recoded boxplot recipe to match violin approach; switched marker to line/fill for shape seriestype: ref #347

This commit is contained in:
Thomas Breloff 2016-06-26 11:36:09 -04:00
parent 2465b3eb5a
commit 1a90ce0950
7 changed files with 155 additions and 549 deletions

View File

@ -764,11 +764,11 @@ function gr_display(sp::Subplot{GRBackend}, w, h, viewport_canvas)
elseif st == :shape
# draw the shapes
gr_set_line(d[:markerstrokewidth], :solid, d[:markerstrokecolor], d[:markerstrokealpha])
gr_set_line(d[:linewidth], :solid, d[:linecolor], d[:linealpha])
gr_polyline(d[:x], d[:y])
# draw the interior
gr_set_fill(d[:markercolor], d[:markeralpha])
gr_set_fill(d[:fillcolor], d[:fillalpha])
gr_polyline(d[:x], d[:y], GR.fillarea)

View File

@ -374,12 +374,12 @@ function plotly_series(plt::Plot, series::Series)
# @show map(length, (x,y,d_out[:x],d_out[:y]))
# @show d_out[:x] d_out[:y]
d_out[:fill] = "tozeroy"
d_out[:fillcolor] = webcolor(d[:markercolor], d[:markeralpha])
d_out[:fillcolor] = webcolor(d[:fillcolor], d[:fillalpha])
if d[:markerstrokewidth] > 0
d_out[:line] = KW(
:color => webcolor(d[:markerstrokecolor], d[:markerstrokealpha]),
:width => d[:markerstrokewidth],
:dash => string(d[:markerstrokestyle]),
:color => webcolor(d[:linecolor], d[:linealpha]),
:width => d[:linewidth],
:dash => string(d[:linestyle]),
)
end

View File

@ -816,9 +816,9 @@ function py_add_series(plt::Plot{PyPlotBackend}, series::Series)
patches = pypatches.pymember("PathPatch")(path;
label = d[:label],
zorder = plt.n,
edgecolor = py_markerstrokecolor(d),
facecolor = py_markercolor(d),
linewidth = d[:markerstrokewidth],
edgecolor = py_linecolor(d),
facecolor = py_fillcolor(d),
linewidth = d[:linewidth],
fill = true
)
handle = ax[:add_patch](patches)

View File

@ -303,8 +303,8 @@ PlotExample("Boxplot and Violin series recipes",
[:(begin
import RDatasets
singers = RDatasets.dataset("lattice", "singer")
violin(singers, :VoicePart, :Height, marker = (0.2, :blue, stroke(0)))
boxplot!(singers, :VoicePart, :Height, marker = (0.3, :orange, stroke(2)))
violin(singers, :VoicePart, :Height, line = 0, fill = (0.2, :blue))
boxplot!(singers, :VoicePart, :Height, line = (2,:black), fill = (0.3, :orange))
end)]
)

View File

@ -454,20 +454,8 @@ end
if fillto == nothing
fillto = 0
end
# if fillto == nothing
# fillto = zeros(1)
# elseif isa(fillto, Number)
# fillto = Float64[fillto]
# end
# nf = length(fillto)
# npts = 3ny + 1
# heights = y
# x = zeros(npts)
# y = zeros(npts)
# fillrng = zeros(npts)
# shapes = Shape[]
# create the bar shapes by adding x/y segments
xseg, yseg = Segments(), Segments()
for i=1:ny
fi = cycle(fillto,i)
@ -475,21 +463,6 @@ end
push!(yseg, y[i], fi, fi, y[i])
end
# # create the path in triplets. after the first bottom-left coord of the first bar:
# # add the top-left, top-right, and bottom-right coords for each height
# x[1] = edges[1]
# y[1] = fillto[1]
# fillrng[1] = fillto[1]
# for i=1:ny
# idx = 3i
# rng = idx-1:idx+1
# fi = fillto[mod1(i,nf)]
# x[rng] = [edges[i], edges[i+1], edges[i+1]]
# y[rng] = [heights[i], heights[i], fi]
# fillrng[rng] = [fi, fi, fi]
# end
# switch back
if !isvertical(d)
xseg, yseg = yseg, xseg
@ -497,8 +470,6 @@ end
x := xseg.pts
y := yseg.pts
# fillrange := fillrng
# seriestype := :path
seriestype := :shape
()
end
@ -623,27 +594,25 @@ const _box_halfwidth = 0.4
notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
# function apply_series_recipe(d::KW, ::Type{Val{:box}})
@recipe function f(::Type{Val{:boxplot}}, x, y, z; notch=false, range=1.5)
# Plots.dumpdict(d, "box before", true)
# create a list of shapes, where each shape is a single boxplot
shapes = Shape[]
groupby = extractGroupArgs(x)
outliers_y = Float64[]
outliers_x = Float64[]
delete!(d, :notch)
delete!(d, :range)
xsegs, ysegs = Segments(), Segments()
glabels = sort(collect(unique(x)))
warning = false
outliers_x, outliers_y = zeros(0), zeros(0)
for glabel in glabels
# filter y
values = y[filter(i -> cycle(x,i) == glabel, 1:length(y))]
for (i, glabel) in enumerate(groupby.groupLabels)
# filter y values
values = d[:y][groupby.groupIds[i]]
# then compute quantiles
# compute quantiles
q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5))
# notch
n = notch_width(q2, q4, length(values))
# warn on inverted notches?
if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) )
warn("Boxplot's notch went outside hinges. Set notch to false.")
warning = true # Show the warning only one time
@ -652,8 +621,10 @@ notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
# make the shape
center = discrete_value!(d[:subplot][:xaxis], glabel)[1]
l, m, r = center - _box_halfwidth, center, center + _box_halfwidth
# internal nodes for notches
L, R = center - 0.5 * _box_halfwidth, center + 0.5 * _box_halfwidth
# outliers
if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data
limit = range*(q4-q2)
@ -670,58 +641,144 @@ notch_width(q2, q4, N) = 1.58 * (q4-q2)/sqrt(N)
# using maximum and minimum values inside the limits
q1, q5 = extrema(inside)
end
# Box
xcoords = notch::Bool ? [
m, l, r, m, m, NaN, # lower T
l, l, L, R, r, r, l, NaN, # lower box
l, l, L, R, r, r, l, NaN, # upper box
m, l, r, m, m, NaN, # upper T
] : [
m, l, r, m, m, NaN, # lower T
l, l, r, r, l, NaN, # lower box
l, l, r, r, l, NaN, # upper box
m, l, r, m, m, NaN, # upper T
]
ycoords = notch::Bool ? [
q1, q1, q1, q1, q2, NaN, # lower T
q2, q3-n, q3, q3, q3-n, q2, q2, NaN, # lower box
q4, q3+n, q3, q3, q3+n, q4, q4, NaN, # upper box
q5, q5, q5, q5, q4, NaN, # upper T
] : [
q1, q1, q1, q1, q2, NaN, # lower T
q2, q3, q3, q2, q2, NaN, # lower box
q4, q3, q3, q4, q4, NaN, # upper box
q5, q5, q5, q5, q4, NaN, # upper T
]
push!(shapes, Shape(xcoords, ycoords))
if notch
push!(xsegs, m, l, r, m, m) # lower T
push!(xsegs, l, l, L, R, r, r, l) # lower box
push!(xsegs, l, l, L, R, r, r, l) # upper box
push!(xsegs, m, l, r, m, m) # upper T
push!(ysegs, q1, q1, q1, q1, q2) # lower T
push!(ysegs, q2, q3-n, q3, q3, q3-n, q2, q2) # lower box
push!(ysegs, q4, q3+n, q3, q3, q3+n, q4, q4) # upper box
push!(ysegs, q5, q5, q5, q5, q4) # upper T
else
push!(xsegs, m, l, r, m, m) # lower T
push!(xsegs, l, l, r, r, l) # lower box
push!(xsegs, l, l, r, r, l) # upper box
push!(xsegs, m, l, r, m, m) # upper T
push!(ysegs, q1, q1, q1, q1, q2) # lower T
push!(ysegs, q2, q3, q3, q2, q2) # lower box
push!(ysegs, q4, q3, q3, q4, q4) # upper box
push!(ysegs, q5, q5, q5, q5, q4) # upper T
end
end
# d[:plotarg_overrides] = KW(:xticks => (1:length(shapes), groupby.groupLabels))
seriestype := :shape
# n = length(groupby.groupLabels)
# xticks --> (linspace(0.5,n-0.5,n), groupby.groupLabels)
# clean d
pop!(d, :notch)
pop!(d, :range)
# we want to set the fields directly inside series recipes... args are ignored
d[:x], d[:y] = Plots.shape_coords(shapes)
# Outliers
@series begin
seriestype := :scatter
markershape := :circle
x := outliers_x
y := outliers_y
label := ""
primary := false
seriestype := :scatter
markershape --> :circle
x := outliers_x
y := outliers_y
primary := false
()
end
() # expects a tuple returned
seriestype := :shape
x := xsegs.pts
y := ysegs.pts
()
end
# @recipe function f(::Type{Val{:boxplot}}, x, y, z; notch=false, range=1.5)
# # Plots.dumpdict(d, "box before", true)
# # create a list of shapes, where each shape is a single boxplot
# shapes = Shape[]
# groupby = extractGroupArgs(x)
# outliers_y = Float64[]
# outliers_x = Float64[]
# warning = false
# for (i, glabel) in enumerate(groupby.groupLabels)
# # filter y values
# values = d[:y][groupby.groupIds[i]]
# # then compute quantiles
# q1,q2,q3,q4,q5 = quantile(values, linspace(0,1,5))
# # notch
# n = notch_width(q2, q4, length(values))
# if notch && !warning && ( (q2>(q3-n)) || (q4<(q3+n)) )
# warn("Boxplot's notch went outside hinges. Set notch to false.")
# warning = true # Show the warning only one time
# end
# # make the shape
# center = discrete_value!(d[:subplot][:xaxis], glabel)[1]
# l, m, r = center - _box_halfwidth, center, center + _box_halfwidth
# # internal nodes for notches
# L, R = center - 0.5 * _box_halfwidth, center + 0.5 * _box_halfwidth
# # outliers
# if Float64(range) != 0.0 # if the range is 0.0, the whiskers will extend to the data
# limit = range*(q4-q2)
# inside = Float64[]
# for value in values
# if (value < (q2 - limit)) || (value > (q4 + limit))
# push!(outliers_y, value)
# push!(outliers_x, center)
# else
# push!(inside, value)
# end
# end
# # change q1 and q5 to show outliers
# # using maximum and minimum values inside the limits
# q1, q5 = extrema(inside)
# end
# # Box
# xcoords = notch::Bool ? [
# m, l, r, m, m, NaN, # lower T
# l, l, L, R, r, r, l, NaN, # lower box
# l, l, L, R, r, r, l, NaN, # upper box
# m, l, r, m, m, NaN, # upper T
# ] : [
# m, l, r, m, m, NaN, # lower T
# l, l, r, r, l, NaN, # lower box
# l, l, r, r, l, NaN, # upper box
# m, l, r, m, m, NaN, # upper T
# ]
# ycoords = notch::Bool ? [
# q1, q1, q1, q1, q2, NaN, # lower T
# q2, q3-n, q3, q3, q3-n, q2, q2, NaN, # lower box
# q4, q3+n, q3, q3, q3+n, q4, q4, NaN, # upper box
# q5, q5, q5, q5, q4, NaN, # upper T
# ] : [
# q1, q1, q1, q1, q2, NaN, # lower T
# q2, q3, q3, q2, q2, NaN, # lower box
# q4, q3, q3, q4, q4, NaN, # upper box
# q5, q5, q5, q5, q4, NaN, # upper T
# ]
# push!(shapes, Shape(xcoords, ycoords))
# end
# # d[:plotarg_overrides] = KW(:xticks => (1:length(shapes), groupby.groupLabels))
# seriestype := :shape
# # n = length(groupby.groupLabels)
# # xticks --> (linspace(0.5,n-0.5,n), groupby.groupLabels)
# # clean d
# pop!(d, :notch)
# pop!(d, :range)
# # we want to set the fields directly inside series recipes... args are ignored
# d[:x], d[:y] = Plots.shape_coords(shapes)
# # Outliers
# @series begin
# seriestype := :scatter
# markershape --> :circle
# x := outliers_x
# y := outliers_y
# primary := false
# ()
# end
# () # expects a tuple returned
# end
@deps boxplot shape scatter
# ---------------------------------------------------------------------------

View File

@ -97,445 +97,3 @@ compute_xyz(x::Void, y::Void, z::FuncOrFuncs) = error("If you want to plot the f
compute_xyz(x::Void, y::Void, z::Void) = error("x/y/z are all nothing!")
# --------------------------------------------------------------------
# # create n=max(mx,my) series arguments. the shorter list is cycled through
# # note: everything should flow through this
# function build_series_args(plt::AbstractPlot, kw::KW) #, idxfilter)
# x, y, z = map(sym -> pop!(kw, sym, nothing), (:x, :y, :z))
# if nothing == x == y == z
# return [], nothing, nothing
# end
#
# xs, xmeta = convertToAnyVector(x, kw)
# ys, ymeta = convertToAnyVector(y, kw)
# zs, zmeta = convertToAnyVector(z, kw)
#
# fr = pop!(kw, :fillrange, nothing)
# fillranges, _ = if typeof(fr) <: Number
# ([fr],nothing)
# else
# convertToAnyVector(fr, kw)
# end
#
# mx = length(xs)
# my = length(ys)
# mz = length(zs)
# ret = Any[]
# for i in 1:max(mx, my, mz)
#
# # try to set labels using ymeta
# d = copy(kw)
# if !haskey(d, :label) && ymeta != nothing
# if isa(ymeta, Symbol)
# d[:label] = string(ymeta)
# elseif isa(ymeta, AVec{Symbol})
# d[:label] = string(ymeta[mod1(i,length(ymeta))])
# end
# end
#
# # build the series arg dict
# numUncounted = pop!(d, :numUncounted, 0)
# commandIndex = i + numUncounted
# n = plt.n + i
#
# dumpdict(d, "before getSeriesArgs")
# d = getSeriesArgs(plt.backend, getattr(plt, n), d, commandIndex, convertSeriesIndex(plt, n), n)
# dumpdict(d, "after getSeriesArgs")
#
# d[:x], d[:y], d[:z] = compute_xyz(xs[mod1(i,mx)], ys[mod1(i,my)], zs[mod1(i,mz)])
# st = d[:seriestype]
#
# # for seriestype `line`, need to sort by x values
# if st == :line
# # order by x
# indices = sortperm(d[:x])
# d[:x] = d[:x][indices]
# d[:y] = d[:y][indices]
# d[:seriestype] = :path
# end
#
# # special handling for missing x in box plot... all the same category
# if st == :box && xs[mod1(i,mx)] == nothing
# d[:x] = ones(Int, length(d[:y]))
# end
#
# # map functions to vectors
# if isa(d[:marker_z], Function)
# d[:marker_z] = map(d[:marker_z], d[:x])
# end
#
# # @show fillranges
# d[:fillrange] = fillranges[mod1(i,length(fillranges))]
# if isa(d[:fillrange], Function)
# d[:fillrange] = map(d[:fillrange], d[:x])
# end
#
# # handle error bars
# for esym in (:xerror, :yerror)
# if get(d, esym, nothing) != nothing
# # we make a copy of the KW and apply an errorbar recipe
# append!(ret, apply_series_recipe(copy(d), Val{esym}))
# end
# end
#
# # handle ribbons
# if get(d, :ribbon, nothing) != nothing
# rib = d[:ribbon]
# d[:fillrange] = (d[:y] - rib, d[:y] + rib)
# end
#
# # handle quiver plots
# # either a series of velocity vectors are passed in (`:quiver` keyword),
# # or we just add arrows to the path
#
# # if st == :quiver
# # d[:seriestype] = st = :path
# # d[:linewidth] = 0
# # end
# if get(d, :quiver, nothing) != nothing
# append!(ret, apply_series_recipe(copy(d), Val{:quiver}))
# elseif st == :quiver
# d[:seriestype] = st = :path
# d[:arrow] = arrow()
# end
#
# # now that we've processed a given series... optionally split into
# # multiple dicts through a recipe (for example, a box plot is split into component
# # parts... polygons, lines, and scatters)
# # note: we pass in a Val type (i.e. Val{:box}) so that we can dispatch on the seriestype
# kwlist = apply_series_recipe(d, Val{st})
# append!(ret, kwlist)
#
# # # add it to our series list
# # push!(ret, d)
# end
#
# ret, xmeta, ymeta
# end
#
#
# # --------------------------------------------------------------------
# # process_inputs
# # --------------------------------------------------------------------
#
# # These methods take a plot and the keyword arguments, and processes the input
# # arguments (x/y/z, group, etc), populating the KW dict with appropriate values.
#
# # --------------------------------------------------------------------
# # 0 arguments
# # --------------------------------------------------------------------
#
# # don't do anything
# function process_inputs(plt::AbstractPlot, d::KW)
# end
#
# # --------------------------------------------------------------------
# # 1 argument
# # --------------------------------------------------------------------
#
# function process_inputs(plt::AbstractPlot, d::KW, n::Integer)
# # d[:x], d[:y], d[:z] = zeros(0), zeros(0), zeros(0)
# d[:x] = d[:y] = d[:z] = n
# end
#
# # no special handling... assume x and z are nothing
# function process_inputs(plt::AbstractPlot, d::KW, y)
# d[:y] = y
# end
#
# # matrix... is it z or y?
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, mat::AMat{T})
# if all3D(d)
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, mat
# else
# d[:y] = mat
# end
# end
#
# # images - grays
# function process_inputs{T<:Gray}(plt::AbstractPlot, d::KW, mat::AMat{T})
# d[:seriestype] = :image
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
# # handle images... when not supported natively, do a hack to use heatmap machinery
# if !nativeImagesSupported()
# d[:seriestype] = :heatmap
# d[:yflip] = true
# d[:z] = Surface(convert(Matrix{Float64}, mat.surf))
# d[:fillcolor] = ColorGradient([:black, :white])
# end
# end
#
# # images - colors
# function process_inputs{T<:Colorant}(plt::AbstractPlot, d::KW, mat::AMat{T})
# d[:seriestype] = :image
# n,m = size(mat)
# d[:x], d[:y], d[:z] = 1:n, 1:m, Surface(mat)
# # handle images... when not supported natively, do a hack to use heatmap machinery
# if !nativeImagesSupported()
# d[:yflip] = true
# imageHack(d)
# end
# end
#
#
# # plotting arbitrary shapes/polygons
# function process_inputs(plt::AbstractPlot, d::KW, shape::Shape)
# d[:x], d[:y] = shape_coords(shape)
# d[:seriestype] = :shape
# end
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AVec{Shape})
# d[:x], d[:y] = shape_coords(shapes)
# d[:seriestype] = :shape
# end
# function process_inputs(plt::AbstractPlot, d::KW, shapes::AMat{Shape})
# x, y = [], []
# for j in 1:size(shapes, 2)
# tmpx, tmpy = shape_coords(vec(shapes[:,j]))
# push!(x, tmpx)
# push!(y, tmpy)
# end
# d[:x], d[:y] = x, y
# d[:seriestype] = :shape
# end
#
#
# # function without range... use the current range of the x-axis
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs)
# process_inputs(plt, d, f, xmin(plt), xmax(plt))
# end
#
# # --------------------------------------------------------------------
# # 2 arguments
# # --------------------------------------------------------------------
#
# function process_inputs(plt::AbstractPlot, d::KW, x, y)
# d[:x], d[:y] = x, y
# end
#
# # if functions come first, just swap the order (not to be confused with parametric functions...
# # as there would be more than one function passed in)
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, x)
# @assert !(typeof(x) <: FuncOrFuncs) # otherwise we'd hit infinite recursion here
# process_inputs(plt, d, x, f)
# end
#
# # --------------------------------------------------------------------
# # 3 arguments
# # --------------------------------------------------------------------
#
# # no special handling... just pass them through
# function process_inputs(plt::AbstractPlot, d::KW, x, y, z)
# d[:x], d[:y], d[:z] = x, y, z
# end
#
# # 3d line or scatter
# function process_inputs(plt::AbstractPlot, d::KW, x::AVec, y::AVec, zvec::AVec)
# # default to path3d if we haven't set a 3d seriestype
# st = get(d, :seriestype, :none)
# if st == :scatter
# d[:seriestype] = :scatter3d
# elseif !(st in _3dTypes)
# d[:seriestype] = :path3d
# end
# d[:x], d[:y], d[:z] = x, y, zvec
# end
#
# # surface-like... function
# function process_inputs{TX,TY}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zf::Function)
# x = TX <: Number ? sort(x) : x
# y = TY <: Number ? sort(y) : y
# # x, y = sort(x), sort(y)
# d[:z] = Surface(zf, x, y) # TODO: replace with SurfaceFunction when supported
# d[:x], d[:y] = x, y
# end
#
# # surface-like... matrix grid
# function process_inputs{TX,TY,TZ}(plt::AbstractPlot, d::KW, x::AVec{TX}, y::AVec{TY}, zmat::AMat{TZ})
# # @assert size(zmat) == (length(x), length(y))
# # if TX <: Number && !issorted(x)
# # idx = sortperm(x)
# # x, zmat = x[idx], zmat[idx, :]
# # end
# # if TY <: Number && !issorted(y)
# # idx = sortperm(y)
# # y, zmat = y[idx], zmat[:, idx]
# # end
# d[:x], d[:y], d[:z] = x, y, Surface{Matrix{TZ}}(zmat)
# if !like_surface(get(d, :seriestype, :none))
# d[:seriestype] = :contour
# end
# end
#
# # surfaces-like... general x, y grid
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, x::AMat{T}, y::AMat{T}, zmat::AMat{T})
# @assert size(zmat) == size(x) == size(y)
# # d[:x], d[:y], d[:z] = Any[x], Any[y], Surface{Matrix{Float64}}(zmat)
# d[:x], d[:y], d[:z] = map(Surface{Matrix{Float64}}, (x, y, zmat))
# if !like_surface(get(d, :seriestype, :none))
# d[:seriestype] = :contour
# end
# end
#
#
# # --------------------------------------------------------------------
# # Parametric functions
# # --------------------------------------------------------------------
#
# # special handling... xmin/xmax with function(s)
# function process_inputs(plt::AbstractPlot, d::KW, f::FuncOrFuncs, xmin::Number, xmax::Number)
# width = get(plt.attr, :size, (100,))[1]
# x = linspace(xmin, xmax, width)
# process_inputs(plt, d, x, f)
# end
#
# # special handling... xmin/xmax with parametric function(s)
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u))
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, linspace(umin, umax, numPoints))
#
# # special handling... 3D parametric function(s)
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, u::AVec{T}) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
# process_inputs{T<:Number}(plt::AbstractPlot, d::KW, u::AVec{T}, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs) = process_inputs(plt, d, mapFuncOrFuncs(fx, u), mapFuncOrFuncs(fy, u), mapFuncOrFuncs(fz, u))
# process_inputs(plt::AbstractPlot, d::KW, fx::FuncOrFuncs, fy::FuncOrFuncs, fz::FuncOrFuncs, umin::Number, umax::Number, numPoints::Int = 1000) = process_inputs(plt, d, fx, fy, fz, linspace(umin, umax, numPoints))
#
#
# # --------------------------------------------------------------------
# # Lists of tuples and FixedSizeArrays
# # --------------------------------------------------------------------
#
# # if we get an unhandled tuple, just splat it in
# function process_inputs(plt::AbstractPlot, d::KW, tup::Tuple)
# process_inputs(plt, d, tup...)
# end
#
# # (x,y) tuples
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::AVec{Tuple{R1,R2}})
# process_inputs(plt, d, unzip(xy)...)
# end
# function process_inputs{R1<:Number,R2<:Number}(plt::AbstractPlot, d::KW, xy::Tuple{R1,R2})
# process_inputs(plt, d, [xy[1]], [xy[2]])
# end
#
# # (x,y,z) tuples
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{Tuple{R1,R2,R3}})
# process_inputs(plt, d, unzip(xyz)...)
# end
# function process_inputs{R1<:Number,R2<:Number,R3<:Number}(plt::AbstractPlot, d::KW, xyz::Tuple{R1,R2,R3})
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
# end
#
# # 2D FixedSizeArrays
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::AVec{FixedSizeArrays.Vec{2,T}})
# process_inputs(plt, d, unzip(xy)...)
# end
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xy::FixedSizeArrays.Vec{2,T})
# process_inputs(plt, d, [xy[1]], [xy[2]])
# end
#
# # 3D FixedSizeArrays
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::AVec{FixedSizeArrays.Vec{3,T}})
# process_inputs(plt, d, unzip(xyz)...)
# end
# function process_inputs{T<:Number}(plt::AbstractPlot, d::KW, xyz::FixedSizeArrays.Vec{3,T})
# process_inputs(plt, d, [xyz[1]], [xyz[2]], [xyz[3]])
# end
#
# # --------------------------------------------------------------------
# # handle grouping
# # --------------------------------------------------------------------
#
# # function process_inputs(plt::AbstractPlot, d::KW, groupby::GroupBy, args...)
# # ret = Any[]
# # error("unfinished after series reorg")
# # for (i,glab) in enumerate(groupby.groupLabels)
# # # TODO: don't automatically overwrite labels
# # kwlist, xmeta, ymeta = process_inputs(plt, d, args...,
# # idxfilter = groupby.groupIds[i],
# # label = string(glab),
# # numUncounted = length(ret)) # we count the idx from plt.n + numUncounted + i
# # append!(ret, kwlist)
# # end
# # ret, nothing, nothing # TODO: handle passing meta through
# # end
# --------------------------------------------------------------------
# For DataFrame support. Imports DataFrames and defines the necessary methods which support them.
# --------------------------------------------------------------------
# function setup_dataframes()
# @require DataFrames begin
# # @eval begin
# # import DataFrames
#
# DFS = Union{Symbol, AbstractArray{Symbol}}
#
# function handle_dfs(df::DataFrames.AbstractDataFrame, d::KW, letter, dfs::DFS)
# if isa(dfs, Symbol)
# get!(d, Symbol(letter * "label"), string(dfs))
# collect(df[dfs])
# else
# get!(d, :label, reshape(dfs, 1, length(dfs)))
# Any[collect(df[s]) for s in dfs]
# end
# end
#
# function handle_group(df::DataFrames.AbstractDataFrame, d::KW)
# if haskey(d, :group)
# g = d[:group]
# if isa(g, Symbol)
# d[:group] = collect(df[g])
# end
# end
# end
#
# @recipe function plot(df::DataFrames.AbstractDataFrame, sy::DFS)
# handle_group(df, d)
# handle_dfs(df, d, "y", sy)
# end
#
# @recipe function plot(df::DataFrames.AbstractDataFrame, sx::DFS, sy::DFS)
# handle_group(df, d)
# x = handle_dfs(df, d, "x", sx)
# y = handle_dfs(df, d, "y", sy)
# x, y
# end
#
# @recipe function plot(df::DataFrames.AbstractDataFrame, sx::DFS, sy::DFS, sz::DFS)
# handle_group(df, d)
# x = handle_dfs(df, d, "x", sx)
# y = handle_dfs(df, d, "y", sy)
# z = handle_dfs(df, d, "z", sz)
# x, y, z
# end
#
# # get_data(df::DataFrames.AbstractDataFrame, arg::Symbol) = df[arg]
# # get_data(df::DataFrames.AbstractDataFrame, arg) = arg
# #
# # function process_inputs(plt::AbstractPlot, d::KW, df::DataFrames.AbstractDataFrame, args...)
# # # d[:dataframe] = df
# # process_inputs(plt, d, map(arg -> get_data(df, arg), args)...)
# # end
# #
# # # expecting the column name of a dataframe that was passed in... anything else should error
# # function extractGroupArgs(s::Symbol, df::DataFrames.AbstractDataFrame, args...)
# # if haskey(df, s)
# # return extractGroupArgs(df[s])
# # else
# # error("Got a symbol, and expected that to be a key in d[:dataframe]. s=$s d=$d")
# # end
# # end
#
# # function getDataFrameFromKW(d::KW)
# # get(d, :dataframe) do
# # error("Missing dataframe argument!")
# # end
# # end
#
# # # the conversion functions for when we pass symbols or vectors of symbols to reference dataframes
# # convertToAnyVector(s::Symbol, d::KW) = Any[getDataFrameFromKW(d)[s]], s
# # convertToAnyVector(v::AVec{Symbol}, d::KW) = (df = getDataFrameFromKW(d); Any[df[s] for s in v]), v
#
# end
# end

View File

@ -180,15 +180,6 @@ end
newargs
end
# @recipe f(x, y, z) = SliceIt, apply_recipe(typeof(x), x), apply_recipe(typeof(y), y), apply_recipe(typeof(z), z)
# @recipe f(x, y) = SliceIt, apply_recipe(typeof(x), x), apply_recipe(typeof(y), y), nothing
# @recipe f(y) = SliceIt, nothing, apply_recipe(typeof(y), y), nothing
# # pass these through to the slicer
# @recipe f(x, y, z) = SliceIt, x, y, z
# @recipe f(x, y) = SliceIt, x, y, nothing
# @recipe f(y) = SliceIt, nothing, y, nothing
# # --------------------------------------------------------------------
# # 1 argument