working on _plot organization; switch alias dicts to Dict{Symbol,Symbol}; other type stability changes

This commit is contained in:
Thomas Breloff 2016-07-10 15:50:29 -04:00
parent b8b5a33833
commit 32c1c31139
6 changed files with 300 additions and 277 deletions

View File

@ -141,7 +141,7 @@ include("plot.jl")
include("series.jl")
include("layouts.jl")
include("subplots.jl")
include("recipes.jl")
# include("recipes.jl")
include("animation.jl")
include("output.jl")
include("examples.jl")

View File

@ -1,6 +1,6 @@
const _keyAliases = KW()
const _keyAliases = Dict{Symbol,Symbol}()
function add_aliases(sym::Symbol, aliases::Symbol...)
for alias in aliases
@ -11,7 +11,7 @@ function add_aliases(sym::Symbol, aliases::Symbol...)
end
end
function add_non_underscore_aliases!(aliases::KW)
function add_non_underscore_aliases!(aliases::Dict{Symbol,Symbol})
for (k,v) in aliases
s = string(k)
if '_' in s
@ -24,7 +24,7 @@ end
# ------------------------------------------------------------
const _allAxes = [:auto, :left, :right]
const _axesAliases = KW(
const _axesAliases = Dict{Symbol,Symbol}(
:a => :auto,
:l => :left,
:r => :right
@ -39,7 +39,7 @@ const _allTypes = vcat([
:contour, :pie, :shape, :image
], _3dTypes)
@compat const _typeAliases = KW(
@compat const _typeAliases = Dict{Symbol,Symbol}(
:n => :none,
:no => :none,
:l => :line,
@ -83,7 +83,7 @@ like_surface(seriestype::Symbol) = seriestype in (:contour, :contourf, :contou
is3d(seriestype::Symbol) = seriestype in _3dTypes
is3d(series::Series) = is3d(series.d)
is3d(d::KW) = trueOrAllTrue(is3d, d[:seriestype])
is3d(d::KW) = trueOrAllTrue(is3d, Symbol(d[:seriestype]))
is3d(sp::Subplot) = string(sp.attr[:projection]) == "3d"
ispolar(sp::Subplot) = string(sp.attr[:projection]) == "polar"
@ -92,7 +92,7 @@ ispolar(series::Series) = ispolar(series.d[:subplot])
# ------------------------------------------------------------
const _allStyles = [:auto, :solid, :dash, :dot, :dashdot, :dashdotdot]
@compat const _styleAliases = KW(
@compat const _styleAliases = Dict{Symbol,Symbol}(
:a => :auto,
:s => :solid,
:d => :dash,
@ -101,7 +101,7 @@ const _allStyles = [:auto, :solid, :dash, :dot, :dashdot, :dashdotdot]
)
const _allMarkers = vcat(:none, :auto, _shape_keys) #sort(collect(keys(_shapes))))
@compat const _markerAliases = KW(
@compat const _markerAliases = Dict{Symbol,Symbol}(
:n => :none,
:no => :none,
:a => :auto,
@ -143,7 +143,7 @@ const _allMarkers = vcat(:none, :auto, _shape_keys) #sort(collect(keys(_shapes))
)
const _allScales = [:identity, :ln, :log2, :log10, :asinh, :sqrt]
@compat const _scaleAliases = KW(
@compat const _scaleAliases = Dict{Symbol,Symbol}(
:none => :identity,
:log => :log10,
)
@ -330,7 +330,7 @@ autopick(notarr, idx::Integer) = notarr
autopick_ignore_none_auto(arr::AVec, idx::Integer) = autopick(setdiff(arr, [:none, :auto]), idx)
autopick_ignore_none_auto(notarr, idx::Integer) = notarr
function aliasesAndAutopick(d::KW, sym::Symbol, aliases::KW, options::AVec, plotIndex::Int)
function aliasesAndAutopick(d::KW, sym::Symbol, aliases::Dict{Symbol,Symbol}, options::AVec, plotIndex::Int)
if d[sym] == :auto
d[sym] = autopick_ignore_none_auto(options, plotIndex)
elseif haskey(aliases, d[sym])
@ -338,7 +338,7 @@ function aliasesAndAutopick(d::KW, sym::Symbol, aliases::KW, options::AVec, plot
end
end
function aliases(aliasMap::KW, val)
function aliases(aliasMap::Dict{Symbol,Symbol}, val)
sortedkeys(filter((k,v)-> v==val, aliasMap))
end
@ -687,22 +687,7 @@ function preprocessArgs!(d::KW)
if haskey(d, :colorbar)
d[:colorbar] = convertLegendValue(d[:colorbar])
end
# # handle subplot links
# if haskey(d, :link)
# l = d[:link]
# if isa(l, Bool)
# d[:linkx] = l
# d[:linky] = l
# elseif isa(l, Function)
# d[:linkx] = true
# d[:linky] = true
# d[:linkfunc] = l
# else
# warn("Unhandled/invalid link $l. Should be a Bool or a function mapping (row,column) -> (linkx, linky), where linkx/y can be Bool or Void (nothing)")
# end
# delete!(d, :link)
# end
return
end
# -----------------------------------------------------------------------------

View File

@ -43,13 +43,14 @@ When you pass in matrices, it splits by columns. See the documentation for more
# this creates a new plot with args/kw and sets it to be the current plot
function plot(args...; kw...)
info("started to plot")
d = KW(kw)
preprocessArgs!(d)
# create an empty Plot then process
plt = Plot()
# plt.user_attr = d
_plot!(plt, d, args...)
_plot!(plt, d, args)
end
# build a new plot from existing plots
@ -105,22 +106,11 @@ function plot(plt1::Plot, plts_tail::Plot...; kw...)
end
end
# # just in case the backend needs to set up the plot (make it current or something)
# _prepare_plot_object(plt)
# first apply any args for the subplots
for (idx,sp) in enumerate(plt.subplots)
_update_subplot_args(plt, sp, d, idx, remove_pair = false)
end
# # now we can get rid of the axis keys without a letter
# for k in keys(_axis_defaults)
# delete!(d, k)
# for letter in (:x,:y,:z)
# delete!(d, Symbol(letter,k))
# end
# end
# do we need to link any axes together?
link_axes!(plt.layout, plt[:link])
@ -150,7 +140,7 @@ function plot!(plt::Plot, args...; kw...)
d = KW(kw)
preprocessArgs!(d)
# merge!(plt.user_attr, d)
_plot!(plt, d, args...)
_plot!(plt, d, args)
end
function strip_first_letter(s::Symbol)
@ -158,104 +148,120 @@ function strip_first_letter(s::Symbol)
str[1:1], Symbol(str[2:end])
end
# -------------------------------------------------------------------------------
# getting ready to add the series... last update to subplot from anything
# that might have been added during series recipes
function _prepare_subplot(plt::Plot, d::KW)
st = d[:seriestype]
sp = d[:subplot]
sp_idx = get_subplot_index(plt, sp)
_update_subplot_args(plt, sp, d, sp_idx)
# do we want to override the series type?
if !is3d(st) && d[:z] != nothing && (size(d[:x]) == size(d[:y]) == size(d[:z]))
st = d[:seriestype] = (st == :scatter ? :scatter3d : :path3d)
end
# change to a 3d projection for this subplot?
if is3d(st)
sp.attr[:projection] = "3d"
end
# initialize now that we know the first series type
if !haskey(sp.attr, :init)
_initialize_subplot(plt, sp)
sp.attr[:init] = true
end
sp::Subplot
end
function _prepare_annotations(sp::Subplot, d::KW)
# strip out series annotations (those which are based on series x/y coords)
# and add them to the subplot attr
sp_anns = annotations(sp[:annotations])
anns = annotations(pop!(d, :series_annotations, []))
if length(anns) > 0
x, y = d[:x], d[:y]
nx, ny, na = map(length, (x,y,anns))
n = max(nx, ny, na)
anns = [(x[mod1(i,nx)], y[mod1(i,ny)], text(anns[mod1(i,na)])) for i=1:n]
end
sp.attr[:annotations] = vcat(sp_anns, anns)
end
function _expand_subplot_extrema(sp::Subplot, d::KW, st::Symbol)
# adjust extrema and discrete info
if st == :image
w, h = size(d[:z])
expand_extrema!(sp[:xaxis], (0,w))
expand_extrema!(sp[:yaxis], (0,h))
sp[:yaxis].d[:flip] = true
elseif !(st in (:pie, :histogram, :histogram2d))
expand_extrema!(sp, d)
end
end
function _add_the_series(plt, d)
warnOnUnsupported_args(plt.backend, d)
warnOnUnsupported(plt.backend, d)
series = Series(d)
push!(plt.series_list, series)
_series_added(plt, series)
end
# -------------------------------------------------------------------------------
# this method recursively applies series recipes when the seriestype is not supported
# natively by the backend
function _apply_series_recipe(plt::Plot, d::KW)
function _process_seriesrecipe(plt::Plot, d::KW)
# replace seriestype aliases
st = d[:seriestype]
st = Symbol(d[:seriestype])
st = d[:seriestype] = get(_typeAliases, st, st)
# if it's natively supported, finalize processing and pass along to the backend, otherwise recurse
if st in supported_types()
# getting ready to add the series... last update to subplot from anything
# that might have been added during series recipes
sp = d[:subplot]
sp_idx = get_subplot_index(plt, sp)
_update_subplot_args(plt, sp, d, sp_idx)
# do we want to override the series type?
if !is3d(st) && d[:z] != nothing && (size(d[:x]) == size(d[:y]) == size(d[:z]))
st = d[:seriestype] = (st == :scatter ? :scatter3d : :path3d)
end
# change to a 3d projection for this subplot?
if is3d(st)
sp.attr[:projection] = "3d"
end
# initialize now that we know the first series type
if !haskey(sp.attr, :init)
_initialize_subplot(plt, sp)
sp.attr[:init] = true
end
# strip out series annotations (those which are based on series x/y coords)
# and add them to the subplot attr
sp_anns = annotations(sp[:annotations])
anns = annotations(pop!(d, :series_annotations, []))
if length(anns) > 0
x, y = d[:x], d[:y]
nx, ny, na = map(length, (x,y,anns))
n = max(nx, ny, na)
anns = [(x[mod1(i,nx)], y[mod1(i,ny)], text(anns[mod1(i,na)])) for i=1:n]
end
sp.attr[:annotations] = vcat(sp_anns, anns)
# adjust extrema and discrete info
if st == :image
w, h = size(d[:z])
expand_extrema!(sp[:xaxis], (0,w))
expand_extrema!(sp[:yaxis], (0,h))
sp[:yaxis].d[:flip] = true
elseif !(st in (:pie, :histogram, :histogram2d))
expand_extrema!(sp, d)
end
# add the series!
warnOnUnsupported_args(plt.backend, d)
warnOnUnsupported(plt.backend, d)
series = Series(d)
push!(plt.series_list, series)
# @show series
_series_added(plt, series)
sp = _prepare_subplot(plt, d)
_prepare_annotations(sp, d)
_expand_subplot_extrema(sp, d, st)
_add_the_series(plt, d)
else
# get a sub list of series for this seriestype
datalist = RecipesBase.apply_recipe(d, Val{st}, d[:x], d[:y], d[:z])
# datalist = try
# RecipesBase.apply_recipe(d, Val{st}, d[:x], d[:y], d[:z])
# catch
# warn("Exception during apply_recipe(Val{$st}, ...) with types ($(typeof(d[:x])), $(typeof(d[:y])), $(typeof(d[:z])))")
# rethrow()
# end
# assuming there was no error, recursively apply the series recipes
for data in datalist
if isa(data, RecipeData)
_apply_series_recipe(plt, data.d)
_process_seriesrecipe(plt, data.d)
else
warn("Unhandled recipe: $(data)")
break
end
end
end
nothing
end
function command_idx(kw_list::AVec{KW}, kw::KW)
kw[:series_plotindex] - kw_list[1][:series_plotindex] + 1
end
function _expand_seriestype_array(d::KW, args)
sts = get(d, :seriestype, :path)
if typeof(sts) <: AbstractArray
delete!(d, :seriestype)
RecipeData[begin
dc = copy(d)
dc[:seriestype] = sts[r,:]
RecipeData(dc, args)
end for r=1:size(sts,1)]
else
RecipeData[RecipeData(copy(d), args)]
end
end
# this is the core plotting function. recursively apply recipes to build
# a list of series KW dicts.
# note: at entry, we only have those preprocessed args which were passed in... no default values yet
function _plot!(plt::Plot, d::KW, args...)
d[:plot_object] = plt
function _preprocess_args(d::KW, args, still_to_process::Vector{RecipeData})
# the grouping mechanism is a recipe on a GroupBy object
# we simply add the GroupBy object to the front of the args list to allow
# the recipe to be applied
@ -265,21 +271,8 @@ function _plot!(plt::Plot, d::KW, args...)
# if we were passed a vector/matrix of seriestypes and there's more than one row,
# we want to duplicate the inputs, once for each seriestype row.
kw_list = KW[]
still_to_process = if isempty(args)
[]
else
sts = get(d, :seriestype, :path)
if typeof(sts) <: AbstractArray
delete!(d, :seriestype)
[begin
dc = copy(d)
dc[:seriestype] = sts[r,:]
RecipeData(dc, args)
end for r=1:size(sts,1)]
else
[RecipeData(copy(d), args)]
end
if !isempty(args)
append!(still_to_process, _expand_seriestype_array(d, args))
end
# remove subplot and axis args from d... they will be passed through in the kw_list
@ -295,9 +288,70 @@ function _plot!(plt::Plot, d::KW, args...)
end
end
# --------------------------------
# "USER RECIPES"
# --------------------------------
args
end
function _preprocess_userrecipe(kw::KW)
_add_markershape(kw)
# if there was a grouping, filter the data here
_filter_input_data!(kw)
# map marker_z if it's a Function
if isa(get(kw, :marker_z, nothing), Function)
# TODO: should this take y and/or z as arguments?
kw[:marker_z] = map(kw[:marker_z], kw[:x], kw[:y], kw[:z])
end
# map line_z if it's a Function
if isa(get(kw, :line_z, nothing), Function)
kw[:line_z] = map(kw[:line_z], kw[:x], kw[:y], kw[:z])
end
# convert a ribbon into a fillrange
if get(kw, :ribbon, nothing) != nothing
make_fillrange_from_ribbon(kw)
end
return
end
function _add_errorbar_kw(kw_list::Vector{KW}, kw::KW)
# handle error bars by creating new recipedata data... these will have
# the same recipedata index as the recipedata they are copied from
for esym in (:xerror, :yerror)
if get(kw, esym, nothing) != nothing
# we make a copy of the KW and apply an errorbar recipe
errkw = copy(kw)
errkw[:seriestype] = esym
errkw[:label] = ""
errkw[:primary] = false
push!(kw_list, errkw)
end
end
end
function _add_smooth_kw(kw_list::Vector{KW}, kw::KW)
# handle smoothing by adding a new series
if get(kw, :smooth, false)
x, y = kw[:x], kw[:y]
β, α = convert(Matrix{Float64}, [x ones(length(x))]) \ convert(Vector{Float64}, y)
sx = [minimum(x), maximum(x)]
sy = β * sx + α
push!(kw_list, merge(copy(kw), KW(
:seriestype => :path,
:x => sx,
:y => sy,
:fillrange => nothing,
:label => "",
:primary => false,
)))
end
end
function _process_userrecipes(plt::Plot, d::KW, args)
still_to_process = RecipeData[]
args = _preprocess_args(d, args, still_to_process)
# for plotting recipes, swap out the args and update the parameter dictionary
# we are keeping a queue of series that still need to be processed.
@ -305,80 +359,20 @@ function _plot!(plt::Plot, d::KW, args...)
# the recipe will return a list a Series objects... the ones that are
# finished (no more args) get added to the kw_list, and the rest go into the queue
# for processing.
kw_list = KW[]
while !isempty(still_to_process)
# grab the first in line to be processed and pass it through apply_recipe
# to generate a list of RecipeData objects (data + attributes)
next_series = shift!(still_to_process)
for recipedata in RecipesBase.apply_recipe(next_series.d, next_series.args...)
rd_list = RecipesBase.apply_recipe(next_series.d, next_series.args...)
for recipedata in rd_list
# recipedata should be of type RecipeData. if it's not then the inputs must not have been fully processed by recipes
if !(typeof(recipedata) <: RecipeData)
error("Inputs couldn't be processed... expected RecipeData but got: $recipedata")
end
if isempty(recipedata.args)
# when the arg tuple is empty, that means there's nothing left to recursively
# process... finish up and add to the kw_list
kw = recipedata.d
_add_markershape(kw)
# if there was a grouping, filter the data here
_filter_input_data!(kw)
# map marker_z if it's a Function
if isa(get(kw, :marker_z, nothing), Function)
# TODO: should this take y and/or z as arguments?
kw[:marker_z] = map(kw[:marker_z], kw[:x], kw[:y], kw[:z])
end
# map line_z if it's a Function
if isa(get(kw, :line_z, nothing), Function)
kw[:line_z] = map(kw[:line_z], kw[:x], kw[:y], kw[:z])
end
# convert a ribbon into a fillrange
if get(kw, :ribbon, nothing) != nothing
make_fillrange_from_ribbon(kw)
end
# add the plot index
plt.n += 1
kw[:series_plotindex] = plt.n
# check that the backend will support the command and add it to the list
warnOnUnsupported_scales(plt.backend, kw)
push!(kw_list, kw)
# handle error bars by creating new recipedata data... these will have
# the same recipedata index as the recipedata they are copied from
for esym in (:xerror, :yerror)
if get(d, esym, nothing) != nothing
# we make a copy of the KW and apply an errorbar recipe
errkw = copy(kw)
errkw[:seriestype] = esym
errkw[:label] = ""
errkw[:primary] = false
push!(kw_list, errkw)
end
end
# handle smoothing by adding a new series
if get(d, :smooth, false)
x, y = kw[:x], kw[:y]
β, α = convert(Matrix{Float64}, [x ones(length(x))]) \ convert(Vector{Float64}, y)
sx = [minimum(x), maximum(x)]
sy = β * sx + α
push!(kw_list, merge(copy(kw), KW(
:seriestype => :path,
:x => sx,
:y => sy,
:fillrange => nothing,
:label => "",
:primary => false,
)))
end
_process_userrecipe(plt, kw_list, recipedata)
else
# args are non-empty, so there's still processing to do... add it back to the queue
push!(still_to_process, recipedata)
@ -388,51 +382,57 @@ function _plot!(plt::Plot, d::KW, args...)
# don't allow something else to handle it
d[:smooth] = false
kw_list
end
# --------------------------------
# "PLOT RECIPES"
# --------------------------------
function _process_userrecipe(plt::Plot, kw_list::Vector{KW}, recipedata::RecipeData)
# when the arg tuple is empty, that means there's nothing left to recursively
# process... finish up and add to the kw_list
kw = recipedata.d
_preprocess_userrecipe(kw)
warnOnUnsupported_scales(plt.backend, kw)
# "plot recipe", which acts like a series type, and is processed before
# the plot layout is created, which allows for setting layouts and other plot-wide attributes.
# we get inputs which have been fully processed by "user recipes" and "type recipes",
# so we can expect standard vectors, surfaces, etc. No defaults have been set yet.
still_to_process = kw_list
kw_list = KW[]
while !isempty(still_to_process)
# Grab the first in line to be processed and pass it through apply_recipe
# to generate a list of RecipeData objects (data + attributes).
# If we applied a "plot recipe" without error, then add the returned datalist's KWs,
# otherwise we just add the original KW.
next_kw = shift!(still_to_process)
if !isa(get(next_kw, :seriestype, nothing), Symbol)
# seriestype was never set, or it's not a Symbol, so it can't be a plot recipe
push!(kw_list, next_kw)
continue
# add the plot index
plt.n += 1
kw[:series_plotindex] = plt.n
push!(kw_list, kw)
_add_errorbar_kw(kw_list, kw)
_add_smooth_kw(kw_list, kw)
return
end
# Grab the first in line to be processed and pass it through apply_recipe
# to generate a list of RecipeData objects (data + attributes).
# If we applied a "plot recipe" without error, then add the returned datalist's KWs,
# otherwise we just add the original KW.
function _process_plotrecipe(kw::KW, kw_list::Vector{KW}, still_to_process::Vector{KW})
if !isa(get(kw, :seriestype, nothing), Symbol)
# seriestype was never set, or it's not a Symbol, so it can't be a plot recipe
push!(kw_list, kw)
return
end
try
st = kw[:seriestype]
st = kw[:seriestype] = get(_typeAliases, st, st)
datalist = RecipesBase.apply_recipe(kw, Val{st}, plt)
for data in datalist
if data.d[:seriestype] == st
error("Plot recipe $st returned the same seriestype: $(data.d)")
end
push!(still_to_process, data.d)
end
try
st = next_kw[:seriestype]
st = next_kw[:seriestype] = get(_typeAliases, st, st)
datalist = RecipesBase.apply_recipe(next_kw, Val{st}, plt)
for data in datalist
if data.d[:seriestype] == st
error("Plot recipe $st returned the same seriestype: $(data.d)")
end
push!(still_to_process, data.d)
end
catch err
if isa(err, MethodError)
push!(kw_list, next_kw)
else
rethrow()
end
catch err
if isa(err, MethodError)
push!(kw_list, kw)
else
rethrow()
end
end
return
end
# --------------------------------
# Plot/Subplot/Layout setup
# --------------------------------
function _plot_setup(plt::Plot, d::KW, kw_list::Vector{KW})
# merge in anything meant for the Plot
for kw in kw_list, (k,v) in kw
haskey(_plot_defaults, k) && (d[k] = pop!(kw, k))
@ -478,7 +478,9 @@ function _plot!(plt::Plot, d::KW, args...)
push!(plt.inset_subplots, sp)
end
end
end
function _subplot_setup(plt::Plot, d::KW, kw_list::Vector{KW})
# we'll keep a map of subplot to an attribute override dict.
# Subplot/Axis attributes set by a user/series recipe apply only to the
# Subplot object which they belong to.
@ -514,6 +516,41 @@ function _plot!(plt::Plot, d::KW, args...)
# do we need to link any axes together?
link_axes!(plt.layout, plt[:link])
end
# this is the core plotting function. recursively apply recipes to build
# a list of series KW dicts.
# note: at entry, we only have those preprocessed args which were passed in... no default values yet
function _plot!(plt::Plot, d::KW, args::Tuple)
# d[:plot_object] = plt
# --------------------------------
# "USER RECIPES"
# --------------------------------
kw_list = _process_userrecipes(plt, d, args)
# --------------------------------
# "PLOT RECIPES"
# --------------------------------
# "plot recipe", which acts like a series type, and is processed before
# the plot layout is created, which allows for setting layouts and other plot-wide attributes.
# we get inputs which have been fully processed by "user recipes" and "type recipes",
# so we can expect standard vectors, surfaces, etc. No defaults have been set yet.
still_to_process = kw_list
kw_list = KW[]
while !isempty(still_to_process)
next_kw = shift!(still_to_process)
_process_plotrecipe(next_kw, kw_list, still_to_process)
end
# --------------------------------
# Plot/Subplot/Layout setup
# --------------------------------
_plot_setup(plt, d, kw_list)
_subplot_setup(plt, d, kw_list)
# !!! note: At this point, kw_list is fully decomposed into individual series... one KW per series. !!!
# !!! The next step is to recursively apply series recipes until the backend supports that series type !!!
@ -538,7 +575,7 @@ function _plot!(plt::Plot, d::KW, args...)
# For example, a histogram is just a bar plot with binned data, a bar plot is really a filled step plot,
# and a step plot is really just a path. So any backend that supports drawing a path will implicitly
# be able to support step, bar, and histogram plots (and any recipes that use those components).
_apply_series_recipe(plt, kw)
_process_seriesrecipe(plt, kw)
end
# --------------------------------

View File

@ -106,47 +106,47 @@ num_series(x) = 1
RecipesBase.apply_recipe{T}(d::KW, ::Type{T}, plt::Plot) = throw(MethodError("Unmatched plot recipe: $T"))
# # TODO: remove when StatPlots is ready
# if is_installed("DataFrames")
# @eval begin
# import DataFrames
if is_installed("DataFrames")
@eval begin
import DataFrames
# # if it's one symbol, set the guide and return the column
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, sym::Symbol)
# get!(d, Symbol(letter * "guide"), string(sym))
# collect(df[sym])
# end
# if it's one symbol, set the guide and return the column
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, sym::Symbol)
get!(d, Symbol(letter * "guide"), string(sym))
collect(df[sym])
end
# # if it's an array of symbols, set the labels and return a Vector{Any} of columns
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, syms::AbstractArray{Symbol})
# get!(d, :label, reshape(syms, 1, length(syms)))
# Any[collect(df[s]) for s in syms]
# end
# if it's an array of symbols, set the labels and return a Vector{Any} of columns
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, syms::AbstractArray{Symbol})
get!(d, :label, reshape(syms, 1, length(syms)))
Any[collect(df[s]) for s in syms]
end
# # for anything else, no-op
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, anything)
# anything
# end
# for anything else, no-op
function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, anything)
anything
end
# # handle grouping by DataFrame column
# function extractGroupArgs(group::Symbol, df::DataFrames.AbstractDataFrame, args...)
# extractGroupArgs(collect(df[group]))
# end
# handle grouping by DataFrame column
function extractGroupArgs(group::Symbol, df::DataFrames.AbstractDataFrame, args...)
extractGroupArgs(collect(df[group]))
end
# # if a DataFrame is the first arg, lets swap symbols out for columns
# @recipe function f(df::DataFrames.AbstractDataFrame, args...)
# # if any of these attributes are symbols, swap out for the df column
# for k in (:fillrange, :line_z, :marker_z, :markersize, :ribbon, :weights, :xerror, :yerror)
# if haskey(d, k) && isa(d[k], Symbol)
# d[k] = collect(df[d[k]])
# end
# end
# if a DataFrame is the first arg, lets swap symbols out for columns
@recipe function f(df::DataFrames.AbstractDataFrame, args...)
# if any of these attributes are symbols, swap out for the df column
for k in (:fillrange, :line_z, :marker_z, :markersize, :ribbon, :weights, :xerror, :yerror)
if haskey(d, k) && isa(d[k], Symbol)
d[k] = collect(df[d[k]])
end
end
# return a list of new arguments
tuple(Any[handle_dfs(df, d, (i==1 ? "x" : i==2 ? "y" : "z"), arg) for (i,arg) in enumerate(args)]...)
end
end
end
# # return a list of new arguments
# tuple(Any[handle_dfs(df, d, (i==1 ? "x" : i==2 ? "y" : "z"), arg) for (i,arg) in enumerate(args)]...)
# end
# end
# end
# ---------------------------------------------------------------------------
@ -553,6 +553,8 @@ end
# note: don't add dependencies because this really isn't a drop-in replacement
# TODO: move boxplots and violin plots to StatPlots when it's ready
# ---------------------------------------------------------------------------
# Box Plot
@ -794,6 +796,8 @@ end
@deps xerror path
# TODO: move quiver to PlotRecipes
# ---------------------------------------------------------------------------
# quiver
@ -943,7 +947,8 @@ end
# -------------------------------------------------
# TODO: this should really be in another package...
# TODO: move OHLC to PlotRecipes finance.jl
type OHLC{T<:Real}
open::T
high::T

View File

@ -277,10 +277,10 @@ end
#
# # function without range... use the current range of the x-axis
@recipe function f(f::FuncOrFuncs)
plt = d[:plot_object]
f, xmin(plt), xmax(plt)
end
# @recipe function f(f::FuncOrFuncs)
# plt = d[:plot_object]
# f, xmin(plt), xmax(plt)
# end
#
# # --------------------------------------------------------------------

View File

@ -284,20 +284,16 @@ function replaceType(vec, val)
push!(vec, val)
end
function replaceAlias!(d::KW, k::Symbol, aliases::KW)
function replaceAlias!(d::KW, k::Symbol, aliases::Dict{Symbol,Symbol})
if haskey(aliases, k)
d[aliases[k]] = pop!(d, k)
end
end
function replaceAliases!(d::KW, aliases::KW)
function replaceAliases!(d::KW, aliases::Dict{Symbol,Symbol})
ks = collect(keys(d))
for k in ks
replaceAlias!(d, k, aliases)
# if haskey(aliases, k)
# d[aliases[k]] = d[k]
# delete!(d, k)
# end
end
end