Merge pull request #169 from diegozea/dev

Arc and chord diagram
This commit is contained in:
Tom Breloff 2016-03-17 08:39:27 -04:00
commit 3d4d844e72
2 changed files with 154 additions and 56 deletions

View File

@ -127,7 +127,8 @@ export
PlotRecipe,
# EllipseRecipe,
spy,
arcdiagram
arcdiagram,
chorddiagram
# corrplot

View File

@ -138,57 +138,11 @@ end
abline!(args...; kw...) = abline!(current(), args...; kw...)
# -------------------------------------------------
# Arc Diagram
# =================================================
# Arc and chord diagrams
curvecolor(value, min, max, grad) = getColorZ(grad, (value-min)/(max-min))
"Plots a clockwise arc, from source to destiny, colored by weight"
function arc!(source, destiny, weight, min, max, grad)
radius = (destiny - source) / 2
arc = Plots.partialcircle(0, π, 30, radius)
x, y = Plots.unzip(arc)
plot!(x .+ radius .+ source, y, line = (curvecolor(weight, min, max, grad), 0.5, 2))
end
"""
`arcdiagram(source, destiny, weight[, grad])`
Plots an arc diagram, form `source` to `destiny` (clockwise), using `weight` to determine the colors.
"""
function arcdiagram(source, destiny, weight, grad=ColorGradient(:bluesreds))
if length(source) == length(destiny) == length(weight)
vertices = vcat(source, destiny)
xmin, xmax = extrema(vertices)
plot(xlim=(xmin - 0.5, xmax + 0.5))
wmin,wmax = extrema(weight)
for (i, j, value) in zip(source,destiny,weight)
arc!(i, j, value, wmin, wmax, grad)
end
scatter!(vertices, zeros(length(vertices)), leg=false)
else
throw(ArgumentError("source, destiny and weight should have the same length"))
end
end
"""
`arcdiagram(mat[, grad])`
Plots an arc diagram of a matrix, form rows to columns (clockwise),
using the values on the matrix as weights to determine the colors.
Doesn't show edges with value zero if the input is sparse.
For simmetric matrices, only the upper triangular values are used.
"""
function arcdiagram{T}(mat::AbstractArray{T,2}, grad=ColorGradient(:bluesreds))
"Takes an adjacency matrix and returns source, destiny and weight lists"
function mat2list{T}(mat::AbstractArray{T,2})
nrow, ncol = size(mat) # rows are sources and columns are destinies
nosymmetric = !issym(mat) # plots only triu for symmetric matrices
@ -220,9 +174,152 @@ function arcdiagram{T}(mat::AbstractArray{T,2}, grad=ColorGradient(:bluesreds))
end
end
resize!(source, idx-1)
resize!(destiny, idx-1)
resize!(weight, idx-1)
arcdiagram(source, destiny, weight, grad)
resize!(source, idx-1), resize!(destiny, idx-1), resize!(weight, idx-1)
end
# -------------------------------------------------
# Arc Diagram
curvecolor(value, min, max, grad) = getColorZ(grad, (value-min)/(max-min))
"Plots a clockwise arc, from source to destiny, colored by weight"
function arc!(source, destiny, weight, min, max, grad)
radius = (destiny - source) / 2
arc = Plots.partialcircle(0, π, 30, radius)
x, y = Plots.unzip(arc)
plot!(x .+ radius .+ source, y, line = (curvecolor(weight, min, max, grad), 0.5, 2), legend=false)
end
"""
`arcdiagram(source, destiny, weight[, grad])`
Plots an arc diagram, form `source` to `destiny` (clockwise), using `weight` to determine the colors.
"""
function arcdiagram(source, destiny, weight; kargs...)
args = Dict(kargs)
grad = pop!(args, :grad, ColorGradient([colorant"darkred", colorant"darkblue"]))
if length(source) == length(destiny) == length(weight)
vertices = unique(vcat(source, destiny))
sort!(vertices)
xmin, xmax = extrema(vertices)
plot(xlim=(xmin - 0.5, xmax + 0.5), legend=false)
wmin,wmax = extrema(weight)
for (i, j, value) in zip(source,destiny,weight)
arc!(i, j, value, wmin, wmax, grad)
end
scatter!(vertices, zeros(length(vertices)); legend=false, args...)
else
throw(ArgumentError("source, destiny and weight should have the same length"))
end
end
"""
`arcdiagram(mat[, grad])`
Plots an arc diagram from an adjacency matrix, form rows to columns (clockwise),
using the values on the matrix as weights to determine the colors.
Doesn't show edges with value zero if the input is sparse.
For simmetric matrices, only the upper triangular values are used.
"""
arcdiagram{T}(mat::AbstractArray{T,2}; kargs...) = arcdiagram(mat2list(mat)...; kargs...)
# -------------------------------------------------
# Chord diagram
arcshape(θ1, θ2) = Shape(vcat(Plots.partialcircle(θ1, θ2, 15, 1.1),
reverse(Plots.partialcircle(θ1, θ2, 15, 0.9))))
colorlist(grad, ::Void) = :darkgray
function colorlist(grad, z)
zmin, zmax = extrema(z)
RGBA{Float64}[getColorZ(grad, (zi-zmin)/(zmax-zmin)) for zi in z]'
end
"""
`chorddiagram(source, destiny, weight[, grad, zcolor, group])`
Plots a chord diagram, form `source` to `destiny`,
using `weight` to determine the edge colors using `grad`.
`zcolor` or `group` can be used to determine the node colors.
"""
function chorddiagram(source, destiny, weight; kargs...)
args=Dict(kargs)
grad = pop!(args, :grad, ColorGradient([colorant"darkred", colorant"darkblue"]))
zcolor= pop!(args, :zcolor, nothing)
group = pop!(args, :group, nothing)
if zcolor !== nothing && group !== nothing
throw(ErrorException("group and zcolor can not be used together."))
end
if length(source) == length(destiny) == length(weight)
plt = plot(xlim=(-2,2), ylim=(-2,2), legend=false, grid=false,
xticks=nothing, yticks=nothing,
xlim=(-1.2,1.2), ylim=(-1.2,1.2))
nodemin, nodemax = extrema(vcat(source, destiny))
weightmin, weightmax = extrema(weight)
A = 1.5π # Filled space
B = 0.5π # White space (empirical)
Δα = A / nodemax
Δβ = B / nodemax
δ = Δα + Δβ
for i in 1:length(source)
curve = BezierCurve(P2[ (cos((source[i ]-1)*δ + 0.5Δα), sin((source[i ]-1)*δ + 0.5Δα)), (0,0),
(cos((destiny[i]-1)*δ + 0.5Δα), sin((destiny[i]-1)*δ + 0.5Δα)) ])
plot!(curve_points(curve), line = (Plots.curvecolor(weight[i], weightmin, weightmax, grad), 1, 1))
end
if group === nothing
c = colorlist(grad, zcolor)
elseif length(group) == nodemax
idx = collect(0:(nodemax-1))
for g in group
plot!([arcshape(n*δ, n*δ + Δα) for n in idx[group .== g]]; args...)
end
return plt
else
throw(ErrorException("group should the ", nodemax, " elements."))
end
plot!([arcshape(n*δ, n*δ + Δα) for n in 0:(nodemax-1)]; mc=c, args...)
return plt
else
throw(ArgumentError("source, destiny and weight should have the same length"))
end
end
"""
`chorddiagram(mat[, grad, zcolor, group])`
Plots a chord diagram from an adjacency matrix,
using the values on the matrix as weights to determine edge colors.
Doesn't show edges with value zero if the input is sparse.
For simmetric matrices, only the upper triangular values are used.
`zcolor` or `group` can be used to determine the node colors.
"""
chorddiagram(mat::AbstractMatrix; kargs...) = chorddiagram(mat2list(mat)...; kargs...)