diff --git a/docs/src/advanced.md b/docs/src/advanced.md index fa3bc40..9ef0512 100644 --- a/docs/src/advanced.md +++ b/docs/src/advanced.md @@ -28,9 +28,9 @@ x = range(-2pi, stop=2pi, length=100); y = sin.(x) name = "\$MyDataSet1" @gp name=>(x, y) "plot $name w l lc rgb 'black'" "pl $name u 1:(1.5*\$2) w l lc rgb 'red'" -saveas("ex010") # hide +saveas("advanced010") # hide ``` -![](assets/ex010.png) +![](assets/advanced010.png) Both curves use the same input data, but the red curve has the second column (`\$2`, corresponding to the *y* value) multiplied by a factor 1.5. @@ -71,9 +71,9 @@ Continuing with the previous example we can plot both data and best fit model (i @gp :- "p $name u 1:(f(\$1)) w l t 'Best fit model'" @gp :- 2 "p $name u 1:((f(\$1)-\$2) / \$3):(1) w errorbars t 'Resid. [{/Symbol s}]'" @gp :- [extrema(x)...] [0,0] "w l notit dt 2 lc rgb 'black'" # reference line -saveas("ex011") # hide +saveas("advanced011") # hide ``` -![](assets/ex011.png) +![](assets/advanced011.png) Note that the order of the plots is not relevant, i.e. we would get the same results with: ```julia @@ -98,9 +98,9 @@ x = y = -10:0.33:10 sinc2d(x,y) = sin.(sqrt.(x.^2 + y.^2))./sqrt.(x.^2+y.^2) fxy = [sinc2d(x,y) for x in x, y in y] @gsp :- 2 x y fxy "w pm3d notit" -saveas("ex012") # hide +saveas("advanced012") # hide ``` -![](assets/ex012.png) +![](assets/advanced012.png) ## Multiple sessions @@ -136,9 +136,9 @@ Gnuplot.quitall() ```@example abc x = randn(1000); @gp hist(x) -saveas("ex013a") # hide +saveas("advanced013a") # hide ``` -![](assets/ex013a.png) +![](assets/advanced013a.png) A finer control on the output is achieved by setting the range to consider (`range=` keyword) and either the bin size (`bs=`) or the total number of bins (`nbins=`) in the histogram. See [`hist()`](@ref) documentation for further information. @@ -147,9 +147,9 @@ The [`hist()`](@ref) return a [`Gnuplot.Histogram1D`](@ref) structure, whose con x = randn(1000); h = hist(x, range=3 .* [-1,1], bs=0.5) @gp h.bins h.counts "w histep t 'Data' lc rgb 'red'" -saveas("ex013b") # hide +saveas("advanced013b") # hide ``` -![](assets/ex013b.png) +![](assets/advanced013b.png) **Gnuplot.jl** also allows to compute 2D histograms by passing two vectors (with the same lengths) to [`hist()`](@ref). A quick preview is simply obtained by: @@ -157,17 +157,17 @@ saveas("ex013b") # hide x = randn(10_000) y = randn(10_000) @gp "set size ratio -1" hist(x, y) -saveas("ex014a") # hide +saveas("advanced014a") # hide ``` -![](assets/ex014a.png) +![](assets/advanced014a.png) Again, a finer control can be achieved by specifying ranges, bin size or number of bins (along both dimensions) and by explicitly using the content of the returned [`Gnuplot.Histogram2D`](@ref) structure: ```@example abc h = hist(x, y, bs1=0.25, nbins2=20, range1=[-3,3], range2=[-3,3]) @gp "set size ratio -1" h.bins1 h.bins2 h.counts "w image notit" -saveas("ex014b") # hide +saveas("advanced014b") # hide ``` -![](assets/ex014b.png) +![](assets/advanced014b.png) Alternatively, 2D histograms may be displayed using the `boxxyerror` plot style which allows more flexibility in, e.g., handling transparencies and drawing the histogram grid. In this case the data can be prepared using the [`boxxyerror()`](@ref) function, as follows: @@ -175,9 +175,9 @@ Alternatively, 2D histograms may be displayed using the `boxxyerror` plot style box = boxxyerror(h.bins1, h.bins2, cartesian=true) @gp "set size ratio -1" "set style fill solid 0.5 border lc rgb 'gray'" :- @gp :- box... h.counts "w boxxyerror notit lc pal" -saveas("ex014c") # hide +saveas("advanced014c") # hide ``` -![](assets/ex014c.png) +![](assets/advanced014c.png) ## Contour lines @@ -188,9 +188,9 @@ for i in 1:length(clines) @gp :- clines[i].data "w l t '$(clines[i].z)' lw $i lc pal" :- end @gp :- key="outside top center box horizontal" -saveas("ex014d") # hide +saveas("advanced014d") # hide ``` -![](assets/ex014d.png) +![](assets/advanced014d.png) ## Animations