commit
3d4d844e72
@ -127,7 +127,8 @@ export
|
|||||||
PlotRecipe,
|
PlotRecipe,
|
||||||
# EllipseRecipe,
|
# EllipseRecipe,
|
||||||
spy,
|
spy,
|
||||||
arcdiagram
|
arcdiagram,
|
||||||
|
chorddiagram
|
||||||
# corrplot
|
# corrplot
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
207
src/recipes.jl
207
src/recipes.jl
@ -138,57 +138,11 @@ end
|
|||||||
|
|
||||||
abline!(args...; kw...) = abline!(current(), args...; kw...)
|
abline!(args...; kw...) = abline!(current(), args...; kw...)
|
||||||
|
|
||||||
# -------------------------------------------------
|
# =================================================
|
||||||
# Arc Diagram
|
# Arc and chord diagrams
|
||||||
|
|
||||||
curvecolor(value, min, max, grad) = getColorZ(grad, (value-min)/(max-min))
|
"Takes an adjacency matrix and returns source, destiny and weight lists"
|
||||||
|
function mat2list{T}(mat::AbstractArray{T,2})
|
||||||
"Plots a clockwise arc, from source to destiny, colored by weight"
|
|
||||||
function arc!(source, destiny, weight, min, max, grad)
|
|
||||||
radius = (destiny - source) / 2
|
|
||||||
arc = Plots.partialcircle(0, π, 30, radius)
|
|
||||||
x, y = Plots.unzip(arc)
|
|
||||||
plot!(x .+ radius .+ source, y, line = (curvecolor(weight, min, max, grad), 0.5, 2))
|
|
||||||
end
|
|
||||||
|
|
||||||
"""
|
|
||||||
`arcdiagram(source, destiny, weight[, grad])`
|
|
||||||
|
|
||||||
Plots an arc diagram, form `source` to `destiny` (clockwise), using `weight` to determine the colors.
|
|
||||||
"""
|
|
||||||
function arcdiagram(source, destiny, weight, grad=ColorGradient(:bluesreds))
|
|
||||||
|
|
||||||
if length(source) == length(destiny) == length(weight)
|
|
||||||
|
|
||||||
vertices = vcat(source, destiny)
|
|
||||||
|
|
||||||
xmin, xmax = extrema(vertices)
|
|
||||||
plot(xlim=(xmin - 0.5, xmax + 0.5))
|
|
||||||
|
|
||||||
wmin,wmax = extrema(weight)
|
|
||||||
|
|
||||||
for (i, j, value) in zip(source,destiny,weight)
|
|
||||||
arc!(i, j, value, wmin, wmax, grad)
|
|
||||||
end
|
|
||||||
|
|
||||||
scatter!(vertices, zeros(length(vertices)), leg=false)
|
|
||||||
|
|
||||||
else
|
|
||||||
|
|
||||||
throw(ArgumentError("source, destiny and weight should have the same length"))
|
|
||||||
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
"""
|
|
||||||
`arcdiagram(mat[, grad])`
|
|
||||||
|
|
||||||
Plots an arc diagram of a matrix, form rows to columns (clockwise),
|
|
||||||
using the values on the matrix as weights to determine the colors.
|
|
||||||
Doesn't show edges with value zero if the input is sparse.
|
|
||||||
For simmetric matrices, only the upper triangular values are used.
|
|
||||||
"""
|
|
||||||
function arcdiagram{T}(mat::AbstractArray{T,2}, grad=ColorGradient(:bluesreds))
|
|
||||||
nrow, ncol = size(mat) # rows are sources and columns are destinies
|
nrow, ncol = size(mat) # rows are sources and columns are destinies
|
||||||
|
|
||||||
nosymmetric = !issym(mat) # plots only triu for symmetric matrices
|
nosymmetric = !issym(mat) # plots only triu for symmetric matrices
|
||||||
@ -220,9 +174,152 @@ function arcdiagram{T}(mat::AbstractArray{T,2}, grad=ColorGradient(:bluesreds))
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
resize!(source, idx-1)
|
resize!(source, idx-1), resize!(destiny, idx-1), resize!(weight, idx-1)
|
||||||
resize!(destiny, idx-1)
|
|
||||||
resize!(weight, idx-1)
|
|
||||||
|
|
||||||
arcdiagram(source, destiny, weight, grad)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
# -------------------------------------------------
|
||||||
|
# Arc Diagram
|
||||||
|
|
||||||
|
curvecolor(value, min, max, grad) = getColorZ(grad, (value-min)/(max-min))
|
||||||
|
|
||||||
|
"Plots a clockwise arc, from source to destiny, colored by weight"
|
||||||
|
function arc!(source, destiny, weight, min, max, grad)
|
||||||
|
radius = (destiny - source) / 2
|
||||||
|
arc = Plots.partialcircle(0, π, 30, radius)
|
||||||
|
x, y = Plots.unzip(arc)
|
||||||
|
plot!(x .+ radius .+ source, y, line = (curvecolor(weight, min, max, grad), 0.5, 2), legend=false)
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
`arcdiagram(source, destiny, weight[, grad])`
|
||||||
|
|
||||||
|
Plots an arc diagram, form `source` to `destiny` (clockwise), using `weight` to determine the colors.
|
||||||
|
"""
|
||||||
|
function arcdiagram(source, destiny, weight; kargs...)
|
||||||
|
|
||||||
|
args = Dict(kargs)
|
||||||
|
grad = pop!(args, :grad, ColorGradient([colorant"darkred", colorant"darkblue"]))
|
||||||
|
|
||||||
|
if length(source) == length(destiny) == length(weight)
|
||||||
|
|
||||||
|
vertices = unique(vcat(source, destiny))
|
||||||
|
sort!(vertices)
|
||||||
|
|
||||||
|
xmin, xmax = extrema(vertices)
|
||||||
|
plot(xlim=(xmin - 0.5, xmax + 0.5), legend=false)
|
||||||
|
|
||||||
|
wmin,wmax = extrema(weight)
|
||||||
|
|
||||||
|
for (i, j, value) in zip(source,destiny,weight)
|
||||||
|
arc!(i, j, value, wmin, wmax, grad)
|
||||||
|
end
|
||||||
|
|
||||||
|
scatter!(vertices, zeros(length(vertices)); legend=false, args...)
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
throw(ArgumentError("source, destiny and weight should have the same length"))
|
||||||
|
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
`arcdiagram(mat[, grad])`
|
||||||
|
|
||||||
|
Plots an arc diagram from an adjacency matrix, form rows to columns (clockwise),
|
||||||
|
using the values on the matrix as weights to determine the colors.
|
||||||
|
Doesn't show edges with value zero if the input is sparse.
|
||||||
|
For simmetric matrices, only the upper triangular values are used.
|
||||||
|
"""
|
||||||
|
arcdiagram{T}(mat::AbstractArray{T,2}; kargs...) = arcdiagram(mat2list(mat)...; kargs...)
|
||||||
|
|
||||||
|
# -------------------------------------------------
|
||||||
|
# Chord diagram
|
||||||
|
|
||||||
|
arcshape(θ1, θ2) = Shape(vcat(Plots.partialcircle(θ1, θ2, 15, 1.1),
|
||||||
|
reverse(Plots.partialcircle(θ1, θ2, 15, 0.9))))
|
||||||
|
|
||||||
|
colorlist(grad, ::Void) = :darkgray
|
||||||
|
|
||||||
|
function colorlist(grad, z)
|
||||||
|
zmin, zmax = extrema(z)
|
||||||
|
RGBA{Float64}[getColorZ(grad, (zi-zmin)/(zmax-zmin)) for zi in z]'
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
`chorddiagram(source, destiny, weight[, grad, zcolor, group])`
|
||||||
|
|
||||||
|
Plots a chord diagram, form `source` to `destiny`,
|
||||||
|
using `weight` to determine the edge colors using `grad`.
|
||||||
|
`zcolor` or `group` can be used to determine the node colors.
|
||||||
|
"""
|
||||||
|
function chorddiagram(source, destiny, weight; kargs...)
|
||||||
|
|
||||||
|
args=Dict(kargs)
|
||||||
|
grad = pop!(args, :grad, ColorGradient([colorant"darkred", colorant"darkblue"]))
|
||||||
|
zcolor= pop!(args, :zcolor, nothing)
|
||||||
|
group = pop!(args, :group, nothing)
|
||||||
|
|
||||||
|
if zcolor !== nothing && group !== nothing
|
||||||
|
throw(ErrorException("group and zcolor can not be used together."))
|
||||||
|
end
|
||||||
|
|
||||||
|
if length(source) == length(destiny) == length(weight)
|
||||||
|
|
||||||
|
plt = plot(xlim=(-2,2), ylim=(-2,2), legend=false, grid=false,
|
||||||
|
xticks=nothing, yticks=nothing,
|
||||||
|
xlim=(-1.2,1.2), ylim=(-1.2,1.2))
|
||||||
|
|
||||||
|
nodemin, nodemax = extrema(vcat(source, destiny))
|
||||||
|
|
||||||
|
weightmin, weightmax = extrema(weight)
|
||||||
|
|
||||||
|
A = 1.5π # Filled space
|
||||||
|
B = 0.5π # White space (empirical)
|
||||||
|
|
||||||
|
Δα = A / nodemax
|
||||||
|
Δβ = B / nodemax
|
||||||
|
|
||||||
|
δ = Δα + Δβ
|
||||||
|
|
||||||
|
for i in 1:length(source)
|
||||||
|
curve = BezierCurve(P2[ (cos((source[i ]-1)*δ + 0.5Δα), sin((source[i ]-1)*δ + 0.5Δα)), (0,0),
|
||||||
|
(cos((destiny[i]-1)*δ + 0.5Δα), sin((destiny[i]-1)*δ + 0.5Δα)) ])
|
||||||
|
plot!(curve_points(curve), line = (Plots.curvecolor(weight[i], weightmin, weightmax, grad), 1, 1))
|
||||||
|
end
|
||||||
|
|
||||||
|
if group === nothing
|
||||||
|
c = colorlist(grad, zcolor)
|
||||||
|
elseif length(group) == nodemax
|
||||||
|
|
||||||
|
idx = collect(0:(nodemax-1))
|
||||||
|
|
||||||
|
for g in group
|
||||||
|
plot!([arcshape(n*δ, n*δ + Δα) for n in idx[group .== g]]; args...)
|
||||||
|
end
|
||||||
|
|
||||||
|
return plt
|
||||||
|
|
||||||
|
else
|
||||||
|
throw(ErrorException("group should the ", nodemax, " elements."))
|
||||||
|
end
|
||||||
|
|
||||||
|
plot!([arcshape(n*δ, n*δ + Δα) for n in 0:(nodemax-1)]; mc=c, args...)
|
||||||
|
|
||||||
|
return plt
|
||||||
|
|
||||||
|
else
|
||||||
|
throw(ArgumentError("source, destiny and weight should have the same length"))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
`chorddiagram(mat[, grad, zcolor, group])`
|
||||||
|
|
||||||
|
Plots a chord diagram from an adjacency matrix,
|
||||||
|
using the values on the matrix as weights to determine edge colors.
|
||||||
|
Doesn't show edges with value zero if the input is sparse.
|
||||||
|
For simmetric matrices, only the upper triangular values are used.
|
||||||
|
`zcolor` or `group` can be used to determine the node colors.
|
||||||
|
"""
|
||||||
|
chorddiagram(mat::AbstractMatrix; kargs...) = chorddiagram(mat2list(mat)...; kargs...)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user