switched Colors dep for PlotUtils dep; removed DataFrames, boxplot, violin, density and added StatPlots to tests

This commit is contained in:
Thomas Breloff 2016-07-12 10:45:58 -04:00
parent 8d5b748b09
commit 4a2e88a81c
5 changed files with 188 additions and 185 deletions

View File

@ -1,7 +1,7 @@
julia 0.4
RecipesBase
Colors
PlotUtils
Reexport
Compat
FixedSizeArrays

View File

@ -101,47 +101,47 @@ num_series(x) = 1
RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T"))
# TODO: remove when StatPlots is ready
if is_installed("DataFrames")
@eval begin
import DataFrames
# # TODO: remove when StatPlots is ready
# if is_installed("DataFrames")
# @eval begin
# import DataFrames
# if it's one symbol, set the guide and return the column
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, sym::Symbol)
get!(d, Symbol(letter * "guide"), string(sym))
collect(df[sym])
end
# # if it's one symbol, set the guide and return the column
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, sym::Symbol)
# get!(d, Symbol(letter * "guide"), string(sym))
# collect(df[sym])
# end
# if it's an array of symbols, set the labels and return a Vector{Any} of columns
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, syms::AbstractArray{Symbol})
get!(d, :label, reshape(syms, 1, length(syms)))
Any[collect(df[s]) for s in syms]
end
# # if it's an array of symbols, set the labels and return a Vector{Any} of columns
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, syms::AbstractArray{Symbol})
# get!(d, :label, reshape(syms, 1, length(syms)))
# Any[collect(df[s]) for s in syms]
# end
# for anything else, no-op
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, anything)
anything
end
# # for anything else, no-op
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, anything)
# anything
# end
# handle grouping by DataFrame column
function extractGroupArgs(group::Symbol, df::DataFrames.AbstractDataFrame, args...)
extractGroupArgs(collect(df[group]))
end
# # handle grouping by DataFrame column
# function extractGroupArgs(group::Symbol, df::DataFrames.AbstractDataFrame, args...)
# extractGroupArgs(collect(df[group]))
# end
# if a DataFrame is the first arg, lets swap symbols out for columns
@recipe function f(df::DataFrames.AbstractDataFrame, args...)
# if any of these attributes are symbols, swap out for the df column
for k in (:fillrange, :line_z, :marker_z, :markersize, :ribbon, :weights, :xerror, :yerror)
if haskey(d, k) && isa(d[k], Symbol)
d[k] = collect(df[d[k]])
end
end
# # if a DataFrame is the first arg, lets swap symbols out for columns
# @recipe function f(df::DataFrames.AbstractDataFrame, args...)
# # if any of these attributes are symbols, swap out for the df column
# for k in (:fillrange, :line_z, :marker_z, :markersize, :ribbon, :weights, :xerror, :yerror)
# if haskey(d, k) && isa(d[k], Symbol)
# d[k] = collect(df[d[k]])
# end
# end
# return a list of new arguments
tuple(Any[handle_dfs(df, d, (i==1 ? "x" : i==2 ? "y" : "z"), arg) for (i,arg) in enumerate(args)]...)
end
end
end
# # return a list of new arguments
# tuple(Any[handle_dfs(df, d, (i==1 ? "x" : i==2 ? "y" : "z"), arg) for (i,arg) in enumerate(args)]...)
# end
# end
# end
# ---------------------------------------------------------------------------
@ -524,179 +524,179 @@ end
# note: don't add dependencies because this really isn't a drop-in replacement
# TODO: move boxplots and violin plots to StatPlots when it's ready
# # TODO: move boxplots and violin plots to StatPlots when it's ready
# ---------------------------------------------------------------------------
# Box Plot
# # ---------------------------------------------------------------------------
# # Box Plot
const _box_halfwidth = 0.4
# const _box_halfwidth = 0.4
notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
# notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
@recipe function f(::Type{Val{:boxplot}}, x, y, z; notch=false, range=1.5)
xsegs, ysegs = Segments(), Segments()
glabels = sort(collect(unique(x)))
warning = false
outliers_x, outliers_y = zeros(0), zeros(0)
for (i,glabel) in enumerate(glabels)
# filter y
values = y[filter(i -> cycle(x,i) == glabel, 1:length(y))]
# @recipe function f(::Type{Val{:boxplot}}, x, y, z; notch=false, range=1.5)
# xsegs, ysegs = Segments(), Segments()
# glabels = sort(collect(unique(x)))
# warning = false
# outliers_x, outliers_y = zeros(0), zeros(0)
# for (i,glabel) in enumerate(glabels)
# # filter y
# values = y[filter(i -> cycle(x,i) == glabel, 1:length(y))]
# compute quantiles
q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5))
# # compute quantiles
# q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5))
# notch
n = notch_width(q2, q4, length(values))
# # notch
# n = notch_width(q2, q4, length(values))
# warn on inverted notches?
if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) )
warn("Boxplot's notch went outside hinges. Set notch to false.")
warning = true # Show the warning only one time
end
# # warn on inverted notches?
# if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) )
# warn("Boxplot's notch went outside hinges. Set notch to false.")
# warning = true # Show the warning only one time
# end
# make the shape
center = discrete_value!(d[:subplot][:xaxis], glabel)[1]
hw = d[:bar_width] == nothing ? _box_halfwidth : 0.5cycle(d[:bar_width], i)
l, m, r = center - hw, center, center + hw
# # make the shape
# center = discrete_value!(d[:subplot][:xaxis], glabel)[1]
# hw = d[:bar_width] == nothing ? _box_halfwidth : 0.5cycle(d[:bar_width], i)
# l, m, r = center - hw, center, center + hw
# internal nodes for notches
L, R = center - 0.5 * hw, center + 0.5 * hw
# # internal nodes for notches
# L, R = center - 0.5 * hw, center + 0.5 * hw
# outliers
if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data
limit = range*(q4-q2)
inside = Float64[]
for value in values
if (value < (q2 - limit)) || (value > (q4 + limit))
push!(outliers_y, value)
push!(outliers_x, center)
else
push!(inside, value)
end
end
# change q1 and q5 to show outliers
# using maximum and minimum values inside the limits
q1, q5 = extrema(inside)
end
# # outliers
# if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data
# limit = range*(q4-q2)
# inside = Float64[]
# for value in values
# if (value < (q2 - limit)) || (value > (q4 + limit))
# push!(outliers_y, value)
# push!(outliers_x, center)
# else
# push!(inside, value)
# end
# end
# # change q1 and q5 to show outliers
# # using maximum and minimum values inside the limits
# q1, q5 = extrema(inside)
# end
# Box
if notch
push!(xsegs, m, l, r, m, m) # lower T
push!(xsegs, l, l, L, R, r, r, l) # lower box
push!(xsegs, l, l, L, R, r, r, l) # upper box
push!(xsegs, m, l, r, m, m) # upper T
# # Box
# if notch
# push!(xsegs, m, l, r, m, m) # lower T
# push!(xsegs, l, l, L, R, r, r, l) # lower box
# push!(xsegs, l, l, L, R, r, r, l) # upper box
# push!(xsegs, m, l, r, m, m) # upper T
push!(ysegs, q1, q1, q1, q1, q2) # lower T
push!(ysegs, q2, q3-n, q3, q3, q3-n, q2, q2) # lower box
push!(ysegs, q4, q3+n, q3, q3, q3+n, q4, q4) # upper box
push!(ysegs, q5, q5, q5, q5, q4) # upper T
else
push!(xsegs, m, l, r, m, m) # lower T
push!(xsegs, l, l, r, r, l) # lower box
push!(xsegs, l, l, r, r, l) # upper box
push!(xsegs, m, l, r, m, m) # upper T
# push!(ysegs, q1, q1, q1, q1, q2) # lower T
# push!(ysegs, q2, q3-n, q3, q3, q3-n, q2, q2) # lower box
# push!(ysegs, q4, q3+n, q3, q3, q3+n, q4, q4) # upper box
# push!(ysegs, q5, q5, q5, q5, q4) # upper T
# else
# push!(xsegs, m, l, r, m, m) # lower T
# push!(xsegs, l, l, r, r, l) # lower box
# push!(xsegs, l, l, r, r, l) # upper box
# push!(xsegs, m, l, r, m, m) # upper T
push!(ysegs, q1, q1, q1, q1, q2) # lower T
push!(ysegs, q2, q3, q3, q2, q2) # lower box
push!(ysegs, q4, q3, q3, q4, q4) # upper box
push!(ysegs, q5, q5, q5, q5, q4) # upper T
end
end
# push!(ysegs, q1, q1, q1, q1, q2) # lower T
# push!(ysegs, q2, q3, q3, q2, q2) # lower box
# push!(ysegs, q4, q3, q3, q4, q4) # upper box
# push!(ysegs, q5, q5, q5, q5, q4) # upper T
# end
# end
# Outliers
@series begin
seriestype := :scatter
markershape := :circle
markercolor := d[:fillcolor]
markeralpha := d[:fillalpha]
markerstrokecolor := d[:linecolor]
markerstrokealpha := d[:linealpha]
x := outliers_x
y := outliers_y
primary := false
()
end
# # Outliers
# @series begin
# seriestype := :scatter
# markershape := :circle
# markercolor := d[:fillcolor]
# markeralpha := d[:fillalpha]
# markerstrokecolor := d[:linecolor]
# markerstrokealpha := d[:linealpha]
# x := outliers_x
# y := outliers_y
# primary := false
# ()
# end
seriestype := :shape
x := xsegs.pts
y := ysegs.pts
()
end
@deps boxplot shape scatter
# seriestype := :shape
# x := xsegs.pts
# y := ysegs.pts
# ()
# end
# @deps boxplot shape scatter
# ---------------------------------------------------------------------------
# Violin Plot
# # ---------------------------------------------------------------------------
# # Violin Plot
const _violin_warned = [false]
# const _violin_warned = [false]
# if the user has KernelDensity installed, use this for violin plots.
# otherwise, just use a histogram
if is_installed("KernelDensity")
@eval import KernelDensity
@eval function violin_coords(y; trim::Bool=false)
kd = KernelDensity.kde(y, npoints = 200)
if trim
xmin, xmax = extrema(y)
inside = Bool[ xmin <= x <= xmax for x in kd.x]
return(kd.density[inside], kd.x[inside])
end
kd.density, kd.x
end
else
@eval function violin_coords(y; trim::Bool=false)
if !_violin_warned[1]
warn("Install the KernelDensity package for best results.")
_violin_warned[1] = true
end
edges, widths = my_hist(y, 10)
centers = 0.5 * (edges[1:end-1] + edges[2:end])
ymin, ymax = extrema(y)
vcat(0.0, widths, 0.0), vcat(ymin, centers, ymax)
end
end
# # if the user has KernelDensity installed, use this for violin plots.
# # otherwise, just use a histogram
# if is_installed("KernelDensity")
# @eval import KernelDensity
# @eval function violin_coords(y; trim::Bool=false)
# kd = KernelDensity.kde(y, npoints = 200)
# if trim
# xmin, xmax = extrema(y)
# inside = Bool[ xmin <= x <= xmax for x in kd.x]
# return(kd.density[inside], kd.x[inside])
# end
# kd.density, kd.x
# end
# else
# @eval function violin_coords(y; trim::Bool=false)
# if !_violin_warned[1]
# warn("Install the KernelDensity package for best results.")
# _violin_warned[1] = true
# end
# edges, widths = my_hist(y, 10)
# centers = 0.5 * (edges[1:end-1] + edges[2:end])
# ymin, ymax = extrema(y)
# vcat(0.0, widths, 0.0), vcat(ymin, centers, ymax)
# end
# end
@recipe function f(::Type{Val{:violin}}, x, y, z; trim=true)
xsegs, ysegs = Segments(), Segments()
glabels = sort(collect(unique(x)))
for glabel in glabels
widths, centers = violin_coords(y[filter(i -> cycle(x,i) == glabel, 1:length(y))], trim=trim)
isempty(widths) && continue
# @recipe function f(::Type{Val{:violin}}, x, y, z; trim=true)
# xsegs, ysegs = Segments(), Segments()
# glabels = sort(collect(unique(x)))
# for glabel in glabels
# widths, centers = violin_coords(y[filter(i -> cycle(x,i) == glabel, 1:length(y))], trim=trim)
# isempty(widths) && continue
# normalize
widths = _box_halfwidth * widths / maximum(widths)
# # normalize
# widths = _box_halfwidth * widths / maximum(widths)
# make the violin
xcenter = discrete_value!(d[:subplot][:xaxis], glabel)[1]
xcoords = vcat(widths, -reverse(widths)) + xcenter
ycoords = vcat(centers, reverse(centers))
# # make the violin
# xcenter = discrete_value!(d[:subplot][:xaxis], glabel)[1]
# xcoords = vcat(widths, -reverse(widths)) + xcenter
# ycoords = vcat(centers, reverse(centers))
push!(xsegs, xcoords)
push!(ysegs, ycoords)
end
# push!(xsegs, xcoords)
# push!(ysegs, ycoords)
# end
seriestype := :shape
x := xsegs.pts
y := ysegs.pts
()
end
@deps violin shape
# seriestype := :shape
# x := xsegs.pts
# y := ysegs.pts
# ()
# end
# @deps violin shape
# ---------------------------------------------------------------------------
# density
# # ---------------------------------------------------------------------------
# # density
@recipe function f(::Type{Val{:density}}, x, y, z; trim=false)
newx, newy = violin_coords(y, trim=trim)
if isvertical(d)
newx, newy = newy, newx
end
x := newx
y := newy
seriestype := :path
()
end
@deps density path
# @recipe function f(::Type{Val{:density}}, x, y, z; trim=false)
# newx, newy = violin_coords(y, trim=trim)
# if isvertical(d)
# newx, newy = newy, newx
# end
# x := newx
# y := newy
# seriestype := :path
# ()
# end
# @deps density path
# ---------------------------------------------------------------------------
# contourf - filled contours

View File

@ -1,7 +1,8 @@
julia 0.4
RecipesBase
Colors
PlotUtils
StatPlots
Reexport
Measures
FactCheck

View File

@ -13,7 +13,9 @@ try
end
using Plots, FactCheck
using Plots
using StatPlots
using FactCheck
using Glob
default(size=(500,300))

View File

@ -30,7 +30,7 @@ facts("GR") do
@fact gr() --> Plots.GRBackend()
@fact backend() --> Plots.GRBackend()
@linux_only image_comparison_facts(:gr, skip=[], eps=img_eps)
# @linux_only image_comparison_facts(:gr, skip=[], eps=img_eps)
end
facts("Plotly") do