E++/9x792Hwyu44s09m/DFlOdWQje5tG3lpUVC0XylCEIKmSpBgVvuJVIaF/7cmyTBNkGlVIdNAySgfJZaywTIAWuecEZ3eQMKX8HCxlbGKSJKU5JJU62XIn+83egOl1JEnWkyipaBlZVtJoOWmRe5Z1lA43/vrMU5Onnx52laHH8IRdxJ51lnWvNZA0WDsiAdgKU16F9xaVeIwbZFlOsKTX6w0FAiiJ12qvGIKL/4JvXsffL0ZBd9AM6TvQu1evJ59/8owzzjC+OueZ2TUcWrG2wwQ5RW3xYUI2nHuvXikTTaKsOtlYtYxKEL16eYT6uoyRe0VFkd3qy0TLEJKiDulX3nGj2CtCMrSqyjyTrzJF377lyRsTmph69fJ8sra+zMl0c7OpOPfKymL951S0jKnUgQ7NuZeU5IMeoY7jjjvuP+++c+a5Fwj9JkaGnoHCSkBF+z77Dyss+9ZRTnfruBvxzWto3I7qsXFncl4oMpwlAEE0bR8+bJhxZ0VF3ExzAA0NDTJlVpbjKsOUWzDpBrTvRf1PfRv/u/2H75KPyjOza8iJ+s4spzqy4dwVRU3FiBlLIUVFVRTVGGJrMyFkRaVIwujcFUWlSSIipYvcNVpGURStfypt5E4Isqqqak5M6joY6NYwws6QxoSqoqitYVGL3JtC5s5dUVR9FgcnyhRJJDt3LZJKZVItoZr+mFzExIkTd9b89ODDj7y55J725kYAnm7dr7z8kt5Vp9/yxCvoeQwiAax7I+bcg8345nXUfAaKAcUgEkTvMXb/njveW2a8ptHaACKRyNxrr5c4PyQBtJlHoxiU9kPzzmFDh5jszfTR5ChyIXDP9utFNjj3/ftbJUkORuURj69L2BXHuYvy/v1tCSG2HrwbSyGbmnxQZGOde7Lj1iL33btbEm6UDI2W8fnSVZLlB2prW5JXl42hopIqd7z479/fpnHu3dyWxoA5RdjQ4I10NFKHo3I3F5vcxNTcHNDrUJOhRe7t7aH8MzvHqY8ufKhx3+6g3xsK+Or37Hzg3j+vWfttsHIMAAw4EQSJL1/EgU14/WrYCjF3Ma57F1cvxbXLUXlUJBTYsXOn8YJNTT6jWsAzzz67pSmCiiHY/kWax3Ds/nLGlJNNd+Wl2SPZ7ez/ZUjzF3E4kA3nzrIMQFhp8qemxIGZ8R2qKsvSUSkuxNZL3Y2RO8PQCfID1hS0jN7vmyahylCErOSGZOhBwmJhksM1goCNIfkO2p1l6ZawWOpki2w0LyoRswprhqE7q2VEubLAkhy5MwxFpTA4OhKqNE2lVx/LRWirHYDFYmFZFoAgCB+s/BQFFQAAAmc/gD3r8e4CnHYnxs+FvYN1Ye0YPVOe+dQ1N9zy/vv/0S/IMJ3VMoIgPLDw0fCxc3H85fj6VUTMkyLY/bWDa7j88stNd+al2XOkWibvBmRXVBTSNKn51gS5ElGO9RbRJCGrqKgoFOS4biO9SVVWO2eoejwuG0unb2KiKUKUlaqqWFdeGloGAEMRFnv+S/726FFsut0oL1NRUaiVQgIoc7HNZgUzZWXuzjp3QenuNnHuxcVOe2qTarRMQYHd5cq3AZ7aatf/KwjCtDPOaedlhGKFW2DtcJVi3Bz0GmVyvqean3TLtTfeLMuxT8TjcVmtzMcff7zgzrtOPf3MCMHCU42qEeg3AUtvQ7gt8Qq7v2FXLnznrTe0r5Zk5KXZc6TOPatOJqsdqgkl1Yjn3CUFHBcV5TidAIbsiNzjOlRFikgn+audKClqKBQBICuqphOZ6glZiggl9VjmHzRrJMPo3Dku2hIWypwMgFSl7sYO1bAgd3OzwaisxDM+kYiYpkqqo0NVyr9WyYR+7AceenjtPr885FQc2Bzb5G9E03YMPyPlJXqP8cvMqlWxqsr16zcOGTH6vDnXL/y09vM2l+DsqKSceA36nYBX5+Lzv2Drp6hdh03vYfk8rHzsxAkTxo8fn+ryeWn2nCgBSvMXcTiQVW0ZO0ty8dV4hklMpCDJLS1BY4cqAJaOCUMaaRmvNwRFzdChShGSrDY2+pFWWEYDQxG+gLnjyyc0NflNMzp2g6R7S0uwKSCWOlmkdu5GbRlOlF0WyslSgUjcJ+v3c3zq78twTFuGzz+RE6OSUiAQePzJp/jjf4th01G7Ft4DANC6G90GgkoXaUbLh27atBnAli1bJp06fWu3U8KznlfGzcHAiYiGOo87fjYu+xssDuz+Gt8tR9N29J9Ajjhj1DEj0lw8L82eE19XXHYjyGxUyzidNi01b2coToj7gjUmVGVVdbmsoqyycQlVE87dbrdYWS5jKaSoqAVFNqQVlum4C0HkXc9eMtxum+nbizFydzisbZyoRe6p+pgcDove4sgJip2hCm20j5cKbZ3LyWZj06iwcoLiYMk0rcu5C321A1i7di1d3hdFPQDg+Mvxr/mY+QR89amE13WIrKu5tVWW5elnnRuecD36jovtKKqC9wCiYVg6KnddpTjhCuO5jg/uGn7UtDQXz0uz50TOjGXzbsyeLqruYKnEyD1efqC42JmgE9BZLaOoVIdzLyiw29iggXM371CVZFUbGpcmm6rBylBkLkiGHiRSzTs0ystQDquNIbWPIFXkbpQO5kTZ42A05248JnnkkxEaLeNw5JvCCQyrHcC2bdui7h6x/4w4GwKHxVdDFlFgPr9Qh4NrHDTg+MWLFwdYj6p7dgA0C2cp1r+J8VeZn9m4jWmvPeecc9JdPB/NnhNj9rKcGMjG153XG9YYMTtLhqPmzp0hCUFWfL6wsUMVhiZV2RC5B4M8ocZoGVWFpKjJI/S0apm2tiAyZVO1uwfy7kU1GW1tIdPtdqZTgWBnnV/LpiJ15B4I8HqzKycoDpYqtNEJ1ZChUCTN/CCtWobjosmN9bkOfbUDcLlcjGyg+0acDZLCCVcg1IJgS8pLSFF1z7eWQsBGAAAgAElEQVTjx49fuuKDYJ9Jndsjfiy9BU4PfvgQ2/9rcqK/0b7y/icfXWizpftmzUuzZ1lw8Zch40StQ4tsOPdAgNP6p+1MXKc7YqNNO5qYZNXv5xMid4bsjNx15x4KRQg1pucuyApDmbxlas7d6+WQtsg9djCB/x8Sqj5f2JRzd1g6aZm9LaFSZywIKnexjUGT77xgkNdTQ2FB1mkZ4zHhcDQNDapF7jwv5IQkyM+CvtoBDBo0CE3bgQ6jb1iKnqNwzLk4+iys/lvn9njQG5ZMnnTSwIEDt9ZsRXEVAAgc1ryEly6HxYVzHsS5C7HqGax6Gr662DkChw1Lmbeue+DO21NVQOrIS7NnOVf5y5DlxEA23mVKS90aI2aPV5dFLHKP6bnLCkpLXYLcZKRQWJoUkzj3oiKnvT3WxGRKuKOjQ7VbtwJ0IXK3shT1/wEtU15ekIpz13MhIsOUOWMFW91cbFPQxAsUFzv1t2BOlO0sWWhjEpx7QYE9TTG1VgqZfwV5MKx2AGPHju3ucW/bsRr9JwDAjytx9v0AMGYWlt+Bz57FidfEdZmqCrlhSUXDmr8u/S8Al8uNaBgij+V3wFYAgsDkP4CkUNYfs1/CxmVYcjPECBgLxAi6D6UJXHnFFRmfMC/NnhO0jM2WVVomGxbRqztNOHcl5nYZkpBU1W63CJIJ566qUNROzt1qZawMqXHupoQ7OiJ3bURZxsjdQpNqiimv+YRUA9uMJap+QdWyqQC6uSymkbtRxyNGy1gTI/f0Ywu1yD0n/iB/Loy1zARBPPHQ/TOvuDrcbSCsLvA+eHoDAG3BOQ/go0fw8uUYfgbKB4Ck0bILW95nZf6bnzZVVFQAGHHU0M07dqib30dRJfqOgyLB3aEOZC/E+Ksw/ipEwxAjcJYAYP99+7p166ZMmZL+CfPS7DmRUM2y0nI2LNLU5NdLIcOpqmUoQpSUpiZ/QpQdk2w0dDABaG8PqbKiRfSmM/bQ4dzr673oQikkBfhT1IBnE/X19VOmTBk0aNDkyZPr6+uNuxYtWuRwODwej8fjueWWW9IfnPr65tMkjNUytU3B0g7nXp4iodraGuwshRRkO2tCy3i94TTErlYKGQjwqUrvcxf6atcwY8aMx+67y/GvW/DjStAWrXkVABgbzrgbZ9wDzotvl+Cb1+Ddj6PP6t69onv3WLr1d1dfZfl+KRp+xCl/gPdAjKJJgMWheXYAUXdVTU1NxifMS7OnmkR4RCHLqY5sOPdIRNCbmMxomY4ZqrISiYiiWYeqkZMBEI2KJCAp6WkZUpQVjhMAJCRpk0GTBJ/dXIcp5s+fP23atJqamunTpy9YsMC4q6amZvHixa2tra2trY8//nj6g1OB54WMde7NwWhJx8ujy0KpKhL6zgBEo6KxicnOUAU2OkHSXRAk0+FwGjhBdrCUKEo5kQf7WdBXu45rrv7tf5b9c3hgHUQ+UTCg2yCcfD1mzMdxl6PPcVDlQQMH6jvHjBlT0a0cQ6eDZsFaIWbI+TNK1OXKrPiYl2ZPoy995CDNX8ThQDace2VlMUVRSFsKyVCkoqKysighctc6VI3tqQDKygqcdiY9565F7r16edAFWsZuoRjrry8ZumrVqksuuQTAxRdfrDcoaqipqXn44YedTuf48eO16CzNwanQs6cnY507B6rc3UksmAbv5eWFOuvCiYqDJZNpGY/H5XCkbLYOC4qDJQsLHQUFGSq+cw76ajdi4sSJm9Z/PXnqNPKnlXE7Wnbj3Tvx8mx8/Qo2vUese/N//1vz5ptv6V8PPap6oawfABRVoWUX0oJo2TVgwICMT5iXZk9PAx4hcDrzTn6ApmOcio0hk5qYjPIDKk1TiXXuNCHKiZE7RZH6mL30zl3ro8mYULXQlHgEfPM3NTV5PB4AJSUlTU1Nxl0jR4588MEHGxsbp06detVVV6U/GEBTk7+x0QdAkpSGBq9WBClJckODNxjkAfj9XEODV6uaUAWx1ccpiqqqqPPyFlkCIAhSQ4PXY6OagkIoFGlo8GptjV5vuKXFr8UgTU3+IC/aWcptoRq9vFZ4yvNCQ4OX46IkSQQCvH6X1tZgQ4NXURRJURVV9bUFKYrUHsnnCwMIhzvvkrvQV3syFj3xqG3TMgQ6Pqw967F8HnqOxNXLMOtpnPOQes07vgk3/eb2e6753Q2af1ehQssG9RgO3of9m1LeuHadx8kcd9xxGZ+QosickNn6WciJtqwsP2Q2nPvevS1aoZKZ/ICilajTJCFIyt69rYl17hQpyIqxgwlAQ4NXEqQY554qoUoRoqzu3NmELkTuUGSv/9dnIT0ej9frBdDe3q45bh2PPPLIpEmTnE7nTTfd9P3336c/GIDbbdOiM4oiCgsdWshQV9deUOCwWlkANhtbWOjQvvyKnBaJIDXR8JaQ0KPYCoCmycJCR/cCa2NQsFqZwkKHJrHpcFh0cZKCAhsvKXaGKrLTnBxLX7MsXVjoCAYjwWDEZmP0u7hc1sJCB0EQGk3vdtvb2oKhUKSw0KElIS2WzrvkLvTVnoyBAwc+9ehDzvduR+M2tNZi5aM45wGMPDeuYKbXqPA5T/zz4zUPLnwYwMijhhJtewGApHH8bHz6pIlSGIBgi2P1Xx65/8/Jev3JaGsLer2J+qy5jkguVO4Hsqtxkg3nri84Y8mdBkHSaRlCUlSSJEw7VOX4yJ0kSZbSq2VScO4kISmqprGZMXJnSVI4AiL3yZMnL126FMCyZcv0mof6+vpoNDpw4MDt27cDWLly5ejRo1MdrMNmY7WaFoIgbDZWa42jKFJXBWBZ2mZjtRqDQicbkVUtqmjj5cpiOwCSJG02tqLA0hgQaJqy2Vgt18+ytD782mpleUm1s2SRnQkIsvEuWgDLMJ13sVgYm40lCCJs0B7QDtbqN4x3yV2kd69XzZ37/JMPF31yL7XiThw3G2X9TQ5irKEpdzz08KMtLS0zzz/Xvu0jKDIADJ6Mo6bjrRuw7YvO4RSqip8+cSy/6YE7bz/vvPO68oQEQeRf5J4TyLLZzRfizyrbyIiqqhLtL9ZEFVJRdFpGVlFVVSLESwVoHaoJtEx5eYHLwWagZShCktXq6jJ0QX7A5WDpI6A+bOHChStWrBgzZsy///3vhx56SNs4cuRIi8Xy1FNPnX/++UOHDv3rX//6j3/8I9XB6VFdXZa+zl1W1IAgVxR0VkyWu0zmMVVUFHVy7oLsMKuWKStzp6q81NpTARQXO48E8vcwrfZUuOTiizdvXE8KIQxNrQDjKEHvMStWrBg3btzwQf3Y9Ytj20fPwuSbsWEJnj8fy27D0lvwlzP67fvg/WX/vPGG33fl8ZCnZs+JMXtpslCHA+YeTavEuPXWWx9//PEFCxa8/PLL+i6tbCO9eEUCBEFiGIogCBNapkMmTOs5EgQpoc5dkyVIcO6iKOuSv+k592hUtFiYhLcBk4MJRMRfXzK0e/fuK1euTNjY2NgIYPr06dOnT894cHpo1kjern/ptnOS22q0NLq52O/qEkULRFGiKEp7zSIJgiaJ5CYmUZRJkjCtPtaK3AFIkqwF72me+b5P9vxvjz9h41/PG9i7OJ1ASjgc7t+/fxcrRA/Tak9zzO7dux2V/XxUungiXNhn46YtAJa8sXjCpFPqvgyLYy+D1YVeo9BrJAJN+HGl9cf3733g3ttuvbXrj4eumT0LOLRmz4lqmSw/pPkH/LPKNoyIREStllNVO7uc6+vbtWZ0O0OFozLPC1o6LhoVRVnVPLMsylFRamjwCbKqiJJWtSpJCgk1IsiSolJEp4x4Y6OPD0c0zj3IC9qfiCwrPC9oXLAoyqqsCJKyf397NCqFeVHzWDwvdDyeyvOCfhdFlLQ6d0GQ9LtEImKeVYwdONBuLj/QUS3THBKKLJSxYMtUgaC5OaCZLiwodpYEUGClEiTd29tDWh1qMsJRWTvL7+cCAT79M284EPiopi3hX8BQtzp37tx33nkHgNfrra6uliTp4Ycf7tevX0NDQ/or6zhMqx2AKMatdp6PVUl6vf6IlOkNnbH6A0EAqmpZ+Z+PLhhSYFt8pXPlA+Q3r1n/u8j50b09m79ZsviV2269Nf4uEs8LmhNJtdpbWwMa5/7rrvZDa/acGLOn1TJkzezmzv1nlW0Y4fOF29qCqqqqqtrWFvT7OQAMQ3u9oXA4amepIC+1tQW1dRYMRgRJhaIC4EKRqChbrYwoK+EgFwxGoHn/qMhFJVlRCaCtLagZQpYVPhyVFFVV1TYfRygKAFGUtQQdAJ4XhIgQEWS7nQ0Gea+f05y71xtubw9pV2hrC2qeJRoVoShRUQEQDkf1u/j9nHF2ZR7AZmNT0DKxOveWsFDqoI3MYDeXpTGQ+GdjsTBa3McJMYKFJAgnS/kNku4sS6eSH+BERYvcGYZOIwvcRcycOVPLPSxduvS8886jafrWW2/dv39/169wmFY7AJ4XjKu9rS2oueB33n0/0lyb/qlY//7hQwYBkGWFZe2vv/z3H7779v6rzr9hbOlDl05c8uLTX3321bhxJyXdhW9rC2qOI9Vq57hYm8Kvu9oPrdlzIougfelmzezmL4ZaJUZZWZlp2Yb2w0033aT/rKNbt0LtB4JAjx6xxrnKyth0N0dAFlRV3+7xuGRVtVtpABXlBQRFlZcXCLLaq0dxsZ0B4HBYPEUOUVYkRbUwlH5i796lRRFJlLcTBOFwOwpcIgCrldEPcLttnmJHnV/o3r0IgN0dsAdDALT/AqDpzqs5HJanZw3TvF5RkaOoKKZnW15e0GUz5gb0Xz8Bdj1yD4qVRXbjC3s3M87d44l1ynBijGABUGijfbxY1CHprpsxGVp7KjLJAncRkyZNuuaaa3ief+ONN5555hkAyWXm6XGYVjsAt9um/4660bZt27Zs+TJYnNj7LXqNNn8mMULt+GLGjD8B6N27VNvWp0+fG2+8NvlY07sg9Wrv06dM+/nXXe2H1uzWI6BPJSM0a2fN7Oax1c8q28iIYDASU4WMlx+QDNPvtGqZUChiWi2TwLlzXJRUVSFWCqkkT8cGQJOkpChatMKLio1JxzASskzIvz7nfriRigOJo2WspJEZLHexyZF7OBzVIlCug5ZBzLl3siU8L6R63+Q6OPdIRDx4EVSGYaZOnfrCCy/4/f6jjz76F1zhMK12U2zZsuXM82dFhp2JE67Af5+PG6tkALH67ydPPPGoo44CEArxy5f/64933HHmeTNvvvW2N998UxQPqtX+kJj94HFozZ7l5s9fhiwTX+aR+8KFC6+44opXXnmluLj4lVde0TaOHDmysbFRK9uQZbmiokIr28iI9vagzcaQJJUgP2Acl6pJ/ra1hUz13BM6VP1+zu60dSWh2twccLttkRRfADrC4QhJkukrrL/e469PcnNTBhS5rb9+mU0X0dIScLlMhjHpwzpawqKDUGVZIclY8GtjSAtN+iNSgeHX9PnCxcVOmmb1GBxJzj0Q4O12iynroidUu2L2rmDWrFmnnXbavffe+8tOP0yrPWF7JBK58NLZn6z6jFNonHEsyvuj7ge8cztO/xPc3TqPk6JY/RK59ZNXV9YCWLNmzUWzr/IqLFd1nOIcQGxod77/zE233/G35xadccbpv+z3PUJW+6E1uyj++l9XGbGjKXjqkMSWFCMOrdnNz/lZZRsZUVjo0Ip/E+QHRFnRKxS1yL2w0KG3NcW2kyaRu8tls1gYWVVVNYPkrzYWJyIq1rSRu91uydg89vDne1f80JqwcdOtY4dXOE2P1/CzyjYON0pKnKa/pZUmo5KqqGpLSOhbbE+oo9CCd6Nzd7vtmtfWY3AkOXen05qKT+dExc6Q6JrZu4IJEyaQJHnxxRf/stMP02o3QhCEaaedub5R4i9/DS/OgrsMIDDpeqz9JxZfg+pj0W0gWDtaa7Htc3QbrIp8cXHxp59+etYFF3En34Lqsdp1VCCI84MNW2fNnvvCs09cdsklv+D3PUJW+6E1e060R8hEhgqlQ2v2bJRDFRTYtXRHAi0jyqquEaYF2janhSbjFp6m5y7Hd6hqjiNW7Jg2cte4rYy0jM3GHrw2xcGXbRxuGMfjGUEQMWWI5pDQs9SRkJtKHrbnclm1vyXdTQNIqIZ0OCyppGX1yL0rZn/uvIE1fzwu4d/A0s4ybUmS3n///XHjxlVWVhpPVE0Lgw4/tNX+wQcfnH3BRf2GDK8eOHTG2edfc+21G/e281PngbbAVYpAMwCAwLGX4MpX0H0ogi1o2gFHCc5+ACdeXVTaLRQKnTfzIm7anbpn70TFYP7Mhddc9/t9+/b9gifMy9V+8Jn5LODgH/JnmT0bzr2tLRST/E2gZQxKvDRFiLLS1BJKKEg35dz9fk4QJE33MY38gCSrLS0BABFJtqb9Yg+HIwefsz74so3DDc0aptBo9+aQaFVkOT790M2dOGzP5wtr7GEcLWOlfZE4WibVuB+u46yumL272zKwzJ7wz/h1/tprr91www2PPvpo+utkDdu37x153LiZV/1+hbd81zHX7Bl7w4d89SuL3wodOxckDQCl/XDAIBFjK8TRZ+LEqzHp9xg9E2X9iQObjj56xBNPPS33HI3Ko8xvU9JLHnban+69/xc8YV6u9iwPOfplOPiH/Flmz4ZzD4V4LYzSejuEDt9hlHxhSFJSVG+AT9AJ0LVlEhKqoigzJCEqaho9d1FR/f4uJVQPSYpp0qRJa9eu1co2LrvsMgAURdH0EcTIBwJ8qnBWY8xaQoIdckI+sNyZGLmHw1FNPoUTZEPkTvu7llANC7F4/5CYfc6cOfv37/9lqdRDDq/XO+W0GVvoAeELX8TRZ6LbIJT1R9UxqtWFbh1avqPOx7dLEE2h7iJF7d+9ec+CP7734SfhfpPMjwEARAecsvLTz37BQ+blapdzoSDi4LO+P8vs2XDu5eWFOo1rZwwT3QyqAFqgXVjsZOM5FlM99+Jil9XKaKx6Gs5dklWtGiyjc3e77S7XwY6EP/iyjcON7t2LUnGtGmPWHBIH9SpOqE9PHpPt8bi0Tle9Yh1AQTznXlTksNvNq9P0AspDYvYjCgvu/nNj4SDp2MtgNLS/HgUVnf8t7YsBE7F8HgQu8Xwpav/wnmmTJk6YMGHP7p3m0zl0FHZvqd//Cypn8nK1W3OhruHgH/JnmT0bzl2TiNJ+NuZU45w7SYiKStBUAi0T03OP59wtFpqiyPTOXePcNf+SMaHKMNQhScjMmjXrjjvuuOQXpbmygDT6Gw6W8vNSMCpVFNkSsm3dkppULRZG4+XT0DK6uFgywlHZYdGamA6N2Y8QtLa2vvra68KYSxN32IsSpRxP/h1K++L13+DHjxBohCIj2ExsXeVaet2pI/q8vfhVAA6nCxHzQskYBI5mLQzzs9nzvFztXZHD/NVBZEqodgVdN3s2vu7q6trLywti2mEsqWuHCbKic+5aoL2/3ptIy9CEmKQK2dwccLmsHZx7Oue+d29rr14eXpRtaVMZXm+Yosj0PTXnDCvt70mUWypzxrnLgyzbONzYt6+1qirlvI693kixnWmo9+oflobkyL2pyV9QYLdaGT4uoUr7+M4osrU1aLOxpkpJunBYV8yeQ9iwYQNbMYCzxbelCBzWvwV/I3gfbIUdWwlM/gMaa7BhGda+AX8jYXUNHtj/+bdfmzBhgnbEkMGDD7TsRGmflPdr3tm7r5moZCbk5WrPCfmBVFkoHYfW7Nlw7kZ56yRaJq5aho/KTBc4d1mWFUWNce6SuZyv5vo12jdjnbuiZObCZo+pSH/AkVa2kYw0PRR2hqxt58ucrCQpCc/bzWVJ4NwlSdZ+KU6Qy12xlZdQCinLSqpeHk3yF10zew6htrZWcJTHbYqGsHweSvtiyBSsewsTr4nb220QTrsTAFpr3e/fsfarz53Ozoq3G6/77de/vSE4eApSUGkFW5bddPPVqR6mtbV19erVe/bsoWm6T58+J510kt0e8xp5udrzQzjs0Jo9G869qsqjV9fZWVIvmBGVTr9Mk4SsqkWeApaKq9Y0rZYpLy8kCKIrtEyfPqXoAudeXJyujLSLeO211+6+++7333//4C91mFBdXZqKc3dYqD3tkTInU1VVklgK6U5MqFZUFGnUTbhDWwZJzr2szJ3qMfRqmUNi9iMHiqIIbfF1C1/9HZ5qTP4DQu3453UxL5+AYIvjo3sfWfiA0bMDmDFjxuBeC7d89Rf+xN91jtXuALPhrSLZd+WVVyY/hiiKd//5vmeeXcR0HxR2VpCKZAscIPz19//5T9ddey3ydLXbbBYg+Gs/RQbYbAdbgfqzzJ7tLISDpfRZzAkDkiiC4EQ5YZK1aYeqhq7QMtrPGSP3Q4I5c+bMmTPncN/lMMHBUnu8kVKnCSlf5mRaQqKqmkSQ2gBV7edkSfdUCBtan/IGGzZsuG3+AimqQBJik5WCLdjxFa58BSDgLMEFj+Od23FgE8bMQlEVAIg8tnzg2LL8vjvn/fY3v0m+5sf/eW/8yZP3fHxfeNRl8FTHtvob7BvfLGrfunrNl8mEuyRJZ50384uf6vgLFqEg1vgaBdC0/bb7HttVu/fxRxYekt83p1f7r4WDf7n4WWbPRhZi//5WnZmxG2YxJ8zQYChiX70vKaEai9yNgymbmnwcF81YLSPK6u7dLehC5N7eHvL5kkoX8g61tS2pXprtDFXbxpc5mf372xLYG5YiXVaqjeukCxsavBrFyRkSqkXxTUzNzYFQyLyYOtxRQJk3Zm9tbT15yqnciX9A5TBsei+29cBm9BoFa4eSV1EPzH4JBd2w7HYsOgMvzsILM+nvlj7/1KM3/eFG08sWFhZ+89UXvz9zovv9O5xvXOF+73bXm3PtS6///alHb9qwLuHFXFGUzZs3nzfzwlU/7ONPu1f37DGUD+DOfuT515e8+eZbeWN2I3g+BwRcef6gRIF+LrIRubMso79XGvuYEpw7TRISiMQmpo4OVWPkzjA0RZGxDlVZMW9iIglJUTUBjYzVMjRN5YRk6EHCYmHSlEIe8EdLHSzL0sm96eVOtikoeByxOJFhYrLARufutlIhQVZUNaYEx1BUiulXnKhoZ+WN2f907/3Rviei/wQU98SSm1HYHX1PgHd/Yi0jY8Oxl+LYSyFwEDg4PdbPHxeEdJlAp9N5y823/umuBU1N9bW1tVVVVdXV1cmyl4sXv3HH3fcGBDXQXIfL/xY3lFWHrZAbf90td9y5ZeqMVGrMuYucqJZJ9RdxmJAN515RoRcJaDOyO2gZQ4cqAIYiWYc1kZYx49w1XdOucO5VVSUAMlbLHAlTx7KAHj2KU+1ysFRUUspcrPHD0qEpEAztFlMv0Pl0vR0JAEkQLgvlj8ia6m8aYjcsyE6WQh6Z/Y1/vimc9TgAlPTC2ffj3TsxcANoC9QUGWzWDtYOgBQ5tztlcsLn89XW1vp8vqqqql69evXu3dv0sDvu/NMzf3+dO+kmBJuw46s4GbIE9BwZWqPu3797xIgRXf/tcgIHL6iQBZjOQTt8yMbXXSQi6slcXYAQSZw7TRJ+TkySHzCplolGJVlWGJIUFU1+ICUtow0Dysi5i6KcamJ9PoFPPSFeI8FLHYzxw9LRzR1X6h6Nilre36jnjvhqSEGQUjUN6vF+fpi9ra0tGo2gsHvs/xWDccVLoGj88CH2b0p3pqrKjTsGDRqUvGfPnj0XXnp5eUXlSWfOOvu3t444/sTyyp7PPvtscsvS4sVvPPP317izH0XlMLTvhyd16aSG0uoff/wpD8yegJyovMryQ2bDuTc1+fS/c+OMbEGKo2UogmhqCyXUNTKUSYdqe3swEhE7I/cU8gOSotbXe9EFzj0QiM1+ym/U13vTcO4ASp1MU5M/uUm6zMk2h+Jq2LW5P0ZaBkCBlfbzsQ/X6w2bjtlTVFWQVe27Nj/MLggCScdHZLZCTLwWVy8B70fDT6lOJLZ/3qdn92HDhiVs37Rp0/BRY5fvIYS5bwVmPh8489Hw5Yu9U++e9+TLM8461+jfBUG46fZ53Mk3w1EMACQFNYP7IFRFEOQ8MHsCMpaQHwngu1ZxcKiQDefudHY2PdpZku+kZRSjc2dpQiYpJkXkbtysCYVnoGUoQpLVggKboqqibB7d67BamYNXFT/y4XabiLlr0Ipeyl2s02lN5sFL7Eyrwbk7HBaty8lIywAosjHejsjdZmNNNfA4QbExGi2fJ2avqKiAJCKSVIdHMRg3Bx8uRChRxBUAWmuta1585vHEMUPNzc0nTpoSOuEa8djZsBhUPMsHcGc+tGZX+5zfdg5j2rBhg0A70L3j66GoCm170j+t2rpn6NDBeWD2BOREq3OWUx3ZuFlJidOoLWOslmHjaRkwdOoO1c4jCwrsLEtn5NxFRSktdaeSjTTC4bDa7Sa9lHmG0tKU9K6mB1DqYI0flo4iO91uSPQXFjpieu4mtEwsNnG7baY0qN6eijwy+4zTTme2fmSyY8gUDDsVb9+Inas7C+EUmfjxI9uKPz7/zOMnnXRSwhl3/fl+vu9EdUDidgCgGH7a/Hf+9e7mzZu1DVu3bpU9fTsPqB6Lui3wpZZT37O+tMAxZsyo/DC7ERY2Bzj3VCLYhwnZcO5eb1gnm+wsaaotA4CmCG8wkigcZsa5B4O8IEgdnLt5tQxDkZKstrUFM2ZTAXBcNA0fnTdoa0upVWJnKAtNFtpo44elo9jOeLk4OV+tXDKBljE691AoYio9aCxyzxuzP3TfPez378BbZ7Jv7MVE33Hsqiesf7/A/a+b3MtvsPzt/FGBrz/5z4rLL7ss+fDFr78mjjg/5Z0YW3TI9Fdff0P7nyRJqlGuhLXj6DOx6ilIZlblfc6vX3jwnjt5XsgPsxuR5Ql2vwxZfshsOPdAgNP7blOpQgKgCfjCQpLkr0m1TCgUEUU5FrmnoFw0zt3r5TIS7gB4XsgJzgFt1UYAACAASURBVO4g4fOF00j+apWOgQAvy4kHFdnodkOdezDIxyR/xThaptDWqR0WDkdN1avDhrGreWP2/v37v/iXpx3/nod9G+N2yCK5YWlp0/qtmzfu+HHz+68u+vCNF/fs3Lb+f1+NGzcu+Tp1dXWgWbhK09xLKRu4/vtY5D5o0CCidXfc7mMvhb0Qy+ehJX77vo3Od2/7w28unzVrVt6Y3YicGLN3RMxQPbQoLnbpVahxqpAJE/VoUiETVSEpklBVCFJcnXsXaRlJUcvK3C1i5vZUh8N6SOa9HeEoLXWn+i17Fll+c1x3xHNoOorscQ1KhYUOhqGjkkKThFGts8DaKenudttMaVDjZL58MvvFF13U3tZ26/w/Ra3F6DUKrjKiZRe9b/2xo4557asvqqurAfTo0SP9RcLhMMVmklFjbKFQTAteEASuYTdadqK0X2wvSeHUefjuX1j+RxRUwFMNIewI7ndR8pNPPHThhbOQX2bXkWXG45eByW5jdjYsYhSPtrNkOJqyiUkE2CSOhaUIToxVRscuYrcAYCiSF2XtxOSbaq7f7bbtawxnjNxzokj24JFGCLC62Hb31GoATqeJ0nexPS5y17QeA5yYoCJQaKP3tMfKMFLJCxvlaPLJ7M8s+su8O++RRs2CxYVgC9r2qhYnXVa9fVtN1y/Sp0+fiK8FsgjKYBlZRNM2+BoAFQXd0VY7fOhgAKqqXn/z7eqgSfj0aZz/KJiOD44gMfI8HHUaDmwhv1g07YSj7/jjP44//nh9pEM+mV3H/yVUTW6XhXs0Nfk9HpcWD9rjtGUSnDvpDQrJipcsTfKiYhzQ3N4eststDEWEorKpJCQMpZARmU7fngogEOBJkjD1a/mE+nqvNr0kDYwflo5iG2N07q2tQbfblsDJIJ6W8XrDViuT7OKNcjR5Y/ZXXn1t3t338+c91VntDgDggej3/zp2/MSfNm30eNKNvddA0/TYE8b/b9tn6pBpsU0/foT/vQpbQazZ1XuA8B1wDL4CwJo1axp8YZx/Ez59Cu/cjsk3derPAAi1YuNSIhJ46oknBgwYYLxL3pjdCK029whHlh8yG849EhH0vhij/ICQ2MSEUFRikpw1SxG8qMQ3MYkWC8OQREiQU9U4as6d4wSeJDImVEVRyon25YMEzwum+l9GRCKioqgJ/e2FNjoQ7ZQWiEZFWbaEo3HZVCQ1MZkGU/qkDuSL2TmO+8Mtt/Ez7k3w7BqUEef4vfvufWDhM08+lv460Wi0pqbm9KmTNjzyVKT3WNiLsPrv2PU1TrsT3Yfqh6kNW19Z8TTom4YM6CeWDwVBYspN2Lgcy25Dt4Eo7QOQaKtF3Q8YeZ7T6fjhhx8SnHt+mD0BOTFmLzmbdViRDedeWVmsq2E4jPIDHc0sGhiKFCSFTSJ8GYrgBNno3MvKCkiSYCgynNq5a7RMr16e2lp/Rs69sNCRfyxkMnr2NJ/UYURlZVGydAlFEk62U1qgvLyQogiuPaqnRjUYq2U8HpepSY2lkPlh9rfeeksqG4iylHMzhNEX/+3Fqx57+EGWNaeqFEX529/+duc99wkkqxZUqjSLf/4Ow6Zj19eY+bhhxAcAoGIwd9Yjryy7feKIARFWexsgMPI8HDUDezeifS9UBYMnY+ptsLrE/z7T3NyccLv8MHsC0kwZO3Jw8JK/PwvZcO7GCC5BFdJliVOF5ON7VjWwFMmJsjGhqpEGDEUEIlIq567FmBRNdqVaJtVAuDyDaVdRAlJxl0V2up0TNeeuUYecoCRy7tbOvGvKGXuGhGp+mP2b9RvD5UelO8JVyhSU7tixY+jQock7VVWdPfe3yz9dw508DxVDYlu/X4GvXsTMJxI9uwZJ4CZc/8UHdzn6jessbmVs6DcOGAcAAgfWBoANNfbt2zfh7PwwewJy5Osq74TD9u9vq6gojI3Zi1OFVIxV7RQBPyckR+4sRXJCHC3T1OR3uWwa526qPaCBJomdu5sjIpGRc29vD1EUmTc6VqlQW9vcu3dZ+r8C44dlRKzUvQQAGhq8RUVOYwyuwRi5NzcH7HY2mdgNC7Ie7+eH2ffXN8AxJP0xlLO4ubnZ1Lnf98CDyz9by539qCYlFoOnN0p6o3xg3KGttfj6Nez9FqwdIh+BSm5bg/G/A9ORJ2/Yim/fRt0PECMAUFzFBeqSxyjnh9kTkBOV+1meBZjt+qG0qpAELyrJCVKWJnhRoZJ8UgfnntJXaQoEvKhk5Nz/DxlRZKO98WrURjetoSvzOjhBsefXxzFi6KCVX9WnZ3zF9rp+/folb29ubl74yGP8rOfiPDuA9v0ojY+4v38X37yO0bNw6u2aN1fb9ykr7sL6t3HCFQDw5QvY9gXGzMLkm2ArgBTFgc1Y9/r0M8/57OMPCgriJ7v+H/4/QHbG7JXoP8erQiYM6yAFBWwSzcJSJB9Py5SXF2jHh6IpOXcADElU9vR89V1TRs49z+a9pUJ1dVnGY4wflhHF9s6CmYqKIpjRMm4rFRZkWVEpkkg1Zo8T5VJHjB7ND7OPO+F451sLAkg9jb5lp5WhTIvcP/jgA7LXSLjLE3eoMkiDbbf8BxuX45Ln4/qbinuq5z+Gf/6OYO2qyGPvBlz2AqwdZqct6D1G6D36p9XPjz1+/BOPLpQkqWfPnoMGDcoPsycgJzh3qzWrD5kN9k0QJL1ahiYJgoAgKzCR/CU50aS0kaEILr5aRhRlRVFpkkiTUAVAUwTHC12ZsSdJck5k2w8SXanEMn5YRhTZaF2BQBQlRVGTaRmSIJwWKhCVAYiiuUmNnHt+mP20004rswE7vjLfrarOdS/fd/edpqTw91t+5IrMRHqLenZKgIk81ryMM/9s0rnqKsVFz2LjMny7BOc+1OnZddT/FKnbtr12zwXXL7hs/mMnnX5+Za8+Tz39jCDkQOHgz0J+DMg+tMhG5N7Q4K2sLNZpXAdLhQWFtZEJkTtFJEqJaWApkhMEo3NvbQ243XaWJoJRWR8PlAyaJPbu93Yloer3cyRJFhU50h+W6zhwoL1Pn/L0nHtDg69796Lk1GuxndG1w5qbA8XFzmRaBh3VkEU2WutFMPavaeAM8gP5YXaCIN5+/eVTps3wM6za+9i4fZLgXP3smJ6FV82da3puNBpVKbNorvsQ+BvQtgclvVHzOSqPiqthN8Jdrg44CYoMR9Ir146vsOopnHg1Bk/mdQmapu3zn/jLqi9Wv7vszeSyqNxFNJoLnHt269yzEblbrawxbNFzqs0hodDQmqS5b9MO1YQ6d4uF0cbsZYjcSYK1Mhln7AFgGLorlSS5DpuNzVhTYLUypqPviuydkbtm/2RaBgbanWVp0348Y+SeN2YfOXLkyg/+7fn6Ocf7d2Lb52itRd0WYsNS++IrTu7t+PDf7yZPstZw9LAh9uABkx20BWMuwqqnIUXRVmusczeBrw69RiVubN6BT5/AOQ9hyFQYxcXKB/BnPbxq0855C+76eb/kkY2cKAHKcntBNm5WXl5gNL0mDKmqWL8/OKrKpW/X2HYmOXKnSU6UjRomxcVOq5VhKTIYldIkVBmKKPa4uxK5u922PGvYM0XG9lQkfVg6imyM11DDzrI0Zya3qVdDFhU5TGnQuLGreWT2MWPGHNiza+ENl0xSNvVY/cigra9d2DPy+YfvvffOEoslpb7u1KlTsXMNomGTfSPORHEvLLsdvnrYzQoidYTaYsM6jPh8EcZdifIBJsczVn7q/L8899cDB8y+V3ITWZ5g98uQZRn9bDj3YDBiJJs0Ycj9vghDEd3dnetec9+mnHtC5M5xUUmSaZIIC+aqYRpokvAF+K5I/kYioqk+bZ4hEOAzHhMKRUyZwSI77e1IqIbDUUlSOKFTSECHHrnzvGCqgRc2nJVnZmdZ9vrf/e7dt5fs3VGzddOGf7728tixY9Of0qdPn9NPm2H9+u+dau+dIHDibyx8K123Cd60Xriwe6KGO+dF0w4MnZ7yFEex2ue4FStWpH+8HEJODA5MnnF2WJEN597eHjRKhNtZkhPkDQeCIytdxsO0ENyMcyfkeMlfv5+LRiWGIngxQ517c2uoKwnVcDjCcdH0x+QBWloCqSR/dbS1hUyTnMV2pr2DlvH5wqIoJSdUYXDugQBvqitrFA7LS7MnrPaMeOEvz/RHg+XzJxEJxF9on+Pf8y+94Oy/LnreumeNmffvgKOE2Pll3JbvV6CoR5z6WBIiJf2//X5L15/zCIepvvSRhizrEmfjNaGw0GEkmxwsFRbkb/cHx/SMS+5rhIxJnTtFAjCWQrpcNk3yV1WRrhSSIh0uKy8GM9IydrslRzrcDgolJc6Mv2VhoT0FLdNZ5+522xmGSpjUETu9QzvM6bSaj9kzDG/KS7MnrPYuHF+45otV1//hliWvX0n0PZ4v6EVKEVvbTqJx610L7rjtlptDochjTz+57cePMfRUk/MVyebbrbbsjjTv6JRAqNuSWDifDIqNRJNGA+YsGCYHJH/zcMxeQYHdmKPThCE3HAiM6hEXuWucu0mdO00CMDYxaY5D+zJIT8vYndauJFRtNjYvdVATUFiYuS4l4cPSYYzcXS4rTVOm1TK6pLvDYTGV2DYmVPPS7KkMmAYul+vVl1788fsNT15z1u+OYm8ZX/7X+b+t27v79ltvIQjC5bK99frL7vUvUzv+m3imLDo/XTi2T9k/Xnze+cGfOgd08D74zMZCGdGya3C/FBU4OYicyMxnWZc4G193bW0hYzyo9TFtOBBMcO5UjJYxqZZBfOTu93M2G6t1t6Z37i1toa5w7uFwhCCI/BssmYCWlkCaMaoaEj4sHcbI3ecLOxzWVNUymqR7IMCzLJ3su42lkHlp9lQGzIg+ffpcffXVydv9fm7IkGGfrfzozHMvCO/4xN/7RBRWQuSp1t2Wzf8aM+qYd99Z4na7LRbrnN9eI1SN4vtMBMXC4kTtOlSnIP2lKLZ+evpL+VMwkxO0TJYfMhvOPRTiCwo6x0TYGbKmmaNJorIg7q+6I6FqUueO+IkcHBelaUqrkU9fLeMLRLrCuUciIkmSeeZlkhEI8B5PymFMGkKhiNttSy6AdlnoqKQIssJSZDgctViYlJx7JJZQJQgi2bkbI/e8NHvCaj94aKt91KhRe3dtf/vtJe999MnGjR95fT5vc73qLl678fui4hJPRY/xxx97z513tLS1f77ms+8ibZFex+PLF1AxGFaXyUVXv8TS1MiRIw/hc/66yImEapZb9rJTClkYXwpJfbXbN7JH4prTnHVynbu2nY4rhXRZrUxXaJnCYmfXSiHtye02+Yfu3YsyUtzl5QWmzCBBoMAaS5Z6PC6LhUnTxASgqMhhtyeWQqoqIlLnx5GXZk9Y7QcPbbUDoGn6kksuvnbu7Mb6A/5e45WZT/G2Mk6hlLEXNx910fL28j++9MEzi54789Qpqz54z163Ef0mYNlticNUoyF89iy5/YvfX2fylpC7+L9SyGRk42YJ4ZudodbtD9w4oSrhsJR17kmRu2ajjsg9nXOnWborkXtOEHYHj67ob6QhwTXavczJan9IqWgZrdfJlHCPSApLEWTHN0xemv2QZxGMHmHTpk1nnDcrNP0e2Aqx9GaMPB/HnKOr0Ag4Swi23Lfo3sv37R85fOg6f0AYPgPL/4iy/ug2EKwDrbXY/Q1Kq10W8s75dxza5/x1kRNNTASRdwnVurp240uTnSVDUXl0VWLkTkKFKedOE+ggbTQ0Nwd4XsjIuTMUUdfg70rk7vWGu1IDnuvYt681YylkwodlRJEtVure1OSPRERzWqajiam1NRgOJ5Y5GjkZ5KnZ0xjwl0Fb7drP19/8x/CoS1ExBB8/gpHnYdT5cfpiAFyl3JkPLV7+/rVXXdFPOWBt+AHnP4bBp0CWEGhCaR9q6CnOwL4P3nu/sDBtY1SuwUmq5BFfeWVaHHz4kA3nnrDWNY8wKomW0ephTCYxkYm0jCzLiqLGaJm0de5RUe5KtYyiKHmgYJURpl1FCZAkJdUXQLGdaeclAJIkq6pqTI3q0Dl3WVaSm6HC8dWTeWn2Q07+aqsdwK5duzZu3KgOmYZ9G8H5MPI88xMsztCxc+6+/6Gv//vZLeeOc78/r+CH5c5wXYF/l23jm+cNsH/+yarBg9PqGeQg7ptY4bQc6S+CppJ8hw/Zkfz1GIvDHCxV5mSrChPJVitLwTxyT6RlyssLCYJg/CLSJlRpivCUunmxIWO1TF6KoCajuro0Y3BTVVWSqpKvyB7j0ysqigiCSJVQbQ2Li1YfKLHT5S65NCRVFliK7TGmgouP3PPS7MbVLklSXV1dt27d0igQZIS22gFs3ryZqRwMisb+7zD4FKR5x+9z3P5PHxEE4f57/3zXgvnbtm3btWtXRUXF4MGDCwoKsuxisoOqqszzx391ZLnw91eo/Lez5DGVJn/VHcJhJh2qiHfuxuPTc+6SonaFc/8/dAVFts5Sd1UFL5pE7m4r9btxld/VBds4sS0stXFia1h47aIhpw4qAcCJij3TW1R+YOXKlbffec/WLZtYZ0E05O9e1evPC/546aWXmgox7t69e/Xq1Tt27PB4PMOHD584caJpG1RbW5tkcQOA9wD6T0x7f8Ja2mv79u0ej8disQwfPnz48OGH5Pf6P+QQsjNmr9Uo+WtnqNFVJtXWhKqSBJHsxJmkDtWmJp8m+YsMnDt5oN7XFc69vT2UB9qzGVFb25JR8nf//jZTyV8AxXZam9fR0OC1uezG1KgOkiAeOb0fgKYmvyb5u6k+dNY/Nl8xpuKeadUJnHtemn3Pnqb5f/rj+59+GR59Ga65RyBpqOreA5t/9+ennn7uhS8++cjt7lz8LS0tv7/51hXv/ZvuNZJz9bBEt1CNfyl1si88++SUKVO0YxobveGw3+229+/fnwnUAQDrQDRkencdSiSYavpSXpp9//7WX/sRMoPPLuee7QHZAOwsmUy4A2Ao0tQJa5G7sUOVoiiSJBgycymkQhCirKY5RgNJkjmRbT9IdG1Adsq8VJGd2dseAUDTVERSkrUHjKAoUmMnju7u/PqG0We/vHlbCzfz6DKjc89Ls98279aPv98ZnvVX0B21SQSBqqPDVY9tXf38+JNO+W79N1r83tLScuyEkw4UDBMvewUWJwAtuRza9b9zLrr85b8+M2jQoNvuWLBq5ceM3aUqsiJGFRDwN6C4J5p3pHsIfyPf2vDTTz8BGDBgQILgcF6aPcvNn78MWRbbyMZnbAzbAThYytS5WxgqmZOBmbZMWZnbZmO7UgppddkzZlMBFBU53O5D2XhyZKJnT0/G1ZXwYRmhN6mWlxfIJJl+FKrH43I4YkRzhZtddc0xUUm59p1tRiYn/8z+/ffff/TJyvCpf+r07J0gIuOvqfVLr7++WPv/WedfeKB0rDj+as2zd6L32PDAaRdeduXRY45fGewuXf0OP3dJ5DfvCFe8rpb1xxfPYdAkbP8vwm0mT9C2B/+5D6//hiitnnPPohNOPae0e9Ujjz7K851VSflndgCVlUmix0cessy5Z8O5RyKiMYfTu9jas8ikdYUiTIrc0VEKaaRrolFJlpWudKi2h6JdIdxFUc6JDreDRFcmxCd8WEboku7RqBiMmHQwGSEIkrESxmmhls0eNndsd2Pknn9mf+ypZ6NHnwsmVWcWETrmooVPPA3gyy+/3LR1uzj6osRDDmzGy7Ox6xuFsaoXLVJHz+yUALMXyWc9iGAzvvobjjoN798HMb6QtO4HLLkZZf1x9RLxwr+ETr07MPN5//T77n3pX1NnnKH79/wzO4BIRDzSCyGBnyUXevDIhnNvavIZ/86ri82jBooATZi4leQmpvb2YCQi0inkCnTQJNHQFs5IuAMIBLhgMJLxsFxHfb03Y6FEU5M/lep0cccwptbWoD8cTe5gMsLrDXNc3HcJSRAPzOhz36mdI0Pzz+wbv98sVwxJd0T3Ybu31yiK8s+3l/JDTgMZz4vWbcF/7seUmyDymHobinsmns5YMfNJtO8jf/oYqoK3bsSe9bFdwRa8dxemz8OYC8EY/sRK+4an/3ljGy678iptQ/6ZHUBTk+/XfoTMyPL0gmxw7k6nrStkE0ORFjNCIFl+wG63MAylqgSANIE5TRJRguxK5G61MvmnPZsMt9uW8bd0Oq2pSiGL7UwbJwJwOCyRcDQ9LWOzsaYUv/GlLf/M3tbaAnvacVeMlSDJYDD4/Zaf1NKpcbtkCR8uxIwFUESwdvQeY3J680746nDUadSav515/NAffvxx3ycPK4rCenqK3gZx6HT0NlMKIynu5Fs/WnzFd999d8wxx+Sf2QE4nTlANGU51ZGNm5WUOLvyW7EMaTVzB1psbuxQLSiwa3ruyFQtI5FkVyJ3h8N6JMhX1dfXT5kyZdCgQZMnT66vj5ut8+OPP55wwgn9+vUbMWLEN998A2DRokUOh8Pj8Xg8nltuuaUr188oCYm0H5Y+jKmw0CGoSB7DZITbbcvIMB4hZj+E6FVdnTgUKQHhdovFWlBQQDM0lHhu5KeP4emNqqPRshuVRyWeWPcD3vw93rsbNavQ8JNUUPnhhx+eftqM1rq9dbu3f/Dqs4QQxugLUt6XZiMDpy3+55vIR7MDKCnJgZ6JLIvOZ8O5+/2c6eS2BNAEaNKUlkmM3EOhiCjKXUmotgWjXUmo8ryQ5c5gU8yfP3/atGk1NTXTp09fsGCBcdecOXPmzZu3c+fO+fPnz549G0BNTc3ixYtbW1tbW1sff/zxrlzf5zOb1RmPNB9WsT3GuQeDkSAvpq+WCYejGQVOjxCzHxLU19fPvfq6jevWomZVmsPInV8dd8IJAEYMHUy01sbtO7AJA04CgEgAtviv4d3f4L27MeIszF2MM+/FtNvVi5+LXvK3v3747YmnTLPb7b1796bt7vQvDXJp3/Xfb0F+mV2H38/92o+QGVlOdWTDuft84a5kEgjAzLebdKgGg7wgSCRBkASRrkOVJLxhMWN7KgCOi3Yl2Xi4sWrVqksuuQTAxRdfvGpVnI+47LLLpk+fDmDEiBGaMWtqah5++GGn0zl+/PiampqES/n9nLbcFUX1+bhQKAKgpSXo9XLaHzbPCz4fpwkSBIMRn4/T8qgtLUHtREmSfT5OG4MXjYo+H0fICkmgxcu1tAQCvGBnqECAT76LIEg+H+fzhaNRyXiXUKjzLj4fFwjwHBcNhaIJd4lGc8/vfPfdd0OPHrn4J06+7EXUrkPLLvPjeJ9149sP3Xs3gDlXXG79YQUkg/yOtw5FlQBQWAmvYdSGdz8+fgRn34fBk2GkU1yl0WkLtkYLLp49JxqNUkzqYFzgsOUDbPt869ZtCxcu/OyzL46E1X5o0ZXA5VdHV/Q/DiGy4dyLi11dGTzG0qTVLBjsoGU6txQU2HVhyHQJVYoQQXSFcz9CXlSbmpo8Hg+AkpKSpqYm467rr7+epumVK1dedNFFTz/9NICRI0c++OCDjY2NU6dOveqqqxIuJYqyFjirqioIkhYyFBU5RFGSZRmAJMmCIGlBuihKgiCpKlQVViujZb8VRTtRASDLiiBIiqIU2ZjWsMCyNC/BwZKCIGk5Iu0u2trVTrRaWauVkaTYifojaRldQZBEUXI4rDYbk3AXWc6x5vgDBw6cdMpU//jrhbGXo6A7Tr4ey+eZ+Pdwu/O9edf95spRo0YBGDly5Ljjj7OsfaXzAHshOB8AVA5D7dpOv7/mFYyeCdM8LUFET7px1Rdftra28t4mSGYue9MK/OMy7FkHT3XrwNPvefe7C6+cO/2sM/bs2XOQv/gRheJi15GfR8gyLZONm3VRs/vEvkXf3mySDmIoQgvS9S26Ix5T5U5DDtAkwUlKaRdomSNk2JvH4/F6vWVlZe3t7ZqX19HS0jJnzpyqqqoVK1b06NEDwCOPPKLtuummm/SfDZeKdRJQFFlW5k7YCMDlsrlcsRyUUeOlR49YvTDL0vqJdrtFs3mRnZYoukeFU9wdtrOU6V2sVka3J8NQ+qdvbInUDwagl8Prd8ktzLvz7sjgU9U+J8T+P2gSoOKd29HnePQeA1cZuHZL01Zq60c3/P73D9z3Z/3Ed95aPO6kyTtWPR499go4S+CpRv2P6HsC/I1QJKx/C8fPhiJj99eYmjqnQrP8oFP/teK948dNWLN1pXLU6XF7176Bn1bigidQ0kvbEAWix89d/+2SMSec+O3XX/Xq1etQ2+PXQU4MBqBS0wyHA9kphfR3RfxPkpSmJn/ydpZK1CRobw9p3MJX1490pZaCo0nCx3WJlgkEeI1S+HUxefLkpUuXAli2bJnefa5lVi+88MLrr7/+ueee0zx7NBodOHDg9u3bAaxcuXL06NFduX59vTfjMek/LE3SvbU1GIyI6atlvN5wxnf/I8TsBwNZlpe+/aZw9DlxWwedgjmvw9Pn/7V35eFNVF3/TPY9TZqmTVe60BbashQoKCAIVBYFZVd2xB0FUUReEVFxYdFPFH0V39cFFVwAEZSdsggooAjITi2llLakS5pm3+f7Y0qaJpOZC23Tdt78Hh+fMnPn3sm5Z87cOfec34HCQ7D/Q9ZvX/YWagvPn/W17AAgk8mOHNg7a0C68NvHZNteEjj0cHormHWwfzUMmgMX98Of34P+OkhV1NWucVXKib/PrXhrqeDPdWCsbDhx/TT8/YuvZa8Hi+PJm6TrOOz+8QFR9u0WpKajrYGBZfZsNgcKER2O46T7PDw2i9OYKtJud6IUXuGyMaPdhbKh6nS6bqlifQth2bJlM2bM+PLLL5VK5ZdffkkczM3NvXTp0r59+06fPu1tWV1dvWrVqnHjxrndbo1G8/nnn6P0b7U6cByov15tNqfHg5PRWwHcTFK1Czxmu1sqpJoCh8NFmxHeRsTeFBQXF/NlkQ5hADc6TwS5YwDGAIDnwl656EpsbGzg5TKZ7KP3Xdb0KQAAIABJREFU31uy6F/Hjh0rLCzcuZd1cPMCh0gJmYMgvgv8shT+/gVonx0Mc7vdffr0eXPJopffWmC+ZxGoOwIA/LYW+s4ESSTpRZ4eE/75ds+ePXu8y4h2DZutHewihJjgOhTGXaNRoIRCcjgsjYakgACP479yV6lkSB2yMIsTRwmFlMtFbSHyNzY2dvfu3X4Hb9y4AWRM0MOHDye2WNERH6+k/ZUaTQRpmT0CShG31uJSZyjs7ppoymgZpVISLF7eizYi9qbAYDCw+HQMXDxhrZ4qxUatVo8cORIA5s2bl9O9xzlhDgCARAUPvg9Fv8Evr4PbCeygr1Ks5lpuXhYAPDt3Tqwm5ul5823SWEtkuvvGBRi3MuioGMvcMf/nbTuYYdw1Gsr0graBENcCDMW6icfjoDzDGIaR1mbjsll+HO9cLpvWcAAAh4Uh8v1yOGzmUSkFAkW3qCdLIeToLE4ul2NxuqnJe7lcepEyQOwdO3a0VF2jXlxjtde7ZXVC6Q3DsM5Z2SBTNxxKvRM65MHZ7UGv8bjEl3dNHF9fuGPChAnXi//54s0XZmULeRHR/nWa/KBMPHXuAsqNtX2Qmo62BhSr1ZzDhWCM0tIalABPl8tdWkrChRQh4Mwb0CgPW6ut80ttJwURCI9i3HU6U7uIk20iiosraT/xqSdLIeLWWl0VFbVGm4uafqCy0kDrT2eA2KVSaXqnLCj8NWgLHJdc2T/sniGIHXZOT2UbGwVKwR1T4eg3oC8jbc/7/Qt1hOSp516MiIpRx3cYOPTeLVu2jB49Ojc312Wliw50WCPk9Hlt7QKkpoMAN6D+T2vBamVcmb0mQsJnL87vcBsXEs4cFLdMGIhQiuqJIS2NC+b9L2Plm69L/vgSbAbSs+wzWxMipSNGjEDsrUdurrjiZKND6o7Q92HY+AIUH2t03GbkbHvVdfInrSTlZMLourGrq4a+cVB4x6MvLVPHJTy/+A2P3Qw2I8VYXN2VHl2YU28vmAmX/K8qamjK7JFv6fiBw2EjtoyOJq9C4N8hCwMAlA1VRtZ7C0Ryspq2DfUUEMWYNBqF3XON2i3jG+wYDMwQ+/Dhw2dNGvf5xoXGoa+ALKbhBO7hnPlZ/vcPmw7uR99auPfeeyPnv2goPAQd+zcczR4OIgX8ugaOfA7R6ZgkUmwqcxQd93hwz6il5sTchpYRsXUuBxxaAxM/gD++hT9/gH6zyEeyGbkXdz+8wT+Itp0C0XS0LhhYZs/lcrPZbFr1xnFwu90opPtut4fFwmgfGIJAGCUU0u32YBgWYo9Y6OF0umnrdVBPllLEqbU4XS6PX02lQKCIlDFiX/V/7yqVyhUrn8Y79LSoOgFfwqorExYdSEuI+fbAvszMTPSuWCzW2v+uGXH/aJNQBvFdG06k9IHk3vzdy2RVJ2cOn5qdnb94aUVJ+ljwtewA4HbBoU9hxCKQRkHPCbBuNiTmQmJ3/2E8LvGB/xs3dmxCQsJt/+o2BQpfYtvZtA9x9dpQuCzKynREViQ1XC53WRl9IDYAVFYi+dzrV+4IPne93tzenb8ouHatmla7yspqaX3uWq3eZHNRu2Wqq41ms52iATBL7K+8vKj0atF7s8dNiDGOEPzzcn7ytu/XnvrjaKdOSFupvujfv/+OrT8pD6wUFayA0lNgrgF9OVw6IP1xbmeJ5eK5s8uXL1er1TobDhkD/S+uOA9COcRmAwDIYmDUa7DjLTj2DTgsvm34P86/K1X56ccfNuEXty2Ulela+xboEWJKn1Cs3AUCHmK0DOJnC5/PRQqFZKP63LlcDgPWj7QQCnm08yAQcClEQUTL8Plcq4um1DWPx6EIqSTAMLErFIrHHnvs/vsnqlTSJkYB9evXr7T4n/dXf7hxy5aifRcFIlHnzlnzVr9NREwCwLHjx61xuf5+ZrMOTm+FqAbGfIjLhgmr4Pe18OlEiEwCoRxqrmJ2y8iRw75dv47DaQcRJogQCAJLX9VDymcTtX9bHazQxoaFYnZRXeQcFmJLRF8tF9nnzryqY6SIjaWPBaaeAoIYUqWSWpwearcMSv1lRordT4Aej+fQoUOFhYV6vT4hIaFnz56pqako/YhEon+9uOBfLy4gPVtYfM0ljmr4N47Db1/A6a0QEQvRjb1AijgY8RLYDFB9FexGUCTwzv185x19mGTZgVJv8xJlJbVtIhE6xPGaoRjMaLSJxXzaNZrHg1ssdomEniPCYrHzeBxa7/zNlTu9z91mc2IYRpCRMRgGg5XWnppMNpEo6GRFCDl1VpfRZKONlrFaHRwOm9rFz0ix+2p7QUHBE888W2mwuqPSrRyJ1LbNWfr3yPvu++D/VqrV9JvbBEi1PSMliXvhQv1yFMdhz7ugK4Wp/4HqYjixgaQXgQziu9T/aShLSUm77R/YNmE02tqObz0YgtU4ayGE4rnS6YxCIZdFnU8B4HZ7ampMKMa9rs4ik4nojTtyKKTZbGOxWAyzMoGoqjJIpTTFmGpqTHx+0MnisDARj3290mhx0rhlDAYrUTCLog0jxe7V9h9//HHKw49ZB8yBtL6E/6QOAOymTUfXHu034Pjhg4j2nVTbu3XrJvzs+3rjfn4XVBXB+HeBJwKuAKqKQF8OESRsBwAAdTecFZdycgK2WNs5dLqgQZ9tx+Y7nSHllgmFD0gmE6G4VlksTC5H+k6XSAS0UR9wKxuqQiGvjRBDtigiIsS0ii6TCdmUSR9KEcfB5ticHupPIrGYT/sRykixE9peWFg4ZcYs631LIa1fI884X+IaMLsssvvIMRMQOwzUdo/HY7PZMGMlXPkdPC74/WsYOLueXEwghW4PwP7V4CGzIx6X6PBHTz3xpEaD+t3QXiCTUXGrBUOI7X66mt5X2YwIhXFXKMQo/FBsNisiAunHS6VCFO8VF3lDVSTiC4VBN2QYA5RSZLSTpRByDW5MwGVRPxgSiYB2Sc5IsRMCXLBoiaPraIjOIG3j6jPzbOGV/fv3o3Top+0HDx5MTu/88MK3DHF5sHMFXD4IXD7EZTdckDcJ2FzYuqQRQyQAGKtEO5f2TY184/UljBR7a98CPULscw+Fca+pMaHQobndHp3OhNJhXZ0FhTyTw2IB2srdbLYRxYCYjaoq8ixKX9BOlkLIuVxhoC6gCgAGg5U28IuRYq+pMblc7u2/bHV3uT9oIxbb0um+dd+ROccD4Kvt27ZtH/HA+GvdHzHe/w4+ZB7ctxj2rgJZdKML2By47xVQpcDXj8HO5XBiA5z4gbPzLeF3Tzwxsu+2nza5XDgjxR7sFObz5SThszmtF6AV4ipjoTDuJpMVJXrf48GNRqRNbYvFjlKw6qbPHWlDlagoxGwYDFbaeTCZbNQFb5Ui7tVqi5DulWm1OmjniJFiN5msJSUlXLEMBFKqdqrkU2fPo3To1XadTjdx8hTL8CUNiUuJuTB0ATis/tewONBvFsz4AuK7gFmHFf02NEVYXHjx3RXLuFwuU8WO0mxUlipG2mpfLQyk/I2OjkCk/EUOhZTSxlCDlzgMKRRS1HZ2XVoOsbEK2p8ZHS2nlq1CxNG7MDGdy0WhENNOOiPFHh0dUV1tx9101tPjRgxG9Gr78pXv4qn9QNM4KyomA/TlgHsAC5C2SAHZwwFAsnvpQw8+GB1dv8Bnqti9f8dIeUkKwbFr9N+pGGA4hC5rNMQ7TKFYuQsE3OZOYuIg8rkDahITG4X2oL0DxdNKO1lKEbfC5KB1y/B49HPESLELBNy4uDiPw0pN2oXpSrplIyWverX9l117LR0H+5+WqiG6I5zbFXAdDtf+gr82wd73XMUnoqIaguKZKnav2op4bJU4OP19673ZQkxwHYqVe0WFPipKRrvWdrncVVVG0nodfqiuNkokAto3AXq0TF2dhcXCvDVFmYrr13XeEqnBQDtZCiHnarVFSLc1pNOZBAIudU1URoqdEOBDD01ed/pHR+/p5I3cLtG5nx99dwvxL5vN9vPPP5/++0x1jS67c+bAgQOzsxs2SL3afu3KP9CbjArmjmmw5RWIyQRVcv2R8nOwbzXgHojNBqnalXbXmKmPiLlYfGIHk9mUkpyaf1ffJ554VCS6nQiTtomKCqpyKG0EtIUnmxeheJM4HE5A+PbBcdQag06nC8V7RVTW5iMYd5fLHeL8glaB3e6k9bk7HC7qDRKFiFtucNB+DzmdbrebZjBGit3hcB47djS1QwKc+gm0l0jb8I+vzcvt2qNHDwBY+9VX8clps15Ztexg2ZpLrAVfH+x91+CRY8ZXVFQQjb3aLpJIwU62bRidAYPmwKYX4fRWcLug9DRsWQy9JsLUNTB4DvSe5OSKzSZjZXz/v6KHXs6audOVseTrHbGJyVu3bm0pKYQcDkejvUrf5TnFSj3Ei3jq3axmR2gof1Uoce5cLjrlbwTKtxWHhaE43IEp3LO0SE6OohVbQkIk9WQphJwqi0sqoNGc/x3KX1+cOHHikSefKSy5jsd3dXboA5tehAFPQKf8hopI5hr+sbWp+I3NOwoA4I233l62+j/me17zLrqtANBn1q6/fsi7s//vhw7Ex8d7tT0jM7Oy8h9QxJMMnNYXpCoo+AA7tAZwDL//9YZN14IPoLIQZnzZsMGr6WzKuBsqzk+cOvOHb7708tW0ayQkqFCaYcG9MgIOy9bCSw2RKKR7uYxKDvQDh42h+GTCuCUoRVyXB6cmlvnfxJEjR4aPGmPsNQP65ddvb964CAc/hiOfY+qOvMg4vuG6s/zSjBnT3166Ti6X79u3b9mqj8xj3gNx4zUNh+fMm6JlscdMnHT8SEONp2efeuzUvEXGjAHkdSmiM2RiYc+cAYe0LKfXsl/7C0pOwOSPIbDQq6azbcSSqTMfKSu5Iha3gyDxlkafJPmBIiRW2vaC0JTZq0Yps+d0kpfZC4RWq0cJ1I2R8vY+hETSpNOZ9HqGcM9SoLi4CqXMHnUIo0LIAQAe3adYZaXBZKKZIyaJXafTjRg12pi/CLKGNgSuxGTCxPdh9FsgU/ML969dtrC48OK/P1gll8sB4LmFL5t7TvO37DfhzJ1wvqhk//79Xm0fPXp0cpScd+RT0vbc419H811FJaXOHJ+V+LFv4I7pJJadQGy2S5O15lPyDtsXSkurW/sW6IFCVN6MCIVxR9yaxzBACXAEADYbqUA2C8OUYqTvIBaL1d4rNaMAibOBQ5N6qhRxAYCaWAYA2GwW7RwxSexvLl9pT+nfKFPUi6g0fNBcjzpdp9N54xFNJtP5M6cgc1DQHllsS8ch23bs9Go7hmH7dm1LMpwX73kLakoaWtaWiQtWaiqO7N+9o7ykGCI71B/HPVBxETr2o7htc1LfXfuCF4BtP/A1MtRqhwX7u+X97wwskB0Xp0Sx7xwOOy6OJpaDgFotQ8yfTkpC8sQpFGJG0s/6ITFRRavBtJOlEHEAQB481IyASiUVi6lCZYBZYv/uh432rHspGpgyh3/1/SbvPy9fviyKSiQJTvcBrkg4eea8r7ZHRkb+efTIgvEDpVsXSNfNlG1dIF0/S/Ljs3NH9jp5/GhcXBybwwbXzeWhqRoEEuBQzoJcU3TlCtpPbNOIi1O2zdj9ZGWDhouENE9E8yIUPnebzcnnc2i3QHEct9tdKKHudruLw0Fa9FksDpRNDKfTjWGoXxjtF1arg/alSDtZMj6Hw8IEHJrZdDhcbDbNHDFG7A6Ho7L8OvlWpxeRSZcK1nr/JRKJPIGZpV5YasFUDcZKkVLkp+0ymeyVxS8vfnnR1atXr169mpiYmJyc7KUDSkxOu1xzFeJyAABECrCZwOMGCkJWS21MTEzQs+0H6EWOgql2C70bfOPKQpyhGoqVu1arR/lVLpdHq61D6VCnMyLOZXk50g6JwWBBZD5o1ygvr6X1uWu1ddThiRgGMj6bT/eBWVtrpvUwMkbsLBYLwzDwUG4suV1sdoORTUlJsekrwW72awOnt8KnE2HtLPj5VTi2btv27Xl39vvuu+/9OsMwLDk5+e67705NTfUlenti1nTpmZvfB2wuSFVQWUhxU1ztxZ5dc1B+YxuHVhs0zp0XnOU0xKGQIS6zFwrjLpEIUSIXWSxMKqUncwcAWqJwLxA5hAUCLsNYxUkhk9GQuQOARCKg9QwqhBwJnbiEQh7tHDFG7BwOJzouEWquUjWqvpKR0UASyePxxk98kHfKhzvM5YCfXoLLB6FDL8A9kNQL7noCH/ri38LsqU8/37lbj6KiIto7eeLxxwW1xewLe+r/3e0BOPp10NY2I/fctmdmP0nbbduHREL+pGMYZMUEjQXCWmq93ugGvEDcU2wuhGKwyEgJiguFzWYhBj7L5SJE8syoKPpoawAQiwXUuZTMAIo0UCZLJeFJhTTyl8mEtB42Jon98VnTRac3BT+PS/7eNPvRmb6HXn/lZe7ZbVB6uv7fO5eBWAlSNRhuwLTPYMizkDUUUu+E3pPwmV9fUPXv3W/gFTr/uFAoPLR/r+Lk19zfPgObEXLuA4MWfvuSpKnDItmxZNbDMxHL/rVx+NJZ+9rTQPMdAoMeDHw+47hl6uosKKlZHg9uMCBRu5lMNhRWSACorTXTNwKwWh0h/mJqFej19NJAmayuMeJoug1Vs9lOm2/MJLHPfeZp3o2z2OUDpGfZf3wXI+M98MADvgdTU1N/2vi9aNdS9qnNUPInaC9DUk+ouQoPvAmSxvGRGAZdR+lyxo+fHITPwAcZGRkn/zg6Lp3PXztNvuNlSWwq6++t8P1cqDhfnyjudmHnd4u+e2Ly8P7v/987t/uL2xbq6tpoTK3vmwTRajUXQmHc9Xqzx4PE545oi41GKyJRAQXLsy8sFnuIaR9aBTU1Jlqfu15vod0geaVfdN9ESj5bAJPJRssryySxS6XS/Xt2io/8m3ViQ0O8CgDYTZzDa9QlBQd27wisgjJkyJDDBwqGCK+xt78BPcbC8W+h/6PB4lvw7HsLS7UoJT7i4+PXr/386j+XfvjwrVVzHtz+4/crnp0ed/QD3sejJF9N4a0Z3V3/245N6z/5aHXbrzuKCL3ePK1Hw84w4s9qtMZvGUn4ShjRajUXQuHxVCqliJWYUEoFwa24ZVCS4AFALBYwRsspEBUlo/2VKG6ZiAgxl0vvlqENg2GY2Lt163b8yKEn5zz3x1dTuZp0O1/Bt1Y5KwrvHzXq3Z+OaDQa0qu6d+++85ctyZk5VxWJYNE30AYEAsNMHfrt2rP37rvvRrmfmJgYbyTM0KFDX5g/32q1VlVVRUaqORwOM3Y7vFAqpUIeFQ2nF0GjZVpeFUNciSkUgyFuk7JYGEp1bABAd9QihlEzr5InKVCkgTIFtAHsgEwvTNumfaFTp04H9uy4fPnyhQsXKisr4+LicnJyEhLIqBwbw2Iygq2OJpgSAI+IP3X27G3fnlAoTExMvO3L2zKkUgGpcW71xYPv+IhhIM2FUBh3rbZOpZLSrgddLk9NjRGlXodOZxKJ+Cimoby8NjZWQdvMYLCiv1raL1CkgTJZ1dVGmYymjG1trVkg4FKbeEaKXautS01NS09Pv6Wr0tLTK20msNHVl7DVqdHy8ijAVLEDQrk3P1vPY2PNUpMKw1AGZ2KZPZvNgVJmD8dxxO01u92JmA6ASObgdLpCvNfRKrBaHbTzYLM5aTdUUeTvcLho6XwZKXZEbffDyGH54uqLYKyktu+C6ss9umQ14e4AmCz2+r+p42F8zxFcGk0HxYi+r5MQE1yHwrhrNArEMnsolToAQKVCpR9ISEDiM5DLRYzJg6dAfLyS9itVo4mgjcZVq2W0QV1KpYQ2N5iRYkfUdj88M/spbtkpSOoFf/jnKzXAcINVfGzy5MlNur+w2JsA3i0OwWOz7k5r+FYOMeVvKIw7j0fPPQAAGIYhbjhwuUjEYYAcWMrhsBnDYEUBFGmgTBaXy6GVP5dLL1JGih1R2/0gFos3fb9eXH0Bzm6Hy2RMXjajaMfrL74wX6VqqluGqWInPR44E8EiZGjnLFEh6BgVNFWKFBoZz7ceNwOJw0pLa1Aof10udMrfOkR/S3FxJUoznc7UZuNkmxHFxZUolL+0k1VRUUvrQKusNJhMNNQCjBQ7orYHYtCgQb9s3hApl8DuFXDo04YSrE4LnNjAX//YiP658597tul3yFSx48h1jmJlfFlAtZlgBjpDLRqWSVNEKJjN/mRchu8/UYjKmxGh2FBFCXIHABxHLUPl8XgQ3Zq0ld5uDo2HuAJWqwAxlYxWtB4PTtsIp2/CTLEjajspBg4cWHHt6kcfffTRmv8WfTKWLZIDYC6rkSVVcaJTdx86roqJfXbOnIUL5stkSDG+pAiLPVrKw0wOgw1pL1XEZStFNHYS8VOtCapxOwiFcU9KiqJvBMDlshEZejUa+gAYAmlp0SjNIiNpUnKYgdRUemmgTAEKMzNK1BMjxY6o7X7Q6XRffPHl0RMnb2grO2d0fOv1Jb179+7Tf2CNMgt6TfFIo+qz++puvLd17cbN/Y8e2q9U+s+C0+ksLy+PjY3lcqn8b0wVO+tifcYitam9bfqBprtUJJKQkm2Ewi3jcrlR1tk4Dojfs2436sodMSrA7fYwby0TCBRpoEyWy0UvfxSRMlLsFAK02+2ffPLJpGkz8+4act+YCUuWLCkvLweAle++l5Savmjd/o218Yfld396mf3wi2+mdsqpTB3uGDQPpD5vC3mMLf/FksjcQUPv9U4BjuObNm3KyOkukkizcnuLJNLMLrmbN28ONkdMFTvpcQyjDGW5eSpJ0aTA0MAh+GRRCbcRRtUUhGLlXlamQ6nX4XK5y8trUVaOlZV1MpkIJZWmpKQaZfGu15tZLJZCwfBKkteuVaekRFOva8rKamNjFdTZFlqtXqmUUAcsVVcbRSI+df4aI8UeTNv37ds3cfI0hyLZENcTVBlg1RdsP7Pyvaxu3bv/XVRmHv+RrxE3sTjgLIDuY0mHcPSa+s/GORs2bJwwYbzD4bj3gbG/n/3H3GMqDOru4vDBZb9UcmLqnIX9Pl/7848bAlfxTBU7jjd4PUh1vKNKFOxyCT+owqNsuiJmvZrNISXbCIVxFwh4iNEyiCmLfD4XcbsfMfYIJfyDARAKebTzIBBwaUWBIn8ej0MbUslIsZNqe0HBvvtGj7PlvwgdenkP2uAe0HT9veB9mP4ZCBt7sc7vht5TKEYx54z+6D+fT5gwfszESb+VOSzjVjcUdeLwIfVOc0qfQ3uXj3toypaN/rGVjBU7neNEI+MBAIZBpJhbaXIAwJB0xeFi1gWtGVqsWIcvuMyj/I2OliPGuaM4agFAqZQgvgZQ0lMBQCYTMixhjxQo0kCZLJVKShu0qlCIaXMRGCn2QAHabLYJk6bY7lnoa9nrcXor9H/U37IDQPVViMmkHCbjwvnzBw4cOHjspGXwCyTl+jCWZfCCfUeOHz582O8MU8VO/cbyLQ18X+f66Jd+yRFpKiE02bL7XS7hsyPIOLFDzLcRCuNusdhRnE0eD44YKmSzORFzvWij8Qg4HK4QE7a1ClCkgTJZVquDNkPVZnPS7qAwUuyBAvzPf/9ri0yDpJ7+TXEPlJ+DjIEBx3FwO4FD+WrkCmxWy9Ll75q6TQxaiJXFNnebsHT5u36HmSp20uPe5TxhbSMbp6Q2jnmnsfAzetVTv43o5B8ZGcBqwBKQLdJvL0b2thEK415VZUBhC3C7PVVVSLxutbUmRJaGGzeQ6vYZjVazOaQhqK0CrbaO9iVbVWWkfXHqdCZa61BXZ7FaaeaIkWIP1PZte/Zbku8iaWqsBKGMhOAXwyAiFmpLqYbRlXZI7Xj69CmIzaZohWuyT5065T8sQ8XufadSWGm1lOt3Fqu/hGLTtR5ju9Rvivwyq6uYdzsUYAwssyeTiVB8fCwWhlgVTyIRIPKrKRRBt1B8IRTymMdQGIiICDGtz10mE7KD15wkIJWi0PnyaV03jBR7oLYXFhaS0z0KZGA1kDNOdciDv7dTjCK8uGPsqHvraqpATOlqEyvqaqr8r2Wo2GNkLRVoSOvNR8xJDjHlbyiMu0IhRuRzj4hA2sGXSmkoCb1ADOkVifiIZDXtGih0+SiTJZMJaV+uEomAljGckWIPFGBUlBosZOWbeSIQysgrr/aaAJf2QVWQoqnl5zjXTz737BxNQgeoLaO6G32ZJrGD3zGmip2W+EXIZQm57M7RjYyM1yx7zXO0lEY4vpZcLuBAgM89cF0fL+cDI417TY0J0S2j0yEVTqqrsyA6Dauq6DhUAQDAbLaFODO4VYAiDZTJ0uvNtCHzBoOV9iOUkWIPFGDPbjmcqsvkrbuMguPrSY4LI2DYQtj8L7j2l/+pot+ke97Y+uMGqVQ6oH9/TtEhipvhFB0a2L+f30Gmip00eN/XEC/OT553V0K8nO9diWMAY3LUfpd8NCYDyOC7PPf+yWFjEOAIGpap9PZPgMtmASMpf00mK+KGqtGItP9psdgRs5Pq6pCKstpsTtqacAyAwWClnQeTyUab4WI222m3hqxWB+0cMVLsgdo+9+mn+Od+ASeZKmYMgJITcGIjyanE7gJ5lGjPMtHm57Fj38CFvdjRrySbnk06t277T5sGDhwIAK8t/hfnzFYwaMlvpe4G5+wvr778L7/DTBV7fYXY4CD1nfRObETkIOWzbylMNFhb0l4YWEM1KkqGEgrJZrOiopC8KAqFBJHuMSYGKbZSKhWipES1d0RHy2l9g1FRUtr4dKVSQvuBKZeLhEKaOWKk2AO1vWPHjlMmPSTe9Uaj2qoAcGY7rJ8NKX3gz+9h10rQex0sOFw5Kv1p/tA+OTU3rn+6dMHc3pEjhf/M7xfz1XuvXbl0rl+/+sV4SkrKG6++IvrpBai74X8f+nLRlhfeXvp6UlKS3xmmit27sp7ek6SiISL9y+7Hu6vE9ZuusTI+C/N3p5PXewIAgJfzOxD/HNtF7esi7Yr/AAAY5UlEQVTb4bFZAi4LAGifiOZFKHxAiFXxWCwMsSX6dhBiPG+IfWGtBRRpoExBc5XQY6TYSQX44ap3KyZO2rPhaWvvmdAhD1hsOLcTjq+HyZ+APAZsBvjrR/h2DrDZIJBDXblEJv/0w1Xjx49ns9mTJz80efJDwYZ7/rl5gLEWL5kNnYZYo7NBogJTlVB7Fi4UvPnm0mefeTrwEqaK3WuGfe2vWhJUV/kcltdN72exMcBwwHsmSHdcROKpJYa+K6W+HIXf10CGWpQRJbqgNdOGITQvQjHNFRX6qCgZ7XrQ5XJXVRlR6nVUVxslEgGK+SgtrUlIoKHrBIC6OguLhUmlTKtg4Ifr13Xx8TScXyiTVVlpkMuF1B9POp1JIOBSvyoYKXY/Aer1+uUr31m16n2MywcOH9uxDHdaBcpYW10VTPsvyGMAAAQyuHMG3DkDzDqw6EGigp+eU6vVbDYbELT9+Xlz09NSVn/00aUL31lt9qTEhMGD+z675UNvdWw/MFXshDuRSFby2vccTdAYjak9YiZ0U1+uqmc/9vWjYBgADjju4aJlwmM+//c/5XPUamUc/YDD4aR1hwEAjgPiNqnT6UIss4foW3S53CjxPO0ddrsTx2m+Tx0OF+0GidPpovXLO51uLpdGuxgpdl9tLy8v73Vn/1p5R9tDa+rtOACUnnLtXs7KHOyRB3gPxEoQKwHA1P2hha8sPT5oENBp+/Hjxx+dPbeotByP62JV9xGZy8+dPxmpVNpsQbevmC32/HRFt1jJ0ZKGBJeEiFvzQWE391txHNQSv6QnzC8sMlkprDbXb5N2UAq/mtR52vrz/h3e/APRajUXQmHcExJUKHHuXC4bZZUNANHREYiBpSkpSPyrSiV9jCADkJwcRSu2hIRI2snSaBS08ler6QnHGSl2r7Y7HI47BwyqTBjgymvMEpPQzRWRCGn+QSyNkHLH35+9j+M4hmEU2v7rr7/eO3q8Ke9h6D+EeGmbAcBl3/PXpry+dx07fDA5OTnwKsaKXXsDAEbnRA3LjPzk94YIUQ1Z/Lu/H4bMsU7snVAHuQ/uqPij1EC0Z2Eg5rHFPDYryDUh3uoIhXFHZylCbHkrHaJ9Vd16XbT2CBRpIKab0bZBpIqjbdPu4BXOJ5/+p5Kl8LfsBIyVDQt5X+iuQVURGKtArgEWq6amRqUKujCqrq4eMWq0ecRroOnc6ASH78mbVCNWDBp2b9GFs4GTzlSxj+uq3n6hxu/XYVSUjUF7wwADwElNdKfoRnmR9V4gnyP3ZCi9ZZ68Q6gkXAi55EPxdVZSUoVCquB0uktKqlE6rKioRcyf/uefIFFijVFTY6ytNaO0bFGUl5fn5+dnZmYOGTKEYPqmOEXROBiKirS0oZAlJdW0AVtlZTpa76FWW0cb2NpGxN688Gr7u+9/ZM0NshEqUYGxcQFI3TX4aRFseB4uHwRTNZzdbnc4n543v6KiIpi2v/7mMmdqf3/LfhOerOGVds63334beIqpYheyQSq4zR1LUqtL6kVZPyXL958oPnkMA4JqBpHqqrkQCuOOuEeMYUC76UqAzUYtkI3IUsBisdpCyeCXXnpp6NChFy9eHD58+KJFi6hPUTQOBhRpcDgs2uUFh8OmXYOw2SzaOWojYm9eENrudDorSosh2svsiEPJCTj+LRS8D398B6KIRtlJlYWwcT4k9oBH1sPIV2HgUzD6bXj0u02F9ty8O8rLy0gl+f3GTY4uD1DciSX7/rXfbgg8zmCxU8ArwWX3pj5+R2xggxyNxFthQy3h+gVBRkm4PB9aDu9fWP3+LY2qJyuFgOxIaC6EYjCUSh0AwOGwUeq3AYBaLUPMn0as26dQiGWy1g8eKCgomDx5MgBMmjSpoKCA+hRFYwBwuz3edYfb7SEqTCYkRHo89VV4PB7cW9DKt3FMTL2HF8cbSvbgeENjjwdXqaREqAzpKERjpVIiFvN9R/F4GjV2uz0KhVgqFZKO0n5BaLvFYsHYHGBzAADKz8G6p+Dgx2DVgzIRzDWgvQSntoKlFgDAboafFsE9L0DuGGD7bN8JpK6+j1ZnjpowaUIgkYPNZqut0pJT1ngR2eHChQuBh9uItjcvvEYmwJnub3ZFPDZpmaReiTLv8SSl4P5sle8rcMV9aelRjRwyhL0mDH68nM8JvpQZkq4k4twRy0s0F0Jh3G02J8oTi+M4Imua3Y4aLWOxIMUeOZ3uELNxkkKr1apUKgCIjIzUarXUpygaA0Bpac21a9VQ7+yqItgxdTpzSUmVXm8GAJ3OVFJSRXhXKir0JSVVhGEtLq4sK9MBgM3mKCmpqq42AEBdnaWkpMpgsAJAZWVdcXGlzeYAgOvXawhPmsvVMIrZbC8pqaqqMhJ8EiUlVcQseEcBgJKSqrIyndPptlhsJSVVBC9CXZ3VO0r7BaHtcrlcIBCCWQclf8LWJdBrIkz7Dwx4ErqPhoGzYcZaSO4NP8wDax38+QOk9SOhegcAAFeXB6rcwnXr/L0rLBYLx3HAKZ8C3M3mkGyqtRFtb14EGpkn7oxrSodjs1SA49jNt0Og5Zby2QDQLyVCLuBsnpkTKw+6Weq91uMO6cIlFMZdq9Wj2GKXy6PVIjH06nRGxNdAeXktSjODwYLIfNCiUKlUtbW1AKDT6QjDTXGKojEAdOgQlZysBgAul52SEk2U6dDrzcnJ0USwhEolTUmJJuLQ4+OVKSnRbDYLwzAul0PUHxcKeSkp0Wq1HAAiIsQpKdFyuQgAYmIivJ9NSUlRKSlqAOBwGkaRSAQpKdEAuMXiIEYhggTi4upHAYCUlOjERJXBYHE43Ckp0USRlogIkXeU9guvtg8cNIh9fidsexNGvQbpAxvZBwyD+xZDdAZ8MR3O74IuIyk6NGaO+HK9fzUlHo8XpYkDHSUtcFVxZgYJTUob0fbmRaCR6aqRrJucNbtvUBMfbKXdLVb62YROJpPN7WOLA78AiAO5cVIZGXcYqZ8mxHHuoTDuvsljVLfCwhA/WwQCHqJ3HrHcOI/HbQtpe0OGDNmwYQMAbNy4MT8/nzhIbJYGniJtTA2JREA7DyIRj9ZXLhTyaJ22AgGX1sXfRsTevPBq+/Klr7L+2gjpAyA2i7zp8H/x47MwSy0oE6h6jOxw6dKlwMOPzpwmOrM5+GW45Ozm2Y/OBAC73W6xWLwnmC12r4bHyHiTcqOHZdZHV8fK+KQFNAIh4bMz1CIej+PrIQ98JkgfJTGP7SUeCGwQ4gzVtsYtQx8cDQAKhRiZW4Y+3xUApFJBW2DbWLZs2ZYtW3r16vXzzz+//fbbxMHc3FzSU6SNqYFSxRBlshC5ZWhTiNuI2JsXXgFmZmbKIyIgZzhFY3u3MfQ9YiwcJ/GizJs7h1f6JxQfI72I89fGOLlg/8FDkTGxYolUrlDKlVEPTZlWXFzMbLET+GZS1r2dGn3ObpyRnRsflLrKG/UYKa5XbLGY7+1wYjd197jg12L1/wHA0Azlx2Prv5Z4AeRhIabRD8ULvK7OIpUKadeDHg9uMtlQtnpMJhufT78wBIDaWjNKlXer1YFenrvlEBsbu3v3br+DN27cID1F2pgaer2ZljEfZbKMRptQyKVehpjNdi6XTf0OaCNib154BYjjuEFXDcpE8nYGLVz9AyoLgcMHXSmoSLKN6lF9JT2jU+DhiIiIvTu3Dcwfaq6diHcd1bAZazNyjn+jLD9abrV+cuCydfhbEBEHLJbBWLXp/M4tXXM/+3TN6AdGM1Ls3n9K+A3KmRsnLXiye1xAKtOITioAkPI5opv06w9kq7zNbDYnsc+PAYzMIonLyFSLi2tQvVv3dorsnShzOBjHCqnXm4k4Cmq43R7E8Fuj0YpIVFBTg0QQb7HYQ+wOaxXU1JhoN7b1egvtBonBYKGNhTeZbLTcD4wUu1fbMQzj8njgDAhRd9pg3wfwzeOgvQzKRFydDn+RUf7ehOTc1injx5Ke6tGjx9FDB+/iXBGunSLb84bgyCeyHa8Ivp4xPBEsFqup32zrgDmgTAQWGwADqdrZe5p11FsPP/7kzp27munnthU0iD3glITPHpSmEAUU0MiNlwCARsaLEte/59Y+1NnbzGp1BG5XvzMyLUkhAIBO0eJArjGK24uT8xV8lsPBOD53pVKKWIkJpVQQAMjlItoqPwRQkuABQCwWIBJStmtERclofe6RkRJat0xEhJiWN0YmE9KuDRkpdl9t75CaDlX/NDrtsMCPC8FhgZlfQv5zkDsWRr4CRb/D1T9Ie2Od+knJtk+ZMinYcFlZWQf27Djx269rXnps6bi8L954rvD8GY8Hs2Tfj3ccQHJBdIbt7nnPLliAst5qR0A0MsFwZwd5fONwF5GIx2Zjgzo2qmJ4T4aSKL00t3+jbZJAy+7r4iceOg6HhehMbi6EwrhLpQLEpHZEhl6RiI+4NYEYzysQcBHfFu0aKNKQSOgnSyzm025oC4U8Wr8ZI8Xuq+3PPvmI5NQPjU7/ugbkGhj2Ighv7gYJZDDqNdjxNpzb2Si00WVnHftacW7T/t3b+XyaQINOnTo9+OCD8+fPHzNmDIZhBQV7PN2De/NT79TZYe/evbfx69osEI0MKfolRyzO75DXmKeXz+diGPZIb5J0JwCIkfGyb/JNEqNundUlzuf18MO07J4Jjdz0LBYLMaeyuUD+iN5SHjwtAuvBk8Lt9iBWxautNSMWrLpxg6x2ZQCMRhvz6sGHgYiW0/bp06fL3Xr2yU315+puwOVfYeCT/s6DuBwY/Tac2QGfT8O2LmH9uka29y3xNzPyI3R//H5YoYi+pfJsZ86c4cdlApfqRW6L6XLy5Cn0PlsCLST22+Bv+WZy58C6qWazHcc9naJFq8ekB14yKE3x0uAOvkeyY8SkuVFe8FngcYW0ABb53dxSHjwtLBY7Ypk9xJwjm83hciF9VJpMSCbb4XAiOvHDYB5aTtu5XO6RAwXKSz9zD68BmxFKT0JKHxCQuQpjMuDB92HEIkFN4TN9Nf9eMPP4of07f9mSnJyMru0EtFqtW6igbuMUyMtvINEutRxaxcigI0nGHpGhkAs4vRKCunZfHZos5KI6Pz4emTwwCanSXHOB/M5uKQ/eF2az3Wi04TjgOBiN9XV41Wq5xeIg0o4cDpfRaCO246xWh9FYX7HTZLLZbA6NJoKopErsszmdbqPRRphdm81pNNoILReLBW63xzsKseh2uz1Go81vlIQEpd8oBHeP3yhsNptwENvtDaNYLHbmlZoMIxAtqu1KZfSfvx95KFsmWDuNd/xrUFCGtGs6cRKy+/TpM3bshISElFvVdgCwWh2xsYnsOprVrtB8o1NGx9bV9pYQO7F4pzAy3sd/fI6Kg3sguJHpmaQYl6WiFvus7lEsHD89Py9KgAWOMqJTZAQHxBxMKeK2ipEhN+63lAfvC7vdabU6AHAA3GqtV3E2m2WzOZ1OFwA4nW6r1eF2uwHAbndZrQ5CIkRjHo/j8eBWq4P4wW6321tn2ekkGnsAwOVy22xO7yjER6vb7bFaHcQkEaO4XG4+n3tzFA8A2GzE7QGON7rQ4XARDRyORo2Jew6D2WhpbVero9d+9p8zp86MHpbPctN8SmJOm1AovD1tBwC73ZWc3NFZcw1MwevDeVysayf69OnTutreEmJ/dVDi+K5qCiNDPP4eD76wr0aIATSHkZELOE6HO9DIzO0XnyjhTM6JXDgoqVWMDPl2FpHarlarg+XBk56CxnUAvJEqWm2dRhNBbIGKxXxvAkVEREOieVSUzOVyE1XxvBcKBDyBoN4XJpUKvXGsTqdbKhUSzjVvYx6P4/3bO0pxcSWRhX/z5us/i9hsls8oXIvFTrxIfUdhZE2DMAIRGm1PS0t84P57d7z+EdW2Eo67K4syMzNvT9sBICJCFBEheuyRRz4pWGsb9BzpIKzTW7t27tStWzcAaEVtbwmxq4k4Cz47mJEh/uBwWM1oZPxGaTtGhnzlfkt58LRADLrCcaAt3ubtENG/5kZj6sFxHHHo9ojy8vKZM2cmJiby+fy4uLgZM2ZUVFT4tXn++ecB4MKFC/369ZNIJAMHDrxy5Uor9hNKhEzbR44cCZWXoaooWAPs4t7MjmkZjQlh0LXdi8UvLUx0XBMe+xw8/ukI7PO75Gc3rVq58pY6bAm0ipFBx22InRqtYGRwMpSVleXn5/fs2fOee+4pLy8nDkZHRwc7FUZbxqBBg955553y8nK73V5RUbF69eqhQ4f6tYmMjMRx/I477nj99dcNBgPxULViP6FEKLV9+cp3RPGZ8NRP8FyB/38zvhAq1Pv27Wv6KDiOV1dX5/UbII5OgkFz4KHVMGUNDHtR3KFLUlrGxYsXm2WIJiJsZFoaGN7y9Nkul5vNZtNGKOE4uN1ulAB2t9vD8uPSDwKn040SW+p2ezAMu+042TaOzMzMixcv+h7p1avXH380yppRqVTV1dVisbiyslIsFgNAVlbWuXPnWquf9gtqbcdx/Mmn56zfutvYdzbEZXsPY4W/Cg9/smrFm48+8ojfJejaHog9e/b8+79fnD17zul0ZmZmTho3esqUyTgOzNN2RCODjqaIPViHIRZ7KFJIysp0KPU6XC53eXktSnmNyso6mUyEQn5UUlKdlhZN20yvN7NYLBQWmvaIhISEd999d9KkSSqVSqfTbdiwQan0L4pitVo3b96ck5Nz/Pjxu++++9KlS2y2/3yFsp/2C2ptxzDs4w8/6Nvnm0WvvaE/6MAUceBxuatLMtJSV2xYP3jw4MBL0LU9EPn5+YFujZoaI/O0HdHIoKMpYidF6I1MKDJUBQIeYrlkRDIjPp+LWCcMkUOYy+WEOHkslFi7du2ZM2fy8vLEYnH37t2PHz/+xRdf+LVZvnx5QUGBRCLZsWMHAIwaNWrFihWt2E/7Ba22Yxg2derUq5cvnDpSsH7lvzZ9+Mblv0+cOHqY1LLDrWg7Ihip7YhGBh0MEHso3DJhtDvY7XY+vxnWLM3VTxhhhHGrYFqd3DBoUV5eHhMTQ92mpqaGtk0o+wkjjDBuFeGVexhhhBEGAxFeuYcRRhhhMBBh4858oCQNHT16NCMjo2PHjtu3byeOBGYGoiQocTichQsXWq3WJt5PGGGE0USEjTvzMXXq1Ozs7GPHjhmNxhMnTvTs2XPmzJl+bR5//PE33nhj27Ztixcvvn79Omk/a9euBYBZs2YNHTq0oqLimWeeeeKJJ/zayOXy3NzcoUOHHj58uCn3E0YYYTQVrZtDFUYIkJGR4XekZ8+efkdSU1OJP3bt2vXUU0/hN3NNfUEcEYlEJpOJONK5c2fSNtXV1VOnTs3Ly1uxYkVRUdFt3E8YYYTRRIRX7swHkTRUUVHhdDq1Wu2HH34YmDQUFRW1detWp9OZn59fUlJCWnrbN0EJAEgTlAhERkZ+9dVX69ats1gsw4YNu437CSOMMJqKFn11lJWVDRkyJCMjY/DgwWVlZcGarV69WiQSRUZGRkZGPvfcc8GamUwmjUZD27Nvs2A9nz179o477khNTe3atevvv/+OfqvtEWVlZdOnT4+Pj+dyuRqNZurUqYE/kMgqWr16NY7jlZWVgwYNCtSN1atXz549e/DgwS+88AKO4+np6Tt27PBrE7jeJwiYbvV+2iOaS4UClbYpPVM/NQxQ+yb+BBRpow9xq9JuUfm3rHGfPn36ypUrcRx/5513ZsyYEazZ7Nmzf/zxR+quli1bRkRDU/fs1yxYz3l5eVu2bMFx/Pvvv09PT0e/1f8d6PV66gY2my00d9Je0FwqFKi0t90z7VPDALVv4k9AkTbiELch7RaVf8sa9/j4eILUrby8PCEhIVizwYMH9+7dWywW9+3b98KFC6RtXC6X0+n0Ci5Yz37NgvW8evVqh8OB4/ilS5fS0tLQbzWMMIKhuVQoUGlvu2fap4YBat/En4AibcQhbkPaLSr/ljXuXC6XsKF2u53H4wVr9sILLxQUFBiNxtdee61v374UHXoFR92ztxlFzx6PZ9euXbm5udu2bUO/1TCaDo1GE2L3YGjQXCoUqLRN7JniqWGA2jfxJ6BI+5aGuCVpt6j8W/ah0mg0Wq0Wx/GKiorY2Fja9gaDQSwWUzTwCo6650Bj4ddzZWXlfffd9+STT5aWlt7erYZx2zCZTDExMU6ns7VvpJnR7CrkVdom9kzx1DBA7ZvrJ1BI+5aGuCVpt6j8WzZaBqWiit1uz8jIuHz5MgDs3r27Z8+eIej5wQcffPrpp//973/Hx8ejdxhGs0AsFs+dO7d5OfzaAppFhUiVtrmUM7AfBqh9U34CorRvbwiUflpW/s37rvADYkWV7du35+TkdO7cefDgwYFh0b7w3jB1z95mpD3r9XoAiPQB+q2GEUYwNJcKBSptE3umeGoYoPZN/Ako0r6lIW5J2i0q/zBxWBhhhBEGAxFOYgojjDDCYCDCxj2MMMIIg4EIG/cwwggjDAYibNzDCCOMMBiIsHEPI4wwwmAgwsY9jDDCCIOB+H/GNti3EwhwSwAAAABJRU5ErkJggg==", - "image/svg+xml": [], - "text/plain": [ - "Subplot{Plots.GadflyPackage() p=4 n=4}" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" } ], + "source": [ + "p = plot(10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "p1 = plot(rand(20))\n", + "p2 = plot(rand(10))\n", + "p3 = scatter(rand(100))\n", + "p4 = plot(rand(1000))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], "source": [ "subplot(p1,p2,p3,p4, nr=1, leg=false)" ] @@ -884,7 +168,8 @@ }, "outputs": [], "source": [ - "methods(subplot)" + "immerse()\n", + "p = plot(rand(10))" ] }, { @@ -895,7 +180,19 @@ }, "outputs": [], "source": [ - "typeof(p2)" + "gui()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "append!(p,1,rand(10))\n", + "gui()" ] }, { diff --git a/src/backends/gadfly.jl b/src/backends/gadfly.jl index 041525be..6b16a122 100644 --- a/src/backends/gadfly.jl +++ b/src/backends/gadfly.jl @@ -83,38 +83,38 @@ function createGadflyPlotObject(d::Dict) Gadfly.Guide.ylabel(d[:ylabel]), Gadfly.Guide.title(d[:title])] - kwargs = Dict() + # kwargs = Dict() - # hide the legend? - if !get(d, :legend, true) - kwargs[:key_position] = :none - end + # # hide the legend? + # if !get(d, :legend, true) + # kwargs[:key_position] = :none + # end - if !get(d, :grid, true) - kwargs[:grid_color] = getColor(d[:background_color]) - end + # if !get(d, :grid, true) + # kwargs[:grid_color] = getColor(d[:background_color]) + # end - # fonts - tfont, gfont, lfont = d[:tickfont], d[:guidefont], d[:legendfont] + # # fonts + # tfont, gfont, lfont = d[:tickfont], d[:guidefont], d[:legendfont] - fg = getColor(d[:foreground_color]) - gplt.theme = Gadfly.Theme(; - background_color = getColor(d[:background_color]), - minor_label_color = fg, - minor_label_font = tfont.family, - minor_label_font_size = tfont.pointsize * Gadfly.pt, - major_label_color = fg, - major_label_font = gfont.family, - major_label_font_size = gfont.pointsize * Gadfly.pt, - key_title_color = fg, - key_title_font = gfont.family, - key_title_font_size = gfont.pointsize * Gadfly.pt, - key_label_color = fg, - key_label_font = lfont.family, - key_label_font_size = lfont.pointsize * Gadfly.pt, - plot_padding = 1 * Gadfly.mm, - kwargs... - ) + # fg = getColor(d[:foreground_color]) + # gplt.theme = Gadfly.Theme(; + # background_color = getColor(d[:background_color]), + # minor_label_color = fg, + # minor_label_font = tfont.family, + # minor_label_font_size = tfont.pointsize * Gadfly.pt, + # major_label_color = fg, + # major_label_font = gfont.family, + # major_label_font_size = gfont.pointsize * Gadfly.pt, + # key_title_color = fg, + # key_title_font = gfont.family, + # key_title_font_size = gfont.pointsize * Gadfly.pt, + # key_label_color = fg, + # key_label_font = lfont.family, + # key_label_font_size = lfont.pointsize * Gadfly.pt, + # plot_padding = 1 * Gadfly.mm, + # kwargs... + # ) gplt end @@ -504,6 +504,44 @@ function updateGadflyGuides(plt::Plot, d::Dict) updateGadflyAxisFlips(gplt, d, xlims, ylims) end +function updateGadflyPlotTheme(plt::Plot, d::Dict) + kwargs = Dict() + + # get the full initargs, overriding any new settings + # TODO: should this be part of the main `plot` command in plot.jl??? + d = merge!(plt.initargs, d) + + # hide the legend? + if !get(d, :legend, true) + kwargs[:key_position] = :none + end + + if !get(d, :grid, true) + kwargs[:grid_color] = getColor(d[:background_color]) + end + + # fonts + tfont, gfont, lfont = d[:tickfont], d[:guidefont], d[:legendfont] + + fg = getColor(d[:foreground_color]) + getGadflyContext(plt).theme = Gadfly.Theme(; + background_color = getColor(d[:background_color]), + minor_label_color = fg, + minor_label_font = tfont.family, + minor_label_font_size = tfont.pointsize * Gadfly.pt, + major_label_color = fg, + major_label_font = gfont.family, + major_label_font_size = gfont.pointsize * Gadfly.pt, + key_title_color = fg, + key_title_font = gfont.family, + key_title_font_size = gfont.pointsize * Gadfly.pt, + key_label_color = fg, + key_label_font = lfont.family, + key_label_font_size = lfont.pointsize * Gadfly.pt, + plot_padding = 1 * Gadfly.mm, + kwargs... + ) +end # ---------------------------------------------------------------- @@ -558,6 +596,7 @@ end function updatePlotItems(plt::Plot{GadflyPackage}, d::Dict) updateGadflyGuides(plt, d) + updateGadflyPlotTheme(plt, d) end diff --git a/src/backends/immerse.jl b/src/backends/immerse.jl index a4be5212..14a6699a 100644 --- a/src/backends/immerse.jl +++ b/src/backends/immerse.jl @@ -45,6 +45,7 @@ end function updatePlotItems(plt::Plot{ImmersePackage}, d::Dict) updateGadflyGuides(plt, d) + updateGadflyPlotTheme(plt, d) end diff --git a/src/recipes.jl b/src/recipes.jl index 55a5d418..8fe1a45c 100644 --- a/src/recipes.jl +++ b/src/recipes.jl @@ -1,4 +1,10 @@ + +# TODO: there should be a distinction between an object that will manage a full plot, vs a component of a plot. +# the PlotRecipe as currently implemented is more of a "custom component" +# a recipe should fully describe the plotting command(s) and call them, likewise for updating. +# actually... maybe those should explicitly derive from PlottingObject??? + abstract PlotRecipe getRecipeXY(recipe::PlotRecipe) = Float64[], Float64[] diff --git a/src/subplot.jl b/src/subplot.jl index f1a5638b..e2ceb010 100644 --- a/src/subplot.jl +++ b/src/subplot.jl @@ -78,6 +78,8 @@ ncols(layout::GridLayout, row::Int) = layout.nc # get the plot index given row and column Base.getindex(layout::GridLayout, r::Int, c::Int) = (r-1) * layout.nc + c +Base.getindex(subplt::Subplot, args...) = subplt.layout[args...] + # handle "linking" the subplot axes together # each backend should implement the handleLinkInner and expandLimits! methods function linkAxis(subplt::Subplot, isx::Bool) @@ -217,14 +219,68 @@ function subplot{P<:PlottingPackage}(plts::AVec{Plot{P}}, layout::SubplotLayout, n = sum([plt.n for plt in plts]) subplt = Subplot(nothing, collect(plts), P(), p, n, layout, Dict(), false, false, false, (r,c) -> (nothing,nothing)) - # update links + # # update links + # for s in (:linkx, :linky, :linkfunc) + # if haskey(d, s) + # setfield!(subplt, s, d[s]) + # delete!(d, s) + # end + # end + + preprocessSubplot(subplt, d) + + # # init (after plot creation) + # if !subplt.initialized + # subplt.initialized = buildSubplotObject!(subplt, false) + # end + + # # add title, axis labels, ticks, etc + # for (i,plt) in enumerate(subplt.plts) + # di = copy(d) + # for (k,v) in di + # if typeof(v) <: AVec + # di[k] = v[mod1(i, length(v))] + # elseif typeof(v) <: AMat + # m = size(v,2) + # di[k] = (size(v,1) == 1 ? v[1, mod1(i, m)] : v[:, mod1(i, m)]) + # end + # end + # dumpdict(di, "Updating sp $i") + # updatePlotItems(plt, di) + # end + + # # handle links + # subplt.linkx && linkAxis(subplt, true) + # subplt.linky && linkAxis(subplt, false) + + # # set this to be current + # current(subplt) + + postprocessSubplot(subplt, d) + + subplt +end + +# TODO: hcat/vcat subplots and plots together arbitrarily + +# ------------------------------------------------------------------------------------------------ + + +function preprocessSubplot(subplt::Subplot, d::Dict) + validateSubplotSupported() + preprocessArgs!(d) + dumpdict(d, "After subplot! preprocessing") + + # process links. TODO: extract to separate function for s in (:linkx, :linky, :linkfunc) if haskey(d, s) setfield!(subplt, s, d[s]) delete!(d, s) end end +end +function postprocessSubplot(subplt::Subplot, d::Dict) # init (after plot creation) if !subplt.initialized subplt.initialized = buildSubplotObject!(subplt, false) @@ -251,11 +307,8 @@ function subplot{P<:PlottingPackage}(plts::AVec{Plot{P}}, layout::SubplotLayout, # set this to be current current(subplt) - subplt end -# TODO: hcat/vcat subplots and plots together arbitrarily - # ------------------------------------------------------------------------------------------------ """ @@ -277,22 +330,20 @@ end # # this adds to a specific subplot... most plot commands will flow through here function subplot!(subplt::Subplot, args...; kw...) - validateSubplotSupported() - # if !subplotSupported() - # error(CURRENT_BACKEND.sym, " does not support the subplot/subplot! commands at this time. Try one of: ", join(filter(pkg->subplotSupported(backendInstance(pkg)), backends()),", ")) - # end + # validateSubplotSupported() d = Dict(kw) - preprocessArgs!(d) - dumpdict(d, "After subplot! preprocessing") + preprocessSubplot(subplt, d) + # preprocessArgs!(d) + # dumpdict(d, "After subplot! preprocessing") - # process links. TODO: extract to separate function - for s in (:linkx, :linky, :linkfunc) - if haskey(d, s) - setfield!(subplt, s, d[s]) - delete!(d, s) - end - end + # # process links. TODO: extract to separate function + # for s in (:linkx, :linky, :linkfunc) + # if haskey(d, s) + # setfield!(subplt, s, d[s]) + # delete!(d, s) + # end + # end # create the underlying object (each backend will do this differently) # note: we call it once before doing the individual plots, and once after @@ -333,36 +384,37 @@ function subplot!(subplt::Subplot, args...; kw...) plot!(plt; di...) end - # -- TODO: extract this section into a separate function... duplicates the other subplot --------- + postprocessSubplot(subplt, d) + # # -- TODO: extract this section into a separate function... duplicates the other subplot --------- - # create the underlying object (each backend will do this differently) - if !subplt.initialized - subplt.initialized = buildSubplotObject!(subplt, false) - # subplt.initialized = true - end + # # create the underlying object (each backend will do this differently) + # if !subplt.initialized + # subplt.initialized = buildSubplotObject!(subplt, false) + # # subplt.initialized = true + # end - # add title, axis labels, ticks, etc - for (i,plt) in enumerate(subplt.plts) - di = copy(d) - for (k,v) in di - if typeof(v) <: AVec - di[k] = v[mod1(i, length(v))] - elseif typeof(v) <: AMat - m = size(v,2) - di[k] = (size(v,1) == 1 ? v[1, mod1(i, m)] : v[:, mod1(i, m)]) - end - end - dumpdict(di, "Updating sp $i") - updatePlotItems(plt, di) - end + # # add title, axis labels, ticks, etc + # for (i,plt) in enumerate(subplt.plts) + # di = copy(d) + # for (k,v) in di + # if typeof(v) <: AVec + # di[k] = v[mod1(i, length(v))] + # elseif typeof(v) <: AMat + # m = size(v,2) + # di[k] = (size(v,1) == 1 ? v[1, mod1(i, m)] : v[:, mod1(i, m)]) + # end + # end + # dumpdict(di, "Updating sp $i") + # updatePlotItems(plt, di) + # end - subplt.linkx && linkAxis(subplt, true) - subplt.linky && linkAxis(subplt, false) + # subplt.linkx && linkAxis(subplt, true) + # subplt.linky && linkAxis(subplt, false) - # set this to be current - current(subplt) - # --- end extract ---- + # # set this to be current + # current(subplt) + # # --- end extract ---- # show it automatically? if haskey(d, :show) && d[:show]